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KNOT INVARIANTS ARISING

FROM HOMOLOGICAL OPERATIONS

ON KHOVANOV HOMOLOGY

KRZYSZTOF K. PUTYRA AND ALEXANDER N. SHUMAKOVITCH

Abstract. We construct an algebra of non-trivial homological operations on Khovanov

homology with coefficients in Z2 generated by two Bockstein operations. We use the unified

Khovanov homology theory developed by the first author to lift this algebra to integral

Khovanov homology. We conjecture that these two algebras are infinite and present evidence

in support of our conjectures. Finally, we list examples of knots that have the same even

and odd Khovanov homology, but different actions of these homological operations. This

confirms that the unified theory is a finer knot invariant than the even and odd Khovanov

homology combined. The case of reduced Khovanov homology is also considered.

1. Introduction

Throughout this paper, L will denote a link in R
3 and D its planar diagram. There are two

integral versions of sl2 link homology of L: the ordinary Khovanov homology He(L) [Kh99],

which we refer to is this paper as even, and the odd Khovanov homology Ho(L) [ORS13].

Despite being different over integers [Sh11], even and odd Khovanov homology theories agree

modulo 2. We denote the resulting homology by HZ2
(L). Differentials in the even and odd

Khovanov chain complexes induce two Bockstein connecting homomorphisms onHZ2
(L) that

correspond to the short exact sequence of coefficients 0 Z2 Z4 Z2 0. We

denote them by βe and βo respectively:

(1) βe, βo : H
i
Z2
(L) Hi+1

Z2
(L).

Ranks of each of βe and βo can be easily recovered from the integral homology: they are

equal to the number of invariant factors isomorphic to Z2 in the corresponding homology

group, see [Ha10, Proposition 3E.3]. On the other hand, βe and βo are as algebraically inde-

pendent as possible: they not only do not commute, but all their alternating compositions

are nontrivial. More precisely, let β := βe + βo. Since β2
e = β2

o = 0, we have that ββe = βoβe

and ββe = βeβo. Hence, the only nontrivial compositions of Bockstein homomorphisms of

length n are βn−1βe and βn−1βo, whereas β
n is their sum.

The even Khovanov homology is multiplicative with respect to disjoint unions of links,

He(L⊔L′) ∼= He(L) ⊗̂He(L
′) [Kh99] (here ⊗̂ stands for the derived tensor product), which
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implies primitivity of the even Bockstein homomorphism βe. The first author has recently

proved the multiplicativity of the odd homology [Pu14], which implies primitivity of βo.

Similar formulas hold for connected sums of knots, in which case one considers a derived

tensor product over the algebra assigned to a circle [Kh04, Pu14]. This allowed us to con-

struct in Example 3.7 a knot with 20 crossings for which the alternating compositions of four

Bockstein homomorphisms are nontrivial.

Conjecture 3.8. The operations βn, βn−1βe, and βn−1βo are nonzero and pairwise different.

The two Bockstein homomorphisms generate three degree 2 operations: βeβo, βoβe, and

the commutator β2 = βeβo + βoβe. It appears that none of them is the second Steenrod

square Sq2 as defined in [LS12], because the ranks do not match. Moreover β2 is primitive,

while Sq2 is not (see [Ha10, Section 4.L]).

Corollary 1.1. The degree 2 operations βeβo, βoβe, and β2 are different from the second

Steenrod square Sq2.

Another surprising fact is the existence of integral lifts of both Bockstein operations. They

are constructed using a link homologyHξ(L) that is defined over a ring Zξ := Z[ξ]/(ξ2−1) and

unifies the even and odd Khovanov homology theories. He(L) and Ho(L) can be recovered

from Hξ(L) by taking coefficients in certain modules over Zξ [Pu13]. Namely, there are

isomorphisms of graded abelian groups

(2) He(L) ∼= Hξ(L;Ze) and Ho(L) ∼= Hξ(L;Zo),

where Ze := Zξ/(ξ − 1) and Zo := Zξ/(ξ + 1) are Zξ–modules on which ξ acts as identity or

negation respectively. Both Ze and Zo are isomorphic to Z as abelian groups.

It is not immediately clear whether Hξ(L) is a stronger invariant than He(L) and Ho(L)

together. The authors are not aware of any software package that can compute the unified

homology explicitly. This might be due to the complexity of classification of modules over

the ring Zξ. The results of this paper indicate that Hξ(L) is actually a finer invariant than

the even and odd homology combined.

