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Abstract

We study the distribution of products of conjugacy classes in finite
simple groups. Our results, combined with work of Gowers and Viola,
lead to the solution of recent conjectures they posed on interleaved
products and related complexity lower bounds, extending their work
on the groups SL(2, q) to all (nonabelian) finite simple groups.

In particular it follows that, if G is a finite simple group, and A,B ⊆
G2 are subsets of fixed positive densities, then, as a = (a1, a2) ∈ A
and b = (b1, b2) ∈ B are chosen uniformly, the interleaved product
a • b := a1b1a2b2 is almost uniform on G with respect to the ℓ∞-norm.

It also follows that the communication complexity of an old deci-
sion problem related to interleaved products of a, b ∈ Gt is at least
Ω(t log |G|) when G is a finite simple group of Lie type of bounded
rank, and at least Ω(t log log |G|) when G is any finite simple group.
Both these bounds are best possible.
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1 Introduction

The purpose of this paper is to provide affirmative solutions to some conjec-
tures of Gowers and Viola – see [5, 6, 7]. These papers contain interesting
results in Group Theory (interleaved products) and in Computer Science
(complexity lower bounds) for the family of two-dimensional special linear
groups SL(2, q). Here we extend these results to all finite simple groups
of Lie type of bounded Lie rank, and in a weaker form to all finite simple
groups. In fact all our results here also apply (with similar proofs) to all
finite quasisimple groups, namely finite perfect groups G such that G/Z(G)
is simple.

Throughout this paper simple groups are taken to be nonabelian, and
we assume the Classification of finite simple groups. Since our results are
of asymptotic nature we may ignore the sporadic groups and restrict our
attention to simple groups of Lie type and to alternating groups An.

Our main contributions are Theorem 1.1 and Corollary 1.2 below, on the
distribution of products of elements from two random conjugacy classes; see
also [14, 15] for earlier results in this direction, which are not sufficient for
the current applications. The combination of Corollary 1.2 with reductions
and statements from [7] yields various applications to interleaved products
and complexity, some of which are mentioned briefly in Sections 1 and 3 of
this paper.

We start with some notation which we will use throughout this paper.
Let G be a finite group and let x, y, g ∈ G. Let px,y(g) denote the probability
that g = x′y′, where x′ is a random conjugate of x and y′ is a random
conjugate of y (with respect to the uniform distribution). Then px,y is a
probability distribution on G. Let ||px,y||

2
2 denote the square of its ℓ2-norm,

namely

||px,y||
2
2 =

∑

g∈G
px,y(g)

2.

By IrrG we denote the set of complex irreducible characters of G. We define
the Witten zeta function ζG of G by

ζG(s) =
∑

χ∈IrrG
χ(1)−s,

where s is a real number. This function plays a key role in our proofs.

Our main theorem below implies that for finite simple groups G, and for
almost all x, y ∈ G, the distribution px,y is very close to uniform in the ℓ2
sense. For the applications we prove a rather general quantitative result,
where x, y need not be independent.
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Theorem 1.1 Let G be a finite simple group. Let ν be a probability dis-
tribution on G2 which projects to uniform distributions on each coordinate.
Choose (x, y) ∈ G2 according to the distribution ν (so that x is uniform in
G and so is y, but they are not assumed to be independent).

(i) If G = An then, for some absolute constant c, the ν-probability that
||px,y||

2
2 ≤ |G|−1(1 + cn−2/3) is greater than 1− cn−2/3.

(ii) For any ǫ > 0 there is r(ǫ) such that if r ≥ r(ǫ) and G is a group of
Lie type of rank r over the field with q elements, then the ν-probability that
||px,y||

2
2 ≤ |G|−1(1 + q−(2/3−ǫ)r) is greater than 1− q−(2/3−ǫ)r.

(iii) If G is a group of Lie type of rank r, then there exists c = c(r) >
0 such that the ν-probability that ||px,y||

2
2 ≤ |G|−1(1 + |G|−c) is at least

1− |G|−c.

We can also show that if G is alternating or a group of Lie type of
unbounded rank then part (iii) above does not hold for an absolute constant
c > 0.

Theorem 1.1 applies in various situations; these include the cases where
x, y are uniform and independent, when x is uniform and y = x, and more
generally, when x is uniform and y = f(x), where f : G → G is any fixed
bijection.

