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ERGODIC DECOMPOSITIONS OF STATIONARY MAX-STABLE

PROCESSES IN TERMS OF THEIR SPECTRAL FUNCTIONS

CLÉMENT DOMBRY AND ZAKHAR KABLUCHKO

Abstract. We revisit conservative/dissipative and positive/null decomposi-
tions of stationary max-stable processes. Originally, both decompositions were
defined in an abstract way based on the underlying non-singular flow represen-
tation. We provide simple criteria which allow to tell whether a given spectral
function belongs to the conservative/dissipative or positive/null part of the de
Haan spectral representation. Specifically, we prove that a spectral function
is null-recurrent iff it converges to 0 in the Cesàro sense. For processes with
locally bounded sample paths we show that a spectral function is dissipative
iff it converges to 0. Surprisingly, for such processes a spectral function is
integrable a.s. iff it converges to 0 a.s. Based on these results, we provide
new criteria for ergodicity, mixing, and existence of a mixed moving maximum
representation of a stationary max-stable process in terms of its spectral func-
tions. In particular, we study a decomposition of max-stable processes which
characterizes the mixing property.

1. Statement of main results

1.1. Introduction. A stochastic process (η(x))x∈X on X = Z
d or X = R

d is called
max-stable if

1

n

n
∨

i=1

ηi
f.d.d.
= η for all n ≥ 1,

where η1, . . . , ηn are i.i.d. copies of η,
∨

is the pointwise maximum, and
f.d.d.
=

denotes the equality of finite-dimensional distributions. Max-stable processes arise
naturally when considering limits for normalized pointwise maxima of independent
and identically distributed (i.i.d.) stochastic processes and hence play a major role
in spatial extreme value theory; see, e.g., de Haan and Ferreira [4]. We restrict
our attention to processes with non-degenerate (non-constant) margins. The above
definition implies that the marginal distributions of η are 1–Fréchet, that is

P[η(x) ≤ z] = e−c(x)/z for all z > 0,

where c(x) > 0 is a scale parameter.
A fundamental representation theorem by de Haan [3] states that any stochas-

tically continuous max-stable process η can be represented (in distribution) as

(1) η(x) =
∨

i≥1

UiYi(x), x ∈ X ,
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where

- (Ui)i≥1 is a decreasing enumeration of the points of a Poisson point process
on (0,+∞) with intensity measure u−2du,

- (Yi)i≥1, which are called the spectral functions, are i.i.d. copies of a non-
negative process (Y (x))x∈X such that E[Y (x)] < +∞ for all x ∈ X ,

- the sequences (Ui)i≥1 and (Yi)i≥1 are independent.

In this paper, we focus on stationary max-stable processes that play an im-
portant role for modelling purposes; see, e.g., Schlather [21]. The structure of
stationary max-stable processes was first investigated by de Haan and Pickand [5]
who related them to non-singular flows. Using the analogy between max-stable and
sum-stable processes and the works of Rosiński [13, 14], Rosiński and Samorodnit-
sky [15] and Samorodnitsky [19, 20] on sum-stable processes, the representation
theory of stationary max-stable processes via non-singular flows was developed by
Kabluchko [7], Wang and Stoev [26, 25], Wang et al. [24]. In these papers, the con-
servative/dissipative (or Hopf) and positive/null (or Neveu) decompositions from
non-singular ergodic theory were used to introduce the corresponding decomposi-
tions η = ηC∨ηD and η = ηP ∨ηN of the max-stable process. These definitions were
rather abstract (see Sections 3 and 4 where we will recall them) and did not allow
to distinguish between conservative/dissipative or positive/null cases by looking
just at the spectral functions Yi from the de Haan representation (1). The purpose
of this paper is to provide a constructive definition of these decompositions. Our
main results in this direction can be summarized as follows. In Section 3 we will
prove that in the case when the sample paths of η are a.s. locally bounded, a spec-
tral function Yi belongs to the dissipative (=mixed moving maximum) part of the
process if and only if limx→∞ Yi(x) = 0. In Section 4 we will prove that a spectral
function Yi belongs to the null (=ergodic) part if and only if it converges to 0 in
the Cesàro sense. In Section 5, we will introduce one more decomposition which
characterizes mixing.

1.2. Ergodic properties of max-stable processes. Our results can be used to
give new criteria for ergodicity, mixing, and existence of mixed moving maximum
representation of max-stable processes. These criteria extend and simplify the
results of Stoev [22], Kabluchko and Schlather [8] and Wang et al. [24].

In the following, (η(x))x∈X denotes a stationary, stochastically continuous max-
stable process on X = Z

d or Rd with de Haan representation (1). In the case when
X = R

d, the process Y is continuous in L1 by Lemma 2 in [3]. Since continuity in L1

implies stochastic continuity and since every stochastically continuous process has
a measurable and separable version, we will tacitly assume throughout the paper
that both η and Y are measurable and separable processes. These assumptions (as
well as the assumption of stochastic continuity) are empty (and can be ignored) in
the discrete case X = Z

d.
Our first result is a characterization of ergodicity. Let λ(dx) be the counting

measure on Z
d (in the discrete-time case) or the Lebesgue measure on R

d (in the
continuous-time case), respectively. For r > 0, write Br = [−r, r]d ∩ X .

Theorem 1. For a stationary, stochastically continuous max-stable process η the
following conditions are equivalent:

(a) η is ergodic;
(b) η is weakly mixing;
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(c) η has no positive recurrent component in its spectral representation, that is
ηP = 0;

(d) limr→∞
1

λ(Br)

∫

Br
E[Y (x) ∧ Y (0)]λ(dx) = 0;

(e) limr→∞
1

λ(Br)

∫

Br
Y (x)λ(dx) = 0 in probability;

(f) lim infr→∞
1

λ(Br)

∫

Br
Y (x)λ(dx) = 0 almost surely.

The equivalence of (a), (b), (c), (d) in Theorem 1 was known before (see Theo-
rem 3.2 in [8] for the equivalence of (a), (b), (d) in the case d = 1, Theorem 8 in [7]
for the equivalence of (a) and (c) in the case d = 1, and Theorem 5.3 in [24] for an
extension to the d-dimensional case). We will prove in Section 3 that (c), (e), (f) are
equivalent by exploiting a new characterization of the positive/null decomposition.

The next theorem characterizes mixing (which is a stronger property than er-
godicity).

Theorem 2. For a stationary, stochastically continuous max-stable process η the
following conditions are equivalent:

(a) η is mixing;
(b) η is mixing of all orders;
(c) limx→∞ E[Y (x) ∧ Y (0)] = 0;
(d) limx→∞ Y (x) = 0 in probability.

The equivalence of (a), (b), (c) in Theorem 3 was known before (see Theorem 3.4
in [22] for the equivalence of (a) and (c), and Theorem 1.1 in [8] for the equivalence
of (a) and (b)). We will prove in Section 4 that (c) is equivalent to (d). Moreover,
we will introduce a decomposition of the process η into a mixing part and and a
part containing no mixing components.

Finally, we can characterize the mixed moving maximum property. The defini-
tion of this property will be recalled in Section 3.