Let D be a diagram of a link L in R
3. Denote by Ce(D), Co(D), and Cξ(D) the Khovanov

chain complexes for the even, odd, and unified homology, respectively. We recall in Section 2

that Cξ(D) can be considered as an extension of complexes Ce(D) and Co(D) in two different

ways. The two short exact sequences

0 Co(D) Cξ(D) Ce(D) 0(3)

0 Ce(D) Cξ(D) Co(D) 0(4)

induce connecting homomorphisms ϕeo : H
i
e(L) Hi+1

o (L) and ϕoe : H
i
o(L) Hi+1

e (L). In

Section 4 we show that ϕeo and ϕoe are, in fact, Bockstein homomorphisms corresponding to
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certain short exact sequences of Zξ-modules. Moreover, they are integral lifts of the Bockstein

homomorphisms βo and βe, respectively.

Proposition 4.1. Given a link L there are commuting squares

(18)

Hi
e(L) Hi+1

o (L)

Hi
Z2
(L) Hi+1

Z2
(L)

ϕeo

βo

Hi
o(L) Hi+1

e (L)

Hi
Z2
(L) Hi+1

Z2
(L)

ϕoe

βe

Similarly to the Bockstein operations over Z2, we expect that the alternating compositions

of the integral operations do not vanish, see Conjecture 4.3.

Computer-based calculations reveal pairs of knots that have the same homology groups

(both odd and even), but different actions of the integral operation, see Section 6. This

implies that the unified link homology Hξ(L) is a stronger invariant than He(L) ⊕ Ho(L).

In particular, Cξ(L) is a nontrivial extension of Ce(L) and Co(L).

Remark 1.2. Most of the constructions described in this paper can be applied to arbitrary

complexes over the ring Zξ, not necessarily those arising from links. Indeed, with every

such a complex C we can associate its ‘even’ and ‘odd’ integral versions, Ce := C ⊗ Ze

and Co := C ⊗ Zo, that have the same reductions modulo two CZ2
:= Ce ⊗ Z2

∼= Co ⊗ Z2.

The differentials in Ce and Co induce two Bockstein homomorphisms on H(CZ2
;Z2), each

admitting an integral lift.

Outline. This paper is organized as follows. We begin with a pullback description of the ring

Zξ and the unified Khovanov homology Hξ(L). It provides a neat way to see the even and

odd Khovanov complexes as subcomplexes and quotient complexes of Cξ(L) at the same time.

Section 3 describes the construction of Bockstein operations for homology with coefficients

in Z2. We present examples of knots for which compositions of up to four Bocksteins are

nontrivial to support Conjecture 3.8. Integral Bockstein operations and the integral analog

of Conjecture 3.8 are treated in Section 4. Section 5 contains a brief discussion of the case of

the reduced Khovanov homology. The results of computer-based calculation are presented

in Section 6.

Summary of notation. In this paper, for every diagram D of a link L we assign a number

of different chain complexes and their homology. The notation used is listed in Table 1. We

also define several homological operations on different versions of Khovanov homology. For

convenience, we list pages on which they are introduced in Table 2.

Acknowledgements. We are grateful to Mikhail Khovanov for numerous stimulating dis-

cussions. The first author is also thankful to Stefan Friedl for his insightful remarks during

the SwissKnots 2011 conference.
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even odd unified
reduction
modulo 2

chain complex Ce(D) Co(D) Cξ(D) CZ2
(D)

differential de do dξ d

homology He(L) Ho(L) Hξ(L) HZ2
(L)

Table 1. Notations for different versions of the Khovanov chain complexes

and their homology for a diagram D of a link L.

βe : H
i
Z2
(L) Hi+1

Z2
(L) even Bockstein homomorphism p. 5

βo : H
i
Z2
(L) Hi+1

Z2
(L) odd Bockstein homomorphism p. 5

β : Hi
Z2
(L) Hi+1

Z2
(L) mixed Bockstein homomorphism p. 5

ϕoe : H
i
o(L) Hi+1

e (L) integral even Bockstein homomorphism p. 9

ϕeo : H
i
e(L) Hi+1

o (L) integral odd Bockstein homomorphism p. 9

θe : H
i
e(L) Hi+2

e (L) integral even degree 2 operation p. 15

θo : H
i
o(L) Hi+2

o (L) integral odd degree 2 operation p. 15

Table 2. List of homological operations together with pages on which they

are introduced.

2. A pullback description of the unified homology

Zξ

Ze Zo

Z2

ξ 1 ξ −1

As mentioned in the introduction, Zξ = Z[ξ]/(ξ2−1) is the univer-

sal ring of coefficients in our framework. The rings Ze and Zo arise as

quotients of Zξ, and both project to Z2 in a unique way. Notice, that

Z2 admits a unique Zξ–module structure, as ξ is invertible. Thence

we obtain a commuting square diagram shown to the right. In fact,

it is a pullback square in the category of rings.

Lemma 2.1. There is an isomorphism of rings Zξ
∼= {(a, b) ∈ Z

2 | a ≡ b mod 2}, such

that the projections on the first and on the second factors are exactly Ze and Zo.

