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BEYOND GEVREY REGULARITY

STEVAN PILIPOVIĆ, NENAD TEOFANOV, AND FILIP TOMIĆ

Abstract. We define and study classes of smooth functions which
are less regular than Gevrey functions. To that end we intro-
duce two-parameter dependent sequences which do not satisfy Ko-
matsu’s condition (M.2)’, which implies stability under differential
operators within the spaces of ultradifferentiable functions. Our
classes therefore have particular behavior under the action of differ-
entiable operators. On a more advanced level, we study microlocal
properties and prove that

WF0,∞(P (D)u) ⊆WF0,∞(u) ⊆WF0,∞(P (D)u) ∪Char(P ),

where u is a Schwartz distribution, P (D) is a partial differential
operator with constant coefficients and WF0,∞ is the wave front set
described in terms of new regularity conditions. For the analysis we
introduce particular admissibility condition for sequences of cut-off
functions, and a new technical tool called enumeration.

1. Introduction

We propose new regularity conditions for smooth functions which are
weaker than the Gevrey regularity conditions. Instead of the Gevrey
sequence {p!t}p∈N, determined by parameter t > 1, we observe two-
parameter dependent sequences of the form {pτpσ}p∈N, with τ > 0 and
σ > 1. When σ = 1 and τ > 1 we recapture the Gevrey regularity as
well as the analytic regularity for σ = 1 and τ = 1.

Gevrey classes were initially introduced for the study of regularity
properties of the fundamental solution of the heat operator, cf. [13],
and thereafter used to describe regularities stronger than smoothness
and weaker than analyticity. In particular, it turned out that the well-
posedness of the Cauchy problem for weakly hyperbolic linear partial
differential equations (PDEs) can be characterized by the Gevrey index
t, while the same problem is ill-posed in the class of analytic functions,
cf. [3,28] and the references given there. Roughly speaking, fundamen-
tal solution φ may have C∞-regularity property, which in this paper
means that it is smooth without restrictions to the growth of its deriva-
tives, Et-regularity (Gevrey regularity) if ∂αφ are bounded by Cα+1α!t,
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α ∈ Nd, for some C > 0, t > 1, and A-regularity if ∂αφ are bounded
by Cα+1α!, α ∈ Nd, for some C > 0. Since there is a gap between the
Gevrey and C∞-regularity, new regularity conditions could be useful in
local analysis of the solutions of PDEs, which is one motivation for our
work. In particular, our condition describes hypoellipticity property
standing between C∞ hypoellipticity and Gevrey hypoellipticity.

Another motivation comes from microlocal analysis, where the no-
tion of wave-front set plays a crucial role. We recall that

WF(u) ⊆WFt(u) ⊆WFA(u) , t > 1, (1.1)

where u is a Schwartz distribution, WF is the classical (C∞) wave front
set, WFt is the Gevrey wave front set, and WFA is analytic wave front
set, we refer to Subsection 1.1 for precise definitions, and to [12,15] for
details. We note that one can find examples of (ultra)distributions for
which the inclusions in (1.1) are strict, and the same holds for other
inclusions of wave front sets in this paper. Extension of (1.1) to Gevrey
type ultradistributions is given in [28] and ”stronger” singularities re-
lated to t < 1 are recently treated in [25].

Apart from the Gevrey wave front set, different types of wave front
sets that modify the classical wave front set are introduced in the lit-
erature in connection to the equation under investigation, and we do
not intend to survey the definitions here. However, let us briefly men-
tion the Gabor wave front set, originally defined in [16] and further
developed in [29], which is based on microlocal analysis on cones taken
with respect to the whole of the phase space variables. Such approach
is recently successfully applied to the study of Schrödinger equations
in [2, 4, 5, 26, 32], see also the references therein. Note that the Gabor
wave front set of a tempered distribution is characterized in terms of
rapid decay of its Gabor coefficients on appropriate set. The idea to use
Gabor coefficients and, consequently, methods of time-frequency anal-
ysis and modulation spaces in the study of wave front sets is introduced
in [17,22,23], and extended in [6,7] to more general Banach and Fréchet
spaces. We refer to [8–11] for details on modulation spaces and their
role in time-frequency analysis. Since versions of Gabor wave front set
can be adapted to analytic and Gevrey regularity (cf. [1, 30, 31]) it is
natural to assume that the same holds in the framework of regularity
proposed in this paper, which will be considered by the authors in a
separate contribution.

Our approach gives a possibility to define wave-front sets which de-
tect singularities that are ”stronger” then the classical C∞ singularities
and at the same time ”weaker” than any Gevrey type singularities, and
to show that the usual properties (such as pseudo-local property), valid
for wave-front sets quoted in (1.1), hold also in the context of our new
regularity conditions. More precisely, one of the main results of the
paper is the following (see Section 3 for the definition of WF{τ,σ}(u)).
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Theorem 1.1. Let τ > 0, σ > 1, and u ∈ D′(U). Then

WF{2σ−1τ,σ}(P (D)u) ⊆WF{2σ−1τ,σ}(u)

⊆WF{τ,σ}(P (D)u) ∪ Char(P (D)), (1.2)

where P (D) is a partial differential operator of order m with constant
coefficients and Char(P (D)) is its characteristic set.

In fact, the result of Theorem 1.1 holds true when P (D) =
∑

|α|≤m aα(x)D
α,

where aα(x) ∈ E{τ,σ}(Rd) (see Section 2 for the definition). This ex-
tension requires nontrivial modifications of the proof of Theorem 1.1
and will be given in another paper. In particular, to handle the ap-
proximate solution (see Section 4) one should prove and use inverse
closedness property of the corresponding algebra, cf. [18].

We refer to (1.4) for the definition of Char(P (D)) and recall that if
Char(P (D)) = ∅ then P (D) is called hypoelliptic.

In particular, with WF0,∞(u) =
⋃

σ>1

⋂
τ>0WF{τ,σ}(u) we have:

Corollary 1.1. Let u ∈ D′(U) and P (D) be a partial differential op-
erator of order m with constant coefficients. Then

WF0,∞(P (D)u) ⊆WF0,∞(u) ⊆WF0,∞(P (D)u) ∪ Char(P (D)). (1.3)

For the proof of Theorem 1.1 we perform a careful analysis of se-
quences of cut-off test functions which lead to specific admissibility
condition. Moreover, we introduce a simple procedure called enumera-
tion which is quite useful for the description of asymptotic behavior in
microlocalization. In short, enumeration of a sequence ”speeds up” or
”slows down” the decay estimates of single terms while preserving the
asymptotic behavior of the whole sequence.

Different values of parameters τ > 0 and σ > 1 define different local
regularity conditions which in turn implies that in many situations we
obtain strict inclusions between the corresponding wave front sets. In
particular, WF(u) is, in general, a strict subset of the intersections of
our wave front sets, while the intersection of the Gevrey wave front
sets, ∩t>1WFt contains the union of our wave front sets as a strict
subset, see Corollary 3.1.

We note that our wave front sets are different from WFL introduced
in [15, Chapter 8.4] with respect to CL regularity classes defined by an
increasing sequence of positive numbers such that p ≤ Lp and Lp+1 ≤
CLp, for some C > 0 and for every p ∈ N. When Lp = (p+ 1)t, t > 1,
CL is the Gevrey class. However, our defining sequence {pτpσ}p∈N gives

Lp = pτp
σ−1

, which does not satisfy Lp+1 ≤ CLp, p ∈ N, for any choice
of τ > 0, σ > 1. Therefore our approach describes another type of
regularity than CL regularity.

The paper is organized as follows. In Section 2 we observe sequences
of the form {pτpσ}p∈N, τ > 0 and σ > 1, which do not satisfy Komatsu’s
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property (M.2)’ (stability under differentiation) which is the basic one
in the theory of ultradifferentiable functions, cf. [19]. Next, we use such
sequences to define spaces of ultradifferentiable functions of regularity
weaker than the Gevrey regularity, and study their main properties. In
particular, we discuss stability under the action of ultradifferentiable
operators.

In Section 3 we review the most common local regularity conditions
and wave-front sets of (ultra)distributions. We introduce the notion of
enumeration to motivate the definition of wave-front sets with respect
to the regularity introduced in Section 2. Due to specific properties
of our defining sequences, we had to modify Hörmander’s construction
from [15] by introducing a new admissibility condition for sequences of
cut-off functions used in the microlocalization. Next, we describe local
regularity via decay estimates on the Fourier transform side (Proposi-
tions 3.1 and 3.2) and discuss singular supports of (ultra)distributions.

Finally, in Section 4 we prove Theorem 1.1. Although we follow
the general idea of the proof of [15, Theorem 8.6.1] we present here a
detailed proof since our approach brings nontrivial changes and modi-
fications into it.

We remark that some preliminary results of our investigations are
given in [24], where test function spaces for Roumieu type ultradistri-
butions were considered.