Theorem 3. For a stationary, stochastically continuous max-stable process η with
locally bounded sample paths, the following conditions are equivalent:

(a) η has a mixed moving maximum representation;
(b) η has no conservative component in its spectral representation, that is ηC =

0;
(c)

∫

X Y (x)λ(dx) < +∞ almost surely;
(d) limx→∞ Y (x) = 0 almost surely.

The equivalence of (a), (b), (c) in Theorem 3 was known before and holds even
without the assumption of local boundedness (see Section 3.1 and the references
therein). Our main contribution is an alternative characterization of the conserva-
tive/dissipative decomposition stated in Proposition 10 that implies the equivalence
of (c) and (d). This equivalence may look strange at a first glance, but let us stress
that the process Y is not arbitrary. For example, Y has the property that the cor-
responding process η is stationary (such Y ’s were called Brown–Resnick stationary
in [9]). A special case of the implication (d) ⇒ (c) when log Y is a Gaussian process
with stationary increments and certain drift was obtained in [26, Theorem 7.1].

The rest of the paper is structured as follows. Section 2 is devoted to preliminar-
ies on non-singular ergodic theory and cone decomposition for max-stable processes.
Section 3 reviews known results on the conservative/dissipative decompositions and
provides an alternative definition via a simple cone decomposition with an empha-
sis on the case of locally bounded max-stable processes. Section 4 introduces the
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positive/null decomposition and proposes an alternative construction via another
simple cone decomposition. In Section 5 we study mixing.

2. Preliminaries

2.1. Non-singular flow representations of max-stable processes. We recall
some information on non-singular flow representations of stationary max-stable
processes. For more details on non-singular ergodic theory, the reader should refer
to Krengel [10], Aaronson [1] or Danilenko and Silva [2].

Definition 4. A measurable non-singular flow on a measure space (S,B, µ) is a
family of functions φx : S → S, x ∈ X , satisfying

(i) (flow property) for all s ∈ S and x1, x2 ∈ X ,

φ0(s) = s and φx1+x2
(s) = φx2

(φx1
(s));

(ii) (measurability) the mapping (x, s) 7→ φx(s) is measurable from X ×S to S;
(iii) (non-singularity) for all x ∈ X , the measures µ ◦φ−1

x and µ are equivalent,
i.e. for all A ∈ B, µ(φ−1

x (A)) = 0 if and only if µ(A) = 0.

The non-singularity property ensures that one can define the Radon–Nikodym
derivative

(2) ωx(s) =
d(µ ◦ φx)

dµ
(s).

By the measurability property, one may assume that the mapping (x, s) 7→ ωx(s)
is jointly measurable on X × S.

According to de Haan and Pickands [5], see also [7] and [26], any stochastically
continuous stationary max-stable process η admits a representation of the form

(3) η(x) =
∨

i≥1

Uifx(si), x ∈ X ,

where fx(s) = ωx(s)f0(φx(s)) and

- (φx)x∈X is a measurable non-singular flow on some σ-finite measure space
(S,B, µ), with ωx(s) defined by (2),

- f0 ∈ L1(S,B, µ) is non-negative such that the set {f0 = 0} contains no
(φx)x∈X –invariant set B ∈ B of positive measure,

- {(si, Ui)}i≥1 is some enumeration of the points of the Poisson point process
on S × (0,+∞) with intensity µ(ds) × u−2du.

Starting with a non-singular flow representation (3) on a probability space, one eas-
ily gets a de Haan representation of the form (1) by considering the i.i.d. stochastic
processes Yi(x) = fx(si), i ≥ 1. The flow representation (3) is comonly written as
an extremal integral

(4) η(x) =

∫ e

S

fx(s)M(ds), x ∈ X ,

where M(ds) denotes a 1-Fréchet random sup-measure on (S,B) with control mea-
sure µ. The reader should refer to Stoev and Taqqu [23] for more details on extremal
integrals. In the present paper, one can simply view the extremal integral (4) as a
shorthand for the pointwise maximum over a Poisson point process (3).
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2.2. Cone based decompositions. In the spirit of Wang and Stoev [26, Theorem
4.2] and Dombry and Kabluchko [6, Lemma 16], we will use decompositions of max-
stable processes based on cones. We denote by F0 = F(X , [0,+∞)) \ {0} the set
of non-negative measurable functions on X excluding the zero function. A subset
C ⊂ F0 is called a cone if for all f ∈ C and u > 0, uf ∈ C. The cone C is said to be
shift-invariant if for all f ∈ C and x ∈ X we have f(·+ x) ∈ C.

Lemma 5 (Lemma 16 in [6]). Let C1 and C2 be two shift-invariant cones such that
F0 = C1 ∪ C2 and C1 ∩ C2 = ∅. Let η be a stationary max-stable process given by
representation (1) such that the events {Yi ∈ C1} and {Yi ∈ C2} are measurable.
Consider the decomposition η = η1 ∨ η2 with

η1(x) =
∨

i≥1

UiYi(x)1{Yi∈C1} and η2(x) =
∨

i≥1

UiYi(x)1{Yi∈C2}.

Then, η1 and η2 are stationary and independent max-stable processes whose distri-
bution depends only on the distribution of η and not on the specific representation
(1).

3. Conservative/dissipative decomposition

3.1. Definition of the conservative/dissipative decomposition. We recall
the Hopf (or conservative/dissipative) decomposition from non-singular ergodic the-
ory; see Aaronson [1]. We start with the discrete case X = Z

d.

Definition 6. Consider a measure space (S,B, µ) and a non-singular flow (φx)x∈Zd.
A measurable set W ⊂ S is said to be wandering if the sets φ−1

x (W ), x ∈ Z
d, are

disjoint.

The Hopf decomposition theorem states that there exists a partition of S into
two disjoint measurable sets S = C ∪D, C ∩D = ∅, such that

(i) C and D are (φx)x∈Zd–invariant,
(ii) there exists no wandering set W ⊂ C with positive measure,
(iii) there exists a wandering set W0 ⊂ D such that D = ∪x∈Zdφx(W0).

This decomposition is unique mod µ and is called the Hopf decomposition of S
associated with the flow (φx)x∈Zd ; the sets C and D are called the conservative
and dissipative parts respectively. In the case when X = R

d, we follow Roy [17] by
defining the Hopf decomposition of S associated with a measurable flow (φx)x∈Rd

as the Hopf decomposition associated with the discrete skeleton flow (φx)x∈Zd .
One can then introduce the conservative/dissipative decomposition of the max-

stable process η given by (3), (4): we have η = ηC ∨ ηD with

(5) ηC(x) =

∫ e

C

fx(s)M(ds) and ηD(x) =

∫ e

D

fx(s)M(ds), x ∈ X .

The processes ηC and ηD are independent and their distribution depends only on
the distribution of η and not on the particular choice of the representation (3).

The importance of the conservative/dissipative decomposition comes from the
notion of mixed moving maximum representation.

