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Abstract. We consider a scheme of multiplexed cold atomic ensembles that
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immediately followed by an infrared one (idler) via four-wave mixing with two
classical pump fields. Multiplexing the atomic ensembles with frequency and
phase-shifted signal and idler emissions, we can manipulate and control the
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1. Introduction

Quantum communication relies on the coherent distribution of entanglement over long
distances. This can be done by implementing a quantum repeater protocol [1, 2]. It
distributes the entanglement to the end parties (A and B) of distance L by inserting
M initially entangled pairs (A and C′

1, C2 and C′
2,..., CM and B) respectively with a

distance L/M. Conditioning on locally joint measurements (e.g. Bell measurements)
of the adjacent parties (C′

i and Ci+1), the protocol succeeds and projects out the
required entangled state of the end parties with some finite fidelity F ≤ 1. Since then
the long-distance quantum communication has been proposed in the setup of atomic
ensembles [3] where entanglement swapping or quantum teleportation [4] becomes
feasible. In about the last decade, correlated atom-light entanglement in the Raman-
type [5, 6, 7, 8, 9] and diamond-type schemes [10, 11, 12, 13] paves the way toward
the realization of low-loss long-distance quantum communication.

The entanglement is a basic element in long-distance quantum communication,
which has been focused on discrete degrees of freedom either in light polarizations
[14, 15, 16] or central frequencies [17, 18]. Recently the entanglement of continuous
variables provides a richer capacity in quantum key distributions [19] and quantum
information applications [20]. A plethora of continuous degrees of freedom involve
light spectrum [21, 22, 23], transverse momentum [24, 25], space [26], and orbital
angular momenta of light [27, 28, 29, 30, 31, 32]. This higher dimensional quantum
capacity also manifests in the aspects of quantum memories using atomic ensembles
[33, 34], and in proposed atomic [35] or optical frequency comb techniques [36]. In
addition, multiplexing multimode quantum memories in space [37, 38] or time [39] can
enhance the distribution rate of quantum repeater protocol while the spectral shaping
in spontaneous parametric down conversion [40, 41] or diamond-type atomic ensemble
[42] helps facilitate the frequency encoding/decoding, which promises a potentially
efficient multimode quantum communication.

This motivates us to investigate the entropy of entanglement in continuous
frequency space of the biphoton state from the multiplexed cold atomic ensembles
where its telecommunication (telecom) bandwidth has the advantage of low-loss fiber
transmission while its spectrum can be manipulated in the multiplexed scheme. Based
on the studies of spectrally-entangled cascade emissions [13] and their spectral shaping
via frequency shifters in the multiplexed atomic ensembles [42], we further propose
to manipulate the spectral property with additional phase shifters in the multiplexed
scheme. Other than previous focus on DLCZ (Duan-Lukin-Cirac-Zoller) protocol [3]
utilizing spectrally-entangled photons [13], here we extend the multiplexed scheme [42]
by including the degree of freedom of phases in the biphoton state, which offers more
flexible control over its entanglement property. In this article, we first introduce the
biphoton state in continuous frequency space generated from driving a cold atomic
ensemble via four-wave mixing in section 2. In section 3, we consider a scheme of
multiplexed cold atomic ensembles via frequency and phase shifters, that can provide
flexibility and controllability over the spectral property of the biphoton state. The
entropy of entanglement in our scheme is characterized in details up to three atomic
ensembles in section 4. We then conclude in section 5 and discuss the potential
applications of our scheme in multimode long-distance quantum communication.
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2. Biphoton state in continuous frequency space

We consider the biphoton state generated by a cold Rb atomic ensemble with a
diamond-type atomic level in figure 1. Two classical driving fields operate on the
the infrared and telecom transitions, and then within four-wave mixing condition,
correlated signal and idler photons in telecom and infrared bandwidths respectively
are spontaneously emitted. The Hamiltonian and the coupled equations in Schrödinger
picture has been derived and solved [13] where we formulate the light-atom interactions
with the dipole approximation [43]. The adiabatic approximation is assumed to be
valid if the Rabi frequencies of the pump fields Ωa, Ωb are weak enough with large
detunings ∆1 ≡ ωa − ω1, ∆2 ≡ ωa + ωb − ω2 where ω1,2 (and ω3) are atomic level
energies. The main result is the biphoton probability amplitude [13]

