ERGODIC DECOMPOSITIONS OF STATIONARY MAX-STABLE PROCESSES IN TERMS OF THEIR SPECTRAL FUNCTIONS

CLÉMENT DOMBRY AND ZAKHAR KABLUCHKO

ABSTRACT. We revisit conservative/dissipative and positive/null decompositions of stationary max-stable processes. Originally, both decompositions were defined in an abstract way based on the underlying non-singular flow representation. We provide simple criteria which allow to tell whether a given spectral function belongs to the conservative/dissipative or positive/null part of the de Haan spectral representation. Specifically, we prove that a spectral function is null-recurrent iff it converges to 0 in the Cesàro sense. For processes with locally bounded sample paths we show that a spectral function is dissipative iff it converges to 0. Surprisingly, for such processes a spectral function is integrable a.s. iff it converges to 0 a.s. Based on these results, we provide new criteria for ergodicity, mixing, and existence of a mixed moving maximum representation of a stationary max-stable process in terms of its spectral functions. In particular, we study a decomposition of max-stable processes which characterizes the mixing property.

1. STATEMENT OF MAIN RESULTS

1.1. **Introduction.** A stochastic process $(\eta(x))_{x \in \mathcal{X}}$ on $\mathcal{X} = \mathbb{Z}^d$ or $\mathcal{X} = \mathbb{R}^d$ is called max-stable if

$$
\frac{1}{n}\bigvee_{i=1}^{n}\eta_{i}\stackrel{f.d.d.}{=}\eta\quad\text{for all }n\geq1,
$$

where η_1,\ldots,η_n are i.i.d. copies of η , \bigvee is the pointwise maximum, and $f \stackrel{f.d.d.}{=}$ denotes the equality of finite-dimensional distributions. Max-stable processes arise naturally when considering limits for normalized pointwise maxima of independent and identically distributed (i.i.d.) stochastic processes and hence play a major role in spatial extreme value theory; see, e.g., de Haan and Ferreira [\[4\]](#page-19-0). We restrict our attention to processes with non-degenerate (non-constant) margins. The above definition implies that the marginal distributions of η are 1–Fréchet, that is

$$
\mathbb{P}[\eta(x) \le z] = e^{-c(x)/z} \quad \text{for all } z > 0,
$$

where $c(x) > 0$ is a scale parameter.

A fundamental representation theorem by de Haan [\[3\]](#page-19-1) states that any stochastically continuous max-stable process η can be represented (in distribution) as

(1)
$$
\eta(x) = \bigvee_{i \geq 1} U_i Y_i(x), \quad x \in \mathcal{X},
$$

²⁰¹⁰ Mathematics Subject Classification. Primary: 60G70; Secondary: 60G52, 60G60, 60G55, 60G10, 37A10, 37A25.

Key words and phrases. max-stable random process, de Haan representation, non-singular flow, conservative/dissipative decomposition, positive/null decomposition, ergodic process, mixing process, mixed moving maximum process.

where

- $(U_i)_{i\geq 1}$ is a decreasing enumeration of the points of a Poisson point process on $(0, +\infty)$ with intensity measure $u^{-2}du$,
- $-(Y_i)_{i\geq 1}$, which are called the *spectral functions*, are i.i.d. copies of a nonnegative process $(Y(x))_{x\in\mathcal{X}}$ such that $\mathbb{E}[Y(x)] < +\infty$ for all $x \in \mathcal{X}$,
- the sequences $(U_i)_{i\geq 1}$ and $(Y_i)_{i\geq 1}$ are independent.

In this paper, we focus on *stationary* max-stable processes that play an important role for modelling purposes; see, e.g., Schlather [\[21\]](#page-19-2). The structure of stationary max-stable processes was first investigated by de Haan and Pickand [\[5\]](#page-19-3) who related them to non-singular flows. Using the analogy between max-stable and sum-stable processes and the works of Rosiński [\[13,](#page-19-4) [14\]](#page-19-5), Rosiński and Samorodnitsky [\[15\]](#page-19-6) and Samorodnitsky [\[19,](#page-19-7) [20\]](#page-19-8) on sum-stable processes, the representation theory of stationary max-stable processes via non-singular flows was developed by Kabluchko [\[7\]](#page-19-9), Wang and Stoev [\[26,](#page-20-0) [25\]](#page-20-1), Wang et al. [\[24\]](#page-19-10). In these papers, the conservative/dissipative (or Hopf) and positive/null (or Neveu) decompositions from non-singular ergodic theory were used to introduce the corresponding decompositions $\eta = \eta_C \vee \eta_D$ and $\eta = \eta_P \vee \eta_N$ of the max-stable process. These definitions were rather abstract (see Sections [3](#page-4-0) and [4](#page-8-0) where we will recall them) and did not allow to distinguish between conservative/dissipative or positive/null cases by looking just at the spectral functions Y_i from the de Haan representation [\(1\)](#page-0-0). The purpose of this paper is to provide a constructive definition of these decompositions. Our main results in this direction can be summarized as follows. In Section [3](#page-4-0) we will prove that in the case when the sample paths of η are a.s. locally bounded, a spectral function Y_i belongs to the dissipative (=mixed moving maximum) part of the process if and only if $\lim_{x\to\infty} Y_i(x) = 0$. In Section [4](#page-8-0) we will prove that a spectral function Y_i belongs to the null (=ergodic) part if and only if it converges to 0 in the Cesàro sense. In Section [5,](#page-11-0) we will introduce one more decomposition which characterizes mixing.

1.2. Ergodic properties of max-stable processes. Our results can be used to give new criteria for ergodicity, mixing, and existence of mixed moving maximum representation of max-stable processes. These criteria extend and simplify the results of Stoev [\[22\]](#page-19-11), Kabluchko and Schlather [\[8\]](#page-19-12) and Wang et al. [\[24\]](#page-19-10).

In the following, $(\eta(x))_{x\in\mathcal{X}}$ denotes a stationary, stochastically continuous maxstable process on $\mathcal{X} = \mathbb{Z}^d$ or \mathbb{R}^d with de Haan representation [\(1\)](#page-0-0). In the case when $\mathcal{X} = \mathbb{R}^d$, the process Y is continuous in L^1 by Lemma 2 in [\[3\]](#page-19-1). Since continuity in L^1 implies stochastic continuity and since every stochastically continuous process has a measurable and separable version, we will tacitly assume throughout the paper that both η and Y are measurable and separable processes. These assumptions (as well as the assumption of stochastic continuity) are empty (and can be ignored) in the discrete case $\mathcal{X} = \mathbb{Z}^d$.

Our first result is a characterization of ergodicity. Let $\lambda(dx)$ be the counting measure on \mathbb{Z}^d (in the discrete-time case) or the Lebesgue measure on \mathbb{R}^d (in the continuous-time case), respectively. For $r > 0$, write $B_r = [-r, r]^d \cap \mathcal{X}$.

Theorem 1. For a stationary, stochastically continuous max-stable process η the following conditions are equivalent:

- (a) η is ergodic;
- (b) η is weakly mixing;
- (c) η has no positive recurrent component in its spectral representation, that is $\eta_P = 0;$
- (d) $\lim_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} \mathbb{E}[Y(x) \wedge Y(0)] \lambda(\mathrm{d}x) = 0;$
- (e) $\lim_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} Y(x) \lambda(\mathrm{d}x) = 0$ in probability;
- (f) $\liminf_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} Y(x) \lambda(dx) = 0$ almost surely.

The equivalence of (a), (b), (c), (d) in Theorem [1](#page-1-0) was known before (see Theo-rem 3.2 in [\[8\]](#page-19-12) for the equivalence of (a), (b), (d) in the case $d = 1$, Theorem 8 in [\[7\]](#page-19-9) for the equivalence of (a) and (c) in the case $d = 1$, and Theorem 5.3 in [\[24\]](#page-19-10) for an extension to the d-dimensional case). We will prove in Section [3](#page-4-0) that (c) , (e) , (f) are equivalent by exploiting a new characterization of the positive/null decomposition.

The next theorem characterizes mixing (which is a stronger property than ergodicity).

Theorem 2. For a stationary, stochastically continuous max-stable process η the following conditions are equivalent:

- (a) η is mixing:
- (b) η is mixing of all orders;
- (c) $\lim_{x\to\infty} \mathbb{E}[Y(x) \wedge Y(0)] = 0;$
- (d) $\lim_{x\to\infty} Y(x) = 0$ in probability.

The equivalence of (a), (b), (c) in Theorem [3](#page-2-0) was known before (see Theorem 3.4 in [\[22\]](#page-19-11) for the equivalence of (a) and (c), and Theorem 1.1 in $[8]$ for the equivalence of (a) and (b)). We will prove in Section [4](#page-8-0) that (c) is equivalent to (d) . Moreover, we will introduce a decomposition of the process η into a mixing part and and a part containing no mixing components.

Finally, we can characterize the mixed moving maximum property. The definition of this property will be recalled in Section [3.](#page-4-0)

Theorem 3. For a stationary, stochastically continuous max-stable process η with locally bounded sample paths, the following conditions are equivalent:

- (a) η has a mixed moving maximum representation;
- (b) η has no conservative component in its spectral representation, that is $\eta_C =$ 0;
- (c) $\int_{\mathcal{X}} Y(x) \lambda(\mathrm{d}x) < +\infty$ almost surely;
- (d) $\lim_{x\to\infty} Y(x) = 0$ almost surely.

The equivalence of (a), (b), (c) in Theorem [3](#page-2-0) was known before and holds even without the assumption of local boundedness (see Section [3.1](#page-4-1) and the references therein). Our main contribution is an alternative characterization of the conservative/dissipative decomposition stated in Proposition [10](#page-6-0) that implies the equivalence of (c) and (d). This equivalence may look strange at a first glance, but let us stress that the process Y is not arbitrary. For example, Y has the property that the corresponding process η is stationary (such Y's were called Brown–Resnick stationary in [\[9\]](#page-19-13)). A special case of the implication (d) \Rightarrow (c) when log Y is a Gaussian process with stationary increments and certain drift was obtained in [\[26,](#page-20-0) Theorem 7.1].