Proof. The desired isomorphism maps 1 to (1, 1) and ξ to (1,−1). This map is injective,

since (a + b, a− b) = (0, 0) implies a = b = 0, and surjective, as (a, b) with a ≡ b mod 2 is

an image of a+b
2

+ a−b
2
ξ. To finish the proof, notice that the action of ξ preserves the first

factor, but negates the second. �
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Corollary 2.2. Given a link diagram D, the chain complex Cξ(D) is a pullback of the even

and odd Khovanov complexes over their reductions modulo 2. In particular, it is a subcomplex

of the direct sum Ce(D)⊕ Co(D).

Proof. The chain complex Cξ(D) is a sequence of free Zξ–modules, so that the functor

M Cξ(D) ⊗ M , where M runs over Zξ–modules, is exact. In particular, it preserves

pullbacks. �

According to the corollary above, we can regardHξ(L) as a derived pullback of the diagram

(5) He(L) HZ2
(L) Ho(L).

Furthermore, the kernel of the projection Cξ(D) Ce(D) is the subcomplex of Co(D) formed

by elements divisible by 2, which is isomorphic to the odd Khovanov complex. Likewise,

the kernel of Cξ(D) Co(D) is isomorphic to Ce(D). Hence, there are short exact sequences

0 Co(D) Cξ(D) Ce(D) 0, and(6)

0 Ce(D) Cξ(D) Co(D) 0,(7)

so that Cξ(D) is an extension between the two chain complexes. We shall show in the subse-

quent sections that its homology is a stronger invariant than both even and odd homology

together. However, the difference is very subtle.

Proposition 2.3. Let f : Ce(L) Ce(L
′) and g : Co(L) Co(L

′) be quasi-isomorphisms1

that agree modulo 2. Then Hξ(L) ∼= Hξ(L
′).

Proof. The pullback (f, g) of the chain maps f and g is the desired quasi-isomorphism, which

follows from the 5–lemma applied to the exact sequence (6). �

3. Bockstein operations in Khovanov homology

Since the odd and even differentials agree modulo 2, there are at least three Bockstein

operations on HZ2
(L):

1. the even Bockstein, βe : H
i
Z2
(L) Hi+1

Z2
(L), βe[x] =

[
1
2
dex
]
,

2. the odd Bockstein, βo : H
i
Z2
(L) Hi+1

Z2
(L), βo[x] =

[
1
2
dox
]
, and

3. the mixed Bockstein, β := βe + βo.

The last one arises from the short exact sequence of coefficients

(8) 0 Z2 Z2[ξ]/(ξ
2 − 1) Z2 0,

where the inclusion of Z2 maps 1 into 1 + ξ. Indeed, from the pullback description of Cξ(L)

we have dξ =
1
2
(de + do) +

ξ

2
(de − do) =

1+ξ

2
(de + do), so that β[x] =

[
1
2
dξx
]
=
[
1
2
dex+ 1

2
dox
]
.

1 A chain map is a quasi-isomorphism if it induces an isomorphism on homology.
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To see that there is nothing more, use the free resolution

(9) 0 Z2 Zξ
[ 1+ξ 1−ξ ]

Z
2
ξ

[

1−ξ 0
0 1+ξ

]

Z
2
ξ

[

1+ξ 0
0 1−ξ

]

Z
2
ξ . . .

to compute Ext1
Zξ
(Z2,Z2) ∼= Z2⊕Z2. In particular, the sum of any two of the three Bocksteins

results in the third.

Choose a chain complex C with a differential of degree 1. Due to the Universal Coefficient

Theorem, the homology of C with coefficients in Z2 is given as the direct sum H i(C,Z2) ∼=

H i(C) ⊗ Z2 ⊕ Tor(H i+1(C),Z2). Let u ∈ Tor(H i+1(C),Z2) be an element of order 2 that

arises from an invariant factor of H i+1(C) that is isomorphic to Z2. Then the Bockstein

homomorphism on H i(C,Z2) pairs u with the modulo 2 reduction of the homology class

that u comes from. It sends every element of H i(C,Z2) that does not arise in such a way to

zero, see [Ha10, Proposition 3E.3].

Example 3.1. The odd Khovanov homology of alternating links has no torsion [ORS13], so

that the odd Bockstein is trivial. On the other hand, the even Khovanov homology of any

torus knot T2,n contains a Z2 summand [Kh99], and the even Bockstein does not vanish.

The following result follows directly from the definition of the operations.

Proposition 3.2. The odd and even Bockstein homomorphisms are differentials, i.e. β2
e =

β2
o = 0 and β2 = [βe, βo] is their commutator.

Thence, there are at most three nontrivial operations in each degree that are generated

by the Bocksteins: the alternating compositions · · ·βoβe
︸ ︷︷ ︸

n

= βn−1βe and · · ·βeβo
︸ ︷︷ ︸

n

= βn−1βo,

together with their sum βn.