Definition 7. A stationary max-stable process (η(x))x∈X is said to have a mixed
moving maximum representation (shortly M3-representation) if

η(x)
f.d.d.
=

∨

i≥1

ViZi(x−Xi), x ∈ X ,
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where

- {(Xi, Vi), i ≥ 1} is a Poisson point process on X × (0,+∞) with intensity
λ(dx) × u−2du,

- (Zi)i≥1 are i.i.d. copies of a non-negative measurable stochastic process Z
on X satisfying E[

∫

X
Z(x)λ(dx)] < +∞,

- {(Xi, Vi), i ≥ 1} and (Zi)i≥1 are independent.

The following important theorem relates the dissipative/conservative decompo-
sition and the existence of an M3-representation; see Wang and Stoev [26, Theorem
6.4] in the max-stable case with d = 1 or Roy [17, Theorem 3.4] in the sum-stable
case with d ≥ 1.

Theorem 8. Let η be a stationary max-stable process given by the non-singular flow
representation (3). Then, η has an M3-representation if and only if η is generated
by a dissipative flow.

3.2. Characterization using spectral functions. The following simple integral
test on the spectral functions allows us to retrieve the conservative/dissipative de-
composition; see Roy and Samorodnitsky [18, Proposition], Roy [17, Proposition
3.2] and Wang and Stoev [26, Theorem 6.2].

Theorem 9. We have

(i)
∫

X
fx(s)λ(dx) = ∞ µ(ds)–a.e. on C;

(ii)
∫

X
fx(s)λ(dx) < ∞ µ(ds)–a.e. on D.

Consider a stationary max-stable process η given by de Haan’s representation
(1). In view of Theorem 9, we introduce the cones of functions

FC =

{

f ∈ F0;

∫

X

f(x)λ(dx) = ∞
}

,(6)

FD =

{

f ∈ F0;

∫

X

f(x)λ(dx) < ∞
}

.(7)

These cones are clearly shift-invariant and, assuming that Y is jointly measur-
able and separable, the events {Y ∈ FC} and {Y ∈ FD} are measurable. Using
Lemma 5, we define

(8) ηC(x) =
∨

i≥1

UiYi(x)1{Yi∈FC} and ηD(x) =
∨

i≥1

UiYi(x)1{Yi∈FD}.

One can easily prove thanks to Theorem 9 and Lemma 5 that we retrieve (in
distribution) the conservative/dissipative decomposition (5) based on the flow rep-
resentation (3).

The main contribution of this section concerns the case when the max-stable
process η has locally bounded sample paths, which is usually the case in applica-
tions. Interestingly, one can then introduce another, more simple and convenient,
cone decomposition equivalent to (8). Consider

F̃C =

{

f ∈ F0; lim sup
x→∞

f(x) > 0

}

,

F̃D =
{

f ∈ F0; lim
x→∞

f(x) = 0
}

.

Note that since the process Y is assumed to be separable, the events {Y ∈ F̃C}
and {Y ∈ F̃C} are measurable.
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Proposition 10. Let η be a stationary max-stable process given by de Haan’s rep-
resentation (1) and assume that η has locally bounded sample paths. Then, modulo
null sets,

{Y ∈ FC} = {Y ∈ F̃C} and {Y ∈ FD} = {Y ∈ F̃D}.
We deduce that the decomposition

η̃C(x) =
∨

i≥1

UiYi(x)1{Yi∈F̃C} and η̃D(x) =
∨

i≥1

UiYi(x)1{Yi∈F̃D}.

is almost surely equal to the decomposition (8).

Proof. We consider first the discrete setting X = Z
d. The convergence of the

series
∑

x∈Zd f(x) implies the convergence limx→∞ f(x) = 0 so that the inclusion

{Y ∈ FD} ⊂ {Y ∈ F̃D} is trivial. We need only to prove the converse inclusion

{Y ∈ F̃D} ⊂ {Y ∈ FD}. Then, the equality {Y ∈ FD} = {Y ∈ F̃D} (modulo null

sets) implies the equality of the complementary sets, i.e. {Y ∈ FC} = {Y ∈ F̃C}.
Proof of the inclusion {Y ∈ F̃D} ⊂ {Y ∈ FD}. Let ỸD = Y 1{Y ∈F̃D} and η̃D =

∨i≥1UiYi1{Yi∈F̃D}. We will show that η̃D admits an M3-representation. By Theo-

rem 8, this implies that ỸD belongs a.s. to FD and hence {Y ∈ F̃D} ⊂ {Y ∈ FD}
modulo null sets. For the sake of notational convenience, we assume that Y ∈ F̃D

a.s. so that ỸD = Y and η̃D = η. We prove that η has an M3-representation with
a strategy similar to the proof of Theorem 14 in Kabluchko et al. [9] and we sketch
only the main lines. We introduce the random variables

(9) Xi = argmax
x∈X

Yi(x), Zi(·) =
Yi(Xi + ·)

maxx∈X Yi(x)
, Vi = Uimax

x∈X
Yi(x).

If the argmax is not unique, we use the lexicographically smallest value. Clearly,
we have UiYi(x) = ViZi(x −Xi) for all x ∈ X so that

η(x) =
∨

i≥1

ViZi(x −Xi).

It remains to check that (Xi, Vi, Zi)i≥1 has the properties required in Definition 7,
i.e. is a Poisson point process on X × (0,∞) ×F0 with intensity measure λ(dx) ×
u−2du × Q(df), where Q is a probability measure on F0. Clearly, (Xi, Vi, Zi)i≥1

is a Poisson point process as the image of the original point process (Ui, Yi)i≥1.
Its intensity is the image of the intensity of the original point process. With a
straightforward transposition of the arguments of [9, Theorem 14], one can check
that it has the required form.

We now turn to the case X = R
d. The convergence of the integral

∫

X f(x)λ(dx)
does not imply the convergence limx→∞ f(x) = 0. But it is easy to prove that for
K = [−1/2, 1/2]d, the convergence of the integral

∫

X
supu∈K f(x+ u)λ(dx) implies

the convergence limx→∞ f(x) = 0. We introduce the cone

F ′
D =

{

f ∈ F0;

∫

X

sup
u∈K

f(x+ u)λ(dx) < ∞
}

.

The inclusions of cones F ′
D ⊂ FD and F ′

D ⊂ F̃D imply the trivial inclusions of
events

{Y ∈ F ′
D} ⊂ {Y ∈ FD} and {Y ∈ F ′

D} ⊂ {Y ∈ F̃D}.
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We will prove below that, modulo null sets,

{Y ∈ FD} ⊂ {Y ∈ F ′
D} and {Y ∈ F̃D} ⊂ {Y ∈ FD}

whence we deduce the equalities, modulo null sets,

{Y ∈ FD} = {Y ∈ F ′
D} = {Y ∈ F̃D},

proving the proposition.

Proof of the inclusion {Y ∈ FD} ⊂ {Y ∈ F ′
D}. Let YD = Y 1{Y ∈FD} and ηD =

∨i≥1UiYi1{Yi∈FD} be the dissipative part of η. Theorem 8 implies that ηD has an
M3-representation of the form

ηD(x)
f.d.d.
=

∨

i≥1

ViZD,i(x−Xi), x ∈ X .