Dsi(∆ωs,∆ωi) =
Ω̃aΩ̃bg

∗
sg

∗
i (ǫ

∗
s · d̂s)(ǫ∗i · d̂i)

∑

µ e
i∆k·rµ

4∆1∆2

√
2πτ

f(ωs, ωi), (1)

where the spectral function of the biphoton state is

f(ωs, ωi) =
e−(∆ωs+∆ωi)

2τ2/8

ΓN

3

2 − i∆ωi

. (2)

The pump fields are normalized Gaussian pulses Ωa,b(t) =
1√
πτ

Ω̃a,be
−t2/τ where Ω̃a,b

is the pulse area. The coupling constants of signal and idler photons are gs,i with

polarizations ǫs,i and unit direction of dipole moments d̂s,i. The four-wave mixing
(FWM) condition for two pump fields (of wavevectors ka,b) and two photons (ks,i) is
∆k = ka + kb − ks − ki, and ∆ωs ≡ ωs − ω23 − ∆2 − δωi, ∆ωi ≡ ωi − ω3 + δωi

with central frequencies of light ωs,i. The telecom transition frequency is ω23 ≡ ω2 −
ω3, and ω3 is the infrared one. The spectral function shows a Gaussian envelope that
maximizes at energy conservation of two photons ∆ωs + ∆ωi = 0, which is modulated
by a Lorentzian of an idler photon. The FWM condition guarantees the generation
of directionally correlated signal and idler photons, and selectively drives the atomic
system into a symmetrically collective excitation [44, 45, 46]. In such atomic system
with an atomic density ∼ 1011 cm−3, the idler photon is observed to be superradiant
[10, 47, 48] due to induced dipole-dipole interactions [49] firstly proposed as Dicke’s
radiation [50]. The superradiant decay constant is denoted as ΓN

3 [51] and δωi is the
associated cooperative Lamb shift [52, 53, 54].

The four atomic levels can be chosen as (|0〉, |1〉, |2〉, |3〉) = (|5S1/2,F = 3〉,
|5P3/2,F = 4〉, |4D5/2,F = 5〉, |5P3/2,F = 4〉) where |2〉 could be also 6S1/2, 7S1/2, or
4D3/2 that the telecom bandwidth resides in 1.3-1.5 µm [10]. The spectral property
of this biphoton state can be analyzed by Schmidt decomposition [22], where the
state vector can be expressed in terms of Schmidt eigenvalues λn and effective photon
operators b̂n, ĉn that the biphoton state becomes

|Ψ〉 =
∫

f(ωs, ωi)â
†
λs
(ωs)â

†
λi
(ωi)|0〉dωsdωi, (3)

=
∑

n

√

λnb̂
†
nĉ

†
n|0〉, (4)

with signal and idler mode functions ψn, φn that define the effective photon operators,

b̂†n ≡
∫

ψn(ωs)â
†
λs
(ωs)dωs, (5)

ĉ†n ≡
∫

φn(ωi)â
†
λi
(ωi)dωi. (6)
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Figure 1. Schematic multiplexed cold atomic ensembles, and diamond-type

atomic level structure. The biphoton state of signal and idler photons â†s,i is
generated by two pump fields Ωa,b with single and two-photon detunings ∆1,2.
The circle represents a routing fiber coupler after acoustic-optic modulators
(AOM) and phase shifters (PS) of the cascade-emitted photon pair (arrows). The
effective biphoton state |Ψ〉 is derived where NMP is the total number of atomic
ensembles and θm is the phase shift by PS respectively for mth atomic ensemble.
Here for demonstration we plot three atomic ensembles, and the dash waveforms
of signal and idler photons represent the probabilistic nature of the multiplexed
biphoton state. Pump a (b) and idler (signal) photon are denoted as blue (red)
in the online version of color scheme.

Furthermore the entropy of entanglement can be written as

S = −
∞
∑

n=1

λn log2 λn. (7)

This biphoton state in continuous frequency space can be implemented in the
DLCZ (Duan-Lukin-Cirac-Zoller) protocol [3], that is advantageous for its telecom
bandwidth for low-loss fiber transmission. Combined with its infrared bandwidth
suitable for the quantum storage locally, the entanglement swapping and quantum
teleportation have been investigated using such cascade emissions [13]. In the next
section, we consider a scheme of multiplexed atomic ensembles that would allow us to
manipulate and control the entropy of entanglement. In addition we may also control
the mode functions of the biphoton state.