In particular, if we fix a ∈ G and let f be the bijection sending x to
x−1a, we obtain the following.

Corollary 1.2 Let G be a finite simple group, let a ∈ G be any fixed ele-
ment, let x ∈ G distribute uniformly over G and let y = x−1a. Then px,y
satisfies the conclusions (i)-(iii) of Theorem 1.1.

In the case of G = SL(2, q) this result is proved in [7, 1.13]. It is also
stated in [7] that if Corollary 1.2 above holds for a family of finite groups G
then these groups satisfy a variety of interesting results, proven earlier only
for SL(2, q). We mention now briefly some of these applications, while some
more will be discussed in Section 3.

Recall that for a group G, a positive integer t ≥ 2, and two t-tuples
a = (a1, . . . , at), b = (b1, . . . , bt) ∈ Gt, the interleaved product a • b of a and
b is defined by

a • b = a1b1a2b2 · · · atbt ∈ G.

The density of a subset A ⊆ Gt is defined by |A|/|G|t.

Theorem 1.3 Let G be a finite simple group and t ≥ 2 an integer. Let
A,B ⊆ Gt be subsets of positive densities α and β respsectively. If a and b
are selected uniformly from A and B, then, for each g ∈ G, the probability
that a • b = g is of the form (1 + o(1))|G|−1.

In particular, if G is sufficiently large (given α and β), then A •B = G.

3



Here o(1) is a real number tending to 0 as |G| tends to ∞. Thus a • b
(for a ∈ A and b ∈ B) is almost uniformly distributed in the ℓ∞-norm.

Theorem 1.3 above follows from stronger bounds as follows. Let α =
|A|/|G|t and β = |B|/|G|t be the densities of A and B respectively. If the
simple group G above is of Lie type of bounded rank then we obtain

|Prob(a • b = g) − |G|−1| ≤ (αβ)−1|G|−1−ct,

where c > 0 depends only on the rank of G. This extends Theorem 1.7 of
[6] (which is Theorem 1.8 of [7]) dealing with SL(2, q).

If G is any simple group of Lie type of rank r (which is not necessarily
bounded) we obtain

|Prob(a • b = g)− |G|−1| ≤ (αβ)−1q−crt|G|−1,

where c > 0 is an absolute constant.

Finally, if G = An then, for some absolute positive constant c we have

|Prob(a • b = g)− |G|−1| ≤ (αβ)−1n−ct|G|−1.

These results generalize the case when the subsets A,B are product sets,
and the related distribution can then be analyzed using Gowers’ paper [4]
and the paper [1] by Babai, Nikolov and Pyber.

Applications of Corollary 1.2 to certain complexity lower bounds and
related conjectures of Gowers and Viola will be described in Section 3 below.
In fact Corollary 1.2 also extends additional results from [5, 6, 7], and is likely
to have further applications in subsequent works.

We note that while the proofs in [5, 6, 7] avoid representation theory,
we use it as our main tool, which sometimes yields shorter proofs of more
general results.

Acknowledgment. I am grateful to Tim Gowers for interesting con-
versations, for sending me the preprint [7] and for asking me about possible
extensions to other simple groups.

2 Proof of Theorem 1.1

We need some preparations.

Lemma 2.1 Let G be a finite group, and x, y ∈ G. Then we have

||px,y||
2
2 = |G|−1

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2.
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Proof. It is well known that

px,y(g) = |G|−1
∑

χ∈IrrG
χ(x)χ(y)χ(g−1)/χ(1).

Therefore

||px,y||
2
2 = |G|−2

∑

g∈G
[
∑

χ∈IrrG
χ(x)χ(y)χ(g−1)/χ(1)]2.

This yields

||px,y||
2
2 = |G|−2

∑

g∈G

∑

χ,ψ∈IrrG
χ(x)χ(y)ψ(x)ψ(y)/(χ(1)ψ(1)) · χ(g−1)ψ(g−1).

Changing the order of summation we obtain

||px,y||
2
2 = |G|−2

∑

χ,ψ∈IrrG
χ(x)χ(y)ψ(x)ψ(y)/(χ(1)ψ(1)) ·

∑

g∈G
χ(g−1)ψ(g−1),

which, by the orthogonality relations, vanishes unless ψ = χ, yielding

||px,y||
2
2 = |G|−1

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2.

Proposition 2.2 Let G be a finite simple group. Then

(i) For a fixed real number s > 1 we have ζG(s) = 1 + o(1).