The rest of the paper is structured as follows. Section [2](#page-3-0) is devoted to preliminaries on non-singular ergodic theory and cone decomposition for max-stable processes. Section [3](#page-4-0) reviews known results on the conservative/dissipative decompositions and provides an alternative definition via a simple cone decomposition with an emphasis on the case of locally bounded max-stable processes. Section [4](#page-8-0) introduces the positive/null decomposition and proposes an alternative construction via another simple cone decomposition. In Section [5](#page-11-0) we study mixing.

2. Preliminaries

2.1. Non-singular flow representations of max-stable processes. We recall some information on non-singular flow representations of stationary max-stable processes. For more details on non-singular ergodic theory, the reader should refer to Krengel [\[10\]](#page-19-14), Aaronson [\[1\]](#page-19-15) or Danilenko and Silva [\[2\]](#page-19-16).

Definition 4. A measurable non-singular flow on a measure space (S, \mathcal{B}, μ) is a family of functions $\phi_x : S \to S$, $x \in \mathcal{X}$, satisfying

(i) (flow property) for all $s \in S$ and $x_1, x_2 \in \mathcal{X}$,

 $\phi_0(s) = s$ and $\phi_{x_1+x_2}(s) = \phi_{x_2}(\phi_{x_1}(s));$

- (ii) (measurability) the mapping $(x, s) \mapsto \phi_x(s)$ is measurable from $\mathcal{X} \times S$ to S;
- (iii) (non-singularity) for all $x \in \mathcal{X}$, the measures $\mu \circ \phi_x^{-1}$ and μ are equivalent, *i.e. for all* $A \in \mathcal{B}$, $\mu(\phi_x^{-1}(A)) = 0$ *if and only if* $\mu(A) = 0$.

The non-singularity property ensures that one can define the Radon–Nikodym derivative

(2)
$$
\omega_x(s) = \frac{\mathrm{d}(\mu \circ \phi_x)}{\mathrm{d}\mu}(s).
$$

By the measurability property, one may assume that the mapping $(x, s) \mapsto \omega_x(s)$ is jointly measurable on $\mathcal{X} \times S$.

According to de Haan and Pickands [\[5\]](#page-19-3), see also [\[7\]](#page-19-9) and [\[26\]](#page-20-0), any stochastically continuous stationary max-stable process η admits a representation of the form

(3)
$$
\eta(x) = \bigvee_{i \geq 1} U_i f_x(s_i), \quad x \in \mathcal{X},
$$

where $f_x(s) = \omega_x(s) f_0(\phi_x(s))$ and

- - $(\phi_x)_{x\in\mathcal{X}}$ is a measurable non-singular flow on some σ -finite measure space (S, \mathcal{B}, μ) , with $\omega_x(s)$ defined by (2) ,
- $f_0 \in L^1(S, \mathcal{B}, \mu)$ is non-negative such that the set $\{f_0 = 0\}$ contains no $(\phi_x)_{x \in \mathcal{X}}$ -invariant set $B \in \mathcal{B}$ of positive measure,
- $\{ (s_i, U_i) \}_{i \geq 1}$ is some enumeration of the points of the Poisson point process on $S \times (0, +\infty)$ with intensity $\mu(ds) \times u^{-2} du$.

Starting with a non-singular flow representation [\(3\)](#page-3-2) on a probability space, one easily gets a de Haan representation of the form [\(1\)](#page-0-0) by considering the i.i.d. stochastic processes $Y_i(x) = f_x(s_i), i \ge 1$. The flow representation [\(3\)](#page-3-2) is comonly written as an extremal integral

(4)
$$
\eta(x) = \int_{S}^{e} f_x(s) M(ds), \quad x \in \mathcal{X},
$$

where $M(ds)$ denotes a 1-Fréchet random sup-measure on (S, \mathcal{B}) with control measure μ . The reader should refer to Stoev and Taqqu [\[23\]](#page-19-17) for more details on extremal integrals. In the present paper, one can simply view the extremal integral [\(4\)](#page-3-3) as a shorthand for the pointwise maximum over a Poisson point process [\(3\)](#page-3-2).

2.2. Cone based decompositions. In the spirit of Wang and Stoev [\[26,](#page-20-0) Theorem 4.2] and Dombry and Kabluchko [\[6,](#page-19-18) Lemma 16], we will use decompositions of maxstable processes based on cones. We denote by $\mathcal{F}_0 = \mathcal{F}(\mathcal{X}, [0, +\infty)) \setminus \{0\}$ the set of non-negative measurable functions on $\mathcal X$ excluding the zero function. A subset $\mathcal{C} \subset \mathcal{F}_0$ is called a *cone* if for all $f \in \mathcal{C}$ and $u > 0$, $uf \in \mathcal{C}$. The cone \mathcal{C} is said to be *shift-invariant* if for all $f \in \mathcal{C}$ and $x \in \mathcal{X}$ we have $f(\cdot + x) \in \mathcal{C}$.

Lemma 5 (Lemma 16 in [\[6\]](#page-19-18)). Let C_1 and C_2 be two shift-invariant cones such that $\mathcal{F}_0 = \mathcal{C}_1 \cup \mathcal{C}_2$ and $\mathcal{C}_1 \cap \mathcal{C}_2 = \emptyset$. Let η be a stationary max-stable process given by representation [\(1\)](#page-0-0) such that the events ${Y_i \in C_1}$ and ${Y_i \in C_2}$ are measurable. Consider the decomposition $\eta = \eta_1 \vee \eta_2$ with

$$
\eta_1(x) = \bigvee_{i \ge 1} U_i Y_i(x) 1\!\!1_{\{Y_i \in C_1\}} \quad and \quad \eta_2(x) = \bigvee_{i \ge 1} U_i Y_i(x) 1\!\!1_{\{Y_i \in C_2\}}.
$$

Then, η_1 and η_2 are stationary and independent max-stable processes whose distribution depends only on the distribution of η and not on the specific representation $(1).$ $(1).$

3. Conservative/dissipative decomposition

3.1. Definition of the conservative/dissipative decomposition. We recall the Hopf (or conservative/dissipative) decomposition from non-singular ergodic the-ory; see Aaronson [\[1\]](#page-19-15). We start with the discrete case $\mathcal{X} = \mathbb{Z}^d$.

Definition 6. Consider a measure space (S, \mathcal{B}, μ) and a non-singular flow $(\phi_x)_{x \in \mathbb{Z}^d}$. A measurable set $W \subset S$ is said to be wandering if the sets $\phi_x^{-1}(W)$, $x \in \mathbb{Z}^d$, are disjoint.

The Hopf decomposition theorem states that there exists a partition of S into two disjoint measurable sets $S = C \cup D$, $C \cap D = \emptyset$, such that

- (i) C and D are $(\phi_x)_{x \in \mathbb{Z}^d}$ -invariant,
- (ii) there exists no wandering set $W \subset C$ with positive measure,
- (iii) there exists a wandering set $W_0 \subset D$ such that $D = \bigcup_{x \in \mathbb{Z}^d} \phi_x(W_0)$.

This decomposition is unique mod μ and is called the *Hopf decomposition* of S associated with the flow $(\phi_x)_{x\in\mathbb{Z}^d}$; the sets C and D are called the *conservative* and *dissipative* parts respectively. In the case when $\mathcal{X} = \mathbb{R}^d$, we follow Roy [\[17\]](#page-19-19) by defining the Hopf decomposition of S associated with a measurable flow $(\phi_x)_{x \in \mathbb{R}^d}$ as the Hopf decomposition associated with the discrete skeleton flow $(\phi_x)_{x\in\mathbb{Z}^d}$.

One can then introduce the conservative/dissipative decomposition of the maxstable process η given by [\(3\)](#page-3-2), [\(4\)](#page-3-3): we have $\eta = \eta_C \vee \eta_D$ with

(5)
$$
\eta_C(x) = \int_C^e f_x(s)M(ds) \text{ and } \eta_D(x) = \int_D^e f_x(s)M(ds), \quad x \in \mathcal{X}.
$$

The processes η_C and η_D are independent and their distribution depends only on the distribution of η and not on the particular choice of the representation [\(3\)](#page-3-2).

The importance of the conservative/dissipative decomposition comes from the notion of mixed moving maximum representation.

Definition 7. A stationary max-stable process $(\eta(x))_{x \in \mathcal{X}}$ is said to have a mixed moving maximum representation (shortly M3-representation) if

$$
\eta(x) \stackrel{f.d.d.}{=} \bigvee_{i \geq 1} V_i Z_i(x - X_i), \quad x \in \mathcal{X},
$$

where

- $\{(X_i, V_i), i \geq 1\}$ is a Poisson point process on $\mathcal{X} \times (0, +\infty)$ with intensity $\lambda(dx) \times u^{-2}du,$
- $(Z_i)_{i\geq 1}$ are i.i.d. copies of a non-negative measurable stochastic process Z on X satisfying $\mathbb{E}[\int_{\mathcal{X}} Z(x) \lambda(dx)] < +\infty$,
- $\{(X_i, V_i), i \geq 1\}$ and $(Z_i)_{i \geq 1}$ are independent.

The following important theorem relates the dissipative/conservative decomposition and the existence of an M3-representation; see Wang and Stoev [\[26,](#page-20-0) Theorem 6.4] in the max-stable case with $d = 1$ or Roy [\[17,](#page-19-19) Theorem 3.4] in the sum-stable case with $d \geq 1$.

Theorem 8. Let η be a stationary max-stable process given by the non-singular flow representation [\(3\)](#page-3-2). Then, η has an M3-representation if and only if η is generated by a dissipative flow.

3.2. Characterization using spectral functions. The following simple integral test on the spectral functions allows us to retrieve the conservative/dissipative decomposition; see Roy and Samorodnitsky [\[18,](#page-19-20) Proposition], Roy [\[17,](#page-19-19) Proposition 3.2] and Wang and Stoev [\[26,](#page-20-0) Theorem 6.2].

