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Abstract

The Korteweg-de Vries equation (KdV) and various generalized, most often semi-

linear versions have been studied for about 50 years. Here, the focus is made on a
quasi-linear generalization of the KdV equation, which has a fairly general Hamil-
tonian structure. This paper presents a local in time well-posedness result, that is
existence and uniqueness of a solution and its continuity with respect to the initial
data. The proof is based on the derivation of energy estimates, the major inter-
est being the method used to get them. The goal is to make use of the structural
properties of the equation, namely the skew-symmetry of the leading order term,
and then to control subprincipal terms using suitable gauges as introduced by Lim
& Ponce (SIAM J. Math. Anal., 2002) and developed later by Kenig, Ponce &
Vega (Invent. Math., 2004) and S. Benzoni-Gavage, R. Danchin & S. Descombes
(Electron. J. Diff. Eq., 2006). The existence of a solution is obtained as a limit
from regularized parabolic problems. Uniqueness and continuity with respect to the
initial data are proven using a Bona-Smith regularization technique.

Keywords: quasilinear dispersive equation, energy estimates, gauging technique, parabolic

regularization, Bona-Smith technique
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1 Introduction and main result

More than a century ago, D.J. Korteweg and G. de Vries proposed a model for unidi-
rectional long water waves propagating in a channel. The so-called Korteweg-de Vries
equation

(KdV) vt + vvx + vxxx = 0 ,

in fact derived earlier by Boussinesq, drew a lot of attention in the 1960’s, when it turned
out that it was completely integrable, see e.g. one of the seminal papers by Gardner,
Green, Kruskal & Miura [11, 12] or the book by Ablowitz [1] for a modern overview.

It was soon considered in generalized forms

(gKdV) vt + p(v)x + vxxx = 0 .

In particular, the modified KdV equation

(mKdV) vt + v2vx + vxxx = 0 .

is also completely integrable. This is not the case for more general nonlinearities. Never-
theless, (KdV) and (gKdV) have been studied by analysts for about 50 years. The state
of the art regarding (KdV) is mainly due to Bona & Smith [6], Kato [13], Kenig, Ponce
& Vega [14, 16] and Christ, Colliander & Tao [7]. For (gKdV), it is due mainly to Kenig,
Ponce & Vega [15] and Colliander, Keel, Staffilani, Takaoka & Tao [8].

In this article, we consider a quasi-linear version of the Korteweg-de Vries equation,
in which the dispersive term is not reduced to vxxx. This equation is the most natural
generalization of the abstract, Hamiltonian form of (gKdV), which reads

(1) vt = (δH [v])x

with

(2) H [v] =
1

2
v2x + f(v) ,

and f ′(v) = −p(v). Our motivation for considering this generalization comes from the
so-called Euler-Korteweg system, which involves an energy of the form (2) where κ is not
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necessarily a constant. The link with the Euler-Korteweg system is that their travelling
waves share the same governing ODE, with additional connections in the stability of their
periodic waves, see [5].

Our qKdV equation (1) (2) reads in a more explicit form

(3) ∂tv + ∂x(p(v)) + ∂x

(√
κ(v)∂x(

√
κ(v)∂xv)

)
= 0 .

Up to our knowledge, the Cauchy problem regarding this quasilinear equation has never
been investigated. An apparently more general nonlinear KdV equation

vt + f(vxxx, vxx, vx, v) = 0 ,

was studied by Craig, Kappeler, & Strauss in [9] and more recently by Linares, Ponce,
& Smith in [19]. However, they use a monotonicity assumption on the nonlinearity,
∂vxxf(vxxx, vxx, vx, v) ≤ 0, which reads ∂xκ(v) ≤ 0 for (3). Unless κ is constant, their
results are thus hardly applicable to (3). Our approach is to use the structure of the
equation instead of a monotonicity argument.

Of course, Eq. (3), includes the semi-linear generalized KdV equations, where κ(v) = 1
and the nonlinearity p is polynomial. In particular p(v) = 1

2
v2 corresponds to the classical

KdV equation and p(v) = 1
3
v3 to the modified KdV equation. As said before, these two

cases are known to fall into the class of integrable equations. Remarkably enough, there is
a non constant κ for which (qKdV) is completely integrable, namely κ(v) = ε2

12
(v + a)−3,

with a ∈ R, ε > 0 and p(v) = v2

2
, see [10].

We focus on the local-in-time well-posedness of (qKdV) in Sobolev spaces, that is exis-
tence and uniqueness of a smooth solution v given smooth initial data v0, with continuity
of the mapping v0 7→ v. The most important part of the work is based on obtaining a
priori estimates, using the skew-symmetric form of the leading order term and gauging
techniques to control subprincipal remainders. The idea of using gauges for dispersive
PDEs, introduced by Lim & Ponce in [18] and developed by Kenig, Ponce & Vega in [17]
and later by S. Benzoni-Gavage, R. Danchin & S. Descombes in [3, 4], is a fairly general
method to deal with subprincipal terms.

In what follows, we consider an interval I ⊂ R, and solutions of (3) are sought with
values in a compact subset J of I. The functions κ : I → R

+∗ and p : I → R are supposed
to be smooth. We consider an integer k and denote by Hk(R) the classical Sobolev space
constructed on L2(R) as

Hk(R) = {v ∈ L2(R) , ∂l
xv ∈ L2(R) for all |l| ≤ k} .

The inner product in L2(R) will be denoted for all u and v by 〈u|v〉. Our main result
is the following.

Theorem 1. Assume that k ≥ 4. If p = −f ′ : I ⊂ R → R is C k+1 and κ : I → R
+∗ is

C k+2, then for all v0 ∈ Hk(R), the image of v0 being in J ⊂⊂ I, there exists a time T > 0
and a unique v ∈ C (0, T ;Hk(R))∩C 1(0, T ;Hk−3(R)) solution to (3) with initial data v0.
Moreover, v0 7→ v maps continuously Hk(R) into C (0, T ;Hk(R)) ∩ C 1(0, T ;Hk−3(R)).
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Remark 1. From the above statement, by standard arguments one may then build maxi-
mal solutions and a close inspection of our estimates shows that the maximal lifespan is
finite if and only if the H4 norm of the solution blows up at the final time.

The proof of this theorem is based on the derivation of a priori estimates for a regu-
larized parabolic problem. We establish these a priori estimates on smooth solutions by
taking advantage of the structure of Eq. (3). More precisely, we use the skew-symmetry of
its leading order term and then gauging techniques to deal with subprincipal remainders.
Regarding the existence of solutions, we shall use a fourth order parabolic regularization
of (qKdV) and pass to the limit. Uniqueness and continuity of the mapping v0 7→ v are
proved by means of a priori estimates and a technique adapted from Bona & Smith [6].

We introduce the notations a = p′ = −f ′′ and α =
√
κ. For convenience, we use

the same notation for both functions v 7→ α(v) and (t, x) 7→ (α ◦ v)(t, x). In particular,
α′ stands for the derivative of α(v) with respect to v and ∂tα and ∂xα for the time
and space derivatives of α ◦ v. We use the same convention for the function a and
all nonlinear functions of the dependent variable v, unless otherwise specified. To keep
notations compact, and hopefully easier to read, we also omit all parentheses in operators.
For example, the expression

∂x(α(v)∂x(α(v)∂xv)) ,

will just be denoted by
∂xα∂xα∂xv .

With these conventions, Eq. (3) becomes

(4) vt + avx + ∂xα∂xα∂xv = 0 ,

as far as smooth solutions are concerned.