(ii) If G is a group of Lie type and s > 1 then there exists c > 0 depending
only on s and on the rank of G such that ζG(s) ≤ 1 + |G|−c.

(iii) If G = An then for any fixed real number s > 0 we have ζG(s) =
1 +O(n−s).

(iv) For any fixed real numbers s, ǫ > 0 with s < 1 there is c = c(s, ǫ)
such that if G is a group of Lie type of rank r over a field with q elements
and r ≥ c we have ζG(s) ≤ 1 + q−(s−ǫ)r.

Proof. Parts (i) and (iii) are proved in [10, 2.7] for alternating groups.

The proof of part (i) for groups of Lie type (and in fact for all finite
quasisimple groups) is given in [11, 1.1].

To prove part(ii), let G be a group of Lie type of rank r over the field
with q elements. Let k(G) be the number of conjugacy classes of G. It is
known (see [3, 1.1]) that k(G) ≤ c1q

r for some absolute constant c1. It is
also known (see [9]) that there is an absolute constant c2 > 0 such that
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χ(1) ≥ c2q
r for every nontrivial character χ ∈ IrrG. It follows that, for

s > 1,
ζG(s) ≤ 1 + c1q

r(c2q
r)−s ≤ 1 + c3q

−r(s−1),

where c3 depends on s. Since |G| ≤ q4r
2

this yields

ζG(s) ≤ 1 + |G|−c,

where c depends on s and r.

The proof of part (iv) applies arguments from [12]. First note that it
suffices to prove part (iv) for classical groups of large rank (since we may
choose r(ǫ) large enough). In the proof of Theorem 1.2 of [12] for unbounded
rank, it is shown that, for s > 0 we have

ζG(s) ≤ 1 + c1q
2/sc

√
n

2 q−s(n−1)/2 + c3c
−s
4 q−n,

where n is the dimension of the natural module for the classical group G,
and ci are absolute constants. Examination of the arguments there shows
that the term q−s(n−1)/2 may be replaced by q−sr where r is the rank of G.

It easily follows (focusing on the dominant terms) that for any 0 < s < 1
and ǫ > 0 there exists c = c(s, ǫ) such that for r ≥ c we have

ζG(s) ≤ 1 + q−(s−ǫ)r.

This completes the proof.

We note that parts (iii) and (iv) above are almost best possible, since
they show that ζG(s) is well approximated by its two first summands.

Proposition 2.3 Let G be a finite simple group of Lie type. Then there is a
constant c > 0 depending only on the rank of G, such that, if x, y distribute
uniformly over G (but may be dependent), then

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2 ≤ 1 + |G|−c

holds with probability at least 1− |G|−c.

Proof. Let G be of rank r over the field with q elements. It is known
that the probability that x ∈ G is regular semisimple is at least 1− c1/q for
an absolute constant c1 > 0 (see [8] for a more detailed result). Therefore
the probability that both x and y are regular semisimple is at least 1−2c1/q.
Note that the this also holds if x, y are dependent.
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If x, y ∈ G are regular semisimple then |χ(x)|, |χ(y)| ≤ b, where b de-
pends only on the rank of G (see e.g. [15, 4.4]). This yields

∑

16=χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2 ≤ b4(ζ(2)− 1).

The result follows using Proposition 2.2(ii).

Corollary 2.4 Let G be a finite simple group. Let x, y distribute uniformly
over G (but they may be dependent). Then for almost all x, y ∈ G we have

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2 = 1 + o(1).

This result will follow by combining Proposition 2.3 with the stronger
quantitative result below.

Proposition 2.5 Let G be a finite simple group. Let x, y distribute uni-
formly over G (but they may be dependent).

(i) If G = An then there is an absolute constant c such that the probability
that

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2 ≤ 1 + cn−2/3

is at least 1− cn−2/3.

(ii) If G is a finite simple group of Lie type of rank r over the field with
q elements, then the probability that

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2 ≤ 1 + q−(2/3−ǫ)r

is at least 1− q−(2/3−ǫ)r, for any ǫ > 0 and r ≥ r(ǫ).

Proof. In [14, 2.2] it is shown that, for any finite group G, a fixed s > 0
and a uniformly distributed x ∈ G, the probability that

|χ(x)| ≤ χ(1)s

for all χ ∈ IrrG is greater than 2− ζG(2s) = 1− (ζG(2s)− 1).