3. Multiplexed cold atomic ensembles

Here we consider a scheme of the multiplexed atomic ensembles as shown in figure
1. We excite the atomic ensembles with common pump fields, and the spontaneously
emitted cascade emissions are multiplexed by the frequency and phase shifters that
may control the central frequencies and relative phases of photons. The frequency
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shifts can be done by acoustic-optic modulators while the phase shifters can
be implemented as in cross-phase modulation experiments by electromagnetically-
induced-transparency based Kerr medium [55], atomic ensembles [56, 57], or hollow-
core photonic bandgap fiber [58], in the low light level. Similar to DLCZ protocol where
the excitation probability is made small that multiphoton events are rare [3], we may
also express the multiplexed cascade emissions as product states of the biphoton state
in equation (3). Along with a prefactor in equation (1) where we denote as probability
p ≡ Ds,i(∆ωs,∆ωi)/f(ωs, ωi) that depends only on excitation parameters, we have

|Ψ〉MP = (|0〉1 + p|Ψ〉1)⊗ (|0〉2 + p|Ψ〉2)⊗ . . .⊗ (|0〉NMP
+ p|Ψ〉NMP

), (8)

where |0〉 means the ground state, and the subscripts denote the numbered atomic
ensembles. We note that these atomic ensembles share the same excitation probability
due to the common pump fields we apply, which furthermore remove the incoherent
(random) relative phases that may deteriorate the state preparation in our scheme.
After expanding the above product states and keeping the first two most significant
terms, we derive

|Ψ〉MP = |0〉⊗NMP + pfMP(ωs, ωi) +O(p2), (9)

where the events of more than two photons are in the order of p2 which is extremely
small in our assumption of weak excitations.

Therefore the spectral function of the effective multiplexed biphoton state can be
written as

fMP(ωs, ωi) =

NMP
∑

m=1

eiθm
e−(∆ωs+∆ωi+δqm)2τ2/8

ΓN
3

2 − i(∆ωi + δpm)
, (10)

where NMP is the number of the multiplexed atomic ensembles, δpm and δqm are
frequency shifts respectively for idler and jointly signal and idler photons. Phase shift
is denoted as θm which can be addressed independently for each atomic ensemble by
phase shifters.

The spectral shaping for the above multiplexed scheme has been investigated for
symmetrical (δqm = 0) and nonsymmetric (δqm = δpm) spectral functions [42]. In the
symmetrical spectral function, the spectral weighting lies along the energy conserving
axis ∆ωs = −∆ωi, which generates a larger entropy of entanglement S. Here we add
another degree of freedom in the phase of the photons, that provides richer information
in S and more flexibility of controlling it.

4. Entropy of entanglement

The entropy of entanglement S is crucial in evaluating the capacity of Hilbert space
that the quantum system can access. In the setting of discrete quantum system, for a
maximally entangled qudit state of dimensions D (or W state), we have

|Ψ〉D =
1√
D
(|100 . . . 00〉+ |010 . . . 00〉+ . . .+ |000 . . .01〉), (11)

where |0〉 and |1〉 represent a qubit space (e.g. polarizations for a single photon).
The Hilbert space would involve 2D states while the entropy of entanglement S
becomes log2D. Therefore quantifying S allows us to analyze the capacity for quantum
information processing and application. Other than discrete quantum system, here we
focus on the capacity for long-distance quantum communication in our multiplexed
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Figure 2. Entropy of entanglement S for two atomic ensembles. (a) Contour plot
of S in frequency δp1 and phase shifts θ2 with the symmetrical spectral function
set as δp2 = −δp1 and δq1,2 = 0. (b) Sectional plots of (a) at δp1/Γ3 = 5 (�), 20
(⋄), and 50 (+), which approach a plateau as δp1 increases. The spectral ranges
for both signal and idler photons are post-selected to ± 300 Γ3 in all figures where
we also set ΓN

3
/Γ3 = 5 and τ = 0.25Γ−1

3
without loss of generality.

scheme in continuous frequency space. There is no general analytical expression to S
in continuous space, which however can be quantified using Schmidt decomposition. In
addition, we later will show in equation (14) that S in our multiplexed scheme can be
approximately expressed as a summation of the entropy for qudit state of dimensions
NMP and the one in continuous frequency space with NMP = 1. Below we consider
two and three atomic ensembles, and we map out the entropy of entanglement in the
setting of symmetrical spectral functions and also the associated mode probability
densities for the biphoton state.