2 A priori energy estimates in Sobolev spaces

In this section, we investigate a priori bounds in Hk(R) for smooth solutions of (4) with
k ≥ 4. Following ideas from [18, 3, 4], we shall make use of the structure of the equation
and of gauges, in order to cancel out bad commutators. An ideal structure that would
allow a direct computation of energy estimates is

vt = skew-symmetric terms + zeroth order terms .

Taking the inner product of this kind of equation with v, we see that the skew-symmetric
terms cancel out and we readily find

d

dt
‖v‖L2 . ‖v‖L2 .

Even if Eq. (4) has not exactly this ideal structure, the presence of first order terms
can also be handled, up to an integration by parts, not directly in L2(R) but in higher
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order Sobolev spaces. If we intend to get energy estimates in higher order Sobolev spaces
than L2(R), we had better be sure that this structure is preserved when differentiating
the equation to avoid derivatives loss. In what follows, we adapt a method from Lim &
Ponce [18], and use weighted Sobolev spaces, with weights also called gauges, to transform
our equation into a convenient structure and derive a priori estimates without loss of
derivatives.

2.1 Conservation of the skew-symmetric structure

Let us first focus on the leading order term in (4). When looking for an a priori estimate
in L2(R), we compute the time derivative of ‖v‖L2 by taking the inner product of the
equation with v. On the skew-symmetric leading order term, an integration by parts
yields

〈∂xα∂xα∂xv|v〉 = −〈∂x (α∂xv) |α∂xv〉 = 0 .

If we apply the differential operator ∂x to Eq. (4), we lose the skew-symmetry property
and the corresponding cancellation. Our aim is to preserve this cancellation throughout
the entire differentiation process. For this purpose, we consider the weighted quantity

(5) ∀k ≥ 0 , vk = (α(v)∂x)
k v ,

instead of ∂k
xv. This quantity is well defined if v is smooth enough. If we apply the formal

operator (∂x(α · ))k to Eq. (4), we see that the higher order terms have the same form as
in the original equation. They read ∂xα∂xα∂xvk, and thus cancel out in the inner product
with vk.

Following a definition in [23] (§3.6), we call weight the total number of space derivatives
in a monomial expression involving a function and its own derivatives. As we will see,
when we compute derivatives by applying repeatedly the operator ∂x(α·) to Eq. (4), the
coefficients of the remainders we will have to deal with will be products of polynomial
functions of v and its derivatives with functions of α(v) or a(v) and their derivatives. As
a result, they are polynomials in the variables vk with terms multiplied by functions of
v but we extend the definition of weight to this kind of non-polynomial functions. The
weight is merely the total number of derivatives.

Proposition 1. For a smooth solution of Eq. (4), if we denote vk = (α(v)∂x)
k v, then

the equation satisfied by vk is of the form

(6) ∂tvk + a∂xvk + ∂xα∂xα∂xvk = fk∂
2
xvk + gk∂xvk + hk ,

where

• fk = fk(v, v1) is of (homogeneous) weight 1.

• gk = gk(v, v1, v2) is of (homogeneous) weight 2.

• hk = hk(v, v1, · · · , vk) consists of two terms, one of (homogeneous) weight k+1 and
another of (homogeneous) weight k + 3.
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In Eq. (6), we kept a skew-symmetric leading order term in the left hand side on
purpose and we gathered commutator terms in the right hand side. These are subprincipal
terms because commutator terms between two differential operators of order respectively
p1 and p2 are of order p1 + p2 − 1.

Proof. Eq. (6) is obtained by repeatedly applying the differential operator ∂x(α·), which
preserves the form of the higher order terms. Indeed,

∂xα∂xα∂xα∂xvk = ∂xα∂xα∂xvk+1 ,

where the parentheses are omitted. We apply the differential operator ∂x(α·) and find the
equation satisfied by v1 = α∂xv. We have

∂x(α∂tv) = ∂tv1 , ∂x(αa∂xv) = a∂xv1 + a′α (∂xv)
2 ,

so that the equation satisfied by v1 is

∂tv1 + a∂xv1 + ∂xα∂xα∂xv1 = −a′

α
v21 ,

hence f1 = 0, g1 = 0 and h1 = −a′(v)
α(v)

v21. For k = 2, we use the equation on v1 and apply

again the operator ∂x(α·). Then, we find

∂tv2+a∂xv2+∂xα∂xα∂xv2 = −α′v1∂
2
xv2+

(
α′

α
v2 −

α′2

α2
v21

)
∂xv2+

(
α′a

α
− a′′

α

)
v31−

3a′

α
v1v2 ,

hence f2 = α′v1, g2 =
α′

α
v2 − α′2

α2 v
2
1 and

h2 =

(
α′a′

α2
− a′′

α

)
v31 −

3a′

α
v1v2 .

More generally, fk, gk, hk are computed by induction for k ≥ 2. We have

∂x(α∂tvk) = ∂tvk+1 − α′ [vt∂xvk − vx(vk)t] ,

where we can use Eq. (4) and (6) to write

∂tvk = − a

α
vk+1 − α∂2

xvk+1 −
α′

α
v1∂xvk+1 +

fk
α
∂xvk+1 −

α′

α2
fkv1vk+1 +

gk
α
vk+1 + hk ,

and
vt = − a

α
v1 − ∂xv2 .

Using that

∂x(αa∂xvk) = a∂xvk+1 + a′α∂xv∂xvk = a∂xvk+1 +
a′

α
v1vk+1 ,
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and

∂x (α [fk∂
2
xvk + gk∂xvk + hk]) = fk∂

2
xvk+1

+
(
gk + ∂xfk − α′

α2 fkv1
)
∂xvk+1

+
(
∂xgk − ∂x

(
α′

α2 fkv1
))

vk+1 + ∂x(αhk) .

we find that

∂tvk+1 + a∂xvk+1 + ∂xα∂xα∂xvk+1 = fk+1∂
2
xvk+1 + gk+1∂xvk+1 + hk+1 ,

with

(7)

fk+1 = fk + α′v1

gk+1 = gk + ∂xfk − 2α′

α2 fkv1 +
α′2

α2 v
2
1

hk+1 = α∂xhk +
(
∂xgk − ∂x

(
α′

α2 fkv1
))

vk+1

−a′

α
v1vk+1 +

α′

α
vk+1

(
α′

α2 fkv
2
1 − gk

α
v1 − ∂xv2

)

Note that these induction relations are valid for k ≥ 2. Indeed, the last term in (7)
in the formula for hk, namely −α′

α
vk+1∂xv2 involves three derivatives on v at least. For

k = 1, this term should be gathered with the ones which define gk+1 = g2. This is the
reason why we detailed the cases k = 1 and k = 2 in the beginning of the proof. From
the first induction, we deduce that for all k ≥ 1

(8) fk = (k − 1)α′v1 = (k − 1)α∂xα .

This explicit expression will be useful in what follows and justifies that the coefficient
fk depends only on v and v1 and is a polynomial in v1 with weight one multiplied by
a bounded function of v, namely v 7→ (k − 1)α′(v). We do not actually need the exact
expression for gk and hk. Instead, we analyse the number of derivatives they contain, that
is their weight, and their general form in terms of the variables v, v1, · · · , vk.