1.1. Notation. Sets of numbers are denoted in a usual way, e.g. N

(resp. Z+) denotes the set of nonnegative ( resp. positive) integers.
For x ∈ R+ the floor and the ceiling functions are denoted by ⌊x⌋ :=
max{m ∈ N : m ≤ x} and ⌈x⌉ := min{m ∈ N : x ≤ m}. For
a multi-index α = (α1, . . . , αd) ∈ Nd we write ∂α = ∂α1 . . . ∂αd and
|α| = |α1|+ . . . |αd|. We will often use Stirling’s formula:

N ! = NNe−N
√
2πNe

θN
12N ,

for some 0 < θN < 1, N ∈ N \ 0. By Cm(K), m ∈ N, we denote
the Banach space of m-times continuously differentiable functions on
a compact set K ⊂⊂ U with smooth boundary, where U ⊆ Rd is
an open set, C∞(K) denotes the set of smooth functions on K, C∞

K

are smooth functions supported by K, and A(U) denotes the space
of analytic functions on U . The closure of U ⊂ Rd is denoted by
U . A conic neighborhood of ξ0 ∈ Rd \ 0 is an open cone Γ ⊂ Rd

such that ξ0 ∈ Γ. The convolution is given by (f ∗ g)(x) =
∫
Rd f(x −

y)g(y)dy, whenever the integral makes sense. The Fourier transform f̂

of a locally integrable function f is normalized to be F(f)(ξ) = f̂(ξ) =∫
Rd f(x)e

−2πixξdx, ξ ∈ Rd, and the definition extends to distributions

by duality. Open ball of radius r, centered at x0 ∈ Rd is denoted by
Br(x0).
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For locally convex topological spaces X and Y , X →֒ Y means that
X is dense in Y and that the identity mapping from X to Y is contin-
uous, and we use lim←− and lim−→ to denote the projective and inductive
limit topologies respectively. By X ′ we denote the strong dual of X
and by 〈·, ·〉X the dual pairing between X and X ′.

We will observe P (D) =
∑

|α|≤m aαD
α partial differential operators

of order m with constant coefficients. Then P (ξ) =
∑

|α|≤m aαξ
α, ξ ∈

Rd\{0}, is the symbol of P (D) and Pm(ξ) =
∑

|α|=m aαξ
α, ξ ∈ Rd\{0},

is its principal symbol. The characteristic set of P (D) is then given by

Char(P (D)) = {ξ ∈ Rd\{0} |Pm(ξ) = 0}. (1.4)

Let x0 ∈ U and ξ0 6∈ Char(P ). Then there is an compact neighborhood
K ⊂ U of x0 and a conic neighborhood Γ of ξ0 such that Pm(ξ) 6= 0 for
all (x, ξ) ∈ K × Γ. Moreover, there exist C1, C2 > 0 such that

C1|ξ|m ≤ Pm(ξ) ≤ C2|ξ|m, (x, ξ) ∈ K × Γ. (1.5)

As usual, D′(U) stands for Schwartz distributions, and E ′(U) for
compactly supported distributions. We refer to [19] for the definition
and detailed study of different classes of ultradifferentiable functions
and their duals, and to Remark 2.1 for the definition of Gevrey classes
Et(U), Dt(U), t > 1.

Let t > 1 and (x0, ξ0) ∈ U × Rd\{0} and u ∈ D′(U). Then the
Gevrey wave front set WFt(u) can be defined as follows: (x0, ξ0) 6∈
WFt(u) if and only if there exists an open neighborhood Ω of x0, a
conic neighborhood Γ of ξ0 and a bounded sequence uN ∈ E ′(U), such
that uN = u on Ω and

|ûN(ξ)| ≤ A
hNN !t

|ξ|N , N ∈ Z+, ξ ∈ Γ, (1.6)

for some A, h > 0. In fact, we may take uN = φu for some φ ∈ Dt(U)
which is equal to 1 in a neighborhood of x0. If t = 1 in (1.6), then the
corresponding wave-front set is called the analytic wave front set and
denoted by WFA(u). We refer to [12,15,28] for the classical wave-front
set.

2. Regularity classes Eτ,σ
In this section we first observe sequences M τ,σ

p = pτp
σ
, p ∈ N, where

τ > 0 and σ > 1, and list their basic properties in Subsection 2.1.
The flexibility obtained by introducing the two-parameter dependence
enables us to introduce and study smooth functions which are less
regular than the Gevrey functions, see Subsection 2.2. In Subsection
2.3 the action of ultradifferentiable operators on such classes is studied.
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2.1. The defining sequence M τ,σ
p . Basic properties of our defining

sequences are given in the following lemma. We refer to [24] for the
proof.

Lemma 2.1. Let τ > 0, σ > 1 and M τ,σ
p = pτp

σ
, p ∈ Z+, M

τ,σ
0 = 1.

Then the following properties hold:
(M.1) (M τ,σ

p )2 ≤M τ,σ
p−1M

τ,σ
p+1, p ∈ Z+,

˜(M.2)′ M τ,σ
p+1 ≤ CpσM τ,σ

p , for some C > 1, p ∈ N,

(̃M.2) M τ,σ
p+q ≤ Cpσ+qσM τ2σ−1,σ

p M τ2σ−1,σ
q , p, q ∈ N, for some C > 1.

(M.3)′
∞∑

p=1

M τ,σ
p−1

M τ,σ
p

<∞.

If σ = 1 then ˜(M.2)′ and (̃M.2) are standard Komatsu’s conditions
(M.2)′ and (M.2), respectively.

We will occasionally use Stirling’s formula

⌊pσ⌋!τ/σ ∼ (2π)τ/(2σ)pτ/2e−(τ/σ)pσM τ,σ
p , p→∞. (2.1)

2.2. Classes of ultradifferentiable functions. Let τ > 0, σ > 1,
h > 0, and K ⊂⊂ U , where U is an open set in Rd. A smooth function
φ on U belongs to the space Eτ,σ,h(K) if there exists A > 0 such that

|∂αφ(x)| ≤ Ah|α|σ |α|τ |α|σ , α ∈ Nd, x ∈ K.

It is a Banach space with the norm given by

‖φ‖Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σ |α|τ |α|σ , (2.2)

and Eτ1,σ1,h1
(K) →֒ Eτ2,σ2,h2

(K), 0 < h1 ≤ h2, 0 < τ1 ≤ τ2, 1 < σ1 ≤ σ2.
Let DK

τ,σ,h be the set of functions in Eτ,σ,h(K) with support contained
in K. Then, in the topological sense, we set

E{τ,σ}(U) = lim←−
K⊂⊂U

lim−→
h→∞

Eτ,σ,h(K), (2.3)

E(τ,σ)(U) = lim←−
K⊂⊂U

lim←−
h→0

Eτ,σ,h(K), (2.4)

D{τ,σ}(U) = lim−→
K⊂⊂U

DK
{τ,σ} = lim−→

K⊂⊂U

( lim−→
h→∞

DK
τ,σ,h) , (2.5)

D(τ,σ)(U) = lim−→
K⊂⊂U

DK
(τ,σ) = lim−→

K⊂⊂U

lim←−
h→0

DK
τ,σ,h. (2.6)

We will use abbreviated notation τ, σ for {τ, σ} or (τ, σ) . It can be
proved that the spaces Eτ,σ(U), DK

τ,σ and Dτ,σ(U) are nuclear, cf. [24].

Remark 2.1. From Lemma 2.1 it follows that the norms in (2.2) can be
replaced by

‖φ‖∼Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σ⌊|α|σ⌋!τ/σ <∞, h > 0. (2.7)
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If τ > 1 and σ = 1, then Eτ,1(U) = Eτ(U) are the Gevrey classes
and Dτ,1(U) = Dτ (U) are the corresponding subspaces of compactly
supported functions in Eτ(U). When 0 < τ ≤ 1 and σ = 1 such spaces
are contained in the corresponding spaces of quasianalytic functions.
In particular, Dτ (U) = {0} when 0 < τ ≤ 1.

By the Borel Theorem (cf. [15, 21]), there exists a smooth function
f such that

f (p)(0) = pτp
σ

, p ∈ Z+,

and from theWhitney extension theorem we may conclude that Eτ,σ(U) 6=
∅. However, there does not exist any sequence (Mp)p of the Komatsu
class so that the corresponding space of ultradifferentiable functions
contain f . Moreover, the existence of compactly supported functions
in Dτ,σ(U) which are not in Gevrey classes Dt(U) for any t > 1, and
of compactly supported function φ ∈ Eτ,σ(U) such that 0 ≤ φ ≤ 1 and∫
Rd φ dx = 1 is discussed in [24].
The basic embeddings between the introduced spaces with respect

to σ and τ are given in the following proposition.