Theorem 9. We have

- (i) $\int_{\mathcal{X}} f_x(s) \lambda(dx) = \infty \mu(ds)$ -a.e. on C;
- (ii) $\int_{\mathcal{X}} f_x(s) \lambda(dx) < \infty \mu(ds)$ –a.e. on D.

Consider a stationary max-stable process η given by de Haan's representation [\(1\)](#page-0-0). In view of Theorem [9,](#page-5-0) we introduce the cones of functions

(6)
$$
\mathcal{F}_C = \left\{ f \in \mathcal{F}_0; \ \int_{\mathcal{X}} f(x) \lambda(dx) = \infty \right\},
$$

(7)
$$
\mathcal{F}_D = \left\{ f \in \mathcal{F}_0; \int_{\mathcal{X}} f(x) \lambda(dx) < \infty \right\}.
$$

These cones are clearly shift-invariant and, assuming that Y is jointly measurable and separable, the events $\{Y \in \mathcal{F}_C\}$ and $\{Y \in \mathcal{F}_D\}$ are measurable. Using Lemma [5,](#page-4-2) we define

(8)
$$
\eta_C(x) = \bigvee_{i \geq 1} U_i Y_i(x) \mathbb{1}_{\{Y_i \in \mathcal{F}_C\}} \text{ and } \eta_D(x) = \bigvee_{i \geq 1} U_i Y_i(x) \mathbb{1}_{\{Y_i \in \mathcal{F}_D\}}.
$$

One can easily prove thanks to Theorem [9](#page-5-0) and Lemma [5](#page-4-2) that we retrieve (in distribution) the conservative/dissipative decomposition [\(5\)](#page-4-3) based on the flow representation [\(3\)](#page-3-2).

The main contribution of this section concerns the case when the max-stable process η has locally bounded sample paths, which is usually the case in applications. Interestingly, one can then introduce another, more simple and convenient, cone decomposition equivalent to [\(8\)](#page-5-1). Consider

$$
\tilde{\mathcal{F}}_C = \left\{ f \in \mathcal{F}_0; \limsup_{x \to \infty} f(x) > 0 \right\},\
$$

$$
\tilde{\mathcal{F}}_D = \left\{ f \in \mathcal{F}_0; \lim_{x \to \infty} f(x) = 0 \right\}.
$$

Note that since the process Y is assumed to be separable, the events $\{Y \in \tilde{\mathcal{F}}_C\}$ and $\{Y \in \tilde{\mathcal{F}}_C\}$ are measurable.

Proposition 10. Let η be a stationary max-stable process given by de Haan's rep-resentation [\(1\)](#page-0-0) and assume that η has locally bounded sample paths. Then, modulo null sets,

$$
\{Y \in \mathcal{F}_C\} = \{Y \in \tilde{\mathcal{F}}_C\} \quad and \quad \{Y \in \mathcal{F}_D\} = \{Y \in \tilde{\mathcal{F}}_D\}.
$$

We deduce that the decomposition

$$
\tilde{\eta}_C(x) = \bigvee_{i \ge 1} U_i Y_i(x) 1\!\!1_{\{Y_i \in \tilde{\mathcal{F}}_C\}} \quad and \quad \tilde{\eta}_D(x) = \bigvee_{i \ge 1} U_i Y_i(x) 1\!\!1_{\{Y_i \in \tilde{\mathcal{F}}_D\}}.
$$

is almost surely equal to the decomposition [\(8\)](#page-5-1).

Proof. We consider first the discrete setting $\mathcal{X} = \mathbb{Z}^d$. The convergence of the series $\sum_{x \in \mathbb{Z}^d} f(x)$ implies the convergence $\lim_{x \to \infty} f(x) = 0$ so that the inclusion ${Y \in \mathcal{F}_D} \subset {Y \in \mathcal{F}_D}$ is trivial. We need only to prove the converse inclusion ${Y \in \mathcal{F}_D} \subset {Y \in \mathcal{F}_D}$. Then, the equality ${Y \in \mathcal{F}_D} = {Y \in \mathcal{F}_D}$ (modulo null sets) implies the equality of the complementary sets, i.e. $\{Y \in \mathcal{F}_C\} = \{Y \in \tilde{\mathcal{F}}_C\}.$

Proof of the inclusion $\{Y \in \tilde{\mathcal{F}}_D\} \subset \{Y \in \mathcal{F}_D\}$. Let $\tilde{Y}_D = Y \mathbb{1}_{\{Y \in \tilde{\mathcal{F}}_D\}}$ and $\tilde{\eta}_D =$ $\vee_{i\geq 1} U_i Y_i \mathbb{1}_{\{Y_i \in \tilde{\mathcal{F}}_D\}}$. We will show that $\tilde{\eta}_D$ admits an M3-representation. By Theo-rem [8,](#page-5-2) this implies that Y_D belongs a.s. to \mathcal{F}_D and hence $\{Y \in \mathcal{F}_D\} \subset \{Y \in \mathcal{F}_D\}$ modulo null sets. For the sake of notational convenience, we assume that $Y \in \mathcal{F}_D$ a.s. so that $\tilde{Y}_D = Y$ and $\tilde{\eta}_D = \eta$. We prove that η has an M3-representation with a strategy similar to the proof of Theorem 14 in Kabluchko et al. [\[9\]](#page-19-13) and we sketch only the main lines. We introduce the random variables

(9)
$$
X_i = \operatorname*{argmax}_{x \in \mathcal{X}} Y_i(x), \quad Z_i(\cdot) = \frac{Y_i(X_i + \cdot)}{\max_{x \in \mathcal{X}} Y_i(x)}, \quad V_i = U_i \max_{x \in \mathcal{X}} Y_i(x).
$$

If the argmax is not unique, we use the lexicographically smallest value. Clearly, we have $U_iY_i(x) = V_iZ_i(x - X_i)$ for all $x \in \mathcal{X}$ so that

$$
\eta(x) = \bigvee_{i \ge 1} V_i Z_i(x - X_i).
$$

It remains to check that $(X_i, V_i, Z_i)_{i \geq 1}$ has the properties required in Definition [7,](#page-4-4) i.e. is a Poisson point process on $\mathcal{X} \times (0, \infty) \times \mathcal{F}_0$ with intensity measure $\lambda(dx) \times$ $u^{-2}du \times Q(df)$, where Q is a probability measure on \mathcal{F}_0 . Clearly, $(X_i, V_i, Z_i)_{i\geq 1}$ is a Poisson point process as the image of the original point process $(U_i, Y_i)_{i \geq 1}$. Its intensity is the image of the intensity of the original point process. With a straightforward transposition of the arguments of [\[9,](#page-19-13) Theorem 14], one can check that it has the required form.

We now turn to the case $\mathcal{X} = \mathbb{R}^d$. The convergence of the integral $\int_{\mathcal{X}} f(x) \lambda(dx)$ does not imply the convergence $\lim_{x\to\infty} f(x) = 0$. But it is easy to prove that for $K = [-1/2, 1/2]^d$, the convergence of the integral $\int_{\mathcal{X}} \sup_{u \in K} f(x + u) \lambda(dx)$ implies the convergence $\lim_{x\to\infty} f(x) = 0$. We introduce the cone

$$
\mathcal{F}'_D = \left\{ f \in \mathcal{F}_0; \ \int_{\mathcal{X}} \sup_{u \in K} f(x+u)\lambda(\mathrm{d}x) < \infty \right\}.
$$

The inclusions of cones $\mathcal{F}'_D \subset \mathcal{F}_D$ and $\mathcal{F}'_D \subset \tilde{\mathcal{F}}_D$ imply the trivial inclusions of events

$$
\{Y \in \mathcal{F}'_D\} \subset \{Y \in \mathcal{F}_D\} \quad \text{and} \quad \{Y \in \mathcal{F}'_D\} \subset \{Y \in \tilde{\mathcal{F}}_D\}.
$$

We will prove below that, modulo null sets,

$$
\{Y \in \mathcal{F}_D\} \subset \{Y \in \mathcal{F}'_D\} \quad \text{and} \quad \{Y \in \tilde{\mathcal{F}}_D\} \subset \{Y \in \mathcal{F}_D\}
$$

whence we deduce the equalities, modulo null sets,

$$
\{Y \in \mathcal{F}_D\} = \{Y \in \mathcal{F}'_D\} = \{Y \in \tilde{\mathcal{F}}_D\},\
$$

proving the proposition.

Proof of the inclusion $\{Y \in \mathcal{F}_D\} \subset \{Y \in \mathcal{F}'_D\}$. Let $Y_D = Y \mathbb{1}_{\{Y \in \mathcal{F}_D\}}$ and $\eta_D =$ $\vee_{i\geq 1} U_i Y_i \mathbb{1}_{\{Y_i \in \mathcal{F}_D\}}$ be the dissipative part of η . Theorem [8](#page-5-2) implies that η_D has an M3-representation of the form

$$
\eta_D(x) \stackrel{f.d.d.}{=} \bigvee_{i \geq 1} V_i Z_{D,i}(x - X_i), \quad x \in \mathcal{X}.
$$

The fact that η is locally bounded implies that η_D is a.s. finite on K and

(10)
$$
\mathbb{P}\left[\sup_{x\in K} \eta_D(x) \leq z\right] = \exp\left(-\frac{\theta_D(K)}{z}\right)
$$

with

$$
\theta_D(K) = \mathbb{E}\left[\int_{\mathcal{X}} \sup_{x \in K} Z_D(x - y)\lambda(\mathrm{d}y)\right] < \infty.
$$

We deduce that $\int_{\mathcal{X}} \sup_{x \in K} Z_D(x - y) \lambda(dy)$ is a.s. finite and hence, Z_D belongs a.s. to the cone \mathcal{F}'_D . This implies that $Y1_{\{Y \in \mathcal{F}_D\}} \in \mathcal{F}'_D$ almost surely, whence ${Y \in \mathcal{F}_D} \subset {Y \in \mathcal{F}'_D}$ modulo null sets.