For k = 2, we have the explicit expression of g2 which is of weight 2. For k ≥ 2 if gk
is of weight 2 then so is gk+1 because

gk+1 − gk = ∂xfk −
2α′

α2
fkv1 +

α′2

α2
v21

is of weight 2, since fk is of weight 1.
Finally, we shall prove by induction that hk has the general form

(9) hk(v, v1, · · · , vk) =
∑

i

βi(v)
k∏

j=1

∂γj
x v ,

where the βi involves derivatives of both functions v 7→ α(v) and v 7→ a(v) and for all j,
γj ≤ k and the weight of each of the terms, namely

∑
j γj is either k + 1 or k + 3. Note

that in the general form (9), the γj are not necessarily distinct. For k = 2 we have

h2 =

(
α′a′

α2
− a′′

α

)
v31 −

3a′

α
v1v2 ,

7



which is of weight 3. It is compatible with the general form (9). For k ≥ 2, we have from
Eq. (7)

hk+1 = α∂xhk −
a′

α
v1vk+1 + rk ,

where rk gathers terms of weight k + 4, as gk is of weight 2 and fk is of weight 1. The
term −a′

α
v1vk+1 is of weight k + 2. Now, from the form (9) and using the chain rule and

the product rule, we write

α∂xhk = α(v)∂x

(
∑

i

βi(v)
k∏

j=1

∂γj
x v

)
=
∑

i

β̃i(v)
k∏

j=1

∂γ̃j
x v ,

where the β̃i also involve derivatives of both functions v 7→ α(v) and v 7→ a(v) and for all
j, γ̃j ≤ k + 1 and the weight of each of the terms, namely

∑
j γ̃j is either k + 2 or k + 4.

We see that the term α∂xhk has the same general form as hk, but with terms of weight
k + 2 or k + 4. Then, if hk has the general form (9), so it is for hk+1, with weight raised
by one.

Remark 2. Another way to see that hk has the general form (9) is to see that it is made
of terms of the form

((α ◦ v)∂x)k (f ◦ v) ,
the function f being a combination of the functions α or a and their derivatives. Com-
bining the Faà di Bruno formula, which generalizes the chain rule, and the product rule,
we see that the term hk consists of a polynomial expression on v and its derivatives up to
vk, each term of the polynomial being multiplied by a bounded function of v.

The structure of Eq. (6) is

∂tvk = skew-symmetric terms + terms of order at most 2 .

In what follows, we will show how we can use gauges to reduce the order of these remain-
ders. We shall start with the control of the zero order term. Then we will find an estimate
for the first order term, without gauge fortunately. Finally, we will show how we can use
a suitable gauge to control the second order term.

Remark 3. We will have to prove a norm equivalence between the Sobolev norm ‖v‖Hk

and the weighted norm ‖vk‖L2. This property will be checked at the end of this section.

Remark 4. To obtain Theorem 1 with k = 4, one may think about a slightly different
strategy. It is based on estimating not (α◦v∂x)4v — which we do by introducing some gauge
— but (α ◦ v∂x)∂tv. Since ‖(α ◦ v∂x)∂tv‖2L2 is the leading order part of 〈∂tv, δ2H [v]∂tv,
the subprincipal terms appearing in the latter computation may dealt with in a gaugeless
way. See Remark 5 for a continuation of this comparison.
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2.2 Gauge estimates for subprincipal remainders

Let us first focus on the zero order term hk. We first prove the following lemma, which is
an extension of Lemma 3.6.2 in [23] to expression of order higher than one and adapted to
our particular functions, that is polynomial functions with terms multiplied by bounded
functions of v.

Lemma 1. Let Q(∂xv, · · · , ∂k
xv) be an homogeneous polynomial of weight q ∈ [k, 2k).

There exists a smooth function Cq,k such that, for all v ∈ Hk(R),

‖Q(∂xv, · · · , ∂k
xv)‖L2 ≤ Cq,k(‖∂xv‖L∞ , · · · , ‖∂(q−k)

x v‖L∞)‖v‖Hk

Proof. The proof is based on the Gagliardo-Nirenberg inequality. First, note that if
v ∈ Hk(R) and q < 2k, then for all p ≤ q − k < k, ∂p

xv ∈ H1(R) →֒ L∞(R). By
the triangular inequality, it is sufficient to focus on a monomial expression of the form

Q(∂xv, · · · , ∂k
xv) =

k∏

j=1

∂γj
x v ,

with for all 1 ≤ j ≤ k, γj ≤ k satisfy
∑k

j=1 γj = q. If there are some j such that γj ≤ q−k,
then we can estimate the corresponding factors in L∞(R). Now, if all the remaining factors
satisfy q − k < γj < k, we can conclude by using the Gagliardo-Nirenberg inequality. We
choose a particular l and write, for j 6= l

‖∂γj
x v‖L∞ . ‖∂k

xv‖
θj
L2‖∂(q−k)

x v‖1−θj
L∞ ,where θj =

γj − (q − k)

k − (q − k)− 1/2
,

and for j = l

‖∂γl
x v‖L2 . ‖∂k

xv‖θlL2‖∂(q−k)
x v‖1−θl

L∞ ,where θl =
γl − (q − k)− 1/2

k − (q − k)− 1/2
.

With these relations, we have

θ =

k∑

j=1
q−k<γj≤k

θj ≤ 1 ,

and then we are able to write

‖Q(∂xv, · · · , ∂k
xv)‖L2 ≤ Cq,k(‖∂xv‖L∞, · · · , ‖∂(q−k)

x v‖L∞)‖∂k
xv‖θL2‖∂(q−k)

x v‖1−θ
L∞ .

Finally, if there exists j0 such that γj0 = k, the corresponding factor belongs to L2(R) and
all other j satisfies γj ≤ q − k. Then, for all j 6= j0, we have ∂

γj
x v ∈ L∞(R). Combining

all previous cases, and using the Sobolev embedding H1(R) →֒ L∞(R), we can write

‖Q(∂xv, · · · , ∂k
xv)‖L2 ≤ Cq,k(‖∂xv‖L∞, · · · , ‖∂(q−k)

x v‖L∞)‖v‖Hk .
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Recall that hk contains two terms of weight q = k + 1 and q = k + 3. We deduced in
Proposition 1 the general form

hk(v, v1, · · · , vk) =
∑

i

βi(v)
k∏

j=1

∂γj
x v ,

where the βi are bounded functions of v on J . Then, Lemma 1 gives us the following
estimate

‖hk(v, v1, · · · , vk)‖L2 ≤ Ck(‖v‖L∞, · · · , ‖∂3
xv‖L∞)‖v‖Hk .

Let us now focus on the first order terms gk∂xvk. This term brings no trouble at all
as we can regroup it with the first order term in Eq. (6)

[a(v)− gk(v, v1, v2)] ∂xvk .

When taking the inner product with vk, we can estimate

〈(a− gk) ∂xvk|vk〉 ≤ ‖∂x (a− gk) ‖L∞‖vk‖2L2

≤ Ck(‖v‖L∞, ‖v1‖L∞ , ‖v2‖L∞ , ‖v3‖L∞)‖vk‖2L2

This leaves us with the only one remaining term fk∂
2
xvk. This one cannot be estimated

as the previous ones because it contains too many derivatives. The method we present
here consists in using gauges in the equation, following ideas from [18].