According to Example 3.1 the even and odd Bockstein homomorphisms are linearly inde-

pendent. The next two examples show the same for βoβe and βeβo.

Example 3.3. Consider the torus knot T3,4, labeled as 819 in the Rolfsen’s table [Ro76].

Its even and odd Khovanov homology are presented in the top two tables of Figure 1.

An analysis of positions of Z2 summands results in the bottom table in Figure 1, where

the horizontal arrows illustrate nontrivial contributions to the Bockstein homomorphisms.

Notice that the composition βoβe does not vanish on the generator u of H2,11
Z2

(819) ∼= Z2 and

β2(u) 6= 0. Therefore, the two Bockstein homomorphisms do not commute with each other.

Example 3.4. The torus knot T3,5, labeled as 10124 in the Rolfsen’s table [Ro76], ad-

mits a class with the opposite property: βeβo does not not vanish on the generator u of

H5,19
Z2

(10124) ∼= Z2, see Figure 2.
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He 0 1 2 3 4 5

17 Z

15 Z

13 Z Z

11 Z2 Z

9 Z

7 Z

5 Z

Ho 0 1 2 3 4 5

17 Z

15 Z⊕ Z3

13 Z2 Z3

11 Z Z2

9 Z

7 Z

5 Z

HZ2
0 1 2 3 4 5

17 Z2

15 Z2

13 Z2 Z2

11 Z2 Z2 Z2

9 Z2

7 Z2

5 Z2

βe βo

βo

Figure 1. Even and odd Khovanov homology as well as Bockstein homomor-

phisms on the Khovanov homology over Z2 for the knot 819.

The even Khovanov homology is multiplicative with respect to disjoint union and con-

nected sum of links:

Ce(D ⊔D′) ∼= Ce(D)⊗
Z2

Ce(D
′),(10)

Ce(D#D′) ∼= Ce(D)⊗
A
Ce(D

′),(11)

where A = Zv+⊕Zv− is the Frobenius algebra associated to a circle [Kh99, Kh04]. In the lat-

ter formula, we regard Ce(D) as an A–module with the action of A induced by the cobordism

that merges a circle to the link diagram at the place where the connected sum is performed,

see Figure 3.

The same formulas were recently proved for the odd Khovanov chain complexes [Pu14].

Since Z2 is a field, the Künneth formula identifies the homology of the disjoint union or

connected sum as tensor products of homology:

HZ2
(L ⊔ L′) ∼= HZ2

(L)⊗
Z2

HZ2
(L′),(12)
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He 0 1 2 3 4 5 6 7

21 Z

19 Z Z2

17 Z Z

15 Z Z

13 Z2 Z

11 Z

9 Z

7 Z

Ho 0 1 2 3 4 5 6 7

21 Z

19 Z2 Z

17 Z3 Z2

15 Z2 Z3

13 Z Z2

11 Z

9 Z

7 Z

HZ2
0 1 2 3 4 5 6 7

21 Z2

19 Z2 Z2 Z2

17 Z2 Z2

15 Z2 Z2

13 Z2 Z2 Z2

11 Z2

9 Z2

7 Z2

βe βo

βo

βo

βo

βe

Figure 2. Even and odd Khovanov homology as well as Bockstein homomor-

phisms on the Khovanov homology over Z2 for the knot 10124.

Figure 3. Sections of the cobordism inducing an action of A on the Khovanov

chain complex Ce(D).

HZ2
(L#L′) ∼= HZ2

(L)⊗
A
HZ2

(L′).(13)

Definition 3.5. A homological operation θL : H
i
Z2
(L) Hi+d

Z2
(L) of degree d is said to be

• ⊔–primitive if θL⊔L′ = θL ⊗
Z2

id+ id ⊗
Z2

θL′ and

• #–primitive if θL#L = θL ⊗
A
id+ id ⊗

A
θL′
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for every two links L and L′.

Corollary 3.6. All three Bockstein operations are ⊔–primitive and #–primitive.

This allows us to construct knots with nontrivial compositions of four Bockstein homo-

morphisms.

Example 3.7. Consider the generators u ∈ H2,13
Z2

(10124) and u′ ∈ H5,19
Z2

(10124). Then βo(u) =

0, βe(u
′) = 0, βoβe(u) 6= 0, and βeβo(u

′) 6= 0 (see Fig. 2). It is now straightforward to verify

that u⊗ u′ ∈ H7,32
Z2

(10124#10124) satisfies

(14) βoβeβoβe(u⊗ u′) = βeβoβeβo(u⊗ u′) = βoβe(u)⊗ βeβo(u
′) 6= 0.

In particular, both compositions are nontrivial, but β4(u⊗ u′) = 0.