Proposition 2.1. Let σ1 ≥ 1. Then for every σ2 > σ1 and τ > 0

lim−→
τ→∞

Eτ,σ1
(U) →֒ lim←−

τ→0+

Eτ,σ2
(U). (2.8)

Moreover, if 0 < τ1 < τ2, then for every σ ≥ 1 it holds

E{τ1,σ}(U) →֒ E(τ2,σ)(U) →֒ E{τ2,σ}(U), (2.9)

and

lim−→
τ→∞

E{τ,σ}(U) = lim−→
τ→∞

E(τ,σ)(U), lim←−
τ→0+

E{τ,σ}(U) = lim←−
τ→0+

E(τ,σ)(U).

Proof. For the proof of (2.8) we refer to [24, Proposition 2.1]. Since
the second embedding in (2.9) is trivial, we proceed with the proof of
the first one. Let φ ∈ Eτ1,σ,k(K) for some k > 0. Since

||φ||Eτ2,σ,h(K) ≤ sup
α∈Nd

k|α|σ |α|τ1|α|σ

h|α|σ |α|τ2|α|σ ||φ||Eτ1,σ,k(K), h, k > 0,

and sup
α∈Nd

k|α|σ |α|τ1|α|σ

h|α|σ |α|τ2|α|σ ≤ e
τ2−τ1

eσ
(k/h)

σ
τ2−τ1 , then for any given h > 0 there

exists C > 0 such that ||φ||Eτ2,σ,h(K) ≤ C||φ||Eτ1,σ,k(K), and the proof is
finished. �

We denote the corresponding projective (when τ → 0+ or when
σ → 1+) and inductive (when τ →∞ or when σ →∞) limit spaces as
follows:

E0,σ(U) := lim←−
τ→0+

Eτ,σ(U), E∞,σ(U) := lim−→
τ→∞

Eτ,σ(U),
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Eτ,1(U) := lim←−
σ→1+

Eτ,σ(U), Eτ,∞(U) := lim−→
σ→∞

Eτ,σ(U),

E0,1(U) := lim←−
σ→1+

E0,σ(U), E0,∞(U) := lim−→
σ→∞

E0,σ(U), (2.10)

E∞,1(U) := lim←−
σ→1+

E∞,σ(U), E∞,∞(U) := lim−→
σ→∞

E∞,σ(U), (2.11)

Then Proposition 2.1 implies the following dense embeddings:

lim−→
τ→∞

Eτ (U) →֒ E0,1(U) →֒ E∞,1(U)

→֒ E0,∞(U) →֒ E∞,∞(U) →֒ C∞(U). (2.12)

In fact, the first embedding lim−→
t→∞

Eτ (U) →֒ E0,1(U) in (2.12) follows

directly from Proposition 2.1 when σ2 > σ1 = 1. The embedding
E0,1(U) →֒ E∞,1(U) is obvious. Fix σ1 > 1 and let σ2 > σ1. Then for
some τ0 > 0

Eτ0,σ1
(U) →֒ E0,σ2

(U) →֒ E0,∞(U),

where the first embedding follows from (2.8) and the last one is trivial.
This implies E∞,1(U) →֒ E0,∞(U). Since the embeddings

E0,∞(U) →֒ E∞,∞(U) →֒ C∞(U)

are trivial, (2.12) is proved.

2.3. Continuity properties of ultradifferentiable operators on

Eτ,σ(U). The space Eτ,σ(U) can not be closed under the action of dif-
ferential operator ∂α for any given τ > 0 and σ > 1 since then M τ,σ

p

does not satisfy Komatsu’s condition (M.2)’. However, if we consider

E∞,σ(U) instead, then (̃M.2) provides the continuity of certain ultrad-
ifferentiable operators.

Definition 2.1. Let τ > 0 and σ ≥ 1 and let aα(x) ∈ E(τ,σ)(U) (resp.

aα(x) ∈ E{τ,σ}(U). Then P (x, ∂) =

∞∑

|α|=0

aα(x)∂
α is ultradifferentiable

operator of class (τ, σ) (resp. {τ, σ}) on U ⊆ Rd if for every K ⊂⊂ U
there exists constant L > 0 such that for any h > 0 there exists A > 0
(resp. for every K ⊂⊂ U there exists h > 0 such that for any L > 0
there exists A > 0) such that,

sup
x∈K
|∂βaα(x)| ≤ Ah|β|σ |β|τ |β|σ L|α|σ

|α|τ2σ−1|α|σ
, α, β ∈ Nd. (2.13)

P (x, ∂) is of the class τ, σ if it is of the class (τ, σ) or {τ, σ}.
In particular τ, 1 are ultradifferentiable operators of class ∗ where

∗ = {p!τ} or (p!τ ) in Komastu’s notation, cf. [20].
8



Theorem 2.1. Let there be given τ > 0, σ > 1 and let P (x, ∂) be an ul-
tradifferentiable operator of class (τ, σ) (resp. {τ, σ}). Then E(∞,σ)(U)
(resp. E{∞,σ}(U)) is closed under the action of P (x, ∂). In particular,

P (x, ∂) : Eτ,σ(U) −→ Eτ2σ−1,σ(U) , (2.14)

is a continuous linear map.

Proof. Let aα, φ ∈ Eτ,σ,h(K), α ∈ Nd, h > 0. By (2.13) we have

|∂β(aα(x)∂
αφ(x))| ≤

∑

γ≤β

(
β

γ

)
|∂β−γaα(x)||∂α+γφ(x)|

≤ A||φ||Eτ,σ,h(K)

∑

γ≤β

(
β

γ

)
h|β−γ|σ(|β−γ|)τ |β−γ|σ L

|α|σh|α+γ|σ

|α|τ2σ−1|α|σ
(|α+γ|)τ |α+γ|σ

≤ A||φ||Eτ,σ,h(K)
L|α|σ

|α|τ2σ−1|α|σ
(|α + β|)τ |α+β|σ

∑

γ≤β

(
β

γ

)
h|β−γ|σ+|α+γ|σ

≤ A||φ||Eτ,σ,h(K)(CL)|α|
σ

C |β|σ |β|τ2σ−1|β|σCh,β, (2.15)

where we have used the fact that M τ,σ
p satisfies (M.1)′ and (̃M.2), and

put Ch,β =
∑

γ≤β

(
β

γ

)
h|β−γ|σ+|α+γ|σ . Since

1

2σ−1
(|α|σ + |β|σ) ≤ |β − γ|σ + |α + γ|σ ≤ 2σ−1(|α|σ + |β|σ), γ ≤ β,

we have

Ch,β ≤ 2|β|h
1

2σ−1 |α|
σ

h
1

2σ−1 |β|
σ

, 0 < h < 1,

and

Ch,β ≤ 2|β|h2σ−1|α|h2σ−1|β|, h ≥ 1.

Put ch = max{h 1

2σ−1 , h2σ−1}. Then (2.15) implies

|∂β(aα(x)∂
αφ(x))| ≤ B||φ||Eτ,σ,h(K)(chCL)|α|

σ

(2chC)|β|
σ |β|τ2σ−1|β|σ .

Choosing h > 0 (resp. L > 0) such that LCch < 1/2, after summation
with respect to α ∈ Nd, and by taking suprema with respect to β ∈ Nd

and x ∈ K it follows that there exist C ′ > 0 such that

||P (x, ∂)φ||Eτ2σ−1,σ,2Cch
(K) ≤ C ′||φ||Eτ,σ,h(K)

which completes the proof. �

It immediately follows that E(∞,σ)(U) (resp. E{∞,σ}(U)) is closed

under the action of P (∂) =
∞∑

|α|=0

aα∂
α, where |aα| ≤ A

L|α|σ

|α|τ2σ−1|α|σ
, for

some L > 0 and A > 0 (resp. every L > 0 there exists A > 0).
9



3. Microlocal analysis with respect to Eτ,σ(U)

In this section we define wave front sets which detect singularities
that are ”stronger” then classical C∞ singularities and ”weaker” then
Gevrey type singularities.

In the study of regularity properties (as opposed to the singularity
properties) of a function (or distribution) u we are interested in points

(x0, ξ0) in which the decrease of |φ̂Nu(ξ)| ({φN}N∈N is appropriate
sequence of cut-off functions, φN = 1, N ∈ N, in a neighborhood
if x0) is faster than |ξ|−N for any N ∈ N, and, at the same time, slower

than e−|ξ|1/t for any t > 1, when |ξ| → ∞ and belongs to an open cone
which contains ξ0. In other words, u is micro-locally more regular than
being C∞−regular, but less than being Gevrey regular.

As a motivation for the definition of wave-front sets in the context
of the above mentioned regularity we observe the following conditions.