Formally and in all generality, what we call a gauge is a general differential operator
with unknown variable coefficients that cancels out ‘bad’ commutator terms when applied
to the equation. The key property is that the commutator of two differential operators of
order respectively p1 and p2 is of order p1 + p2 − 1. In our case, the equation is of leading
order three, with a priori two subprincipal terms we wish to reduce to order zero. We
could define a gauge of the type

φ = zeroth term + order (−1) term

and apply it to our equation. Doing so, the two commutators with the leading order
term would be of second and first order. These two new terms can be gathered with the
existing ones, and, in practice, one can choose the coefficients of the gauge as solutions of
ODEs, to cancel (or at least control) the subprincipal terms.

In our situation, we have already shown that the first order term can be controlled
without this technique. Using this fact, we will define a particular gauge as a function

(10) φk : (v, · · · , vk) 7→ φk(v, · · · , vk) ,

to cancel the second order term fk∂
2
xvk. As we will see in the computation though, we

will have to check that the arising first order term can be bounded.
Now, we multiply Eq. (6) by φ2

k

φk∂t(φkvk) + φka∂x(φkvk) + ∂xφkα∂xφkα∂xvk +Rk = φkφkfk∂
2
xvk + φkφkgk∂xvk + φkφkhk ,

10



where the four remaining terms are gathered in

Rk = φka [φk, ∂x] vk + φk [φk, ∂t] vk + [φkφk, ∂x(α·)] ∂xα∂xvk + ∂xαφk [φk, ∂x]α∂xvk .

We expect the first two terms to be bounded in L2(R) because they are of order zero.
This will be checked when we find bounds on the function φk. First, we compute the
commutators

(11)
[φ2

k, ∂x(α·)] = −2αφk∂xφk ,
[φk, ∂x] = −∂xφk ,
[φk, ∂t] = −∂tφk .

With these relations we are able to compute the last two terms in Rk

[φ∗
kφk, ∂x(α·)] ∂xα∂xvk = −2α2φk(∂xφk)∂

2
xvk − 2α(∂xα)φk(∂xφk)∂xvk ,

∂xαφ
∗
k [φk, ∂x]α∂xvk = −α2φk(∂xφk)∂

2
xvk − ∂x (α

2φk(∂xφk)) ∂xvk .

As expected, these terms coming from the commutators are also subprincipal terms. We
gather the coefficients of the second order terms and find an ODE on the function φk.

(12) 3α2(∂xφk) + φkfk = 0 .

Remark 5. To proceed with the comment of Remark 4, we observe that ‖φ4 ◦ v(α ◦
v∂x)

4v‖L2 = ‖∂x(α ◦ v∂x)3v‖L2 which differs from ‖(α ◦ v∂x)∂tv‖L2 — that is essentially
‖α ◦ v∂2

x(α ◦ v∂x)
2v‖L2 — only in some immaterial way. The advantage of using the

gauge strategy to determine a correct functional — instead of deducing it directly from the
Hamiltonian structure — is that it naturally generalizes to differentiation by any number
of derivative, as we have just shown.

We recall that this process added some commutator terms of first order terms we have
to control a posteriori. If we can prove the existence of φk satisfying the previous ODE
and belonging to a suitable space, here say W 3,∞(R) for example, then we can get our
a priori energy estimate by the same argument on first order terms as the one presented
above.

Remark 6. We also need to prove a norm equivalence between the usual L2 norm and
some L2 norm involving φk. This will be done at the end of this section.

From Eq. 8, we come back to the ODE (12) and easily find

(13) φk(v) = α(v)−
k−1

3 .

Now, with the regularity properties of the function v 7→ α(v), we directly get that φk

is bounded from above and away from zero. Moreover, for all 0 ≤ l ≤ 3, there exists a
constant Ck such that

‖∂l
xφk(v)‖L∞ ≤ Ck(‖v‖W 3,∞) ,
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and
‖∂tφk(v)‖L∞ ≤ Ck(‖v‖W 3,∞) .

Coming back to the first order terms, we check that

‖∂x
[
a(v)− gk − 2α(∂xα)φk(∂xφk)− ∂x

(
α2φk(∂xφk)

)]
‖L∞ ≤ Ck(‖v‖W 3,∞) .

Let us sum up formally what we obtained until now. At order k > 0, vk satisfies Eq.
(6). We define a gauge

φk(v) = α(v)−(k−1)/3 ,

and multiply Eq. (6) by φ2
k. This operation yields the equation satisfied by the quantity

φkvk
φk∂t(φkvk) + ∂xφkα∂xφkα∂xvk = φ2

kR̃k(v) ,

where the function R̃k gathers all the subprincipal terms we are now able to estimate

‖φkR̃k(v)‖L2 ≤ Ck(‖v‖W 3,∞)‖φkvk‖L2 .

This is a formal computation and we do not really get this ideal last estimate. In practice,
it is not the norm ‖φkvk‖L2 that appears but a combination of it and some norms ‖v‖Hk

with or without the gauge φk. We need to prove norm equivalences between the weighted
norms we introduced up to this point.

2.3 Weighted norms equivalences

As mentioned before, the final energy estimate cannot be obtained if we do not have some
norm equivalence on the quantities we are working with. More precisely, we prove the
following lemma

Lemma 2. Consider an integer k ≥ 1, let J be a compact subset of I ⊂ R. Let φk =
α−(k−1)/3 with α : I → R

+∗ of class C k+2. On the one hand, there exists a constant
ck depending only J such that, for all function v ∈ Hk(R) satisfying v(t, x) ∈ J for all
(t, x) ∈ R

+ × R, then

(14)
1

ck
‖v‖L2 ≤ ‖φk(v)v‖L2 ≤ ck‖v‖L2 .

On the other hand, if we denote vk = (α(v)∂x)
kv, there exist constants c′k and Ck−1

depending only on a constant ρ > 0 and J , such that for all function v ∈ Hk(R) with
v(t, x) ∈ J for all (t, x) ∈ R

+ × R and ‖v‖W 1,∞ ≤ ρ, then

(15)
1

c′k
‖v‖2Hk ≤ Ck−1‖v‖2Hk−1 + ‖φkvk‖2L2 ≤ c′k‖v‖2Hk .

12



Proof. The first inequalities are a direct consequence of the fact that the function α is
bounded from above and below as J is compact. Regarding the second norm equivalence,
we use the same scheme of proof as in Lemma 1 with a weight q = k. Using the definition
of vk, we can write

vk − αk(v)∂k
xv =

∑

i

βi(v)
k∏

j=1

∂γj
x v ,

where the βi are bounded functions on J ,
∑k

j=1 γj = k and for all j, γj ≤ k − 1. The
leading order term in vk satisfies

1

ck
‖∂k

xv‖L2 ≤ ‖αk(v)∂k
xv‖L2 ≤ ck‖∂k

xv‖L2 .

By Lemma 1, the remaining terms are bounded by

∥∥vk − αk∂k
xv
∥∥2
L2

≤ 2qCk−1(‖v‖W 1,∞)‖v‖2Hk−1 .

Then, we get

1

c′k
‖∂k

xv‖2L2 − Ck−1‖v‖2Hk−1 ≤ ‖vk‖2L2 ≤ c′k‖∂k
xv‖2L2 + Ck−1‖v‖2Hk−1 ,

rearranged as
1

c′k
‖∂k

xv‖2L2 ≤ Ck−1‖v‖2Hk−1 + ‖vk‖2L2 ≤ c′k‖v‖2Hk .

Using the inequality (14) and without renaming the constants already written for conve-
nience, we finally obtain

1

c′k
‖v‖2Hk ≤ Ck−1‖v‖2Hk−1 + ‖φkvk‖2L2 ≤ c′k‖v‖2Hk .