The vanishing of β4 above is not surprising—it is a well-known fact that given a primitive

operation θ, each power θ2
r

is also primitive. Indeed, one first computes

(15) θn(x⊗ y) =
n∑

k=0

(
n

k

)

θn−k(x)⊗ θk(y)

and then checks that
(
2r

k

)
is even for all values of k except k = 0 and k = 2r. In particular,

β2r vanishes on the homology of K1#K2 if it vanishes on homology of both K1 and K2.

A quick look at Figure 2 reveals that already β3 = 0 for the knot 10124.

According to the discussion after Proposition 3.2, the existence of nontrivial compositions

of length bigger than ℓ implies that βℓ 6= 0. Hence, it is important to find knots for which

higher powers of β do not vanish.

The torus knot T5,6 admits a class u ∈ H5,31
Z2

(T5,6), such that βe(u) = 0 but βoβeβo(u) 6= 0.

Unfortunately, larger knots are beyond the capabilities of our computer program [Sh∞], so

that we did not succeed in finding a knot for which β4 6= 0. Nonetheless, we expect that

there are examples of knots for which higher powers of β are nonzero.

Conjecture 3.8. The operation βn does not vanish for the torus knot T2n−1,2n. In particular,

for every n ∈ N there exists a knot Kn such that the operations βn, βn−1βe, and βn−1βo on

HZ2
(Kn) are nonzero and pairwise different.

4. Integral lifts

As explained in Section 2, Hξ(L) can be regarded as an extension of both even and

odd Khovanov homology theories. This leads to homological operations between integral

Khovanov homologies of a link:

1. ϕeo : H
i
e(L) Hi+1

o (L), the connecting homomorphism for the sequence (6) and

2. ϕoe : H
i
o(L) Hi+1

e (L), the connecting homomorphism for the sequence (7).
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Both operations are link invariants, because they arise as Bockstein homomorphisms associ-

ated to the short exact sequences of Zξ–modules

0 Zo Zξ Ze 0, and(16)

0 Ze Zξ Ze 0(17)

respectively, considered as coefficients for the unified Khovanov homology Cξ(D). As in

the case of Khovanov complexes, these sequences are consequences of the pullback description

of Zξ.

Tensoring the exact sequences (16) and (17) with Z2 reveals that ϕeo and ϕoe are integral

lifts of Bockstein homomorphisms from the previous section.

Proposition 4.1. Given a link L, there are commuting squares

(18)

Hi
e(L) Hi+1

o (L)

Hi
Z2
(L) Hi+1

Z2
(L)

ϕeo

βo

Hi
o(L) Hi+1

e (L)

Hi
Z2
(L) Hi+1

Z2
(L)

ϕoe

βe

Proof. We start with finding a formula for ϕeo using the pullback description of Cξ(L). Pick

a cocycle x ∈ Ce(L); it is covered by (x, x) ∈ Cξ(L), where we identify the even and odd chain

groups in the natural way. Then dξ(x, x) = (0, dox) is the image of 1
2
dox, as the inclusion of

the odd homology takes a chain y into (0, 2y). Notice that the division makes sense because

modulo 2 we have dox ≡ dex = 0. Hence, ϕeo[x] =
[
1
2
dox
]
, which agrees modulo 2 with

βo([x]⊗ Z2). The case of ϕoe is proved likewise. �

Corollary 4.2. Both ϕeo and ϕoe are annihilated by 2.

Proof. Since ϕeo[x] =
[
1
2
dox
]
∈ Ho(L), we immediately get that ϕeo[2x] = [dox] = 0. The

case of ϕoe is similar. �

Combining Proposition 4.1 and Conjecture 3.8 results in an algebraic independence of

integral operations.

Conjecture 4.3. All alternating compositions · · ·ϕeoϕoe and · · ·ϕoeϕeo are nontrivial.

Indeed, it is enough to find a link L and a class a ∈ Ho(L) (resp. a ∈ He(L)) such that

the composition · · ·βoβe (resp. · · ·βeβo) does not vanish on the Z2–reduction ā ∈ HZ2
(L).

In particular, we know that

• both ϕeoϕoe and ϕoeϕeo are nonzero for 10124 = T3,5, and

• ϕeoϕoeϕeo is nonzero for T5,6.

We expect higher torus knots to provide examples for which longer compositions are non-

trivial.
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The ring Zξ is the only nontrivial extension between Ze and Zo. Indeed, free resolutions

of Ze and Zo are given by infinite sequences

0 Ze Zξ
1−ξ

Zξ
1+ξ

Zξ . . .(19)

0 Zo Zξ
1+ξ

Zξ
1−ξ

Zξ . . .(20)

from which one computes

Ext1
Zξ
(Ze,Ze) ∼= 0, Ext1

Zξ
(Ze,Zo) ∼= Z2,(21)

Ext1
Zξ
(Zo,Zo) ∼= 0, Ext1

Zξ
(Zo,Ze) ∼= Z2.(22)

Corollary 4.4. The operations ϕeo and ϕoe are the only nontrivial Bockstein-type operations

between the even and odd Khovanov homology.