Lemma 3.1. Let t ≥ 1 and let {uN}N∈N be a sequence of functions in
C∞

K , such that some of the following conditions hold for every N ∈ N,
and ξ ∈ Rd\{0}:

|ûN(ξ)| ≤ A
hNt⌊N t⌋!
|ξ|⌊Nt⌋

, (3.1)

|ûN(ξ)| ≤ A
hNN !t

|ξ|N , (3.2)

|ûN(ξ)| ≤ A
hNN !1/t

|ξ|⌊N1/t⌋
, (3.3)

for some (different) constants A, h > 0. Then (3.1)⇒ (3.2)⇒ (3.3) .

As mentioned in the introduction, (3.2) is related to the Gevrey
wave front WFt, t > 1, and if t = 1 then (3.1) - (3.3) are related to the
analytic wave front set WFA.

The proof of Lemma 3.1 is just an application of the procedure which
we call enumeration and which consists of a change of variables in in-
dices which ”speeds up” or ”slows down” the decay estimates of single
members of the corresponding sequences, while preserving their asymp-
totic behavior when N → ∞. In other words, although estimates for
terms of a sequence before and after enumeration are different, the
asymptotic behavior of the whole sequence remains unchanged.

In other words, the conditions of the form (3.1), (3.2) or (3.3) are
equivalent if one is obtained from another one after replacing N with
positive, increasing sequence aN such that aN →∞, N →∞. We call
this procedure enumeration, and write N → aN and uN instead of uaN .

Now, for the proof of Lemma 3.1, it is enough to note that after
enumeration N → N1/t, t > 1, (3.1) is equivalent to local analyticity,
and it immediately follows that (3.1)⇒ (3.2). Next, after enumeration
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N → N t, t > 1, (3.3) is equivalent to

|ûN(ξ)| ≤ A
hNt⌊N t⌋!1/t
|ξ|N , N ∈ N, ξ ∈ Rd\{0},

and (3.2)⇒ (3.3) follows from (2.1).
Next we introduce new regularity condition and discuss its relation

to the conditions of Lemma 3.1.
Let τ > 0, σ ≥ 1 and let {uN}N∈N be a sequence of compactly

supported smooth functions such that

|ûN(ξ)| ≤ A
hNN !1/σ

|ξ|⌊(N/τ)1/σ⌋
, N ∈ N, ξ ∈ Rd\{0} (3.4)

for some constants A, h > 0. Note that from after enumeration N →
τNσ, (2.1) implies that (3.4) is equivalent to

|ûN(ξ)| ≤ A
hNσ

N τNσ

|ξ|N , N ∈ N, ξ ∈ Rd\{0},

and from N !σ ≤ CN τNσ
it follows that (3.2) ⇒ (3.4). Note that

(3.3)⇔ (3.4) when τ = 1, while (3.4)⇒ (3.3) when τ ∈ (0, 1).
We conclude that (3.4) describes regularity weaker than (3.2) and

stronger than (3.3).
After applying Stirling’s formula and enumeration N → N/τ to

|ûN(ξ)| ≤ A
hNN !τ/σ

|ξ|⌊N1/σ⌋
, N ∈ N, ξ ∈ Rd\{0} (3.5)

where A, h > 0, we obtain

|ûN(ξ)| ≤ A
hN/τ (N/τ)

τ
σ
(N/τ)

|ξ|⌊(N/τ)1/σ⌋
≤ B

kNN !1/σ

|ξ|⌊(N/τ)1/σ⌋
, N ∈ N, ξ ∈ Rd\{0},

for some A,B, h, k > 0, so that (3.5) is equivalent to (3.4).
This discussion motivates the use of (3.4) (or (3.5)) in the definition

of a new type of wave front sets of distributions, see Definition 3.2.

3.1. τ, σ-admissible sequences and local regularity of Gevrey

ultradistributions. An essential tool in our study is the use of care-
fully chosen sequences of cut-off functions, defined as follows.

Definition 3.1. Let τ > 0, σ > 1, and Ω ⊆ K ⊂⊂ U , such that Ω
is strictly contained in K. A sequence {χN}N∈N of functions in C∞

K is
said to be τ, σ-admissible with respect to K if

a) χN = 1 in a neighborhood of Ω, for every N ∈ N,
b) there exists a positive sequence Cβ such that

sup
x∈K
|Dα+βχN(x)| ≤ C

|α|+1
β ⌊N1/σ⌋|α|, |α| ≤ ⌊(N/τ)1/σ⌋, (3.6)

for every N ∈ N and β ∈ Nd.
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When τ = σ = 1 we recover the sequence used by Hörmander in the
study of the analytic behavior of distributions.

Although the following Lemma is a consequence of [15, Theorems
1.3.5 and 1.4.2] we give its proof since it contains an important con-
struction which will be used in the sequel.

Lemma 3.2. Let there be given r > 0, τ > 0, σ > 1 and x0 ∈ Rd.
There exists τ, σ-admissible sequence {χN}N∈N with respect to B2r(x0)
such that χN = 1 on Br(x0), for every N ∈ N.

Proof. Fix r > 0. Let dk =
r

4⌊(N/τ)1/σ⌋ , k ≤ ⌊(N/τ)1/σ⌋, N ∈ N.

Note that
⌊(N/τ)1/σ⌋∑

k=1

dk =
r

4
<

r

2
,

for every N ∈ N.
Since the infimum of distances between points inB5r/4(x0) andRd\B7r/4(x0)

is r/2, from [15, Theorem 1.4.2] it follows that for every N ∈ N there
exists a smooth function χ̃N such that supp χ̃N ⊆ B7r/4(x0), χ̃N = 1
on B5r/4(x0), and

sup
x∈K
|Dαχ̃N (x)| ≤ A|α|

|α|∏

k=1

dk = A|α|⌊(N/τ)1/σ⌋|α| ≤ C |α|⌊N1/σ⌋|α|,

(3.7)
for |α| ≤ ⌊(N/τ)1/σ⌋, N ∈ N, where C > 0 depends on τ and σ.

Next, let θ be a non-negative function such that θ ∈ C∞
0 (Br/4(x0))

and
∫
θ(x)dx = 1. Then χN = θ ∗ χ̃N clearly satisfies (3.6) for every

N ∈ N, if we let β derivatives act on θ and α derivatives act on χ̃N .
Hence {χN}N∈N is a τ, σ-admissible sequence with respect to B2r(x0)
and the lemma is proved. �

Remark 3.1. Note that if α = 0 in (3.6), then {χN}N∈N is a bounded
sequence in C∞(U). Moreover, by standard calculations we have that

|χ̂N(ξ)| ≤ A
|α|+1
β ⌊N1/σ⌋|α|〈ξ〉−|α|−|β|, |α| ≤ ⌊(N/τ)1/σ⌋, (3.8)

for every N ∈ N, ξ ∈ Rd, where 〈ξ〉 = (1 + |ξ|2)1/2. Therefore, if
u ∈ D′(U), the sequence {χNu}N∈N is bounded in E ′(U).

Local regularity in E{τ,σ}(U) is in fact determined by (3.5) as follows.

Proposition 3.1. Let u ∈ D′(U), and let {uN}N∈N be a bounded se-
quence in E ′(U), uN = u on Ω and such that (3.5) holds for τ > 0 and
σ > 1. Then u ∈ E{τ,σ}(Ω).

We omit the proof since it uses standard arguments based on the
Paley-Wiener theorem, the Fourier inversion formula and suitable de-
composition of the domain of integration in combination with the prop-

erty ˜(M.2)′. We refer to [15] and [28] for details.
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For the opposite direction, if u ∈ E{τ,σ}(Ω) then we use τσ/(σ−1), σ-
admissible sequences instead.

Proposition 3.2. Let Ω ⊆ K ⊂⊂ U , Ω strictly contained in K, u ∈
D′(U), and let {χN}N∈N be the τ̃ , σ-admissible sequence with respect to
K, where τ̃ = τσ/(σ−1), τ > 0, σ > 1 . If u ∈ E{τ,σ}(Ω), then {χNu}N∈N

is bounded in E ′(U), χNu = u on Ω, and

|χ̂Nu(ξ)| ≤ A
hNN !τ̃

−1/σ/σ

|ξ|⌊(N/τ̃)1/σ⌋
, N ∈ N, ξ ∈ Rd\{0}. (3.9)

That is, after enumeration N → τ̃N , {χNu}N∈N satisfies (3.5) for
some A, h > 0.

The proof is rather technical and follows the same idea as in [15,
Proposition 8.4.2]. We therefore omit it.

Note that for τ = σ = 1 Proposition 3.2 coincides with the necessity
part of [15, Proposition 8.4.2.].

3.2. Singular support and WFτ,σ related to the classes Eτ,σ. In
this section we introduce wave front set WF{τ,σ}(u), and prove the
corresponding results related to singular support. We also discuss the
wave-front set WF(τ,σ)(u).