4.1. Multiplexed two atomic ensembles

For the multiplexed scheme with two atomic ensembles in the symmetrical setting of
frequency shifts where we set δp2 = −δp1 with δq1,2 = 0, the spectral function becomes

fMP(ωs, ωi) =
e−(∆ωs+∆ωi)

2τ2/8

ΓN
3

2 − i(∆ωi + δp1)
+
eiθ2e−(∆ωs+∆ωi)

2τ2/8

ΓN
3

2 − i(∆ωi − δp1)
, (12)

where the phase θ1 is set to zero without loss of generality for the overall phase
is irrelevant for the biphoton state. The entropy of entanglement S in such scheme is
shown in figure 2. For larger frequency shifts, we have a plateau of entropy distribution
where its maximum appears at θ2 = 0 while the minimum is at θ2 = π. For smaller
frequency shifts where multiplexed spectral functions start to overlap, the S has
maximum near θ2 = 2π while the minimum is still at phase π which indicates an anti-
symmetrical distribution to the axis of ∆ωs = ∆ωi. We note that as δp1 approaches
zero which indicates no frequency shifts to the atomic ensembles, the S at phase π has
no physical meaning since the spectral function becomes null. At δp1 = 0, the spectral
function has no difference from the one with just a single atomic ensemble for θ2 6= π.

Now we investigate in details of the eigenvalues and mode probability densities at
some specific points in figure 2(a). In figure 3 we study the spectral functions with small
frequency shifts. The relative large and minimal entropy S at θ2 = 0 and π respectively
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Figure 3. Schmidt decomposition and mode probability densities for small
frequency shifts. Schmidt eigenvalues and absolute spectral distribution are shown
at δp1/Γ3 = 5 and θ2 = 0, π respectively in (a) and (b). Associated first three,
n = 1, 2, 3 (solid, dash, and +), mode probability densities of signal |ψn|2 and
idler photons |φn|2 are put in horizontal orders respectively.

in (a) and (b) can be understood in the descending Schmidt eigenvalues where the
largest eigenvalue closer to one in figure 3(b) means a less entangled biphoton state. In
the extreme case when λ1 = 1, the biphoton state becomes an unentangled source such
that the signal and idler photons are separate in their respective mode functions. Zero
phase in (a) with a larger S can be also seen in the spectral distribution that aligns on
the axis ∆ωs + ∆ωi = 0, in contrast to (b) that the phase π tends to distribute the
spectral weighting on ∆ωs,i = 0. We demonstrate three mode probability densities for
this biphoton state where signal and idler photons show Gaussian and Lorentzian tails
respectively as expected. The idler mode with the largest eigenvalue has double peaks,
which would show interference patterns in time domains. This feature discriminates
the characteristics of the signal mode of the largest eigenvalue from the idler one.

In figure 4, similar to figure 3, we show the corresponding results for large
frequency shifts. A pair of degenerate eigenvalues appear along with degenerate mode
probability densities. For large δp1, S deviates not much on θ2 as can be seen in figure
2(b) and also in the first ten eigenvalues in figure 4 which can not be distinguished. The
spectral distributions in figure 4(a) and (b) differ most in between these two spectral
functions on ∆ωs = −∆ωi, which reflects on the slightly different third and fourth
mode probability densities though the largest two modes show no difference. The
well-separated mode functions (in contrast to overlapped ones in figure 3) in frequency
space provide the possibility to address and manipulate the frequency coding/encoding
[40]. Therefore the biphoton state in the multiplexed scheme can potentially implement
the Hadamard codes [41].

In the next subsection we further study three multiplexed atomic ensembles
where we show how the proposed scheme offers complexity in spectral properties
with frequency and phase shifts, and also the potentiality in multimode quantum
information processing.
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Figure 4. Schmidt decomposition and mode probability densities for large
frequency shifts. Schmidt eigenvalues and absolute spectral distribution are shown
at δp1/Γ3 = 50 and θ2 = 0, π respectively in (a) and (b). Associated first two
degenerate, n = 1 and 2 (solid), and next two degenerate, n = 3 and 4 (dash)
mode probability densities of signal |ψn|2 and idler photons |φn|2 are plotted
accordingly.