Proof of the inclusion ${Y \in \tilde{\mathcal{F}}_D} \subset {Y \in \mathcal{F}_D}$. With the same notation as in the dicrete case, we show that $\tilde{\eta}_D$ is generated by a dissipative flow and hence has an M3-representation. By Theorem [8,](#page-5-2) this implies that \tilde{Y}_D belongs a.s. to \mathcal{F}_D and proves the inclusion $\{Y \in \tilde{\mathcal{F}}_D\} \subset \{Y \in \mathcal{F}_D\}.$ Note that the discrete skeleton $\tilde{Y}_{D}^{skel} = (\tilde{Y}_{D}(x))_{x \in \mathbb{Z}^d}$ satisfies $\lim_{x \to \infty} \tilde{Y}_{D}^{skel} = 0$. We deduce $\tilde{Y}_{D}^{skel} \in \tilde{\mathcal{F}}_{D}$ a.s. which is equivalent to $\tilde{Y}_{D}^{skel} \in \mathcal{F}_{D}$ a.s. (proof above in the discrete case). Hence $(\tilde{\eta}_D(x))_{x\in\mathbb{Z}^d}$ is generated by a dissipative flow and this implies that $(\tilde{\eta}_D(x))_{x\in\mathbb{R}^d}$ is generated by a dissipative flow (see [\[17,](#page-19-19) Section 2]). \Box

Proof of Theorem [3.](#page-2-0) The equivalence of (a), (b), (c) in Theorem [3](#page-2-0) was known before and holds even without the assumption of local boundedness (see Section [3.1](#page-4-1) and the reference therein). The equivalence of (c) and (d) holds under the assumption of local boundedness and is a straightforward consequence of Proposition [10.](#page-6-0) \Box

Example 11. The assumption that the sample paths of η should be locally bounded cannot be removed from Proposition [10.](#page-6-0) To see this, consider the following (deterministic) process Z:

$$
Z(x) = \sum_{n=1}^{\infty} f(n^2(x - n)), \quad x \in \mathbb{R},
$$

where $f(t) = (1 - t^2) \mathbb{1}_{|t| \leq 1}$. The process Z is non-zero only on the intervals of the form $(n - \frac{1}{n^2}, n + \frac{1}{n^2}), n \in \mathbb{N}$. The M3-process η corresponding to Z is well-defined because $\int_{\mathbb{R}} Z(x) dx < \infty$. On the other hand, $\mathbb{P}[Z \in \tilde{\mathcal{F}}_D] = 0$ and hence, $\mathbb{P}[Y \in$ \mathcal{F}_D = 0, where Y is the spectral function of η from the de Haan representation [\(1\)](#page-0-0). It is easy to check that

$$
\mathbb{P}\left[\sup_{x\in[0,1]} \eta(x) \leq z\right] = \exp\left(-\frac{\theta_{[0,1]}}{z}\right), \quad z > 0,
$$

with

$$
\theta_{[0,1]} = \int_{\mathbb{R}} \left(\sup_{x \in [0,1]} Z(x - y) \right) dy = +\infty,
$$

whence $\sup_{x\in[0,1]} \eta(x) = +\infty$ a.s. and the sample paths of η are not locally bounded.

4. Positive/null decomposition

4.1. Definition of the positive/null decomposition. We start by defining the Neveu decomposition of the non-singular flow $(\phi_x)_{x \in \mathcal{X}}$; see, e.g., Krengel [\[10,](#page-19-14) Theorem 3.9], Samorodnitsky [\[20\]](#page-19-8) or Wang et al. [\[24,](#page-19-10) Theorem 2.4].

Definition 12. Consider a measure space (S, \mathcal{B}, μ) and a measurable non-singular flow $(\phi_x)_{x\in\mathcal{X}}$ on S. A measurable set $W\subset S$ is said to be weakly wandering with respect to $(\phi_x)_{x \in \mathcal{X}}$ if there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ such that $\phi_{x_n}^{-1}(W) \cap$ $\phi_{x_m}^{-1}(W) = \varnothing$ for all $n \neq m$.

The Neveu decomposition theorem states that there exists a partition of S into two disjoint measurable sets $S = P \cup N$, $P \cap N = \emptyset$, such that

- (i) P and N are $(\phi_x)_{x \in \mathcal{X}}$ -invariant for all $x \in \mathcal{X}$,
- (ii) P has no weakly wandering set of positive measure,
- (iii) N is a union of countably many weakly wandering sets.

This decomposition is unique mod μ and is called the *Neveu decomposition* of S associated with $(\phi_x)_{x \in \mathcal{X}}$; P and N are called the *positive* and *null* components with respect to $(\phi_x)_{x\in\mathcal{X}}$, respectively. It can be shown that P is the largest subset of S supporting a finite measure which is equivalent to μ and invariant under the flow $(\phi_x)_{x \in \mathcal{X}}$ ([\[24,](#page-19-10) Lemma 2.2]). Hence, there exists a finite measure which is equivalent to μ and invariant under the flow if and only if $N = \emptyset$ mod μ .

The corresponding positive/null decomposition of the stationary max-stable process η represented as in [\(3\)](#page-3-2), [\(4\)](#page-3-3) is given by $\eta = \eta_P \vee \eta_N$ with

(11)
$$
\eta_P(x) = \int_P^e f_x(s)M(ds) \text{ and } \eta_N(x) = \int_N^e f_x(s)M(ds), \quad x \in \mathcal{X}.
$$

The positive and null components η_P and η_N are independent, stationary maxstable processes, and their distribution does not depend on the particular choice of the representation [\(3\)](#page-3-2).

4.2. Characterization using spectral functions. An integral test on the spectral functions which allows to retrieve the positive/null decomposition is known in the one-dimensional case (see Samorodnitsky [\[20\]](#page-19-8) or Wang and Stoev [\[26,](#page-20-0) Theorem 5.3]).

Theorem 13. Consider the case $d = 1$ and introduce the class W of positive weight functions $w: \mathcal{X} \to (0, +\infty)$ such that $\int_{\mathcal{X}} w(x) \lambda(dx) < \infty$ and $w(x)$ and $w(-x)$ are non-decreasing on $\mathcal{X} \cap [0, +\infty)$. Then we have

(i) For all $w \in \mathcal{W}$, $\int_{\mathcal{X}} f_x(s)w(x)\lambda(\mathrm{d}x) = \infty$ $\mu(\mathrm{d}s)$ -a.e. on P;

(ii) For some $w \in \mathcal{W}$, $\int_{\mathcal{X}} f_x(s)w(x)\lambda(\mathrm{d}x) < \infty$ $\mu(\mathrm{d}s)$ -a.e. on N.

The next theorem is a new integral test characterizing the positive/null decom-position. This test is simpler than Theorem [13](#page-8-1) and is valid for all $d \geq 1$. Recall that we write $B_r = [-r, r]^d \cap \mathcal{X}$ for $r > 0$.

Theorem 14. Let η be a stationary, stochastically continuous max-stable process given by the non-singular flow representation [\(3\)](#page-3-2). We have

(i) $\lim_{r\to\infty} \frac{1}{\lambda(B_r)} \int_{B_r} f_x(s) \lambda(\mathrm{d}x)$ exists and is positive $\mu(\mathrm{d}s)$ -a.e. on P; (ii) $\liminf_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f_x(s) \lambda(dx) = 0 \mu(ds)$ -a.e. on N.

Proof. We consider the positive case and the null case separately.

Case 1. Assume first that η is generated by a positive flow. Then, there is a probability measure μ^* on (S, \mathcal{B}) which is equivalent to μ and which is invariant under the flow. Note that any property holds μ –a.e. if and only if it holds μ^* –a.e. We denote by $D(s) = \frac{d\mu}{d\mu^*}(s) \in (0, \infty)$ the Radon–Nikodym derivative and observe that for every $x \in \mathcal{X}$, the function $f_x^*(s) := f_x(s)D(s)$ satisfies

(12)
$$
f_x^*(s) = f_0^*(\phi_x(s)) \text{ for } \lambda \times \mu \text{--a.e. } (x, s) \in \mathcal{X} \times S.
$$

Indeed, by definition of f_x^* and ω_x , we have

$$
f_x^*(s) = D(s)f_x(s) = D(s)\omega_x(s)f_0(\phi_x(s)) = \frac{D(s)\omega_x(s)}{D(\phi_x(s))}f_0^*(\phi_x(s)).
$$

However, recalling the definition [\(2\)](#page-3-1) of $\omega_x(s)$ and that $D(s) = \frac{d\mu}{d\mu^*}(s) \in (0, \infty)$, we obtain

$$
\frac{D(s)\omega_x(s)}{D(\phi_x(s))} = \frac{d\mu}{d\mu^*}(s)\frac{d(\mu \circ \phi_x)}{d\mu}(s)\frac{d(\mu^* \circ \phi_x)}{d(\mu \circ \phi_x)}(s) = \frac{d(\mu^* \circ \phi_x)}{d\mu^*}(s) = 1
$$

 μ –a.e. for every $x \in \mathcal{X}$ because the measure μ^* is invariant. This yields [\(12\)](#page-9-0). By the multiparameter Birkhoff Theorem (see [\[24,](#page-19-10) Theorem 2.8]), we have

(13)
$$
\lim_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f_x^*(s) \lambda(\mathrm{d}x) = \mathbb{E}[f_0^* | \mathcal{I}] \quad \mu^*-\text{a.e.},
$$

where *I* is the σ -algebra of $(\phi_x)_{x \in \mathcal{X}}$ -invariant measurable sets and E denotes the expectation w.r.t. μ^* . We prove that the conditional expectation on the right-hand side is a.e. strictly positive. The set $B = \{\mathbb{E}[f_0^* | \mathcal{I}] = 0\}$ is measurable and $(\phi_x)_{x \in \mathcal{X}}$ invariant. Moreover, f_0^* (and hence, f_0) vanishes a.e. on B since f_0^* is non-negative. This implies that $\mu(B) = 0$ by the second condition in the definition of the flow representation [\(3\)](#page-3-2). Thus, $\mathbb{E}[f_0^*|\mathcal{I}] > 0$ a.e. It follows from [\(13\)](#page-9-1) and the above considerations that

(14)
$$
\lim_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f_x(s) \lambda(\mathrm{d}x) = \frac{\mathbb{E}[f_0^* | \mathcal{I}]}{D(s)} > 0 \quad \mu\text{-a.e.},
$$

which proves part (i) of the theorem.