Similarly to the Z2 case, the operations ϕeo and ϕoe are primitive when regarded as op-

erations acting on the direct sum of the even and odd Khovanov homology. Indeed, if we

write H⊕(L) := He(L)⊕Ho(L), then we can identify ϕeo and ϕoe with matrices

(23) ϕ̃eo :=

(

0 0

ϕeo 0

)

ϕ̃oe :=

(

0 ϕoe

0 0

)

respectively. Following the Künneth formula, we define for links L and L′

(24) He(L) ⊗̂He(L
′) := He(L)⊗He(L

′)⊕ Tor(He(L),He(L
′))[1] ∼= He(L ⊔ L′)

and likewise for Ho andH⊕. Then H⊕(L⊔L
′) ∼= He(L) ⊗̂He(L

′)⊕Ho(L) ⊗̂Ho(L
′) is a direct

summand of H⊕(L) ⊗̂H⊕(L
′), and the operations ϕeo and ϕoe regarded as endomorphisms

of the product H⊕(L) ⊗̂H⊕(L
′) can be identified with matrices

ϕ̃eo =









0 0 0 0

id ⊗̂ϕeo 0 0 0

ϕeo ⊗̂ id 0 0 0

0 ϕeo ⊗̂ id id ⊗̂ϕeo 0









= ϕ̃eo ⊗̂ idH⊕
+ idH⊕

⊗̂ ϕ̃eo, and(25)

ϕ̃oe =









0 id ⊗̂ϕoe ϕoe ⊗̂ id 0

0 0 0 ϕoe ⊗̂ id

0 0 0 id ⊗̂ϕoe

0 0 0 0









= ϕ̃oe ⊗̂ idH⊕
+ idH⊕

⊗̂ ϕ̃oe,(26)

where we order the four summands of H⊕(L) ⊗̂H⊕(L
′) as even–even, even–odd, odd–even,

and odd–odd. In particular, Φ := ϕ̃eo + ϕ̃oe =
(

0 ϕoe

ϕeo 0

)
is a ⊔–primitive operation on

H⊕(L). The same argument works for connected sums of links, showing the operations are

#–primitive as well.
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Remark 4.5. Using the primitivity as defined above, one may try to prove Conjecture 4.3

without referring to the Z2–operations. Unfortunately, Φ
2r is again primitive for every r > 0,

due to the binomial formula (15) and Corollary 4.2.

5. Reduced Khovanov homology

Given a diagram D of a knot K, choose a point b on D and consider the cobordism

merging a circle to D at the point b, as shown in Figure 3. This operation induces on

the chain complex Cξ(D) a module structure over Aξ = Zξv+ ⊕Zξv−, the algebra associated

to a circle. This structure is independent of the chosen point b, see [Pu14].

Consider the subcomplex Cξ(D) of Cξ(D) spanned by the chains annihilated by v−. We

call its homology the reduced unified homology Hξ(K) of K. A quick comparison with

definitions of the reduced even and odd Khovanov homology [Kh04, ORS13] reveals that

both are specializations of Hξ(K), cf. (2):

(27) He(K) ∼= Hξ(K;Ze), Ho(K) ∼= Hξ(K;Zo).

In particular, there are reduced versions of all the homological operations defined so far:

• the reduced Bockstein operations β̄e, β̄o : H
i

Z2
(K) H

i+1

Z2
(K), and

• their integral lifts ϕ̄eo : H
i

e(K) H
i+1

o (K) and ϕ̄oe : H
i

o(K) H
i+1

e (K).

Clearly, the reduced homology is multiplicative with respect to the connected sum of knots,

which implies that reductions of #–primitive operations are primitive. In particular, all

the reduced Bockstein homomorphisms are primitive. As before, we conjecture that the re-

duced Bockstein homomorphisms satisfy only the obvious relations.

Conjecture 5.1. The alternating compositions of reduced Bockstein homomorphisms are

nonzero and different, and so are their integral lifts (given as alternating compositions of ϕ̄eo

and ϕ̄oe).

Example 5.2. The torus knot T4,5 admits a class u ∈ HZ2
(T4,5), on which β̄e vanishes but

β̄eβ̄o does not, see Figure 4.