4.2. Multiplexed three atomic ensembles

For the multiplexed scheme with three atomic ensembles in the symmetrical setting of
frequency shifts where we set δp2 = −δp1, δp3 = 0 with again δq1,2,3 = 0, the spectral
function becomes

fMP(ωs, ωi) =
eiθ1e−(∆ωs+∆ωi)

2τ2/8

ΓN
3

2 − i(∆ωi + δp1)
+
e−(∆ωs+∆ωi)

2τ2/8

ΓN
3

2 − i∆ωi

+
eiθ2e−(∆ωs+∆ωi)

2τ2/8

ΓN
3

2 − i(∆ωi − δp1)
, (13)

where again we set zero θ3 for irrelevant overall phase of the biphoton state.
In figure 5 we map out the complete entropy of entanglement S for the biphoton
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Figure 5. Entropy of entanglement S for three atomic ensembles. Contour plots
of S of the symmetrical spectral function in dimensions of θ1,2 with frequency
shifts of δp1/Γ3 = (a) 3, (b) 6, (c) 15, and (d) 30. The maximum of S approaches
to θ1,2 = 0, 2π as δp1 increases while its minimum fixes at θ1 = 4π/3 and θ2 =
2π/3. The crosses represent the extreme points in S.
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state in equation (13) from small to large frequency shifts. The maximum S approaches
the four corners of the contour plots in phases, which are θ1,2 = 0, 2π, as δp1 increases.
It also suggests that the S has relatively small deviations for larger frequency shifts
similar to the case of two multiplexed atomic ensembles. The map of S indicates the
asymmetry in two dimensions of θ1,2 with finite δp1, and its minimum is observed
to fix at θ1,2 = 4π/3 and 2π/3 respectively. Furthermore even though the S can
be manipulated to increase by increasing δp1, from (a) to (c) we can see that the
maximum S shows up at some optimal θ1,2 that offer more degrees of freedom to
generate maximal S for some specific frequency shift.

In figure 6 we investigate closely on the extreme points of figure 5(b). Again
the minimal S reflects on its descending eigenvalues where the largest eigenvalue is
closer to one. Similar to two multiplexed atomic ensembles, the first idler mode in
(a) has triple peaks due to three atomic ensembles being multiplexed. The large S in
(a) also reflects on its spectral function that aligns mostly on the axis that conserves
photon energies in contrast to the centrally distributed one in (b). We also find an
interesting feature in the first idler mode of (b) which has two small humps around
the central peak, and they grow up as S increases in the map of figure 5. For the
first signal modes, we observe that the effect of narrowing in their linewidths is more
significant by manipulating S compared to figure 3 in the setting of two multiplexed
atomic ensembles. In the scheme of multiplexed three atomic ensembles, we may have
a better and more flexible control over the spectral property due to the extra degree
of freedom in phases.

Finally we investigate the spectral property with zero phases and large frequency
shifts in figure 7 which has large entropy of entanglement S. Pairwise eigenvalues
appear again along with a comparable one for every third eigenvalues. We also see the
degeneracies in mode probability densities which have peaks on the sides to the axis
∆ωs,i = 0. For the symmetrical spectral functions we consider here, the S increases as
we multiplex more atomic ensembles. In the limit of large number of atomic ensembles
being multiplexed, we can estimate the S as a combination of the entropy in terms
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Figure 6. Schmidt decomposition and mode probability densities for three
multiplexed atomic ensembles. Schmidt eigenvalues and absolute spectral
functions are shown at δp1/Γ3 = 6 with (θ1, θ2) = (π/3, 5π/3) and (4π/3, 2π/3)
in (a) and (b) respectively. Associated first three, n = 1, 2, and 3 (solid, dash, and
+) mode probability densities of signal |ψn|2 and idler photons |φn|2 are plotted
accordingly.
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Figure 7. Schmidt decomposition and mode probability densities for three
multiplexed atomic ensembles with θ1,2 = 0. In (a) and (b) we demonstrate
Schmidt eigenvalues and absolute spectral distribution at δp1/Γ3 = 50. The
associated first two degenerate, n = 1 and 2 (solid), and the next two, n = 3
and 4 (dash and +), mode probability densities of (c) signal |ψn|2 and (d) idler
photons |φn|2 are plotted accordingly.