Case 2. We consider now the case when η is generated by a null flow. Let μ^* be any probability measure on (S, \mathcal{B}) which is equivalent to μ . Write $D(s) = \frac{d\mu}{d\mu^*}(s) \in$ $(0, \infty)$ for the Radon–Nikodym derivative. The functions $f_x^*(s) := f_x(s)D(s)$ satisfy

$$
f_x^*(s) = \omega_x^*(s) f_0^*(\phi_x(s)), \quad \text{where } \omega_x^*(s) := \frac{\mathrm{d}(\mu^* \circ \phi_x)}{\mathrm{d}\mu^*}(s),
$$

by the same considerations as in the positive case. Birkhoff's ergodic theorem is valid for measure preserving flows only, but we can use Krengel's stochastic ergodic theorem for non-singular actions (see [\[24,](#page-19-10) Theorem 2.7]) which yields

$$
\frac{1}{\lambda(B_r)} \int_{B_r} f_x^*(\cdot) \lambda(\mathrm{d}x) \xrightarrow{\mu^*} F(\cdot) \quad \text{as } r \to \infty
$$

where $\stackrel{\mu^*}{\rightarrow}$ denotes convergence in μ^* -probability and the limit function $F \in L^1(S, \mu^*)$ is such that for all $x \in \mathcal{X}$,

$$
\omega_x^*(s)F(\phi_x(s)) = F(s) \quad \text{a.e.}
$$

This relation implies that the measure $F(s) \mu^*(ds)$ is a finite measure which is absolutely continuous with respect to μ and invariant under the flow $(\phi_x)_{x \in \mathcal{X}}$. Since the flow has no positive component, this means that $F = 0$ a.e. We deduce that $\frac{1}{\lambda(B_r)}\int_{B_r} f_x^*(\cdot)\lambda(\mathrm{d}x)$ converges in μ^* -probability to 0. Convergence in probability implies a.s. convergence along a subsequence, whence

$$
\liminf_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f_x^*(s) \lambda(\mathrm{d}x) = 0 \quad \mu^*-\text{a.e.}
$$

Since f_x differs from f_x^* by a positive factor and the measures μ and μ^* are equivalent, we have

$$
\liminf_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f_x(s)\lambda(\mathrm{d}x) = 0 \quad \mu\text{-a.e.,}
$$
\nwhich proves part (ii) of the theorem.

As a consequence of Theorem [14,](#page-9-2) we can provide a new construction for the positive/null decomposition [\(11\)](#page-8-2). Consider the following shift-invariant cones

(15)
$$
\mathcal{F}_P = \left\{ f \in \mathcal{F}_0; \lim_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f(x) \lambda(\mathrm{d}x) > 0 \right\},
$$

(16)
$$
\mathcal{F}_N = \left\{ f \in \mathcal{F}_0; \liminf_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} f(x) \lambda(\mathrm{d}x) = 0 \right\}.
$$

In the definition of \mathcal{F}_P the limit is required to exist and to be positive.

Corollary 15. Let η be a stationary, stochastically continuous max-stable process given by de Haan's representation [\(1\)](#page-0-0). Then the decomposition $\eta = \eta_P \vee \eta_N$ with

$$
\eta_P(x) = \bigvee_{i \ge 1} U_i Y_i(x) \mathbb{1}_{\{Y_i \in \mathcal{F}_P\}} \quad and \quad \eta_N(x) = \bigvee_{i \ge 1} U_i Y_i(x) \mathbb{1}_{\{Y_i \in \mathcal{F}_N\}}
$$

is equal (in distribution) to the positive/null decomposition (11) .

Proof. Corollary [15](#page-10-0) is a direct consequence of Theorem [14](#page-9-2) and Lemma [5.](#page-4-2) Note that although instead of $\mathcal{F}_P \cup \mathcal{F}_N = \mathcal{F}_0$ it holds only that $\mathbb{P}[Y \in \mathcal{F}_P \cup \mathcal{F}_N] = 1$, Lemma 5 still applies. Lemma [5](#page-4-2) still applies.

Proof of Theorem [1.](#page-1-0) We need to prove the equivalence of (c), (e), (f) only; see Section [1.2](#page-1-1) for references to the other equivalences. We recall that (c) states that η has no positive recurrent component, and

- (e) $\lim_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} Y(x) \lambda(\mathrm{d}x) = 0$ in probability;
- (f) $\liminf_{r \to \infty} \frac{1}{\lambda(B_r)} \int_{B_r} Y(x) \lambda(dx) = 0$ a.s.

The equivalence of (c) and (f) follows from Corollary [15.](#page-10-0) Clearly, (e) implies (f) because any sequence converging to 0 in probability has a subsequence converging to 0 a.s.

It remains to show that (c) implies (e). Since the positive/null decomposition of η does not depend on the choice of the flow representation, we can consider a min*imal* representation $(f_x)_{x \in \mathcal{X}}$ of η by a null-recurrent flow $(\phi_x)_{x \in \mathcal{X}}$ on a probability space $(S^*, \mathcal{B}^*, \mu^*)$; see [\[26,](#page-20-0) Section 3] for definition and existence of the minimal representation. In the proof of Theorem [14,](#page-9-2) Case 2, we have shown that

$$
M_r := \frac{1}{\lambda(B_r)} \int_{B_r} f_x \lambda(\mathrm{d}x) \underset{r \to \infty}{\longrightarrow} 0 \quad \text{in probability on } (S^*, \mathcal{B}^*, \mu^*).
$$

However, we are interested in an arbitrary de Haan representation $(Y(x))_{x\in\mathcal{X}}$ of η on a probability space (S, \mathcal{B}, μ) . This representation need not be generated by a flow, but it can be mapped to the minimal one (see [\[26,](#page-20-0) Theorem 3.2]). More concretely, there is a measurable map $\Phi : S \to S^*$ and a measurable function $h: S \to (0,\infty)$ such that for every $x \in \mathcal{X}$,

$$
Y(x; s) = h(s) f_x(\Phi(s)) \quad \text{for } \mu\text{-a.e. } s \in S,
$$

and μ^* is the push-forward of the (probability) measure $\mu_h(ds) := h(s)\mu(ds)$ by the map Φ . We have

$$
\frac{1}{\lambda(B_r)} \int_{B_r} Y(x; s) \lambda(\mathrm{d}x) = h(s) \cdot M_r(\Phi(s)) \quad \text{for } \mu\text{-a.e. } s \in S.
$$

Since $M_r \to 0$ in μ^* -probability as $r \to \infty$, we obtain that for every $\varepsilon > 0$,

$$
\mu_h\{M_r \circ \Phi > \varepsilon\} = (\mu_h \circ \Phi^{-1})\{M_r > \varepsilon\} = \mu^*\{M_r > \varepsilon\} \underset{r \to \infty}{\longrightarrow} 0.
$$

Since h is strictly positive, this implies that $\mu\{M_r \circ \Phi > \varepsilon\} \to 0$ and hence, $h \cdot (M_r \circ \Phi) \to 0$ in μ -probability thus proving (e). $h \cdot (M_r \circ \Phi) \to 0$ in μ -probability, thus proving (e).

5. Mixing

5.1. **Proof of Theorem [2.](#page-2-1)** We need to prove the equivalence of (c) and (d) only, that is

(c):
$$
\lim_{x \to \infty} \mathbb{E}[Y(x) \wedge Y(0)] = 0 \iff
$$
 (d): $\lim_{x \to \infty} Y(x) = 0$ in probability.

See Section [1.2](#page-1-1) for references to the other equivalences.

Assume that (d) holds, i.e. $\lim_{x\to\infty} Y(x) = 0$ in probability. The upper bound $Y(x) \wedge Y(0) \leq Y(0)$ with $Y(0)$ integrable implies that the collection $(Y(x) \wedge Y(0))$ $Y(0)\big)_{x\in\mathcal{X}}$ is uniformly integrable. Assumption (d) implies that $Y(x)\wedge Y(0)$ converges in probability to 0 as $x \to \infty$, whence we deduce that $\mathbb{E}[Y(x) \wedge Y(0)] \to 0$ as $x \to \infty$, i.e. (c) is satisfied.

Conversely, we prove the implication $(c) \Rightarrow (d)$. The relation

$$
\mathbb{E}[Y(x) \wedge Y(0)] = 2 + \log \mathbb{P}[\eta(x) \le 1, \eta(0) \le 1]
$$

together with the stationarity of η implies that for all $x_0 \in \mathcal{X}$,

(17)
$$
\lim_{x \to \infty} \mathbb{E}[Y(x) \wedge Y(x_0)] = 0.
$$

Without restriction of generality we can assume that $\mathbb{P}[Y \equiv 0] = 0$ (where, by separability, the event ${Y \equiv 0}$ is interpreted as $\cap_{x \in T} {Y(x) = 0}$ with countable $T \subset \mathcal{X}$). Then, for arbitrary $\varepsilon > 0$, there exists $\alpha > 0$ and $x_1, \ldots, x_k \in \mathcal{X}$ such that $\mathbb{P}[\cup_{1 \leq i \leq k} \{Y(x_i) > \alpha\}] \geq 1 - \varepsilon/2$, whence

$$
\mathbb{P}[Y(x_1)+\ldots+Y(x_k)>\alpha]\geq 1-\varepsilon/2.
$$

With the inequality $(a_1 + \ldots + a_k) \wedge b \leq a_1 \wedge b + \ldots + a_k \wedge b$, we obtain from [\(17\)](#page-11-1) that

$$
\lim_{x \to \infty} \mathbb{E}[Y(x) \wedge (Y(x_1) + \ldots + Y(x_k))] = 0.
$$

These two equations imply, for all $\delta > 0$,

$$
\mathbb{P}[Y(x) > \delta] \le \mathbb{P}[Y(x) > \delta, Y(x_1) + \dots + Y(x_k) > \alpha] + \varepsilon/2
$$

\n
$$
\le \mathbb{P}[Y(x) \land (Y(x_1) + \dots + Y(x_k)) > \delta \land \alpha] + \varepsilon/2
$$

\n
$$
\le \mathbb{E}[Y(x) \land (Y(x_1) + \dots + Y(x_k))] / (\delta \land \alpha) + \varepsilon/2
$$

\n
$$
\le \varepsilon
$$

for large |x|. This proves that $Y(x) \to 0$ in probability as $x \to \infty$.