Then for all v ∈ Hk(R), we consider the weighted norm | · |k defined recursively by

(16)

{
|v|2k = ‖φkvk‖2L2 + C ′

k−1|v|2k−1 , for k ≥ 1 ,

|v|0 = ‖v‖L2 .

where the constant C ′
k−1 is determined by induction. This definition leads to the following

proposition.

Proposition 2. For all integer s ≥ 1, the weighted norm |·|s defined by (16) is equivalent
to the Hs norm. More precisely, there exists a constant cs depending only on ρ > 0 and
J such that for all v ∈ Hs(R) with, for all (t, x) ∈ R

+ × R, v(t, x) ∈ J and ‖v‖W 1,∞ ≤ ρ,
then

1

cs
‖v‖2Hs ≤ |v|2s ≤ cs‖v‖2Hs .

13



Proof. The proof is done by induction. For s = 1, the result is given by the relation (15)
from Lemma 2. For any s > 1, we have from (15) and the definition of |·|s

1

c′s
‖v‖2Hs ≤ Cs−1‖v‖2Hs−1 − C ′

s−1 |v|2s−1 + |v|2s ≤ c′s‖v‖2Hs .

Then, we get using the induction property (16)

1

c′s
‖v‖2Hs +

(
C ′

s−1

c′s−1

− Cs−1

)
‖v‖2Hs−1 ≤ |v|2s ≤ c′s‖v‖2Hs +

(
C ′

s−1c
′
s−1 − Cs−1

)
‖v‖2Hs−1 .

Finally, choosing the constant C ′
s−1 such that

(
C ′

s−1/c
′
s−1 − Cs−1

)
> 0, we obtain with

new constants
1

cs
‖v‖2Hs ≤ |v|2s ≤ cs‖v‖2Hs .

We are now able to give an a priori bound on a smooth solution of (qKdV).

Proposition 3. For any integer s ≥ 4, a smooth solution v of (qKdV) associated with
the initial condition v0 ∈ Hs(R) satisfies

(17) ‖v‖Hs ≤ Cs(‖v‖W 3,∞)‖v0‖Hs

Proof. Let us come back to the equation satisfied by φkvk. Using what we have done
previously, the second order terms cancel out and we can rearrange the remaining terms
in the following way

φk∂t(φkvk) + ∂xφkα∂xφkα∂xvk = φ2
kR̃k(v) ,

where the function R̃k gathers all the subprincipal terms we are now able to estimate

‖R̃(v)‖L2 ≤ Ck(‖v‖W 3,∞) (‖φkvk‖L2 + ‖v‖Hk) .

Taking the inner product with vk, we obtain

1

2

d

dt
‖φkvk‖2L2 =

〈
φkR̃

k
α|φkvk

〉
,

and then, using Lemma 2, we find some constant Ck such that

d

dt
‖φkvk‖2L2 ≤ Ck(‖v‖W 3,∞) (‖φkvk‖L2 + ‖v‖Hk) ‖φkvk‖L2 .

Now, from the Proposition 2, without renaming the constants for convenience and by
summing the last inequalities for s ≥ k ≥ 1, each one being multiplied by the suitable
constant, we get

(18)
d

dt
|v|2s ≤ max

k
{Ck(‖v‖W 3,∞)}‖v‖2Hs

14



Integrating and calling the maximal constant C, we get

|v(t, ·)|2s ≤ |v0|2s +
∫ t

0

C(‖v(τ, ·)‖W 3,∞)‖v(τ, ·)‖2Hsdτ .

Finally, using Proposition 2, we write

‖v(t, ·)‖2Hs ≤ cs

(
|v0|2s +

∫ t

0

C(‖v(τ, ·)‖W 3,∞)‖v(τ, ·)‖2Hsdτ

)
.

We finish the proof by Gronwall’s lemma.

3 Existence of a smooth solution

This section is devoted to the proof of local well-posedness for (qKdV). We first state
the existence and uniqueness of a smooth solution to a parabolic regularized equation
with regularized initial data. Then, using uniform a priori bounds in large norms on this
smooth solution, we take a limit to prove the existence of solutions to (qKdV). Here, we
shall adapt a method by Bona & Smith [6] and prove directly that the convergence occurs
in the very space C (0, T ;Hs(R)) and check uniqueness and continuity of the solution map
with respect to the initial data.

3.1 Study of a regularized equation

Let us introduce a small parameter ε > 0. For now, we consider the regularized parabolic
equation

(19) vt + avx + ∂xα∂xα∂xv + ε4∂4
xv = 0 .

Let χ be a function of class C ∞ such that its Fourier transform is compactly supported
and equals 1 in a neighborhood of the origin and η ∈ C

∞(R∗
+) a non decreasing function

with limit 0 at 0 that will be specified later in the proof. Denote

χε =
1

η(ε)
χ

( ·
η(ε)

)
.

Given v0 ∈ Hs(R), we define a regularized initial data by

(20) v0,ε = χε ∗ v0 .

Regarding the existence of a unique solution to (19) with initial data v0,ε, we refer to results
on analytic semigroups of semi-linear PDEs in [20] (§7.3.2) and [21] (§8.4) combined with
semigroup techniques in [3, 4]. More precisely, in their work on the Euler-Korteweg system,
S. Benzoni-Gavage, R. Danchin, S. Descombes used a similar fourth order regularization
to prove the local existence of solutions of linear problems with variable coefficients with
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a time of existence independent of ε. They use properties of the analytic semigroup
generated by ∂4

x and the Duhamel formula to prove the existence and uniqueness by a
fixed point method. Their technique can be directly applied to our semi-linear regularized
problem (19). Thus Eq. (19) has a unique solution belonging to C (0, T ;H∞(R)), with a
time of existence T > 0 depending on the initial data v0 and ε.

Then, we consider a sequence of smooth solutions (vε)ε>0. To take a limit when ε tends
to zero, we have to justify that the time of existence of the solution may be bounded from
below independently of ε. We look for uniform a priori bounds on the solution vε using
the techniques presented in the above section. We differentiate Eq. (19) by respecting
the skew-symmetry of the third order term and use a gauge to cancel remainders. After
those two operations, we get that, for all k ≥ 0

(21) φk∂t(φkvk) + ∂xφkα∂xφkα∂xvk + φkε
4∂4

x(φkvk) = φ2
kR̃k + ε4φ2

kRε ,

where the term R̃k contains all previous zero order remainders and the term Rε is a
commutator term arising from the fourth order regularization. To deal with this new
commutator term, we first prove the following lemma

Lemma 3. Let Q(v, ∂xv, · · · , ∂k+2p
x v) be an homogeneous polynomial of weight k + 2p ∈

[k, 2k) with terms multiplied by bounded functions of v. There exists a constant µ > 0
such that for all v ∈ Hk(R) and for all small ε > 0,

ε2p
〈
Q(v, ∂xv, · · · , ∂k+2p

x v)|∂k
xv
〉
≤ Cµ‖v‖2Hk + ε2pµ‖∂k+p

x v‖2L2 .

Proof. The proof uses that of Lemma 1. A general form of Q is

Q(v, ∂xv, · · · , ∂k+2p
x v) =

∑

i

βi(v)
k∏

j=1

∂γj
x v ,

where the βi are bounded on J and for all 1 ≤ j ≤ k, γj ≤ k+2p satisfy
∑k

j=1 γj = k+2p.