Definition 3.2. Let τ > 0 and σ > 1, u ∈ D′(U), and (x0, ξ0) ∈
U × Rd\{0}. Then (x0, ξ0) 6∈ WF{τ,σ}(u) (resp. WF(τ,σ)(u)) if there
exists open neighborhood Ω ⊂ U of x0, a conic neighborhood Γ of ξ0,
and a bounded sequence {uN}N∈N in E ′(U) such that uN = u on Ω and
(3.5) holds for some constants A, h > 0 (resp. for every h > 0 there
exists A > 0).

Remark 3.2. It follows immediately from the definition thatWF{τ,σ}(u),
u ∈ D′(U), is closed subset of U × Rd\{0}. Note that for τ > 0 and
σ > 1

WF{τ,σ}(u) ⊆WFσ(u) ⊆WF{1,1}(u) = WFA(u),

where WFσ(u) is the Gevrey wave-front set. Moreover, when 0 <
τ < 1 and σ = 1 we have WFA(u) ⊆ WF{τ,1}(u), and WF{τ,σ}(u) 6=
WFL(u) for any choice of τ > 0, σ > 1, where WFL(u) is given in the
introduction.

Since Proposition 3.2 does not hold when 0 < τ < 1 and σ = 1, we
are not able to prove the usual relation between WF{τ,1}(u) and the
singular support of u, see Theorem 3.1. This suggests that the singu-
larities related to WF{τ,1} should be studied by a different approach
(see [25]).

The singular support of a distribution with respect to classes E{τ,σ}
can be defined in a usual manner.
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Definition 3.3. Let τ > 0, σ > 1, u ∈ D′(U) and x0 ∈ U . Then
x0 6∈ singsupp{τ,σ}(u) if and only if there exists a neighborhood Ω of x0

such that u ∈ E{τ,σ}(Ω).
The following lemma is an essential result on microlocal regularity,

which will be used in the proof of Theorem 3.1.

Lemma 3.3. Let τ > 0, σ > 1, u ∈ D′(U), K ⊂⊂ U , and let {χN}N∈N

be a τ̃ , σ-admissible sequence with respect to K with τ̃ = τσ/(σ−1). Then
{χNu}N∈N is a bounded sequence in E ′(U), and if WF{τ,σ}(u) ∩ (K ×
F ) = ∅, where F is a closed cone, then there exist A, h > 0 such that

|χ̂Nu(ξ)| ≤ A
hNN !τ̃

−1/σ/σ

|ξ|⌊(N/τ̃)1/σ⌋
, N ∈ N , ξ ∈ F . (3.10)

The main ingredient of the proof is τ̃ , σ-admissibility of {χN}N∈N

and carefully chosen enumeration applied to (3.5). Apart from this
technical conditions we may use the same idea as for the proof of [15,
Lemma 8.4.4.] and therefore omit the details.

As a consequence of Propositions 3.1, 3.2, and Lemma 3.3 we obtain
the following Theorem.

Theorem 3.1. Let τ > 0, σ > 1, u ∈ D′(U), and let π1 : Rd ×
Rd\{0} → Rd be the standard projection given with π1(x, ξ) = x. Then

singsupp{τ,σ}(u) = π1(WF{τ,σ}(u)).

Proof. Fix x0 6∈ π1(WF{τ,σ}(u)) and let K be its compact neighborhood
so that WF{τ,σ}(u) ∩ (K ×Rd\{0}) = ∅. By Lemma 3.3 there exists a
bounded sequence {uN}N∈N in E ′(U) such that uN = u on some open
set Ω and, after enumeration N → τ̃N ,

|ûN(ξ)| ≤ A
hNN !τ/σ

|ξ|⌊N1/σ⌋
, N ∈ N, ξ ∈ Rd\{0}. (3.11)

holds for some A, h > 0. From Proposition 3.1 it follows that u ∈
E{τ,σ}(Ω), that is, x0 6∈ singsupp{τ,σ}(u).

Conversely, if x0 6∈ singsupp{τ,σ}(u), then there exist neighborhood
Ω of x0 such that u ∈ E{τ,σ}(Ω). By Proposition 3.2, there exists a
bounded sequence {uN}N∈N in E ′(U) such that uN = u on Ω and
(3.11) holds, which implies the desired equality. �

To conclude the section we discuss intersections and unions of wave-
front sets WFτ,σ, τ > 0, σ > 1. It turns out that, from the microlocal
point of view, the regularity related to complements of these unions
and intersections in intimately related to the regularity properties in
the classes given by (2.10) and (2.11).

Let there be given u ∈ D′(U). Then we put

WF0,1(u) =
⋂

σ>1

⋂

τ>0

WFτ,σ(u), (3.12)
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WF∞,1(u) =
⋂

σ>1

⋃

τ>0

WFτ,σ(u), (3.13)

WF0,∞(u) =
⋃

σ>1

⋂

τ>0

WFτ,σ(u), (3.14)

WF∞,∞(u) =
⋃

σ>1

⋃

τ>0

WFτ,σ(u). (3.15)

Remark 3.3. Recall (cf. Proposition 2.9),

E{τ,σ}(U) →֒ E(ρ,σ)(U) →֒ E{ρ,σ}(U), (3.16)

when 0 < τ < ρ and σ > 1. Since the inclusions are strict, Definition
3.2 implies

WF{ρ,σ}(u) ⊆WF(ρ,σ)(u) ⊆WF{τ,σ}(u) , u ∈ D′(U).

Moreover,
⋂

τ>0

WF{τ,σ}(u) =
⋂

τ>0

WF(τ,σ)(u) and
⋃

τ>0

WF{τ,σ}(u) =
⋃

τ>0

WF(τ,σ)(u).

For that reason it is sufficient to consider intersections and unions of
WF{τ,σ}(u) in (3.12)-(3.15).

First we prove the following technical result.

Lemma 3.4. Let u ∈ D′(U), and σ2 > σ1 ≥ 1. Then
⋃

τ>0

WFτ,σ2
(u) ⊆

⋂

τ>0

WFτ,σ1
(u) .

Proof. Let (x0, ξ0) 6∈
⋂

τ>0WF{τ,σ1}(u). Then there exists τ0 > 0 such
that (x0, ξ0) 6∈ WF{τ0,σ1}(u). Hence there exists open conic neighbor-
hood Ω×Γ of (x0, ξ0) and a bounded sequence {uN}N∈N in E ′(U) such
that uN = u on Ω such that, after enumeration N → Nσ1 (see also
Lemma 2.1),

|ûN(ξ)| ≤ A
hNσ1N τ0Nσ1

|ξ|N , N ∈ N, ξ ∈ Γ, (3.17)

for some constants A, h > 0.
We need to prove that for every τ > 0, (x0, ξ0) 6∈WF{τ,σ2}(u). This

follows easily from (3.17), noting that (see the proof of the [24, Propo-
sition 2.1.]) for every τ > 0 and h > 0 there exists A1 > 0 such that

hNσ1
N τ0Nσ1 ≤ A1h

Nσ2
N τNσ2

, N ∈ N,

and the Lemma is proved. �

As a consequence of Lemma 3.4 we obtain the following result which
relates our regularity with C∞ and Et-regularity in terms of the corre-
sponding wave-front sets.
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Corollary 3.1. Let u ∈ D′(U). Then, in the notation of (3.12)-(3.15),
we have

WF(u) ⊆WF0,1(u) ⊆WF∞,1(u)

⊆WF0,∞(u) ⊆WF∞,∞(u) ⊆
⋂

τ>1

WFτ (u) , (3.18)

where WF and WFτ are the classical and the Gevrey wave-front sets,
respectively.

Proof. Note that the last inclusion follows from Lemma 3.4 for σ2 >
σ1 = 1 by taking unions and intersections with respect to τ > 1.
The only nontrivial inclusion is WF∞,1(u) ⊆ WF0,∞(u). Assume that

(x0, ξ0) 6∈ WF0,∞(u), that is, (x0, ξ0) 6∈
⋂

τ>0

WFτ,σ(u), for every σ > 1.

Fix some σ = σ1 > 1 and let σ2 > σ1. By Lemma 3.4 it follows that
(x0, ξ0) 6∈

⋃
τ>0WFτ,σ2

(u). Hence there exists σ > 1 such that for every
τ > 0 (x0, ξ0) 6∈WFτ,σ(u) and therefore (x0, ξ0) 6∈WF∞,1(u). �

To end the section, we relate WF0,∞(u) to the regularity in E∞,1, see
(2.11). Let singsupp∞,1(u) denote the singular support of u ∈ D′(U)
related to the classe E∞,1 (as appropriate union and intersection of
the corresponding singular supports in Eτ,σ(U)) Recall that, for every
σ > 1, the space E∞,σ is closed under the action of ultradifferentiable
operators of the class τ, σ (see Subsection2.3, Theorem 2.1). Then,
arguing in the similar way as in the proof of Theorem 3.1 one can
prove that

π1(WF0,∞(u)) = singsupp∞,1(u). (3.19)

4. Proof of Theorem 1.1

Note that Corollary 1.1 follows directly from Theorem 1.1 and Re-
mark 3.3. The first embedding in (1.2) immediately follows form the
next Lemma.