5.2. Criterium for mixing in terms of flows. Given a measurable non-singular flow $(\phi_x)_{x \in \mathcal{X}}$ on a σ -finite measure space (S, \mathcal{B}, μ) define the corresponding group of L^1 -isometries $(U_x)_{x \in \mathcal{X}}$ by

$$
(U_x g)(s) = \omega_x(s) g(\phi_x(s)), \quad g \in L^1(S, \mu), \quad x \in \mathcal{X},
$$

where ω_x is the Radon–Nikodym derivative; see [\(2\)](#page-3-1).

Theorem 16. Let η be a stationary, stochastically continuous max-stable process with a flow representation [\(3\)](#page-3-2). Then, the following conditions are equivalent:

- (a) η is mixing.
- (b) $\lim_{x \to \infty} \int_S (f_x \wedge f_0) d\mu = 0.$
- (c) $f_x \rightarrow 0$ locally in measure as $x \rightarrow \infty$. That is, for every measurable set $B \subset S$ with $\mu(B) < \infty$ and every $\varepsilon > 0$ we have

$$
\lim_{x \to \infty} \mu(B \cap \{f_x > \varepsilon\}) = 0.
$$

(d) For every non-negative function $g \in L^1(S, \mu)$ we have

$$
\lim_{x \to \infty} \int_{S} ((U_x g) \wedge g) d\mu = 0.
$$

(e) For every non-negative function $g \in L^1(S, \mu)$, $U_x g \to 0$ locally in measure.

Proof. The equivalence of (a) and (b) is due to Stoev; see Theorem 3.4 in [\[22\]](#page-19-11). We prove that (b) is equivalent to (c) , (d) , (e) .

Take a non-negative function $g \in L^1(S, \mu)$. We prove that the following conditions are equivalent:

(b') $\lim_{x \to \infty} \int_S ((U_x g) \wedge g) d\mu = 0.$

(c') $U_x g \to 0$ locally in measure, as $x \to \infty$.

Once the equivalence of (b') and (c') has been established, we immediately obtain the equivalence of (b) and (c) (by taking $g = f_0$) and the equivalence of (d) and (e).

Proof of $(c') \Rightarrow (b')$. Let $U_x g \rightarrow 0$ locally in measure, as $x \rightarrow \infty$. We prove that (b') holds. Fix some $\varepsilon > 0$. The sets $B_n := \{ g > \frac{1}{n} \}, n \in \mathbb{N}$, are measurable, have

finite measure (since $g \in L^1(S, \mu)$), and

$$
\lim_{n \to \infty} \int_S g 1 \mathbb{1}_{S \setminus B_n} d\mu = 0
$$

by the dominated convergence theorem. Hence, by taking n sufficiently large we can achieve that the set $B = B_n$ satisfies $\mu(B) < \infty$ and

$$
\int_{S\setminus B} g d\mu \leq \varepsilon.
$$

The collection $(U_x g \wedge g)_{x \in \mathcal{X}}$ is uniformly integrable on B since $U_x g \wedge g \leq g$. Also, we know that $U_x g \wedge g \to 0$ (as $x \to \infty$) in measure on B. It follows that

$$
\lim_{x \to \infty} \int_B U_x g \wedge g \mathrm{d}x = 0.
$$

Thus, condition (b') holds.

Proof of (b') \Rightarrow (c'). We argue by contradiction. Assume that $U_x q \rightarrow 0$ locally in measure as $x \to \infty$. Our aim is to prove that (b') is violated. By our assumption, there is a measurable set $B \subset S$ and $\varepsilon > 0$ such that $0 < \mu(B) < \infty$ and

(18)
$$
\mu({U_x}_i g > \varepsilon) \cap B) > \varepsilon, \quad i \in \mathbb{N},
$$

where $x_1, x_2, \ldots \to \infty$ is some sequence in X. Denote by H the family consisting of the sets supp $U_x g, x \in \mathcal{X}$, together with all measurable subsets of these sets. Let S^* be the measurable union of this family; see [\[1,](#page-19-15) pp. 7–8] for the proof of its existence. By the exhaustion lemma $[1, pp. 7–8]$, we can find countably many sets $A_1, A_2, \ldots \in \mathcal{H}$ such that $S^* = A_1 \cup A_2 \cup \ldots$ It follows that we can find finitely many $z_1, \ldots, z_m \in \mathcal{X}$ such that

$$
\mu\left((B\cap S^*)\backslash \bigcup_{j=1}^m \operatorname{supp} U_{z_j}g\right) < \frac{\varepsilon}{2}.
$$

Together with [\(18\)](#page-13-0) (where B can be replaced by $B \cap S^*$ because $\{U_{x_i} g > \varepsilon\} \subset S^*$ mod μ), this implies that for all $i \in \mathbb{N}$,

$$
\mu\left(\{U_{x_i}g > \varepsilon\} \cap \bigcup_{j=1}^m \operatorname{supp} U_{z_j}g\right) > \frac{\varepsilon}{2}.
$$

It follows that there is $j \in \{1, ..., m\}$ and a subsequence $y_1, y_2, ... \rightarrow \infty$ of $x_1, x_2, ...$ such that for all $i \in \mathbb{N}$,

$$
\mu\left(\{U_{y_i}g > \varepsilon\} \cap \operatorname{supp} U_{z_j}g\right) > \frac{\varepsilon}{2m}.
$$

Put $z = z_j$. For a sufficiently small $\delta \in (0, \varepsilon)$ we have

(19)
$$
\mu\left(\left\{U_{y_i}g > \delta\right\} \cap \left\{U_zg > \delta\right\}\right) > \frac{\varepsilon}{4m}.
$$

By the flow property and [\(19\)](#page-13-1) it follows that for all $i \in \mathbb{N}$,

$$
\int_{S} ((U_{y_i - z}g) \wedge g) d\mu = \int_{S} ((U_{y_i}g) \wedge (U_zg)) d\mu > \frac{\varepsilon}{4m} \delta > 0.
$$

But this contradicts (b').

Proof of (d) \Rightarrow *(b)*. Trivial, because $f_x = U_x f_0$.

Proof of (b) \Rightarrow (d). For every non-negative function $g \in L^1(S, \mu)$ we have to show that

$$
\lim_{x \to \infty} \int_{S} (U_x g \wedge g) d\mu = 0.
$$

Fix some $\varepsilon > 0$. By the same argument relying on the dominated convergence theorem as above, we can find a sufficiently large $K > 0$ such that the set $B :=$ ${1/K \leq q \leq K}$ satisfies

(20)
$$
\int_{S \setminus B} g d\mu < \varepsilon.
$$

The set B has finite measure because q is integrable. By the uniform integrability of a single function g, there is $\delta > 0$ such that every for every measurable set $A \subset B$ with $\mu(A) < \delta$ we have $\int_A g d\mu < \varepsilon$.

We argue that it is possible to find finitely many $z_1, \ldots, z_m \in \mathcal{X}$ such that the sets supp f_{z_1}, \ldots , supp f_{z_m} cover B up to a set of measure at most $\delta/2$. Indeed, let H be the family consisting of the sets supp $f_x, x \in \mathcal{X}$, together with all measurable subsets of these sets. In the definition of the flow representation [\(3\)](#page-3-2) we made a "full support" assumption which assures that the measurable union of $\mathcal H$ is the whole of S. By the exhaustion lemma $[1, pp. 7–8]$, we can represent S as a disjoint union of countably many sets $A_1, A_2, \ldots \in \mathcal{H}$. It follows that we can find finitely many $z_1, \ldots, z_m \in \mathcal{X}$ such that

$$
\mu\left(B\setminus\bigcup_{j=1}^m\text{supp}\,f_{z_j}\right)<\frac{\delta}{2}.
$$

By taking $c > 0$ sufficiently small, we can even achieve that the sets ${f_{z_1} >$ c , ..., $\{f_{z_m} > c\}$ cover B up to a set of measure at most δ , that is for

$$
D := B \setminus \bigcup_{j=1}^{m} \{f_{z_j} > c\}
$$

we have $\mu(D) < \delta$. By construction of δ it follows that

(21)
$$
\int_D g d\mu < \varepsilon.
$$

For every $j \in \{1, \ldots, m\}$, on the set $A_j := B \cap \{f_{z_j} > c\}$ we have the estimates $g \leq K$ and $f_{z_j} > c$. Hence, $g \mathbb{1}_{A_j} \leq \frac{K}{c} f_{z_j}$ and, by non-negativity of U_x ,

(22)
$$
\int_B U_x(g \mathbb{1}_{A_j}) \wedge g \mathrm{d} \mu \le \int_B \left(\frac{K}{c} f_{x+z_j} \right) \wedge K \mathrm{d} \mu \underset{x \to \infty}{\longrightarrow} 0
$$

because $\frac{K}{c} f_{x+z_j} \to 0$ locally in measure by assumption (b) which, as we already know, is equivalent to (c). Writing $g = g \mathbb{1}_B + g \mathbb{1}_{S \setminus B}$, we obtain

$$
\int_{S} (U_x g) \wedge g d\mu \le \int_{S} U_x (g \mathbb{1}_{S \setminus B}) d\mu + \int_{S} U_x (g \mathbb{1}_B) \wedge g d\mu.
$$

We have $\int_S U_x(g 1\!\!1_{S \setminus B}) d\mu \leq \varepsilon$ using [\(20\)](#page-14-0) and because U_x is L^1 -isometry. The second integral can be estimated as follows:

$$
\int_{S} U_x(g1_B) \wedge g d\mu \le \int_{S \setminus B} g d\mu + \int_{B} U_x(g1_B) \wedge g d\mu \le \varepsilon + \int_{B} U_x \left(g1_D + \sum_{j=1}^m g1_{A_j} \right) \wedge g d\mu.
$$

Using the inequality $(a_1 + \ldots + a_k) \wedge b \leq a_1 \wedge b + \ldots + a_k \wedge b$, we obtain

$$
\int_{S} U_x(g \mathbb{1}_B) \wedge g \mathrm{d}\mu \leq \varepsilon + \int_{B} U_x(g \mathbb{1}_D) \mathrm{d}\mu + \sum_{j=1}^m \int_{B} U_x(g \mathbb{1}_{A_j}) \wedge g \mathrm{d}\mu.
$$

Since U_x is L^1 -isometry, we have $\int_B U_x(g \mathbb{1}_D) d\mu \leq \varepsilon$ by [\(21\)](#page-14-1). Recalling [\(22\)](#page-14-2) we obtain that

$$
\limsup_{x \to \infty} \int_{S} ((U_x g) \wedge g) d\mu \leq 3\varepsilon.
$$

Since this is true for every $\varepsilon > 0$, the limit is in fact 0 and we obtain (d).