The fact that η is locally bounded implies that ηD is a.s. finite on K and

(10) P

[

sup
x∈K

ηD(x) ≤ z

]

= exp

(

−θD(K)

z

)

with

θD(K) = E

[∫

X

sup
x∈K

ZD(x− y)λ(dy)

]

< ∞.

We deduce that
∫

X
supx∈K ZD(x − y)λ(dy) is a.s. finite and hence, ZD belongs

a.s. to the cone F ′
D. This implies that Y 1{Y ∈FD} ∈ F ′

D almost surely, whence
{Y ∈ FD} ⊂ {Y ∈ F ′

D} modulo null sets.

Proof of the inclusion {Y ∈ F̃D} ⊂ {Y ∈ FD}. With the same notation as in the
dicrete case, we show that η̃D is generated by a dissipative flow and hence has an
M3-representation. By Theorem 8, this implies that ỸD belongs a.s. to FD and
proves the inclusion {Y ∈ F̃D} ⊂ {Y ∈ FD}. Note that the discrete skeleton

Ỹ skel
D = (ỸD(x))x∈Zd satisfies limx→∞ Ỹ skel

D = 0. We deduce Ỹ skel
D ∈ F̃D a.s.

which is equivalent to Ỹ skel
D ∈ FD a.s. (proof above in the discrete case). Hence

(η̃D(x))x∈Zd is generated by a dissipative flow and this implies that (η̃D(x))x∈Rd is
generated by a dissipative flow (see [17, Section 2]). �

Proof of Theorem 3. The equivalence of (a), (b), (c) in Theorem 3 was known before
and holds even without the assumption of local boundedness (see Section 3.1 and
the reference therein). The equivalence of (c) and (d) holds under the assumption
of local boundedness and is a straightforward consequence of Proposition 10. �

Example 11. The assumption that the sample paths of η should be locally bounded
cannot be removed from Proposition 10. To see this, consider the following (deter-
ministic) process Z:

Z(x) =

∞
∑

n=1

f(n2(x− n)), x ∈ R,

where f(t) = (1− t2)1|t|≤1. The process Z is non-zero only on the intervals of the

form (n− 1
n2 , n+ 1

n2 ), n ∈ N. The M3-process η corresponding to Z is well-defined

because
∫

R
Z(x)dx < ∞. On the other hand, P[Z ∈ F̃D] = 0 and hence, P[Y ∈
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F̃D] = 0, where Y is the spectral function of η from the de Haan representation (1).
It is easy to check that

P

[

sup
x∈[0,1]

η(x) ≤ z

]

= exp

(

−θ[0,1]

z

)

, z > 0,

with

θ[0,1] =

∫

R

(

sup
x∈[0,1]

Z(x− y)

)

dy = +∞,

whence supx∈[0,1] η(x) = +∞ a.s. and the sample paths of η are not locally bounded.

4. Positive/null decomposition

4.1. Definition of the positive/null decomposition. We start by defining the
Neveu decomposition of the non-singular flow (φx)x∈X ; see, e.g., Krengel [10, The-
orem 3.9], Samorodnitsky [20] or Wang et al. [24, Theorem 2.4].

Definition 12. Consider a measure space (S,B, µ) and a measurable non-singular
flow (φx)x∈X on S. A measurable set W ⊂ S is said to be weakly wandering with
respect to (φx)x∈X if there exists a sequence {xn}n∈N ⊂ X such that φ−1

xn
(W ) ∩

φ−1
xm

(W ) = ∅ for all n 6= m.

The Neveu decomposition theorem states that there exists a partition of S into
two disjoint measurable sets S = P ∪N , P ∩N = ∅, such that

(i) P and N are (φx)x∈X –invariant for all x ∈ X ,
(ii) P has no weakly wandering set of positive measure,
(iii) N is a union of countably many weakly wandering sets.

This decomposition is unique mod µ and is called the Neveu decomposition of S
associated with (φx)x∈X ; P and N are called the positive and null components with
respect to (φx)x∈X , respectively. It can be shown that P is the largest subset of S
supporting a finite measure which is equivalent to µ and invariant under the flow
(φx)x∈X ([24, Lemma 2.2]). Hence, there exists a finite measure which is equivalent
to µ and invariant under the flow if and only if N = ∅ mod µ.

The corresponding positive/null decomposition of the stationary max-stable pro-
cess η represented as in (3), (4) is given by η = ηP ∨ ηN with

(11) ηP (x) =

∫ e

P

fx(s)M(ds) and ηN (x) =

∫ e

N

fx(s)M(ds), x ∈ X .

The positive and null components ηP and ηN are independent, stationary max-
stable processes, and their distribution does not depend on the particular choice of
the representation (3).

4.2. Characterization using spectral functions. An integral test on the spec-
tral functions which allows to retrieve the positive/null decomposition is known in
the one-dimensional case (see Samorodnitsky [20] or Wang and Stoev [26, Theorem
5.3]).

Theorem 13. Consider the case d = 1 and introduce the class W of positive weight
functions w : X → (0,+∞) such that

∫

X
w(x)λ(dx) < ∞ and w(x) and w(−x) are

non-decreasing on X ∩ [0,+∞). Then we have

(i) For all w ∈ W,
∫

X fx(s)w(x)λ(dx) = ∞ µ(ds)–a.e. on P ;
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(ii) For some w ∈ W,
∫

X
fx(s)w(x)λ(dx) < ∞ µ(ds)–a.e. on N .

The next theorem is a new integral test characterizing the positive/null decom-
position. This test is simpler than Theorem 13 and is valid for all d ≥ 1. Recall
that we write Br = [−r, r]d ∩ X for r > 0.

Theorem 14. Let η be a stationary, stochastically continuous max-stable process
given by the non-singular flow representation (3). We have

(i) limr→∞
1

λ(Br)

∫

Br
fx(s)λ(dx) exists and is positive µ(ds)–a.e. on P ;

(ii) lim infr→∞
1

λ(Br)

∫

Br
fx(s)λ(dx) = 0 µ(ds)–a.e. on N .

Proof. We consider the positive case and the null case separately.

Case 1. Assume first that η is generated by a positive flow. Then, there is a
probability measure µ∗ on (S,B) which is equivalent to µ and which is invariant
under the flow. Note that any property holds µ–a.e. if and only if it holds µ∗–a.e.
We denote by D(s) = dµ

dµ∗ (s) ∈ (0,∞) the Radon–Nikodym derivative and observe

that for every x ∈ X , the function f∗
x(s) := fx(s)D(s) satisfies

(12) f∗
x(s) = f∗

0 (φx(s)) for λ× µ–a.e. (x, s) ∈ X × S.

Indeed, by definition of f∗
x and ωx, we have

f∗
x(s) = D(s)fx(s) = D(s)ωx(s)f0(φx(s)) =

D(s)ωx(s)

D(φx(s))
f∗
0 (φx(s)).