We apply this for s = 1/3. It follows that for uniform (possibly depen-
dent) x, y ∈ G, the probability that |χ(x)| ≤ χ(1)1/3 and |χ(y)| ≤ χ(1)1/3

for all χ ∈ IrrG is greater than 3 − 2ζG(2/3) = 1 − 2(ζG(2/3) − 1). Hence
the inequality

∑

χ∈IrrG
|χ(x)|2|χ(y)|2/χ(1)2 ≤ ζG(2/3)

7



holds with probability greater than 3− 2ζG(2/3).

We now apply Proposition 2.2. If G = An then by part (iii) of this result
we have

ζG(2/3) ≤ 1 + cn−2/3,

where c is an absolute constant. Plugging this in the previous probability
estimate proves part (i).

Now let G be a group of Lie type of rank r over the field with q elements.
Then part (iv) of Proposition 2.2 yields

ζG(2/3) ≤ 1 + q−(2/3−ǫ)r,

for any ǫ > 0 and r ≥ r(ǫ).

Part (ii) follows from this and the above discussion.

Note that Corollary 2.4 now follows easily. Indeed, the case of groups
of Lie type of bounded rank follows from Proposition 2.3. We may there-
fore assume that G is alternating of unbounded degree, or of Lie type of
unbounded rank, and then the result follows from Proposition 2.5.

Proof of Theorem 1.1: Parts (i) and (ii) of the theorem follow imme-
diately from Lemma 2.1 and Proposition 2.5 above. Part (iii) of the theorem
follows from Lemma 2.1 and Proposition 2.3 above.

3 Complexity applications

In this section we briefly describe applications of our main results to com-
plexity lower bounds related to interleaved products. We follow definitions
and statements from [5, 6, 7].

Consider the following promise problem introduced in 1984 in [2]. Let
G be a finite group and t ≥ 2 an integer. Suppose Alice receives a t-tuple
a ∈ Gt and Bob receives a t-tuple b ∈ Gt. Suppose we are promised that
the interleaved product a • b ∈ G is one of two given elements g, h ∈ G. The
task of Alice and Bob is to decide whether a • b = g or a • b = h. What can
we say about the communication complexity of this problem?

Recall that O(n) denotes numbers bounded above by cn for some con-
stant c, while Ω(n) denotes numbers bounded below by cn for some positive
constant c.

Note that a trivial upper bound for the communication complexity above
is O(t log |G|). It is shown in [5, 6, 7] that this upper bound is tight for
G =SL(2, q), namely, in this case the communication complexity is at least
Ω(t log |G|). Corollary 1.2 combined with reductions and statements from
[7] extend this as follows.
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Theorem 3.1 The above communication complexity is at least Ω(t log |G|)
whenever G is a finite simple group of Lie type of bounded rank.

For general finite simple groups we obtain the following.

Theorem 3.2 The above communication complexity is at least Ω(t log log |G|)
whenever G is a finite simple group. If G is a finite simple group of Lie type,
then the communication complexity is at least Ω(t

√

log |G|).

The first assertion in Theorem 3.2 was conjectured by Gowers and Viola
(see [5, 6, 7]). This complexity lower bound is tight for alternating groups
(see [13]).

The next result easily implies the complexity bounds in Theorems 3.1
and 3.2; it extends Theorem 1.2 of [6, 7] which deals with G = SL(2, q).

Theorem 3.3 Let G be a finite simple group and let t ≥ 2 be an integer.
Let P : Gt×Gt → {0, 1} be a (randomized public-coin) c-bit communication
protocol. For g ∈ G let pg denote the probability that P (a, b) = 1 assuming
a • b = g. Then for any g, h ∈ G we have

(i) |pg − ph| ≤ 2c|G|−Ω(t) if G is a group of Lie type of bounded rank.

(ii) |pg − ph| ≤ 2cq−Ω(rt) if G is a group of Lie type of rank r.

(iii) |pg − ph| ≤ 2cn−Ω(t) if G = An.

This result follows from Corollary 1.2 combined with statements from
[7].

The following is an immediate consequence of Theorem 3.3.

Corollary 3.4 With the above notation we have |pg−ph| ≤ 2c(log |G|)−Ω(t)

for all finite simple groups G.

This proves Conjecture 1.3 in [6, 7].
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