Remark 17. Condition (d) in Theorem [16](#page-12-0) can be replaced by the following seemingly stronger one: For every non-negative functions $g, h \in L^1(S, \mu)$ we have

$$
\lim_{x \to \infty} \int_{S} ((U_x g) \wedge h) d\mu = 0.
$$

It is clear that this condition implies (d). To see the converse, note that by the non-negativity property of U_x ,

$$
\int_{S} (U_x g \wedge h) d\mu \le \int_{S} (U_x (g \vee h) \wedge (g \vee h)) d\mu.
$$

5.3. Mixing/non-mixing decomposition. It is known that the Hopf decomposition can be used to characterize the mixed moving maximum property, whereas Neveu decomposition characterizes ergodicity. In the next proposition we construct a decomposition which characterizes mixing. For measure-preserving maps, this decomposition was introduced by Krengel and Sucheston [\[12,](#page-19-21) [11\]](#page-19-22). E. Roy [\[16\]](#page-19-23) used it to characterize mixing of sum-infinitely divisible processes. Note that we consider non-singular flows (which is a broader class than measure preserving flows).

Theorem 18. Consider a non-singular, measurable flow $(\phi_x)_{x \in \mathcal{X}}$ acting on a σ finite measure space (S, \mathcal{B}, μ) . There is a decomposition of S into two disjoint measurable sets $S = N_0 \cup N_+$, $N_0 \cap N_+ = \emptyset$, such that

- (i) N_0 and N_+ are $(\phi_x)_{x \in \mathcal{X}}$ -invariant, modulo null sets.
- (ii) For every non-negative function $g \in L^1(S, \mu)$ supported on N_0 ,

$$
\lim_{x \to \infty} \int_{S} (U_x g \wedge g) d\mu = 0.
$$

(iii) For every nonnegative function $h \in L^1(S,\mu)$ supported on N_+ and not vanishing identically,

$$
\limsup_{x \to \infty} \int_{S} (U_x h \wedge h) d\mu > 0.
$$

Properties (ii) and (iii) define the components N_+ and N_0 uniquely, modulo null sets.

Proof. Let H be the family of all measurable sets $A \subset S$ such that $\mu(A) < \infty$ and $U_x \mathbb{1}_A \to 0$ locally in measure, as $x \to \infty$. By the positivity of U_x , the family H is hereditary, that is it contains with every set A all its measurable subsets. Denote by N_0 the measurable union of H ; see [\[1,](#page-19-15) pp. 7–8] for its existence.

Proof of (ii). Take any non-negative function $g \in L^1(S, \mu)$ supported on N_0 . Fix $\varepsilon > 0$. Let K be sufficiently large so that the set $B := \{ g \leq K \}$ satisfies

(23)
$$
\int_{S \setminus B} g d\mu < \varepsilon.
$$

Let $\delta > 0$ be such that for every measurable set $D \subset B$ with $\mu(D) < \delta$ we have $\int_D g d\mu < \varepsilon$. By the exhaustion lemma [\[1,](#page-19-15) pp. 7–8] we can find finitely many sets $\overline{A_1}, \ldots, A_m \in \mathcal{H}$ such that $\mu(B \setminus \cup_{j=1}^m A_j) < \delta$ and hence,

(24)
$$
\int_{B \setminus A} g d\mu < \varepsilon,
$$

where we introduced the set $A := A_1 \cup \ldots \cup A_m$. For every $j \in \{1, \ldots, m\}$ we have, by the positivity of U_x ,

(25)
$$
\int_B (U_x(g 1_{A_j \cap B})) \wedge g d\mu \le \int_B (KU_x(1_{A_j \cap B})) \wedge K d\mu \underset{x \to \infty}{\longrightarrow} 0
$$

because $U_x \mathbb{1}_{A_i \cap B} \to 0$ locally in measure. We have the estimate

$$
\int_{S} U_x g \wedge g d\mu \le \int_{S \setminus B} g d\mu + \int_{B} (U_x g \wedge g) d\mu \le \varepsilon + \int_{B} U_x \left(g \mathbb{1}_{S \setminus (A \cap B)} + \sum_{j=1}^m g \mathbb{1}_{A_j \cap B} \right) \wedge g d\mu.
$$

Using the inequality $(a_1 + \ldots + a_k) \wedge b \leq a_1 \wedge b + \ldots + a_k \wedge b$, we obtain

$$
\int_{S} U_x g \wedge g d\mu \leq \varepsilon + \int_{B} U_x (g \mathbb{1}_{S \setminus (A \cap B)}) d\mu + \sum_{j=1}^m \int_{B} U_x (g \mathbb{1}_{A_j \cap B}) \wedge g d\mu.
$$

Since U_x is an L^1 -isometry, we have $\int_B U_x(g \mathbb{1}_{S \setminus (A \cap B)}) d\mu \leq 2\varepsilon$ by [\(23\)](#page-16-0) and [\(24\)](#page-16-1). By [\(22\)](#page-14-2) we obtain that

$$
\limsup_{x \to \infty} \int_S U_x g \wedge g \mathrm{d} \mu \leq 3\varepsilon,
$$

which proves (ii) since $\varepsilon > 0$ is arbitrary.

Proof of (iii). We argue by contraposition. Assume that a non-negative function $h \in L^1(S, \mu)$ supported on $N_+ := S \backslash N_0$ and not vanishing identically satisfies $\lim_{x\to\infty} \int_S (U_x h \wedge h) d\mu = 0.$ For a sufficiently small $b > 0$, the set $A := \{h > b\}$ has positive, finite measure, and (by the positivity of U_x) satisfies

$$
\lim_{x \to \infty} \int_S U_x \mathbb{1}_A \wedge \mathbb{1}_A \mathrm{d}\mu = 0.
$$

Since U_x preserves pointwise minima and is an L^1 -isometry, we obtain that for every $x_0 \in \mathcal{X}$,

(26)
$$
\lim_{x \to \infty} \int_{S} (U_x \mathbb{1}_A) \wedge (U_{x_0} \mathbb{1}_A) d\mu = 0.
$$

Since $A \subset N_+$ and $\mu(A) > 0$, the definition of N_0 implies that the sequence $U_x \mathbb{1}_A$ does not converge locally in μ -measure, as $x \to \infty$. Hence, we can find a measurable set $B \subset S$ with $\mu(B) < \infty$ and $a > 0$ such that

(27)
$$
\limsup_{x \to \infty} \mu(B \cap \{U_x \mathbb{1}_A > a\}) > a.
$$

Let B_0 be the measurable union of supp $U_x \mathbb{1}_A$, $x \in \mathcal{X}$. Since replacing B by $B \cap B_0$ does not change the validity of [\(27\)](#page-17-0), we can assume that $B \subset B_0$. By the exhaustion lemma, see [\[1,](#page-19-15) pp. 7–8], we can find finitely many $x_1, \ldots, x_m \in \mathcal{X}$ and $c > 0$ such that the set B is covered, up to a subset of measure at most $a/2$, by the sets $\{U_{x_1}\mathbb{1}_A > c\}, \ldots, \{U_{x_m}\mathbb{1}_A > c\}$. It follows that for every $x \in \mathcal{X}$ satisfying $\mu(B \cap \{U_x \mathbb{1}_A > a\}) \ge a$ we also have

$$
\mu({U_x 1_A > a} \cap {U_{x_i 1_A > c}}) > a/(4m)
$$

for at least one $i \in \{1, \ldots, m\}$. But this contradicts [\(26\)](#page-16-2), thus proving (iii).

Proof of the uniqueness. Let $S = \tilde{N}_0 \cup \tilde{N}_+$ be another disjoint decomposition enjoying properties (ii) and (iii). If $\mu(N_0 \cap N_+) > 0$, then we can find a set $A \subset N_0 \cap N_+$ with $\mu(A) \neq 0, \infty$ (recall that μ is σ -finite). The indicator function of this set must satisfy both $\lim_{x\to\infty} \int_S (U_x \mathbb{1}_A \wedge \mathbb{1}_A) d\mu = 0$ (because $A \subset N_0$) and $\limsup_{x\to\infty} \int_S (U_x \mathbb{1}_A \wedge \mathbb{1}_A) d\mu > 0$ (because $A \subset \tilde{N}_+$), which is a contradiction. Similarly, the assumption $\mu(\tilde{N}_0 \cap N_+) > 0$ leads to a contradiction. Hence, the decompositions $S = N_0 \cup N_+$ and $S = \tilde{N}_0 \cup \tilde{N}_+$ coincide modulo μ .