6. Experimental results

We computed ranks of all the homological operations discussed in this paper in every

bigrading for all prime knots with up to 16 crossings using KhoHo [Sh∞]. We then compared

these ranks for pairs of knots that have the same even and odd Khovanov homology. As

discussed in the Introduction, the ranks of Bockstein homomorphisms βe and βo are fully

determined by the even and odd Khovanov homology. Therefore, they do not provide any

new information. However, the mixed Bockstein β = βe + βo is different. It turns out that

there exist 7 pairs of prime knots (14 if counted with mirror images) with up to 14 crossings



KNOT INVARIANTS FROM HOMOLOGICAL OPERATIONS 13

He 0 1 2 3 4 5 6 7 8 9 10

28 Z2

26 Z

24 Z Z

22 Z Z2

20 Z

18 Z Z

16 Z

14

12 Z

Ho 0 1 2 3 4 5 6 7 8 9 10

28 Z Z

26 Z

24 Z Z

22 Z2 Z

20 Z3 Z

18 Z2

16 Z

14

12 Z

HZ2
0 1 2 3 4 5 6 7 8 9 10

28 Z2 Z2

26 Z2

24 Z2 Z2

22 Z2 Z2 Z2

20 Z2

18 Z2 Z2

16 Z2

14

12 Z2

βo

βe

βo βe

Figure 4. Even and odd reduced Khovanov homology as well as Bockstein

homomorphisms on the reduced Khovanov homology over Z2 for the knot T4,5.



14 KRZYSZTOF K. PUTYRA AND ALEXANDER N. SHUMAKOVITCH

≤ 14 crossings ≤ 15 crossings ≤ 16 crossings

Number of knots (counting mirrors) 67289 403348 2420670

Pairs distinguished by ranks of β 14 122 1484

Pairs distinguished by ranks of β2 0 8 108

Pairs distinguished by ranks of ϕoe 7 61 760

Pairs distinguished by ranks of ϕeo 7 61 760

Pairs distinguished by ranks of θe 0 4 71

Pairs distinguished by ranks of θo 9 95 1232

Table 3. Number of pairs of prime non-alternating knots with the same even

and odd Khovanov homology that are distinguished by homological operations

that have the same even and odd Khovanov homology but different ranks of β. There are

61 (resp. 122) such pairs among knots with up to 15 crossings and 742 (resp. 1484) with up

to 16 crossings, see Table 3.

Corollary 6.1. The unified homology Hξ(L) is a stronger link invariant than He(L)⊕Ho(L).

Here are the first 7 pairs of knots2 distinguished by β:

(28)
13n141 14n2551 13n1002 14n6487 14n1346 14n7711 14n5293 14n12516

14n5373 14n12516 14n6632 14
n

21021 14n12393 14n12532

Existence of such pairs can be explained by the observation that Bockstein homomorphisms

are described by a noncanonical splitting H i(C,Z2) ∼= H i(C)⊗ Z2 ⊕ Tor(H i+1(C),Z2), and

in case of Khovanov homology the two splittings, one for the even and one for the odd

version, do not coincide. In other words, we cannot pick such isomorphisms for even and

odd Khovanov homology that agree over Z2.

β2 is, obviously, a much weaker invariant than β since rk(β2) ≤ rk β (in an appropriate

bigrading). Nonetheless, there are 4 (resp. 8) pairs of knots with 15 crossings that can be

distinguished by β2:

(29)
15n23106 15n56014 15n23432 15n56014

15n44028 15
n

50224 15n73047 15
n

91280

It is important to notice that the Khovanov homology modulo 2 for a knot K and its

mirror image K are dual to each other. As such, if any of the homological operations over

Z2 has the same ranks for two knots, say, K1 and K2, then the ranks are the same for K1

and K2 as well. The situation is different for integral operations. It turns out that among

2 Here, 13n
141

denotes the non-alternating knot number 141 with 13 crossings from the Knotscape knot

table and 14
n

21021 is the mirror image of the knot 14n21021.
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all knots with up to 14 crossings, both ϕoe and ϕeo distinguish 7 pairs of knots, but not their

mirror images, cf. (28):

(30)
13

n

141 14
n

2551 13n1002 14n6487 14n1346 14n7711 14n5293 14n12516

14n5373 14n12516 14n6632 14
n

21021 14n12393 14n12532

One can consider integral homological operations of degree 2 as well: θe := ϕoeϕeo and

θo := ϕeoϕoe, the former defined for the even and the latter for the odd Khovanov homology.

Both of them are, obviously, integral lifts of β2, see (18). Computations reveal that θo

distinguishes the same 7 pairs of knots with at most 14 crossings as in (30), plus two more:

(31) 13n651 14n16550 13n661 14n16550

On the other hand, the first pair of knots with the same even and odd Khovanov homology

but with different ranks of θe has 15 crossings, see Table 3. There are 4 such pairs in total:

(32)
15

n

23106 15
n

56014 15
n

23432 15
n

56014

15
n

44028 15n50224 15
n

73047 15n91280

Observation 6.2. For every pair of knots from (30) and (31), these knots are distinguished

by the ranks of θo, yet θo is trivial for their mirror images. This can be explained by noticing

that a knot may be thin while its mirror image is not, see the case of 13n1002 and 14n6487 in

Figure 5.