However, recalling the definition (2) of ωx(s) and that D(s) = dµ
dµ∗ (s) ∈ (0,∞), we

obtain

D(s)ωx(s)

D(φx(s))
=

dµ

dµ∗
(s)

d(µ ◦ φx)

dµ
(s)

d(µ∗ ◦ φx)

d(µ ◦ φx)
(s) =

d(µ∗ ◦ φx)

dµ∗
(s) = 1

µ–a.e. for every x ∈ X because the measure µ∗ is invariant. This yields (12). By
the multiparameter Birkhoff Theorem (see [24, Theorem 2.8]), we have

(13) lim
r→∞

1

λ(Br)

∫

Br

f∗
x(s)λ(dx) = E[f∗

0 |I] µ∗–a.e.,

where I is the σ-algebra of (φx)x∈X –invariant measurable sets and E denotes the
expectation w.r.t. µ∗. We prove that the conditional expectation on the right-hand
side is a.e. strictly positive. The set B = {E[f∗

0 |I] = 0} is measurable and (φx)x∈X –
invariant. Moreover, f∗

0 (and hence, f0) vanishes a.e. on B since f∗
0 is non-negative.

This implies that µ(B) = 0 by the second condition in the definition of the flow
representation (3). Thus, E[f∗

0 |I] > 0 a.e. It follows from (13) and the above
considerations that

(14) lim
r→∞

1

λ(Br)

∫

Br

fx(s)λ(dx) =
E[f∗

0 |I]
D(s)

> 0 µ–a.e.,

which proves part (i) of the theorem.

Case 2. We consider now the case when η is generated by a null flow. Let µ∗ be
any probability measure on (S,B) which is equivalent to µ. Write D(s) = dµ

dµ∗ (s) ∈
(0,∞) for the Radon–Nikodym derivative. The functions f∗

x(s) := fx(s)D(s) satisfy

f∗
x(s) = ω∗

x(s)f
∗
0 (φx(s)), where ω∗

x(s) :=
d(µ∗ ◦ φx)

dµ∗
(s),
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by the same considerations as in the positive case. Birkhoff’s ergodic theorem is
valid for measure preserving flows only, but we can use Krengel’s stochastic ergodic
theorem for non-singular actions (see [24, Theorem 2.7]) which yields

1

λ(Br)

∫

Br

f∗
x(·)λ(dx)

µ∗

→ F (·) as r → ∞

where
µ∗

→ denotes convergence in µ∗-probability and the limit function F ∈ L1(S, µ∗)
is such that for all x ∈ X ,

ω∗
x(s)F (φx(s)) = F (s) a.e.

This relation implies that the measure F (s)µ∗(ds) is a finite measure which is
absolutely continuous with respect to µ and invariant under the flow (φx)x∈X . Since
the flow has no positive component, this means that F = 0 a.e. We deduce that

1
λ(Br)

∫

Br
f∗
x(·)λ(dx) converges in µ∗-probability to 0. Convergence in probability

implies a.s. convergence along a subsequence, whence

lim inf
r→∞

1

λ(Br)

∫

Br

f∗
x(s)λ(dx) = 0 µ∗–a.e.

Since fx differs from f∗
x by a positive factor and the measures µ and µ∗ are equiv-

alent, we have

lim inf
r→∞

1

λ(Br)

∫

Br

fx(s)λ(dx) = 0 µ–a.e.,

which proves part (ii) of the theorem. �

As a consequence of Theorem 14, we can provide a new construction for the
positive/null decomposition (11). Consider the following shift-invariant cones

FP =

{

f ∈ F0; lim
r→∞

1

λ(Br)

∫

Br

f(x)λ(dx) > 0

}

,(15)

FN =

{

f ∈ F0; lim inf
r→∞

1

λ(Br)

∫

Br

f(x)λ(dx) = 0

}

.(16)

In the definition of FP the limit is required to exist and to be positive.

Corollary 15. Let η be a stationary, stochastically continuous max-stable process
given by de Haan’s representation (1). Then the decomposition η = ηP ∨ ηN with

ηP (x) =
∨

i≥1

UiYi(x)1{Yi∈FP } and ηN (x) =
∨

i≥1

UiYi(x)1{Yi∈FN}

is equal (in distribution) to the positive/null decomposition (11).

Proof. Corollary 15 is a direct consequence of Theorem 14 and Lemma 5. Note
that although instead of FP ∪ FN = F0 it holds only that P[Y ∈ FP ∪ FN ] = 1,
Lemma 5 still applies. �

Proof of Theorem 1. We need to prove the equivalence of (c), (e), (f) only; see
Section 1.2 for references to the other equivalences. We recall that (c) states that
η has no positive recurrent component, and

(e) limr→∞
1

λ(Br)

∫

Br
Y (x)λ(dx) = 0 in probability;

(f) lim infr→∞
1

λ(Br)

∫

Br
Y (x)λ(dx) = 0 a.s.
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The equivalence of (c) and (f) follows from Corollary 15. Clearly, (e) implies (f)
because any sequence converging to 0 in probability has a subsequence converging
to 0 a.s.

It remains to show that (c) implies (e). Since the positive/null decomposition of
η does not depend on the choice of the flow representation, we can consider a min-
imal representation (fx)x∈X of η by a null-recurrent flow (φx)x∈X on a probability
space (S∗,B∗, µ∗); see [26, Section 3] for definition and existence of the minimal
representation. In the proof of Theorem 14, Case 2, we have shown that

Mr :=
1

λ(Br)

∫

Br

fxλ(dx) −→
r→∞

0 in probability on (S∗,B∗, µ∗).

However, we are interested in an arbitrary de Haan representation (Y (x))x∈X of
η on a probability space (S,B, µ). This representation need not be generated by
a flow, but it can be mapped to the minimal one (see [26, Theorem 3.2]). More
concretely, there is a measurable map Φ : S → S∗ and a measurable function
h : S → (0,∞) such that for every x ∈ X ,

Y (x; s) = h(s)fx(Φ(s)) for µ-a.e. s ∈ S,

and µ∗ is the push-forward of the (probability) measure µh(ds) := h(s)µ(ds) by
the map Φ. We have

1

λ(Br)

∫

Br

Y (x; s)λ(dx) = h(s) ·Mr(Φ(s)) for µ-a.e. s ∈ S.

Since Mr → 0 in µ∗-probability as r → ∞, we obtain that for every ε > 0,

µh{Mr ◦ Φ > ε} = (µh ◦ Φ−1){Mr > ε} = µ∗{Mr > ε} −→
r→∞

0.

Since h is strictly positive, this implies that µ{Mr ◦ Φ > ε} → 0 and hence,
h · (Mr ◦ Φ) → 0 in µ-probability, thus proving (e). �

5. Mixing

5.1. Proof of Theorem 2. We need to prove the equivalence of (c) and (d) only,
that is

(c): lim
x→∞

E[Y (x) ∧ Y (0)] = 0 ⇔ (d): lim
x→∞

Y (x) = 0 in probability.

See Section 1.2 for references to the other equivalences.
Assume that (d) holds, i.e. limx→∞ Y (x) = 0 in probability. The upper bound

Y (x) ∧ Y (0) ≤ Y (0) with Y (0) integrable implies that the collection (Y (x) ∧
Y (0))x∈X is uniformly integrable. Assumption (d) implies that Y (x) ∧ Y (0) con-
verges in probability to 0 as x → ∞, whence we deduce that E[Y (x) ∧ Y (0)] → 0
as x → ∞, i.e. (c) is satisfied.