First, we take the inner product with ∂k
xv and use an integration by parts to get an

expression of the form 〈
P (v, ∂xv, · · · , ∂k+p

x v)|∂k+p
x v

〉

Now, thanks to the triangular inequality, it is sufficient to work on a monomial expression.
Without changing notations for convenience, we consider

P (v, ∂xv, · · · , ∂k+p
x v) =

k∏

j=1

∂γj
x v .

where for all 1 ≤ j ≤ k, γj ≤ k + p satisfy
∑k

j=1 γj = k + p.
If for all j, γj ≤ k, we proceed exactly as in Lemma 1 to get

〈
P |∂k+p

x v
〉
. ‖v‖Hk‖∂k+p

x v‖L2 .
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Now, if there is a factor with k < γl ≤ k + p, we use the again Gagliardo-Nirenberg
inequality. We know there could be only one because p ≤ k/2.

‖∂γl
x v‖L2 . ‖∂k+p

x v‖θL2‖∂k
xv‖1−θ

L2 ,where θ =
γl − k

p
< 1 .

Finally, combining with previous terms, we have by Young’s inequality

‖P (v, ∂xv, · · · , ∂k+p
x v)‖L2 . ‖v‖1−θ

Hk ‖∂k+p
x v‖θL2 . Cµ‖v‖Hk + µ‖∂k+p

x v‖L2 .

Now, returning to our first polynomial expression

〈
P (v, ∂xv, · · · , ∂k+2p

x v)|∂k
xv
〉
≤
(
Cµ‖v‖Hk + µ‖∂k+p

x v‖L2

)
‖∂k+p

x v‖L2 .

Using another time Young’s inequality, we find new constants µ′ and Cµ′ such that

〈
P (v, ∂xv, · · · , ∂k+2p

x v)|∂k
xv
〉
≤ Cµ′‖v‖2Hk + µ′‖∂k+p

x v‖2L2 .

To conclude the proof, we multiply by the bounded factor ε2p and find the constant µ to
be the maximum of the µ′ obtained for the various monomials P .

Let us now come back to the regularized equation (19), and prove the following propo-
sition.

Proposition 4. Let v0 ∈ Hq(R) with q ≥ 4. For s ≥ q, the unique solution of (19) with
regularized initial data v0,ε defined in (20) satisfies

‖v(t, ·)‖Hs .
‖v0‖Hq

η(ε)s−q
.

Proof. We follow the steps of proof of Proposition 3. We first take the inner product of
(25) with vk to obtain

1

2

d

dt
‖φkvk‖2L2 + ‖ε2∂2

x(φkvk)‖2L2 =
〈
φkR̃|φkvk

〉
+ ε4 〈φkRε|φkvk〉 .

Using the techniques of the previous section and the result of lemma 3, we obtain by
choosing the Young’s inequality constant such that µ < 1/2,

1

2

d

dt
‖φkvk‖2L2 +

1

2
‖ε2∂2

x(φkvk)‖2L2 ≤ C∞‖φkvk‖2L2 + Ck(‖v‖L∞ , ‖v1‖L∞)‖v‖Hk
‖φkvk‖L2 .

Now, summing on 1 ≤ k ≤ s and multiplying by the suitable constants Ck at each step,

d

dt
|v|2s + c

s∑

k=1

‖ε2∂2
x(φkvk)‖2L2 ≤ max

k
Ck ‖v‖2Hs .
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By integration with respect to time

|v(t, ·)|2s +
∫ t

0

c
s∑

k=1

‖ε2∂2
x(φkvk)‖2L2dτ ≤ |v0|2s +

∫ t

0

C‖v‖2Hsdτ .

Finally,

‖v(t, ·)‖2Hs + cs

∫ t

0

c
s∑

k=1

‖ε2∂2
x(φkvk)‖2L2dτ ≤ cs

(
|v0|2s +

∫ t

0

C‖v‖2Hsdτ

)
.

This last estimate and the norm equivalence give in particular

‖v(t, ·)‖2Hs . ‖v0‖Hs +

∫ t

0

C‖v‖2Hsdτ .

A classical mollifier property from appendix C in [4] gives us

‖v0‖Hs ≤ C
‖v0‖Hq

η(ε)s−q
.

We finish the proof by Gronwall’s lemma.

In particular, for initial data v0 ∈ Hs(R), we get a uniform bound of the solution in
Hs(R) for any s ≥ 4, that is independent of ε. In the proof by S. Benzoni-Gavage, R.
Danchin, S. Descombes in [3], this uniform estimate is actually used directly in the fixed
point argument to justify that the time of existence of the solution vε is independent of
the regularization parameter ε. Here we obtain this uniformity a posteriori. From now
on, we denote by T > 0 the minimal common time of existence of all the solutions in the
sequence (vε)ε>0 depending only on v0.

3.2 Convergence to a solution of (qKdV)

From our regularized equations, we have a sequence of solutions (vε)ε>0 belonging to
C (0, T ;H∞(R)) for some T > 0 given the same initial data v0,ε regularized from v0 ∈
Hq(R), q ≥ 4 for all the sequence. We shall prove that this sequence is a Cauchy sequence
in C (0, T ;Hs(R)) for any s ≥ q ≥ 4.

For 0 < δ ≤ ε, we denote by vε and vδ the two corresponding solutions of (19) and we
look for estimates on z = vε − vδ. Then, our goal is to prove that ‖z‖L∞(0,T ;Hs(R)) goes to
zero when ε and δ go to zero. We compute the difference between the two equations on
vε and vδ to find

zt + a(vδ)zx + ∂xα(vδ)∂xα(vδ)∂xz + δ4∂4
xz = (ε4 − δ4) ∂4

xvε

+ (a(vδ)− a(vε)) ∂xvε

+ ∂xα(vδ)∂xα(vδ)∂xvε

− ∂xα(vε)∂xα(vε)∂xvε .
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We rewrite it in a more compact way

(22) zt + ãε,δzx + ∂x

(
1

2
α2
ε

)
zxx + ∂xαδ∂xαδ∂xz + δ4∂4

xz =
(
ε4 − δ4

)
∂4
xvε + Fε,δ(z) ,

with obvious notations. Fε,δ is a linear function with respect to z of homogeneous weight
3 and

ãε,δ = ãε,δ(vε, ∂xvε, ∂
2
xvε, vδ, ∂xvδ, ∂

2
xvδ) .

In this last formulation, we gathered all the subprincipal terms. Again, the first order one
can be estimated by a direct computation since ∂xãε,δ ∈ L∞(R) according to the estimate
on the solutions vε and vδ. Moreover, to take the limit, we will need estimates on low
derivatives of the difference z to compensate the loss involved by the high derivatives in
vε. More precisely, the arising of terms with too many derivatives on the coefficients vε
forces us to use estimates given by Proposition 4 and then concede an inverse factor of ε.
To recover this factor we shall prove that a low number of derivatives on the difference
z = vε − vδ can compensate this loss in ε. Then, we shall prove the following lemma

Lemma 4. For 0 < δ ≤ ε, let vε (respectively vδ) denote the smooth solutions of (19)
with parameter ε (respectively δ) and regularized initial data v0,ε (respectively v0,δ) with
v0 ∈ Hq(R), q ≥ 4. Then, for all 0 ≤ p ≤ q,

‖∂p
x (vε − vδ) ‖L∞(0,T ;L2(R)) = o(η(ε)q−p)

when ε goes to zero.