Observation 6.3. Looking at Table 3, it appears that ϕeo and ϕoe are stronger invariants

than β and β2, while θo is even stronger. This is indeed true with a few notable exceptions.

Among all prime non-alternating knots with at most 16 crossings, there are two pairs that

can be distinguished by the rank of β but not by either ϕeo or ϕoe:

(33) 16n129312 16
n

640105 16n240722 16n640105

Also, there are two pairs of knots that can be distinguished by ϕeo and ϕoe, but not by θo:

(34) 16
n

198481 16
n

416282 16
n

639703 16
n

698630

On the other hand, the lists of distinguishable knots with up to 16 crossings for ϕeo and ϕoe

indeed coincide.

We also looked at all the knots that have the same even and odd reduced Khovanov

homology, but different ranks of the reduced homological operations. Since the width of

the reduced homology is always less by 1 than the width of the corresponding unreduced

homology, and since the even reduced Khovanov homology has, in general, very little torsion,

it is natural to expect that the reduced homological operations would be not as strong as

their unreduced counterparts. This is indeed the case.
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Ho −6 −5 −4 −3 −2 −1 0 1 2 3 4

11 Z

9 Z
2

Z

7 Z
4

Z
2

5 Z
5

Z
4⊕Z2

3 Z
6

Z
5⊕Z2 Z2

1 Z
7

Z
6⊕Z2 Z2

−1 Z
6

Z
7⊕Z2 Z2

−3 Z
5

Z
6⊕Z2 Z2

−5 Z
4

Z
5

Z2

−7 Z
2

Z
4

−9 Z Z
2

−11 Z

Ho −4 −3 −2 −1 0 1 2 3 4 5 6

11 Z

9 Z
2

Z

7 Z
4

Z
2

5 Z
5⊕Z2 Z

4

3 Z
6⊕Z2 Z

2⊕Z2

1 Z
7⊕Z2 Z

6⊕Z2

−1 Z
6⊕Z2 Z

7⊕Z2

−3 Z
5⊕Z2 Z

6⊕Z2

−5 Z
4

Z
5⊕Z2

−7 Z
2

Z
4

−9 Z Z
2

−11 Z

Figure 5. Odd Khovanov homology for knots 13n1002 and 14n6487 (upper table)

and their mirror images (lower table). The solid blue arrows indicate places

where the operation θo is surjective for both knots. At the dashed red arrow,

θo is surjective for 13n1002, but is a zero map for 14n6487. Notice that there is no

place for a nontrivial θo in the lower table.
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Ho −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

10 Z

8 Z
2

6 Z
2

4 Z
2⊕Z2

2 Z H1

0 Z2 Z
2

2
⊕Z

2

3

−2 Z H1 Z
2

2
⊕Z3

−4 Z
2

H2 Z2

−6 Z
3

H2

−8 Z
4

Z
2⊕Z

2

2

−10 Z
4

Z⊕Z2

−12 Z
4

−14 Z
3

Notation: Hn := Z
n ⊕ Z

2
2 ⊕ Z3

−16 Z

Ho −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

16 Z

14 Z
3

12 Z
4

10 Z Z
4⊕Z2

8 Z
2

Z
4⊕Z

2

2

6 Z
2

H3

4 Z
2⊕Z2 H2

2 H1 H1

0 Z
2

2
⊕Z

2

3
Z2

−2 Z H1

−4 Z
2

Z2

−6 Z
2

−8 Z
2

Notation: Hn := Z
n ⊕ Z

2
2 ⊕ Z3

−10 Z

Figure 6. Odd reduced Khovanov homology for knots 16n235548 and 16n635483
(upper table) and their mirror images (lower table). The solid blue arrow indi-

cate a place where the operation θo is surjective for both knots. At the dashed

red arrow, θo is non-trivial for 16n235548, but is a zero map for 16n635483. Notice

that there is no place for a nontrivial θo in the lower table.
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Observation 6.4. Among all prime non-alternating knots with at most 16 crossings that

have the same even and odd reduced Khovanov homology, there are only 4 pairs that can

be distinguished by ranks of either β̄, or ϕ̄oe, or ϕ̄eo, or θ̄o:

(35)
16

n

209296 16
n

699643 16n235548 16n635483

16
n

485898 16n543682 16
n

910482 16n919988

β̄ distinguishes their mirror images as well, but no other reduced homological operation does.

See Figure 6 for an example.

We finish this paper with a few more conjectures of various levels of plausibility.

Conjecture 6.5. Every two knots that are distinguished by the ranks of ϕeo are also distin-

guished by those of ϕoe and vise versa. The same is also true for ϕ̄eo and ϕ̄oe.

Conjecture 6.6. Hξ(L) is even stronger invariant than ranks of all the homological opera-

tions discussed in this paper.
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