of qudit state of dimensions NMP with the excess entropy due to the entanglement in
continuous frequency space, that is S = Sd + SNMP=1 [42]. SNMP=1 is the entropy of
entanglement for our single biphoton state in frequency space while Sd = log2(NMP)
from the conventional qudit state,

|Ψ〉d =

NMP
∑

m=1

1√
NMP

â†s,mâ
†
i,m|0〉, (14)

where m denotes the associated biphoton modes. In principle we may generate large
entropy of entanglement in high dimensions of photon frequency space from our scheme
of the multiplexed atomic ensembles.

5. Discussions and conclusions

We propose a scheme that controls the frequency and phase shifts of the cascade
emissions from the multiplexed atomic ensembles in which we can manipulate the
spectral property of the biphoton state. We study the entropy of entanglement S in
details for two and three atomic ensembles with dependences on frequency and phase
shifts that can be controlled by acoustic-optic modulators and cross-phase modulation
experiments respectively. We can generate large S by increasing the frequency shift
until it saturates, and locate the optimal phases to create the maximal S with finite
frequency shifts. The extra degrees of freedom in phases other than just frequency
shifts provide a fruitful and versatile quantum information control. In addition the
mode probability densities show double or triple peaks indicating an interference
pattern in time domains, which can be measurable and distinguishable from the other
modes. We would expect of a complexity arising in more than four atomic ensembles
in the perspective of optimizing parameters of frequency and phase shifts since it
would be harder to map out completely the S in multi-dimensional frequency and
phase spaces. In principle our scheme opens up a new avenue to entropy control
and manipulation in continuous frequency and phase spaces, which can generate
large S either by multiplexing more atomic ensembles or by increasing SNMP=1, the
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entropy of entanglement for a single atomic ensemble, which can be done with a larger
superradiant decay constant ΓN

3 or a shorter pulse width τ [13].
To multiplex more atomic ensembles in large scale, we may utilize the optical

lattices to generate two or three-dimensional arrays of ensembles that can be
individually addressed by light-matter interactions. In this way even larger S can
be created in our scheme to realize high dimensional entanglement [30, 31, 32]. This
provides a possibility of unlimited communication capacity that is useful in quantum
key distribution [19] and quantum information application in continuous variables [20].

For the perspective of experimental measurements of Schmidt eigenvalues or the
entropy of entanglement, it requires a technique that operates the mode selection.
Spectral filtering technique [59] uses transmission gratings with predetermined spectral
transfer functions to deflect the input optical pulses such that the spectral information
is mapped to the spatial one. Similar spectrometer utilizing spectral-to-spatial
mapping has been proposed in the planar holographic devices [60] and experimentally
demonstrated on a disordered photonic chip [61]. After the spectral calibration, the
reconstructed spectra can genuinely retrieve narrow spectral lines or multiple spectral
lines with varying amplitudes [61]. The alternative technique of quantum pulse gate
[62] uses the sum frequency generation in the setting of parametric down conversion
to select out the spectral modes. The input state and the shaped pump fields are
coupled to the nonlinear waveguide that the selected mode (output) is converted to
the sum frequency of both and is separated from the other orthogonal modes. It acts
effectively as the tomographic reconstruction of the mode characteristics [63]. The
Schmidt eigenvalues can then be retrieved from the probability for the mode selection
procedure [64] if the quantum efficiency of the conversion is made high enough [63].

Our proposed scheme not only takes advantage of the telecom bandwidth that
is favorable in low-loss long-distance quantum communication but also offers an
alternative frequency encoding/decoding platform in the multiplexed biphoton state.
Especially for the modes in well-separated frequency domains, we can individually
encode on the spectral property via frequency bins [40] such that Hadamard codes
[41] for example can be implemented and decoded via coincidence measurements on
our signal and idler photons. Using the cascade emissions from the multiplexed atomic
ensembles, we expect of a potentially efficient entropy manipulation in the biphoton
state with controllability and flexibility in conventional quantum optical experiments.
Our scheme provides an alternatively promising setup in accessing communication
capacity in continuous variables, and paves the way toward multimode quantum
information processing.
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