Conversely, we prove the implication (c) ⇒ (d). The relation

E[Y (x) ∧ Y (0)] = 2 + logP[η(x) ≤ 1, η(0) ≤ 1]

together with the stationarity of η implies that for all x0 ∈ X ,

(17) lim
x→∞

E[Y (x) ∧ Y (x0)] = 0.

Without restriction of generality we can assume that P[Y ≡ 0] = 0 (where, by
separability, the event {Y ≡ 0} is interpreted as ∩x∈T {Y (x) = 0} with countable
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T ⊂ X ). Then, for arbitrary ε > 0, there exists α > 0 and x1, . . . , xk ∈ X such
that P[∪1≤i≤k{Y (xi) > α}] ≥ 1− ε/2, whence

P[Y (x1) + . . .+ Y (xk) > α] ≥ 1− ε/2.

With the inequality (a1 + . . .+ ak) ∧ b ≤ a1 ∧ b+ . . .+ ak ∧ b, we obtain from (17)
that

lim
x→∞

E[Y (x) ∧ (Y (x1) + . . .+ Y (xk))] = 0.

These two equations imply, for all δ > 0,

P[Y (x) > δ] ≤ P[Y (x) > δ, Y (x1) + . . .+ Y (xk) > α] + ε/2

≤ P[Y (x) ∧ (Y (x1) + . . .+ Y (xk)) > δ ∧ α] + ε/2

≤ E[Y (x) ∧ (Y (x1) + . . .+ Y (xk))]/(δ ∧ α) + ε/2

≤ ε

for large |x|. This proves that Y (x) → 0 in probability as x → ∞.

5.2. Criterium for mixing in terms of flows. Given a measurable non-singular
flow (φx)x∈X on a σ-finite measure space (S,B, µ) define the corresponding group
of L1–isometries (Ux)x∈X by

(Uxg)(s) = ωx(s)g(φx(s)), g ∈ L1(S, µ), x ∈ X ,

where ωx is the Radon–Nikodym derivative; see (2).

Theorem 16. Let η be a stationary, stochastically continuous max-stable process
with a flow representation (3). Then, the following conditions are equivalent:

(a) η is mixing.
(b) limx→∞

∫

S(fx ∧ f0)dµ = 0.
(c) fx → 0 locally in measure as x → ∞. That is, for every measurable set

B ⊂ S with µ(B) < ∞ and every ε > 0 we have

lim
x→∞

µ(B ∩ {fx > ε}) = 0.

(d) For every non-negative function g ∈ L1(S, µ) we have

lim
x→∞

∫

S

((Uxg) ∧ g)dµ = 0.

(e) For every non-negative function g ∈ L1(S, µ), Uxg → 0 locally in measure.

Proof. The equivalence of (a) and (b) is due to Stoev; see Theorem 3.4 in [22]. We
prove that (b) is equivalent to (c), (d), (e).

Take a non-negative function g ∈ L1(S, µ). We prove that the following condi-
tions are equivalent:

(b’) limx→∞

∫

S
((Uxg) ∧ g)dµ = 0.

(c’) Uxg → 0 locally in measure, as x → ∞.

Once the equivalence of (b’) and (c’) has been established, we immediately obtain
the equivalence of (b) and (c) (by taking g = f0) and the equivalence of (d) and
(e).

Proof of (c’) ⇒ (b’). Let Uxg → 0 locally in measure, as x → ∞. We prove that
(b’) holds. Fix some ε > 0. The sets Bn := {g > 1

n}, n ∈ N, are measurable, have
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finite measure (since g ∈ L1(S, µ)), and

lim
n→∞

∫

S

g1S\Bn
dµ = 0

by the dominated convergence theorem. Hence, by taking n sufficiently large we
can achieve that the set B = Bn satisfies µ(B) < ∞ and

∫

S\B

gdµ ≤ ε.

The collection (Uxg ∧ g)x∈X is uniformly integrable on B since Uxg ∧ g ≤ g. Also,
we know that Uxg ∧ g → 0 (as x → ∞) in measure on B. It follows that

lim
x→∞

∫

B

Uxg ∧ gdx = 0.

Thus, condition (b’) holds.

Proof of (b’) ⇒ (c’). We argue by contradiction. Assume that Uxg 9 0 locally in
measure as x → ∞. Our aim is to prove that (b′) is violated. By our assumption,
there is a measurable set B ⊂ S and ε > 0 such that 0 < µ(B) < ∞ and

(18) µ({Uxi
g > ε} ∩B) > ε, i ∈ N,

where x1, x2, . . . → ∞ is some sequence in X . Denote by H the family consisting
of the sets suppUxg, x ∈ X , together with all measurable subsets of these sets.
Let S∗ be the measurable union of this family; see [1, pp. 7–8] for the proof of its
existence. By the exhaustion lemma [1, pp. 7–8], we can find countably many sets
A1, A2, . . . ∈ H such that S∗ = A1 ∪ A2 ∪ . . .. It follows that we can find finitely
many z1, . . . , zm ∈ X such that

µ



(B ∩ S∗)\
m
⋃

j=1

suppUzjg



 <
ε

2
.

Together with (18) (where B can be replaced by B ∩ S∗ because {Uxi
g > ε} ⊂ S∗

mod µ), this implies that for all i ∈ N,

µ



{Uxi
g > ε} ∩

m
⋃

j=1

suppUzjg



 >
ε

2
.

It follows that there is j ∈ {1, . . . ,m} and a subsequence y1, y2, . . . → ∞ of x1, x2, . . .
such that for all i ∈ N,

µ
(

{Uyi
g > ε} ∩ suppUzjg

)

>
ε

2m
.

Put z = zj . For a sufficiently small δ ∈ (0, ε) we have

(19) µ ({Uyi
g > δ} ∩ {Uzg > δ}) > ε

4m
.

By the flow property and (19) it follows that for all i ∈ N,
∫

S

((Uyi−zg) ∧ g)dµ =

∫

S

((Uyi
g) ∧ (Uzg))dµ >

ε

4m
δ > 0.
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But this contradicts (b’).

Proof of (d) ⇒ (b). Trivial, because fx = Uxf0.

Proof of (b) ⇒ (d). For every non-negative function g ∈ L1(S, µ) we have to show
that

lim
x→∞

∫

S

(Uxg ∧ g)dµ = 0.

Fix some ε > 0. By the same argument relying on the dominated convergence
theorem as above, we can find a sufficiently large K > 0 such that the set B :=
{1/K ≤ g ≤ K} satisfies

(20)

∫

S\B

gdµ < ε.

The set B has finite measure because g is integrable. By the uniform integrability
of a single function g, there is δ > 0 such that every for every measurable set A ⊂ B
with µ(A) < δ we have

∫

A
gdµ < ε.