Proof of (i). We show that the decomposition $S = N_0 \cup N_+$ is $(\phi_x)_{x \in \mathcal{X}}$ -invariant, modulo null sets. It is easy to check that for every $y \in \mathcal{X}$ the decomposition $S = \phi_y(N_0) \cup \phi_y(N_+)$ enjoys properties (ii) and (iii). Indeed, if g is a function supported on $\phi_y(N_0)$, then $U_y g$ is supported on N_0 and hence,

$$
\lim_{x \to \infty} \int_{S} (U_x g \wedge g) d\mu = \lim_{x \to \infty} \int_{S} U_y (U_x g \wedge g) d\mu = \lim_{x \to \infty} \int_{S} (U_x U_y g \wedge U_y g) d\mu = 0
$$

by (ii). Similarly, one verifies that $\phi_u(N_+)$ satisfies (iii). The uniqueness of the decomposition implies that $N_0 = \phi_y(N_0)$ and $N_+ = \phi_y(N_+)$ modulo null sets. \Box

Remark 19. Krengel and Sucheston [\[12\]](#page-19-21) called a measure-preserving flow $(\phi_x)_{x \in \mathbb{Z}}$ mixing if

$$
\lim_{x \to \infty} \mu(\phi_x A \cap A) = 0
$$

for every set $A \in \mathcal{B}$ with $\mu(A) < \infty$. Thus, in the measure-preserving case, the decomposition from Theorem [18](#page-15-0) coincides with the decomposition of Krengel and Sucheston [\[12,](#page-19-21) [11\]](#page-19-22).

The decomposition introduced in Theorem [18](#page-15-0) characterizes mixing of max-stable processes.

Theorem 20. Let η be a stationary, stochastically continuous max-stable processes with a flow representation [\(3\)](#page-3-2). Then η is mixing if and only if $N_+ = \emptyset \mod \mu$.

Proof. Follows immediately from Theorem [16.](#page-12-0) \Box

We can introduce a decomposition of a stationary max-stable process η into mixing and non-mixing components as follows: $\eta = \eta_0 \vee \eta_+$ with

$$
\eta_0(x) = \int_{N_0}^e f_x(s)M(ds) \text{ and } \eta_+ = \int_{N_+}^e f_x(s)M(ds), \quad x \in \mathcal{X}.
$$

Clearly, η_0 and η_+ are independent stationary max-stable processes. Using argumentation as in the proof of Theorem 2.4 in [\[20\]](#page-19-8) (mapping to the minimal representation), it can be shown that the laws of η_0 and η_+ do not depend on the choice of the flow representation.

5.4. An open question. We have provided characterizations of the null recurrent and the dissipative components of a max-stable process in terms of its spectral functions, see condition (f) in Theorem [1](#page-1-0) and conditions (c)-(d) in Theorem [3.](#page-2-0) This allows us to obtain the positive/null and conservative/dissipative decompositions of a max-stable process given by de Haan representation [\(1\)](#page-0-0) directly via cone decompositions (see Proposition [10](#page-6-0) and Corollary [15\)](#page-10-0). We have also provided a new decomposition into mixing/non mixing components. It is therefore natural to ask whether a pathwise characterization of this decomposition is available. In view of the equivalence (e)-(f) in Theorem [1,](#page-1-0) we can wonder whether mixing can be characterized by the condition

(28)
$$
\liminf_{x \to \infty} Y(x) = 0 \quad \text{a.s.}
$$

The answer is negative. Although mixing implies [\(28\)](#page-18-0) (because mixing is equivalent to $Y(x) \to 0$ in probability which implies a.s. convergence to 0 along a subsequence), the converse is not true. We will show that a counterexample is provided by a process constructed in [\[8\]](#page-19-12).

Consider a max-stable process $\eta(t) = \vee_{i=1}^{\infty} U_i Y_i(t)$ as in [\(1\)](#page-0-0), where the spectral functions $(Y_i)_{i\in\mathbb{N}}$ are i.i.d. copies of the log-normal process

(29)
$$
Y(t) = \exp\left\{Z(t) - \frac{1}{2}\sigma^2(t)\right\}, \quad t \in \mathbb{R},
$$

with $(Z(t))_{t\in\mathbb{R}}$ a zero-mean Gaussian process with stationary increments, $Z(0) = 0$, and incremental variance

$$
\sigma^{2}(t) := \text{Var}(Z(s+t) - Z(s)) = \sum_{k=1}^{\infty} \left(1 - \cos\left(\frac{2\pi t}{2^{k}}\right)\right).
$$

An explicit series representation of $(Z(t))_{t\in\mathbb{R}}$ is given by

$$
Z(t) = \frac{1}{\sqrt{2}} \sum_{k=1}^{\infty} \left(N'_k \left(1 - \cos \frac{2\pi t}{2^k} \right) + N''_k \sin \frac{2\pi t}{2^k} \right),
$$

where $N'_{k}, N''_{k}, k \in \mathbb{N}$, are independent standard normal random variables. The max-stable process η belongs to the family of the so-called Brown–Resnick processes and is stationary; see [\[9\]](#page-19-13).

Proposition 21. The max-stable process η is ergodic but non-mixing although it satisfies [\(28\)](#page-18-0).

Proof. The fact that η is ergodic but non-mixing was proven in [\[8\]](#page-19-12). We show here that Equation [\(28\)](#page-18-0) is satisfied. It was shown in [\[8\]](#page-19-12) that there is a sequence $x_1 < x_2 < \ldots \to +\infty$ such that $\lim_{n \to \infty} \sigma^2(x_n) = +\infty$. Passing, if necessary, to a subsequence, we can assume that $\sigma^2(x_n) > n^2$. For every $\varepsilon \in (0,1)$ we have

$$
\mathbb{P}[Y(x_n) > \varepsilon] = \mathbb{P}\left[Z(x_n) > \log \varepsilon + \frac{1}{2}\sigma^2(x_n)\right] = \mathbb{P}\left[N > \frac{\log \varepsilon}{\sigma(x_n)} + \frac{1}{2}\sigma(x_n)\right],
$$

where N is a standard normal random variable. It follows that

$$
\sum_{n=1}^{\infty} \mathbb{P}[Y(x_n) > \varepsilon] \le \sum_{n=1}^{\infty} \mathbb{P}\left[N > \frac{n}{2} + \log \varepsilon\right] < \infty.
$$

By the Borel–Cantelli lemma, the probability that only finitely many events ${Y(x_n)}$ ε occur equals 1. Since this holds for every $\varepsilon \in (0,1)$, we obtain that $\lim_{n\to\infty} Y(x_n) =$ 0 a.s. and this implies [\(28\)](#page-18-0).

REFERENCES

- [1] J. Aaronson. An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
- [2] A. I. Danilenko and C. E. Silva. Ergodic theory: non-singular transformations. In Mathematics of complexity and dynamical systems. Vols. 1–3, pages 329–356. Springer, New York, 2012.
- [3] L. de Haan. A spectral representation for max-stable processes. Ann. Probab., 12(4):1194– 1204, 1984.
- [4] L. de Haan and A. Ferreira. *Extreme value theory. An introduction*. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2006.
- [5] L. de Haan and J. Pickands, III. Stationary min-stable stochastic processes. Probab. Theory Relat. Fields, 72(4):477–492, 1986.
- [6] C. Dombry and Z. Kabluchko. Random tessellations associated with max-stable random fields. Preprint arXiv:1410.2584, 2015.
- [7] Z. Kabluchko. Spectral representations of sum- and max-stable processes. Extremes, 12(4):401–424, 2009.
- [8] Z. Kabluchko and M. Schlather. Ergodic properties of max-infinitely divisible processes. Stochastic Process. Appl., 120(3):281–295, 2010.
- [9] Z. Kabluchko, M. Schlather, and L. de Haan. Stationary max-stable fields associated to negative definite functions. Ann. Probab., 37(5):2042–2065, 2009.
- [10] U. Krengel. Ergodic theorems, volume 6 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1985.
- [11] U. Krengel and L. Sucheston. On mixing in infinite measure spaces. Bull. Amer. Math. Soc., 74:1150–1155, 1968.
- [12] U. Krengel and L. Sucheston. On mixing in infinite measure spaces. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13:150–164, 1969.
- [13] J. Rosiński. On the structure of stationary stable processes. Ann. Probab., 23(3):1163–1187, 1995.
- [14] J. Rosiński. Decomposition of stationary α -stable random fields. Ann. Probab., 28(4):1797– 1813, 2000.
- [15] J. Rosiński and G. Samorodnitsky. Classes of mixing stable processes. Bernoulli, 2(4):365– 377, 1996.
- [16] E. Roy. Ergodic properties of Poissonian ID processes. Ann. Probab., 35(2):551–576, 2007.
- [17] P. Roy. Nonsingular group actions and stationary $S \alpha S$ random fields. Proc. Amer. Math. Soc., 138(6):2195-2202, 2010.
- [18] P. Roy and G. Samorodnitsky. Stationary symmetric α-stable discrete parameter random fields. J. Theoret. Probab., 21(1):212–233, 2008.
- [19] G. Samorodnitsky. Maxima of continuous-time stationary stable processes. Adv. in Appl. Probab., 36(3):805–823, 2004.
- [20] G. Samorodnitsky. Null flows, positive flows and the structure of stationary symmetric stable processes. Ann. Probab., 33(5):1782–1803, 2005.
- [21] M. Schlather. Models for stationary max-stable random fields. Extremes, 5(1):33–44, 2002.
- [22] S. A. Stoev. On the ergodicity and mixing of max-stable processes. Stochastic Process. Appl., 118(9):1679–1705, 2008.
- [23] S. A. Stoev and M. S. Taqqu. Extremal stochastic integrals: a parallel between max-stable processes and α -stable processes. Extremes, 8(4):237-266 (2006), 2005.
- [24] Y. Wang, P. Roy, and S.A. Stoev. Ergodic properties of sum- and max-stable stationary random fields via null and positive group actions. Ann. Probab., 41(1):206–228, 2013.
- [25] Y. Wang and S.A. Stoev. On the association of sum- and max-stable processes. Statist. Probab. Lett., 80(5-6):480–488, 2010.
- [26] Y. Wang and S.A. Stoev. On the structure and representations of max-stable processes. Adv. in Appl. Probab., 42(3):855–877, 2010.

Université de Franche-Comté, Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray, 25030 Besançon cedex, France E-mail address: Email: clement.dombry@univ-fcomte.fr

Universität Münster, Institut für Mathematische Statistik, Orléans-Ring 10, 48149 Münster, Germany

E-mail address: zakhar.kabluchko@uni-muenster.de