Lemma 4.1. Let u ∈ D′(U), τ > 0, σ > 1. Then

WF{τ,σ}(∂ju) ⊆WF{τ,σ}(u),

for all 1 ≤ j ≤ d.

Proof. Let (x0, ξ0) 6∈ WFτ,σ(u). Then there exists a conical neighbor-
hood Ω×Γ of (x0, ξ0) and a bounded sequence {uN} in u ∈ E ′(U) such
that uN = u on Ω, and such that after the enumeration N → Nσ we
obtain

|ûN(ξ)| ≤ A
hNσ

N τNσ

|ξ|N , N ∈ N, ξ ∈ Γ, (4.1)

for some A, h > 0. Then, for x0 ∈ Ω,

|∂̂juN+1(ξ)| ≤ A|ξ| h
N (N + 1)τ(N+1)σ

|ξ|N+1
≤ A1

hN
1 N

τNσ

|ξ|N , (4.2)
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N ∈ N, ξ ∈ Γ, j ∈ {1, . . . , d}, (̃M.2)
′

is used for the second inequality,
and the inclusion follows. �

Therefore it remains to prove that

WF{2σ−1τ,σ}(u) ⊆WF{τ,σ}(P (D)u) ∪ Char(P (D)).

The following inequality, which holds for τ > 0, σ > 1 and for some
C > 0, will be frequently used:

⌊N1/σ⌋⌊(N/τ)1/σ⌋ ≤ NNτ−1/σ/σ ≤ CNN !τ
−1/σ/σ. (4.3)

Assume that (x0, ξ0) 6∈ WF{τ,σ}(P (D)u) ∪ Char(P (D)). Then there
exists a compact set K containing x0 and a closed cone Γ contain-
ing ξ0 such that Pm(x, ξ) 6= 0 when (x, ξ) ∈ K × Γ and (K × Γ) ∩
WF{τ,σ}(P (D)u) = ∅.

Let τ̃ = τ
σ

σ−1 and let {χN}N∈N, be a τ̃ , σ-admissible sequence with
respect to K.

Put uN = χ2σNu, N ∈ N, so that

ûN(ξ) =

∫
u(x)χ2σN(x)e

−ixξdx, ξ ∈ Rd, N ∈ N.

The easy part of the proof is the estimate of |ûN(ξ)|, N ∈ N, for
”small” values of ξ ∈ Γ, that is when |ξ| ≤ ⌊N1/σ⌋. In fact, since
{uN}N∈N is bounded in E ′(U), Paley-Wiener theorems (see [20]), and
the fact that e−ix·ξ ∈ C∞(Rd

x), for every ξ ∈ Rd, implies that |ûN(ξ)| =
|〈uN , e

−i·ξ〉| ≤ C〈ξ〉M , for some C,M > 0 independent of N . Hence,
from (4.3) we have

|ξ|⌊(N/τ̃)1/σ⌋|ûN(ξ)| ≤ ⌊N1/σ⌋⌊(N/τ̃ )1/σ⌋|ûN(ξ)| ≤ ACNN
τ̃−1/σ

σ
N ,

where A,C > 0 do not depend on N . After enumeration N → τ̃N we
obtain

|ûN(ξ)| ≤ A
CNN

τ̃1−1/σ

σ
N

|ξ|⌊N1/σ⌋
≤ A

hNN !
τ
σ

|ξ|⌊N1/σ⌋
,

which estimates |ûN(ξ)| when ξ ∈ Γ, |ξ| ≤ ⌊N1/σ⌋, N ∈ N.
It remains to estimate |ûN(ξ)|, when ξ ∈ Γ, |ξ| > ⌊N1/σ⌋ and for

N ∈ N large enough (so that N →∞ implies |ξ| → ∞).
As in the proof of [15, Theorem 8.6.1], in Subsection 4.1 we use the

technique of approximate solution (see also [27, Theorem 1, Section
1.6]) to obtain

χ2σN(x)e
−ix·ξ = P T (D)

(
e−ix·ξ

Pm(ξ)
wN(x, ξ)

)
+ eN (x, ξ)e

−ixξ (4.4)

17



x ∈ K, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, that is, the following representation holds:

ûN(ξ) =

∫
u(x)eN (x, ξ)e

−ixξdx+

∫
u(x)P T (D)

(
e−ix·ξwN(x, ξ)

Pm(ξ)

)
dx

=

∫
u(x)eN(x, ξ)e

−ixξdx+

∫
P (D)u(x)

(
e−ix·ξwN(x, ξ)

Pm(ξ)

)
dx, (4.5)

where

wN(x, ξ) =

⌊(N
τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)
(Ra1

1 Ra2
2 . . . Ram

m χ2σN)(x, ξ), (4.6)

eN (x, ξ) =

m∑

k=1

⌊(N
τ̃
)
1
σ ⌋−m+k∑

S=⌊(N
τ̃
)
1
σ ⌋−m+1

( |a|
a1, ..., am

)
(Ra1

1 ...Ram
m χ2σN)(x, ξ), (4.7)

x ∈ K, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, and we put S = a1 + 2a2 + · · ·+mam.
The derivation of (4.5) and the calculation of wN(x, ξ) and eN(x, ξ)

is done in Subsections 4.1 and 4.2, so we continue with the estimation
of the first term in (4.5).

Estimated number of terms in eN(x, ξ) given in Subsection 4.1, and
the estimates of Dβ(Ra1

1 ...Ram
m χ2σN) given by (4.30) (Subsection 4.3)

imply

|〈u(x), eN(x, ξ)e−ix·ξ〉| ≤ A
∑

|α|≤M

|Dα
x(eN (x, ξ)e

−ixξ)|

≤ A
∑

|α|≤M

∑

β≤α

(
α

β

)
|Dα−β

x e−ixξ||Dβ
xeN (x, ξ)|

≤ A|ξ|M |ξ|−⌊2
1−σ
σ (N/τ̃ )1/σ⌋−MCNN !

τ̃−1/σ

σ

= A
CNN !

τ̃−1/σ

σ

|ξ|⌊2
1−σ
σ (N/τ̃ )1/σ⌋

, x ∈ K, ξ ∈ Γ, (4.8)

for suitable constants A,C > 0 and |ξ| large enough. After enumeration
N → τ̃2σ−1N , (4.8) is equivalent to

|〈u(x), eN(x, ξ)e−ix·ξ〉| ≤ A
CNN !

τ2σ−1

σ

|ξ|⌊N1/σ⌋
, x ∈ K, ξ ∈ Γ,

which estimates the first term on the righthand side of (4.5). In fact,
we will use a slightly weaker estimate which is obtained from (4.8) after
enumeration

N → N + ⌈τ̃2σ−1(M + d+ 1)σ⌉. (4.9)

It remains to estimate the second term on the righthand side of
(4.5) for |ξ| > ⌊N1/σ⌋. This is the hardest part of the proof. By the
Lemma 3.3 there exists a bounded sequence {fN}N∈N in E ′(U) such
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that fN = f = P (D)u in a neighborhood of K and there exists a cone
V such that Γ ⊂ V and

|F(fN)(η)| ≤ A
hNN !

τ̃−1/σ

σ

|η|⌊(N/τ̃)1/σ⌋
, η ∈ V. (4.10)

Since {χ2σN(x)}N∈N is bounded in C∞
0 (U), by the Paley-Wiener the-

orem (see also Remark 3.1) it follows that for every M̃ > 0 there exists

C > 0 which does not depend on N so that |χ̂2σN(η)| ≤ C〈η〉−M̃ ,
N ∈ N. From suppχN ⊆ K, N ∈ N, it follows that

π1(suppwN(x, ξ)) ⊆ K, N ∈ N,

and since fN = f in a neighborhood of K, we have wNf = wNfN ′ in
D′(U), where we put N ′ = N − ⌈2σ−1τ̃(M + d + 1)σ⌉. Therefore (and
since F(g1 · g2)(ξ) = (F(g1) ∗ F(g2))(ξ)))

〈f(·)e−iξ·, wN(·, ξ)/Pm(ξ)〉 =
1

Pm(ξ)
Fx→ξ(fN ′(x)wN(x, ξ))(ξ)

=
1

Pm(ξ)

∫

Rd

F(fN ′)(ξ − η)Fx→η(wN(x, ξ))(η) dη = I1 + I2,

where

I1 =
1

Pm(ξ)

∫

|η|<ε|ξ|

F(fN ′)(ξ − η)Fx→η(wN(x, ξ))(η, ξ) dη, (4.11)

I2 =
1

Pm(ξ)

∫

|η|≥ε|ξ|

F(fN ′)(ξ − η)Fx→η(wN(x, ξ))(η, ξ) dη, (4.12)

and 0 < ε < 1 is chosen so that ξ − η ∈ V when ξ ∈ Γ, ξ > ⌊N1/σ⌋,
and |η| < ε|ξ|.