We argue that it is possible to find finitely many z1, . . . , zm ∈ X such that the
sets supp fz1 , . . . , supp fzm cover B up to a set of measure at most δ/2. Indeed, let
H be the family consisting of the sets supp fx, x ∈ X , together with all measurable
subsets of these sets. In the definition of the flow representation (3) we made a “full
support” assumption which assures that the measurable union of H is the whole of
S. By the exhaustion lemma [1, pp. 7–8], we can represent S as a disjoint union
of countably many sets A1, A2, . . . ∈ H. It follows that we can find finitely many
z1, . . . , zm ∈ X such that

µ



B\
m
⋃

j=1

supp fzj



 <
δ

2
.

By taking c > 0 sufficiently small, we can even achieve that the sets {fz1 >
c}, . . . , {fzm > c} cover B up to a set of measure at most δ, that is for

D := B\
m
⋃

j=1

{fzj > c}

we have µ(D) < δ. By construction of δ it follows that

(21)

∫

D

gdµ < ε.

For every j ∈ {1, . . . ,m}, on the set Aj := B ∩ {fzj > c} we have the estimates

g ≤ K and fzj > c. Hence, g1Aj
≤ K

c fzj and, by non-negativity of Ux,

(22)

∫

B

Ux(g1Aj
) ∧ gdµ ≤

∫

B

(

K

c
fx+zj

)

∧Kdµ −→
x→∞

0

because K
c fx+zj → 0 locally in measure by assumption (b) which, as we already

know, is equivalent to (c). Writing g = g1B + g1S\B, we obtain
∫

S

(Uxg) ∧ gdµ ≤
∫

S

Ux(g1S\B)dµ+

∫

S

Ux(g1B) ∧ gdµ.
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We have
∫

S
Ux(g1S\B)dµ ≤ ε using (20) and because Ux is L1-isometry. The second

integral can be estimated as follows:

∫

S

Ux(g1B)∧gdµ ≤
∫

S\B

gdµ+

∫

B

Ux(g1B)∧gdµ ≤ ε+

∫

B

Ux



g1D +

m
∑

j=1

g1Aj



∧gdµ.

Using the inequality (a1 + . . .+ ak) ∧ b ≤ a1 ∧ b+ . . .+ ak ∧ b, we obtain
∫

S

Ux(g1B) ∧ gdµ ≤ ε+

∫

B

Ux(g1D)dµ+

m
∑

j=1

∫

B

Ux(g1Aj
) ∧ gdµ.

Since Ux is L1-isometry, we have
∫

B
Ux(g1D)dµ ≤ ε by (21). Recalling (22) we

obtain that

lim sup
x→∞

∫

S

((Uxg) ∧ g)dµ ≤ 3ε.

Since this is true for every ε > 0, the limit is in fact 0 and we obtain (d). �

Remark 17. Condition (d) in Theorem 16 can be replaced by the following seem-
ingly stronger one: For every non-negative functions g, h ∈ L1(S, µ) we have

lim
x→∞

∫

S

((Uxg) ∧ h)dµ = 0.

It is clear that this condition implies (d). To see the converse, note that by the
non-negativity property of Ux,

∫

S

(Uxg ∧ h)dµ ≤
∫

S

(Ux(g ∨ h) ∧ (g ∨ h))dµ.

5.3. Mixing/non-mixing decomposition. It is known that the Hopf decompo-
sition can be used to characterize the mixed moving maximum property, whereas
Neveu decomposition characterizes ergodicity. In the next proposition we construct
a decomposition which characterizes mixing. For measure-preserving maps, this de-
composition was introduced by Krengel and Sucheston [12, 11]. E. Roy [16] used it
to characterize mixing of sum-infinitely divisible processes. Note that we consider
non-singular flows (which is a broader class than measure preserving flows).

Theorem 18. Consider a non-singular, measurable flow (φx)x∈X acting on a σ-
finite measure space (S,B, µ). There is a decomposition of S into two disjoint
measurable sets S = N0 ∪N+, N0 ∩N+ = ∅, such that

(i) N0 and N+ are (φx)x∈X -invariant, modulo null sets.
(ii) For every non-negative function g ∈ L1(S, µ) supported on N0,

lim
x→∞

∫

S

(Uxg ∧ g)dµ = 0.

(iii) For every nonnegative function h ∈ L1(S, µ) supported on N+ and not
vanishing identically,

lim sup
x→∞

∫

S

(Uxh ∧ h)dµ > 0.

Properties (ii) and (iii) define the components N+ and N0 uniquely, modulo null
sets.
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Proof. Let H be the family of all measurable sets A ⊂ S such that µ(A) < ∞ and
Ux1A → 0 locally in measure, as x → ∞. By the positivity of Ux, the family H is
hereditary, that is it contains with every set A all its measurable subsets. Denote
by N0 the measurable union of H; see [1, pp. 7–8] for its existence.

Proof of (ii). Take any non-negative function g ∈ L1(S, µ) supported on N0. Fix
ε > 0. Let K be sufficiently large so that the set B := {g ≤ K} satisfies

(23)

∫

S\B

gdµ < ε.

Let δ > 0 be such that for every measurable set D ⊂ B with µ(D) < δ we have
∫

D
gdµ < ε. By the exhaustion lemma [1, pp. 7–8] we can find finitely many sets

A1, . . . , Am ∈ H such that µ(B\ ∪m
j=1 Aj) < δ and hence,

(24)

∫

B\A

gdµ < ε,

where we introduced the set A := A1 ∪ . . .∪Am. For every j ∈ {1, . . . ,m} we have,
by the positivity of Ux,

(25)

∫

B

(Ux(g1Aj∩B)) ∧ gdµ ≤
∫

B

(KUx(1Aj∩B)) ∧Kdµ −→
x→∞

0

because Ux1Aj∩B → 0 locally in measure. We have the estimate

∫

S

Uxg∧gdµ ≤
∫

S\B

gdµ+

∫

B

(Uxg∧g)dµ ≤ ε+

∫

B

Ux



g1S\(A∩B) +

m
∑

j=1

g1Aj∩B



∧gdµ.

Using the inequality (a1 + . . .+ ak) ∧ b ≤ a1 ∧ b+ . . .+ ak ∧ b, we obtain

∫

S

Uxg ∧ gdµ ≤ ε+

∫

B

Ux(g1S\(A∩B))dµ+

m
∑

j=1

∫

B

Ux(g1Aj∩B) ∧ gdµ.

Since Ux is an L1-isometry, we have
∫

B
Ux(g1S\(A∩B))dµ ≤ 2ε by (23) and (24).

By (22) we obtain that

lim sup
x→∞

∫

S

Uxg ∧ gdµ ≤ 3ε,

which proves (ii) since ε > 0 is arbitrary.

Proof of (iii). We argue by contraposition. Assume that a non-negative function
h ∈ L1(S, µ) supported on N+ := S\N0 and not vanishing identically satisfies
limx→∞

∫

S(Uxh∧h)dµ = 0. For a sufficiently small b > 0, the set A := {h > b} has
positive, finite measure, and (by the positivity of Ux) satisfies

lim
x→∞

∫

S

Ux1A ∧ 1Adµ = 0.