Proof. To get these new estimates, we start by looking for an estimate in L2(R) and then
in Hq(R). The structure of Eq. (22) is obviously different from the one we have worked
with previously. In fact, it is principally the arising of the second order term ∂x

(
1
2
α2
ε

)
zxx

which causes troubles. Again, we use a gauge φε,δ to deal with this term and multiply the
equation by φ2

ε,δ. Exactly as before, by computing commutators we find

(23)
φε,δ∂t(φε,δz) + φε,δãε,δ∂x(φε,δz) + ∂xαδφε,δ∂xαδφε,δ∂xz + δ4φε,δ∂

4
x (φε,δz)

= φ2
ε,δ (ε

4 − δ4) ∂4
xvε + φ2

ε,δF̃ε,δ(z) + δ4φε,δ[φε,δ, ∂
4
x]z .

In the previous expression, we have already used the cancellation due to our gauge and
the remainders of order zero are gathered in the term F̃ε,δ. As before, the ODE the gauge
has to satisfy is

3α2
δφε,δ∂xφε,δ = −φ2

ε,δ∂x

(
1

2
α2
ε

)
.

To solve this last equation, we rewrite it as

(24)
∂xφε,δ

φε,δ
= −1

3

∂xαε

αε
− ∂x(α

2
ε)

6

(
1

α2
δ

− 1

α2
ε

)
.

19



The first part of the right hand side is directly integrable and causes no trouble and the
second part belongs to L1(R). This yields that φε,δ exists and belongs to L∞(R) and thus,
from Eq. (24), we can ensure that for 0 ≤ l ≤ 3

∂l
xφε,δ ∈ L∞(R) .

Moreover, using the equations satisfied by vε and vδ and the estimates we have for both
of them, we find by a Gagliardo-Nirenberg inequality

‖∂tφε,δ‖L∞ . C + (ε4‖∂5
xvε‖L∞ + δ4‖∂5

xvδ‖L∞) ,

. C + ε4

η(ε)3/2
+ δ4

η(δ)3/2
,

≤ C ,

for a well chosen function η. Those properties justify that all the remainders from com-
mutators gathered in F̃ε,δ are bounded in L2(R) as the gauge and all its derivatives arising
in the computation are bounded in L∞(R). So the adding of this gauge does not change
anything from what was done in the previous section, especially regarding the norm equiv-
alences.

There are two terms left to control. The first one

δ4φε,δ[φε,δ, ∂
4
x]z

is treated using the same scheme of proof as in Lemma 3. By the Gagliardo-Nirenberg
inequality and the estimates on (vε)ε>0, we get constants µ > 0 and Cµ such that

δ4
〈
φε,δ[φε,δ, ∂

4
x]z|z

〉
≤ δ4Cµ‖vn‖2L2 + δ4µ‖∂2

xz‖2L2

For the second one, we write

〈
φε,δ

(
ε4 − δ4

)
∂4
xvε|φε,δz

〉
. ε4‖∂4

xvε‖L2‖φε,δz‖L2 .
ε4

η(ε)4−q
‖v0‖Hq‖φε,δz‖L2 .

Finally, choosing Young’s inequality constant such that µ < 1/2, the estimate we get by
taking the inner product of eq. (23) with z is

1

2

d

dt
‖φε,δz‖2L2 +

δ4

2
‖∂2

x(φε,δz)‖2L2 ≤ C‖φε,δz‖2L2 +
ε4

η(ε)4−q
‖v0‖Hq‖φε,δz‖L2 .

An integration in time and Gronwall’s lemma yield

‖φε,δz(t)‖L2 ≤ ‖φε,δz(0)‖L2 +
ε4

η(ε)4−q
‖v0‖Hq .

A classical property on mollifiers, again from appendix C of [4], and norm equivalences
finally give

‖z‖L∞(0,T ;L2(R)) = o(η(ε)q) +
ε4

η(ε)4−q
= o(η(ε)q) ,
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for a suitable choice of η, namely
η(ε) = εβ

with β < 1.
This last relation yields the desired estimate in L2(R). Let us now focus on the

property in Hq(R) To do this, we need to differentiate the equation q times using again
our differential operator α(vδ)∂x and the corresponding gauge φq(vδ) from the previous
section. We recall that z satisfies

zt + ãε,δzx + ∂x

(
1

2
α2
ε

)
zxx + ∂xαδ∂xαδ∂xz − δ4∂4

xz =
(
ε4 − δ4

)
∂4
xvε + Fε,δ(z) ,

The total gauge we will use is Φq = φq(vδ)φε,δ. Then, exactly as before, differentiating q
times, multiplying by Φ2

q and computing commutators

(25)

Φq∂t(Φqzq) + Φqãε,δ∂x(Φqzq) + ∂xαδΦq∂xαδΦq∂xzq + δ4Φq∂
4
xΦqzq

= Φ2
qF̃ε,δ(z, · · · , zq) + δ4Φq[Φq, ∂

4
x]zq + δ4(Φq)

2[(∂x(αδ·))q , ∂4
x]z

+ Φ2
q (ε

4 − δ4) (∂x(αδ·))q ∂4
xvε .

In this last expression, we have already used cancellations from the gauges and the term
F̃ε,δ contains all the remainders of commutators we have encountered before. This term
involves up to q + 3 derivatives on vε and up to q derivatives on vδ and will have to be
estimated again to make sure it remains bounded uniformly in ε. In the following we deal
with the four terms in the right hand side.

Let us deal first with the second one. This term is the same as in the L2 case treated
previously and we will later set Young’s inequality constant to control it.

For the third one, we use directly the lemma 3 with k = 4 and p = 2 to get that there
exists constants µ > 0 and Cµ such that

δ4
〈
[(∂x(αδ·))q , ∂4

x]z|zq
〉
. Cµ‖z‖2Hq + δ4µ‖∂2

xzq‖2L2 .

We rewrite the last term as

Φ2
q

(
ε4 − δ4

)
(∂x((αδ − αε)·))q ∂4

xvε + Φ2
q

(
ε4 − δ4

)
(∂x(αε·))q ∂4

xvε .

In the first part, it appears at most order q derivatives of z and order q + 4 derivatives of
vε. We rewrite it as a sum of terms of the general form

(
ε4 − δ4

)
∂q
xz ∂q+4−l

x vε ,

with 0 ≤ l ≤ q. Using a bootstrap argument, we get the estimate

(
ε4 − δ4

)
‖∂l

xz ∂q+4−l
x vε‖L2 . ε4‖∂q

xz‖L2‖∂q+4−l
x vε‖L∞ =

o(η(ε)q−l) ε4

η(ε)(4−l)/2+(5−l)/2
= o(1) .

For the second part of this last term, the term which has the worst possible loss of
derivative is (

ε4 − δ4
)
vε ∂

q+4
x vε .
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In this case, we estimate as before

(
ε4 − δ4

)
‖vε ∂q+4

x vε‖L2 .
ε4

η(ε)4
= o(1) ,

with our definition of the function η. This final estimate proves that the last term in eq.
(25) goes to zero when ε goes to zero.

We are left with F̃ε,δ, which we rewrite in general form

∑

i

βi(vε, vδ, z)
∏

j,l,m

∂γj
x vε∂

γl
x vδ∂

γm
x z ,

where for all j, l and m, γj ≤ q + 3, γl ≤ q, γm ≤ q and

∑

j,l,m

γj + γl + γm = q + 3 .