Since |η| < ε|ξ| implies |ξ−η| ≥ (1−ε)|ξ|, by using the computation
of Fx→η(wN)(η, ξ) from Subsection 4.4, we estimate I1 as follows:

|I1| ≤
1

|Pm(ξ)|

∫

|η|<ε|ξ|

|F(fN ′)(ξ − η)||Fx→η(wN)(η, ξ)| dη

≤
∫

|η|<ε|ξ|

A
hN ′

N ′!τ/σ

|ξ − η|⌊N ′1/σ⌋
|Fx→η(wN)(η, ξ)| dη

≤ A
hN ′

N ′!τ/σ

((1− ε)|ξ|)⌊N ′1/σ⌋

∫

|η|<ε|ξ|

|Fx→η(wN)(η, ξ)| dη

≤ A1
hN ′

1 N ′!τ/σ

|ξ|⌊N ′1/σ⌋
C⌊(N/τ)1/σ⌋

∫

Rd

|χ̂2σN (η)| dη

≤ A2
hN ′

2 N ′!τ/σ

|ξ|⌊N ′1/σ⌋
, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋. (4.13)

We used the Paley-Wiener theorem for {χ̂2σN} and trivial inequality
|Pm(ξ)| ≥ 1 when |ξ| > ⌊N1/σ⌋.
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It remains to estimate I2. Note that |η| ≥ ε|ξ| implies |ξ − η| ≤
(1+1/ε)|η|, and by Paley-Wiener type estimates we have |F(fN ′)(η)| ≤
C〈η〉M , where C > 0 does not depend on N ′. Therefore

|I2| ≤
1

|Pm(ξ)|

∫

|η|≥ε|ξ|

|FfN ′(ξ − η)||Fx→η(wN)(η, ξ)| dη

≤ A

∫

|η|≥ε|ξ|

〈ξ − η〉M〈η〉⌊2
1−σ
σ (N ′/τ̃)1/σ⌋+d+1 |Fx→η(wN)(η, ξ)|

〈η〉⌊2
1−σ
σ (N ′/τ̃)1/σ⌋+d+1

dη

≤ CN+1
supη∈Rd〈η〉⌊2

1−σ
σ (N ′/τ̃ )1/σ⌋+M+d+1

|ξ|⌊2
1−σ
σ (N ′/τ̃)1/σ⌋

|Fx→η(wN(x, ξ))(η, ξ)|,

when ξ ∈ Γ, |ξ| > ⌊N1/σ⌋.
To finish the proof, we show that if ξ ∈ Γ, |ξ| > ⌊N1/σ⌋ then there

exists h > 0 such that

sup
η∈Rd

〈η〉⌊2
1−σ
σ (N ′/τ̃)1/σ⌋+M+d+1|Fx→η(wN)(η, ξ)| ≤ hN+1N !1/σ. (4.14)

Since N ′ = N − ⌈2σ−1τ̃ (M + d+ 1)σ⌉, it follows that

(N/τ̃ )1/σ =
(N ′ + ⌈2σ−1τ̃(M + d+ 1)σ⌉

τ

)1/σ

≥ 2
1−σ
σ (N ′/τ̃)1/σ+M+d+1.

(4.15)
If S ≤ ⌊(N/τ̃ )1/σ⌋ −m, |β| = ⌊(N/τ̃ )1/σ⌋ then

S+ |β| < 2⌊(N/τ̃ )1/σ⌋ ≤ ⌊2(N/τ̃ )1/σ⌋, (4.16)

From (4.16), when x ∈ K and ξ ∈ Γ, |ξ| > ⌊N1/σ⌋ it follows that

|DβwN(x, ξ)| ≤
⌊(N

τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)
sup
x∈K
|(DβRa1

1 Ra2
2 . . . Ram

m χ2σN )(x, ξ)|

≤
⌊(N

τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)
|ξ|−SCS+|β|+1⌊N1/σ⌋S+|β|

≤ ⌊N1/σ⌋|β|
⌊(N

τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)
CS+|β|+1 ≤ C ′⌊(N/τ̃ )1/σ⌋+1⌊N1/σ⌋|β|.

Since π1(suppwN(x, ξ)) ⊆ K and |β| = ⌊(N/τ̃ )1/σ⌋, we obtain

|η|⌊(N/τ̃)1/σ⌋|Fx→η(wN)(η, ξ)| ≤ C ′⌊(N/τ̃ )1/σ⌋+1⌊N1/σ⌋⌊(N/τ̃ )1/σ⌋ ≤ C ′′N+1N
τ̃−1/σ

σ
N ,

(4.17)
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where we used the first part of (4.3). Now (4.15) and (4.17) gives

sup
η∈Rd

〈η〉⌊2
1−σ
σ (N ′/τ̃)1/σ⌋+M+d+1|Fx→η(wN)(η, ξ)|

≤ sup
η∈Rd

〈η〉⌊(N/τ̃)1/σ⌋|Fx→η(wN)(η, ξ)| ≤ C ′′N+1N
τ̃−1/σ

σ
N , (4.18)

and (4.14) follows. Therefore

|I2| ≤ A
hNN

τ̃−1/σ

σ
N

|ξ|⌊2
1−σ
σ (N ′/τ̃)1/σ⌋

, (4.19)

for suitable constants A, h > 0. After enumeration given by (4.9), and

using (M.2)′ property of the sequence N
τ̃−1/σ

σ
N , we conclude that (4.19)

is equivalent to

|I2| ≤ A
hNN !

τ̃−1/σ

σ

|ξ|⌊2
1−σ
σ (N/τ̃ )1/σ⌋

, (4.20)

for some A, h > 0. After enumeration N → τ̃2σ−1N we finally obtain

|ûN(ξ)| ≤ A
hNN !

τ2σ−1

σ

|ξ|⌊N1/σ⌋
,

for some A, h > 0, and the proof is finished.

4.1. Derivation of the representation of ûN(ξ). Formally, we are
searching for v(x, ξ) so that

ûN(ξ) =

∫
u(x)χ2σN(x)e

−ixξdx =

∫
u(x)P T (D)v(x, ξ)dx,

ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, where P T (D) =
∑

|α|≤m

(−1)|α|aαDα is the transpose

operator of P (D), and v(x, ξ) is the solution of the equation

P T (D)v(x, ξ) = χ2σN(x)e
−ixξ, x ∈ K, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋. (4.21)

If v(x, ξ) is of the form v(x, ξ) =
e−ixξw(x, ξ)

Pm(ξ)
, for some w(·, ξ) ∈

C∞(K), where x ∈ K, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, then (4.21) becomes

(I − R(ξ))w(x, ξ) = χ2σN(x) x ∈ K, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, (4.22)
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where R(ξ) =
∑m

j=1Rj(ξ), Rj(ξ) = pj(ξ)
∑

|α|≤j

aαD
α, and pj(ξ) are ho-

mogeneous functions of order −j. In fact, formal calculation gives

eixξP T (D)(
w(x, ξ)e−ixξ

Pm(ξ)
)

= eixξ
1

Pm(ξ)

∑

|α|≤m

∑

β≤α

(
α

β

)
(−1)|α|aαDα−β(e−ixξ)Dβw(x, ξ)

=
∑

|α|≤m

∑

β≤α

(
α

β

)
(−1)|α|aα

((−ξ)α−β

Pm(ξ)

)
Dβw(x, ξ),

for x ∈ K and ξ ∈ Γ, |ξ| > ⌊N1/σ⌋. Since
(−ξ)α−β

Pm(ξ)
is homogeneous of

order |α|− |β|−m with respect to ξ, it follows that (4.21) would imply
(4.22).

Now, successive applications of the operator R in (4.22) give

Rk−1(ξ)w(x, ξ)−Rk(ξ)w(x, ξ) = Rk−1(ξ)χ2σN(x), x ∈ K, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋,

for every k ∈ {1, . . . , N}, so that after summing up those N equalities
we obtain

w(x, ξ)− RN(ξ)w(x, ξ) =
N−1∑

k=0

Rk(ξ)χ2σN(x),

which gives formal approximate solution

w(x, ξ) =
∞∑

k=0

Rkχ2σN (x, ξ)

=

∞∑

|a|=0

( |a|
a1, a2, . . . , am

)
Ra1

1 Ra2
2 . . . Ram

m χ2σN(x, ξ). (4.23)

The operators Rak
k (ξ), 1 ≤ k ≤ m, are of order less then or equal to

kak and homogeneous of order −kak with respect to ξ. Since P (D)
have constant coefficients, the operators Rj commute, and we used the
generalized Newton formula, cf. [28].