Since Ux preserves pointwise minima and is an L1-isometry, we obtain that for
every x0 ∈ X ,

(26) lim
x→∞

∫

S

(Ux1A) ∧ (Ux0
1A)dµ = 0.
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Since A ⊂ N+ and µ(A) > 0, the definition of N0 implies that the sequence Ux1A

does not converge locally in µ-measure, as x → ∞. Hence, we can find a measurable
set B ⊂ S with µ(B) < ∞ and a > 0 such that

(27) lim sup
x→∞

µ(B ∩ {Ux1A > a}) > a.

Let B0 be the measurable union of suppUx1A, x ∈ X . Since replacing B by
B ∩ B0 does not change the validity of (27), we can assume that B ⊂ B0. By the
exhaustion lemma, see [1, pp. 7–8], we can find finitely many x1, . . . , xm ∈ X and
c > 0 such that the set B is covered, up to a subset of measure at most a/2, by
the sets {Ux1

1A > c}, . . . , {Uxm
1A > c}. It follows that for every x ∈ X satisfying

µ(B ∩ {Ux1A > a}) ≥ a we also have

µ({Ux1A > a} ∩ {Uxi
1A > c}) > a/(4m)

for at least one i ∈ {1, . . . ,m}. But this contradicts (26), thus proving (iii).

Proof of the uniqueness. Let S = Ñ0 ∪ Ñ+ be another disjoint decomposition

enjoying properties (ii) and (iii). If µ(N0 ∩ Ñ+) > 0, then we can find a set

A ⊂ N0 ∩ Ñ+ with µ(A) 6= 0,∞ (recall that µ is σ-finite). The indicator function
of this set must satisfy both limx→∞

∫

S(Ux1A ∧ 1A)dµ = 0 (because A ⊂ N0) and

lim supx→∞

∫

S(Ux1A ∧ 1A)dµ > 0 (because A ⊂ Ñ+), which is a contradiction.

Similarly, the assumption µ(Ñ0 ∩ N+) > 0 leads to a contradiction. Hence, the

decompositions S = N0 ∪N+ and S = Ñ0 ∪ Ñ+ coincide modulo µ.

Proof of (i). We show that the decomposition S = N0 ∪N+ is (φx)x∈X -invariant,
modulo null sets. It is easy to check that for every y ∈ X the decomposition
S = φy(N0) ∪ φy(N+) enjoys properties (ii) and (iii). Indeed, if g is a function
supported on φy(N0), then Uyg is supported on N0 and hence,

lim
x→∞

∫

S

(Uxg ∧ g)dµ = lim
x→∞

∫

S

Uy(Uxg ∧ g)dµ = lim
x→∞

∫

S

(UxUyg ∧ Uyg)dµ = 0

by (ii). Similarly, one verifies that φy(N+) satisfies (iii). The uniqueness of the
decomposition implies that N0 = φy(N0) and N+ = φy(N+) modulo null sets. �

Remark 19. Krengel and Sucheston [12] called a measure-preserving flow (φx)x∈Z

mixing if
lim
x→∞

µ(φxA ∩ A) = 0

for every set A ∈ B with µ(A) < ∞. Thus, in the measure-preserving case, the
decomposition from Theorem 18 coincides with the decomposition of Krengel and
Sucheston [12, 11].

The decomposition introduced in Theorem 18 characterizes mixing of max-stable
processes.

Theorem 20. Let η be a stationary, stochastically continuous max-stable processes
with a flow representation (3). Then η is mixing if and only if N+ = ∅ mod µ.

Proof. Follows immediately from Theorem 16. �

We can introduce a decomposition of a stationary max-stable process η into
mixing and non-mixing components as follows: η = η0 ∨ η+ with

η0(x) =

∫ e

N0

fx(s)M(ds) and η+ =

∫ e

N+

fx(s)M(ds), x ∈ X .
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Clearly, η0 and η+ are independent stationary max-stable processes. Using argu-
mentation as in the proof of Theorem 2.4 in [20] (mapping to the minimal repre-
sentation), it can be shown that the laws of η0 and η+ do not depend on the choice
of the flow representation.

5.4. An open question. We have provided characterizations of the null recurrent
and the dissipative components of a max-stable process in terms of its spectral
functions, see condition (f) in Theorem 1 and conditions (c)-(d) in Theorem 3.
This allows us to obtain the positive/null and conservative/dissipative decompo-
sitions of a max-stable process given by de Haan representation (1) directly via
cone decompositions (see Proposition 10 and Corollary 15). We have also provided
a new decomposition into mixing/non mixing components. It is therefore natural
to ask whether a pathwise characterization of this decomposition is available. In
view of the equivalence (e)-(f) in Theorem 1, we can wonder whether mixing can
be characterized by the condition

(28) lim inf
x→∞

Y (x) = 0 a.s.

The answer is negative. Although mixing implies (28) (because mixing is equivalent
to Y (x) → 0 in probability which implies a.s. convergence to 0 along a subsequence),
the converse is not true. We will show that a counterexample is provided by a
process constructed in [8].

Consider a max-stable process η(t) = ∨∞
i=1UiYi(t) as in (1), where the spectral

functions (Yi)i∈N are i.i.d. copies of the log-normal process

(29) Y (t) = exp

{

Z(t)− 1

2
σ2(t)

}

, t ∈ R,

with (Z(t))t∈R a zero-mean Gaussian process with stationary increments, Z(0) = 0,
and incremental variance

σ2(t) := Var(Z(s+ t)− Z(s)) =

∞
∑

k=1

(

1− cos

(

2πt

2k

))

.

An explicit series representation of (Z(t))t∈R is given by

Z(t) =
1√
2

∞
∑

k=1

(

N ′
k

(

1− cos
2πt

2k

)

+N ′′
k sin

2πt

2k

)

,

where N ′
k, N

′′
k , k ∈ N, are independent standard normal random variables. The

max-stable process η belongs to the family of the so-called Brown–Resnick processes
and is stationary; see [9].

Proposition 21. The max-stable process η is ergodic but non-mixing although it
satisfies (28).

Proof. The fact that η is ergodic but non-mixing was proven in [8]. We show
here that Equation (28) is satisfied. It was shown in [8] that there is a sequence
x1 < x2 < . . . → +∞ such that limn→∞ σ2(xn) = +∞. Passing, if necessary, to a
subsequence, we can assume that σ2(xn) > n2. For every ε ∈ (0, 1) we have

P[Y (xn) > ε] = P

[

Z(xn) > log ε+
1

2
σ2(xn)

]

= P

[

N >
log ε

σ(xn)
+

1

2
σ(xn)

]

,



20 CLÉMENT DOMBRY AND ZAKHAR KABLUCHKO

where N is a standard normal random variable. It follows that
∞
∑

n=1

P[Y (xn) > ε] ≤
∞
∑

n=1

P

[

N >
n

2
+ log ε

]

< ∞.

By the Borel–Cantelli lemma, the probability that only finitely many events {Y (xn) >
ε} occur equals 1. Since this holds for every ε ∈ (0, 1), we obtain that limn→∞ Y (xn) =
0 a.s. and this implies (28). �
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