If γj ≤ q then the Gagliardo-Nirenberg inequality gives us our estimate as 3 ≤ γm ≤ q and
there is no loss in 1/η(ε) involved. The issue occurs when there is more than q derivatives
on either vε. In this case, γl ≤ 3 and the corresponding factors are bounded in L∞. Then,
we write for 1 ≤ l ≤ 3

‖∂q+3−l
x vε‖L∞‖∂l

xz‖L2 =
o(η(ε)q−l)

η(ε)3+1/2−l
= o(1) .

Finally, let us gather all we have done before. We take the inner product of Eq. (25)
by zq and, gathering all Young’s inequalities constants such that their sum is less than
1/2, we can write

1

2

d

dt
‖Φqzq‖2L2 +

δ4

2
‖∂2

x(Φqzq)‖2L2 . ‖Φqzq‖2L2 + F (ε)‖Φqzq||L2 ,

where we gathered in F (ε) = o(1) all the previously treated terms. Gronwall’s lemma
yields

(26) ‖Φqzq(t, ·)‖L2 . ‖Φqzq(0, ·)‖L2 + F (ε) ,

and with mollifiers properties

‖Φqzq‖L∞(0,T ;L2(R)) = o(1) .

Together with ‖φε,δz‖2L∞(0,T ;L2(R)) = o(η(ε)q), we complete the proof by interpolation and
norm equivalences.

Corollary 1. The sequence (vε)ε>0 is a Cauchy sequence in C (0, T ;Hs(R)) for any s >
3 + 1/2. Then, its limit v ∈ C (0, T ;Hs(R)) ∩ C 1(0, T ;Hs−3(R)) is a solution to (qKdV)
with initial data v0.
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4 Uniqueness and continuity with respect to the data

As announced, here we adapt a technique originally introduced by Bona & Smith in [6]
and later exploited in many papers, see [2, 3, 4] for example. We prove the following
theorem

Theorem 2. For an integer s ≥ 4, letK be a strictly positive constant. For all v0 ∈ Hs(R)
of norm not greater than K, the mapping

Hs(R) → C (0, T ;Hs(R)) ∩ C 1(0, T,Hs−3(R))
v0 7→ v , solution of (qKdV) with initial data v0

is continuous.

Proof. We aim at proving that for any sequence of initial conditions (vn0 )n≥0 going to v0
in Hs(R), then the corresponding sequence of solutions (vn)n≥0 goes to v, the solution
corresponding to the initial data v0. We start by writing

‖vn − v‖Hs ≤ ‖vn − vnε ‖Hs + ‖vnε − vε‖Hs + ‖vε − v‖Hs .

We first focus on the first and third terms. Let us rewrite what we obtained in (26). For
ε ≥ δ > 0, using norm equivalences and taking the limit δ → 0, we get

(27) ‖vε(t, ·)− v(t, ·)‖Hs ≤ CK (‖vε,0 − v0‖Hs + F (ε)) ,

where F (ε) goes to zero when ε goes to zero. This kind of estimate is also true for the
difference between the solutions vnε and vn

(28) ‖vnε (t, ·)− vn(t, ·)‖Hs ≤ CK

(
‖vnε,0 − vn0 ‖Hs + F (ε)

)
.

Moreover, we have

(29)
‖vnε,0 − vn0 ‖Hs ≤ ‖vnε,0 − vε,0‖Hs + ‖vε,0 − v0‖Hs + ‖v0 − vn0 ‖Hs ,

≤ 2‖vn0 − v0‖Hs + ‖vε,0 − v0‖Hs .

Now for the second term, we have to revisit the proof of Proposition 4 and more precisely
the way we obtained estimate (26). Here, we have to estimate the difference between two
solutions with same regularization parameter ε, but which satisfy the same regularized
equation with different initial data. We proceed exactly the same way with some cancel-
lations due to the fact that we actually take δ = ε in the computation. The only point
where we cannot follow the proof concerns the terms evaluated by

‖∂s+3−q
x vε‖L∞‖∂q

x(v
n
ε − vε)‖L2 ,

for 0 ≤ q ≤ 3. Indeed, we have balanced the coefficients involving ε to actually get
uniform estimates with respect to this parameter (it was the purpose of Lemma 4) but
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here, we cannot do the same. In fact we cannot hope to have a uniform estimate in ε but,
by a Gagliardo-Nirenberg inequality we find

‖∂s+3−q
x vε‖L∞‖∂q

x(v
n
ε − vε)‖L2 ≤ C

η(ε)3−q+1/2
‖vnε − vε‖Hs .

Finally, we obtain the following estimate

(30) ‖vnε − vε‖L∞Hs ≤ Cε‖vn0 − v0‖Hs ,

with the constant Cε going to +∞ when ε goes to zero. Now, using all previous estimates

‖vn−v‖L∞Hs ≤ CK

(
‖vnε,0 − vn0 ‖Hs + F (ε)

)
+Cε‖vn0 −v0‖Hs +CK (‖vε,0 − v0‖Hs + F (ε)) ,

which finally yields

‖vn − v‖L∞Hs ≤ 2CK (‖vε,0 − v0‖Hs + F (ε)) + (2CK + Cε)‖vn0 − v0‖Hs .

Now we find that

lim sup
n→+∞

‖vn − v‖L∞Hs ≤ 2CK (‖vε,0 − v0‖Hs + F (ε)) .

This finishes the proof as the right hand side of the last inequality goes to zero when ε
goes to zero for any initial condition v0.

The proof of uniqueness is a straightforward corollary of the previous one. Instead
of considering the difference between vn and v, we consider the difference between two
different solutions u and v but with the same initial data u0 = v0. Following the exact
same steps of the previous proof, with vε,0 = uε,0, we deduce

‖u− v‖L∞Hs ≤ 2CK (‖vε,0 − v0‖Hs + F (ε)) .

Then, we get uniqueness when taking the limit ε goes to zero.

5 Concluding remarks

The present well-posedness result is set on the real line x ∈ R. Nevertheless, as the proof
use only the structure of the qKdV equation and does not uses any dispersion estimate,
nothing prevents us from considering the same problem set on the torus R/ΞZ for any
period Ξ > 0. Then, we are able to give a similar well-posedness result on a unidimensional
torus.

Theorem 3. Assume that k ≥ 4. If p = −f ′ : I ⊂ R → R is C k+1 and κ : I → R
+∗ is

C k+2, then for all Ξ > 0, v0 ∈ Hk(R/ΞZ), there exists a time T > 0 and a unique v ∈
C (0, T ;Hk(R/ΞZ))∩C 1(0, T ;Hk−3(R/ΞZ)) solution to (3) with initial data v0. Moreover,
v0 7→ v maps continuously Hk(R/ΞZ) into C (0, T ;Hk(R/ΞZ)) ∩ C 1(0, T ;Hk−3(R/ΞZ)).
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Though we have not carried out such task here, it is likely that one may adapt the
strategy expounded here to deal with non integer indices of regularity and relax the
constraint k ≥ 4 to k > 3 + 1/2.

At first, we were aiming at a well-posedness result compatible with the study of the
non-linear stability of a known solution. More precisely, we were initially looking for a
solution of the equation as a perturbation around a bounded and infinitely differentiable
given solution of (qKdV). Nevertheless, it appears that the gauge technique does not work
well in this case. The functions defining the gauge are harder to construct when coefficients
depend not only the unknown solution but also on the known profile, especially when both
parts have different localization properties. A perspective we did not investigate here
would be the study of a perturbations around a periodic state. The periodicity property,
used similarly as in [22], should enable us to overcome the previous difficulty and should
give us the suitable gauge estimates.
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