We proceed with the following approximation procedure. We con-
sider partial sums

wN(x, ξ) =

⌊(N
τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)
(Ra1

1 Ra2
2 . . . Ram

m χ2σN)(x, ξ),
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ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, and N ∈ N is large enough, so that (4.22) takes
the form (4.4) and the error term eN is given by:

eN (x, ξ) =

m∑

k=1

⌊(N
τ̃
)
1
σ ⌋−m+k∑

S=⌊(N
τ̃
)
1
σ ⌋−m+1

( |a|
a1, ..., am

)
(Ra1

1 ...Ram
m χ2σN )(x, ξ).

The precise calculation which leads to (4.4) is given in Subsection 4.2.

Note that the number of terms in (4.7) is bounded by 4 · 2⌊(Nτ̃ )
1
σ ⌋, since

from
(
n
k

)
≤ 2n, k ≤ n, n ∈ N, we obtain

( |a|
a1, a2, . . . am

)
≤ 2|a|2|a|−a1 . . . 2|a|−a1−···−am−2 ≤ 2a1+2a2+···+mam ,

and therefore

m∑

k=1

⌊(N
τ̃
)
1
σ ⌋−m+k∑

S=⌊(N
τ̃
)
1
σ ⌋−m+1

( |a|
a1, . . . , am

)
≤

m∑

k=1

⌊(N
τ̃
)
1
σ ⌋−m+k∑

S=⌊(N
τ̃
)
1
σ ⌋−m+1

2a1+2a2···+mam

≤ 2⌊(
N
τ̃
)
1
σ ⌋−m+1

m∑

k=1

2k ≤ 4 · 2⌊(Nτ̃ )
1
σ ⌋,

where we put S = a1 + 2a2 + · · ·+mam.

4.2. The calculation of the error term. For multinomial coeffi-
cients
( |a|
a1, a2, . . . am

)
:=

(|a|
a1

)(|a| − a1
a2

)
. . .

(|a| − a1 − · · · − am−2

am−1

)

=
|a|!

a1!a2! . . . am!
, |a| = a1 + a2 + · · ·+ am, ak ∈ N, k ≤ m, (4.24)

a generalization of Pascal’s triangle equality for the binomial formula
gives

( |a|
a1, ..., am

)
=

m∑

k=1

( |a| − 1

a1, ..., ak − 1, ...am

)
, |a| ≥ 1, (4.25)

wherefrom for |a| ≥ 1, and putting S = a1+2a2+ · · ·+mam we obtain

(⌊N
τ
)
1
σ ⌋−m∑

S=0

( |a|
a1, ..., am

)
Ra1

1 ...Ram
m χ2σN

=

⌊(N
τ
)
1
σ ⌋−m∑

S=0

( m∑

k=1

( |a| − 1

a1, ..., ak − 1, ...am

))
Ra1

1 ...Ram
m χ2σN
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=

m∑

k=1

⌊(N
τ
)
1
σ ⌋−m−k∑

S=0

( |a|
a1, ..., ak, ...am

)
Ra1

1 ...Rak+1
k ...Ram

m χ2σN

=
m∑

k=1

Rk

( ⌊(N
τ
)
1
σ ⌋−m−k∑

S=0

( |a|
a1, ..., am

)
Ra1

1 ...Ram
m χ2σN

)
, (4.26)

where for the second equality we interchange the summation and sub-
stitute ak with ak + 1.

Hence, for |a| ≥ 0 we have

(I −R)wN =

(⌊N
τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, ..., am

)
Ra1

1 ...Ram
m χ2σN

−
m∑

k=1

Rk

( ⌊(N
τ̃
)
1
σ ⌋−m−k∑

S=0

( |a|
a1, ..., am

)
Ra1

1 ...Ram
m χ2σN

+

⌊(N
τ̃
)
1
σ ⌋−m∑

S=⌊(N
τ̃
)
1
σ ⌋−m−k+1

( |a|
a1, ..., am

)
Ra1

1 ...Ram
m χ2σN

)

= χ2σN −
m∑

k=1

⌊(N
τ̃
)
1
σ ⌋−m∑

S=⌊(N
τ̃
)
1
σ ⌋−m−k+1

( |a|
a1, ..., am

)
Ra1

1 ...Rak+1
k ...Ram

m χ2σN

= χ2σN −
m∑

k=1

⌊(N
τ̃
)
1
σ ⌋−m+k∑

S=⌊(N
τ̃
)
1
σ ⌋−m+1

( |a|
a1, ..., am

)
Ra1

1 ...Ram
m χ2σN , (4.27)

where for the second equality we used (4.26) and for the last one we
substitute ak with ak − 1.

Therefore, if we set

eN (x, ξ) =
m∑

k=1

⌊(N
τ
)
1
σ ⌋−m+k∑

S=⌊(N
τ
)
1
σ ⌋−m+1

( |a|
a1, ..., am

)
(Ra1

1 ...Ram
m χ2σN )(x, ξ),

then the computation of this subsection gives the equality (4.4), which
in turn implies the fundamental representation (4.5).

4.3. Estimates for Dβ(Ra1
1 ...Ram

m χ2σN). Note that forN large enough
we have

(⌊(N/τ̃)1/σ⌋+M)σ ≤ 2σ−1(N/τ̃ +Mσ) < 2σN/τ̃

so that for |β| ≤M the following estimate holds:

S+ |β| ≤ ⌊(N/τ̃ )1/σ⌋ +M = ⌊(N/τ̃)1/σ +M⌋ < ⌊2(N/τ̃ )1/σ⌋ .
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Thus, for x ∈ K, ξ ∈ Γ, and S ≥ ⌊(N/τ̃ )1/σ⌋ −m, by using (4.3) we
obtain

|Dβ(Ra1
1 ...Ram

m χ2σN )(x, ξ)| ≤ |ξ|−SAS+|β|+1⌊N1/σ⌋S+|β|

≤ |ξ|m−⌊(N/τ̃ )1/σ⌋A⌊(N/τ̃ )1/σ⌋+M+1⌊N1/σ⌋⌊(N/τ̃ )1/σ⌋+M

≤ |ξ|m−⌊(N/τ̃ )1/σ⌋CN+1N
τ̃−1/σ

σ
N , (4.28)

for some C > 0, which is, after enumeration N → N +2σ−1τ̃(m+M)σ

bounded by

|ξ|m−⌊((N+2σ−1τ̃(m+M)σ)/τ̃ )1/σ⌋AN+2σ−1τ̃(m+M)σ+1

× (N + 2σ−1τ̃(m+M)σ)
τ̃−1/σ

σ
(N+2σ−1τ̃(m+M)σ),

for some A > 0. Moreover,

(N + 2σ−1τ̃ (m+M)σ

τ̃

)1/σ

≥ 2
1−σ
σ ((N/τ̃)1/σ + 2

σ−1

σ (m+M))

= 2
1−σ
σ (N/τ̃)1/σ +m+M . (4.29)

Finally, (4.29), (M.2)′ property of N
τ̃−1/σ

σ
N and Stirling’s formula give

the estimate

|DβRa1
1 ...Ram

m χ2σN(x)| ≤ |ξ|−⌊2
1−σ
σ (N/τ̃ )1/σ⌋−MCN+1N !

τ̃−1/σ

σ (4.30)

for some C > 0.

4.4. The computation of Fx→η(wN)(η, ξ). From

(Ra1
1 ...Ram

m χ2σN)(x, ξ) =
m∏

j=1

p
aj
j (ξ)

∑

|α|≤S

cαD
αχ2σN(x)

for suitable constants cα, it follows that

Fx→η(R
a1
1 ...Ram

m χ2σN )(η, ξ) =

m∏

j=1

p
aj
j (ξ)

∑

|α|≤S

c′′αη
αχ̂2σN(η),

so that

Fx→η(wN)(η, ξ)

=

⌊(N
τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)( m∏

j=1

p
aj
j (ξ)

) ∑

|α|≤S

c′′αη
αχ̂2σN(η).

Note that the number of terms in Fx→η(wN)(η, ξ) is bounded by C2⌊(N/τ)1/σ⌋

for some C > 0 which does not depend on N .
25



When |η| ≤ ε|ξ|, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋, and N sufficiently large we
have

|Fx→η(wN)(η, ξ)| ≤
⌊(N

τ̃
)
1
σ ⌋−m∑

S=0

( |a|
a1, a2 . . . am

)( m∏

j=1

(|pj(ξ)||εξ|j)aj
) ∑

|α|≤S

c′′α|χ̂2σN(η)|

≤ AC⌊(N/τ)1/σ⌋|χ̂2σN(η)|,
for some A,C > 0, and we used

m∏

j=1

(|pj(ξ)||εξ|j)aj ≤ AεS ≤ A, ξ ∈ Γ, |ξ| > ⌊N1/σ⌋,

which follows from ε < 1 and the fact that
∏m

j=1(|pj(ξ)||ξ|j)aj is homo-
geneous of order zero.
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