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We investigate the effects of magnetic and non-magnetic impurities on the two-dimensional surface
states of three-dimensional topological insulators (TIs). Modeling weak and strong TIs by a generic
four-band Hamiltonian, which allows for a breaking of inversion and time-reversal symmetries and
takes into account random local potentials as well as the Zeeman and orbital effects of external
magnetic fields, we compute the local density of states, the single-particle spectral function, and
the conductance for a (contacted) slab geometry by numerically exact techniques based on kernel
polynomial expansion and Green’s function approaches. We show that bulk disorder refills the
suface-state Dirac gap induced by a homogeneous magnetic field with states, whereas orbital (Peierls-
phase) disorder perserves the gap feature. The former effect is more pronounced in weak TIs than in
strong TIs. At moderate randomness, disorder-induced conducting channels appear in the surface
layer, promoting diffusive metallicity. Random Zeeman fields rapidly destroy any conducting surface
states. Imprinting quantum dots on an TI’s surface, we demonstrate that carrier transport can be
easily tuned by varying the gate voltage, even to the point where quasi-bound dot states may appear.

PACS numbers: 73.20.-r, 73.21.La, 71.23.An, 71.10.Fd

I. INTRODUCTION

Topological insulators (TIs) are novel states of quan-
tum matter which are equally important for both fun-
damental solid state physics research and technologi-
cal applications1–3. The remarkable properties of three-
dimenensional (3D) TIs result from the particular topol-
ogy of their band structure exhibiting gapped bulk and
gapless linearly dispersed Dirac surface states4,5. Most
notably, the metallic (spin polarized) surface states are
largely robust against the influence of non-magnetic dis-
order. Depending on the degree of this robustness a dis-
tinction is drawn between weak and strong 3D Z2 TIs,
where bulk-surface correspondence implies that weak
TIs feature none or an even number of helical Dirac
cones while strong TIs manifest a single Dirac cone6–8.
In the weakly disordered regime, the surface states of
weak TIs have an internal structure and are either ro-
bust or “defeated” by disorder9. The conducting surface
states of strong TIs are topologically protected against
localization due to their helical nature, here the spin-
momentum locking suppresses backward scattering as in
graphene9,10. Surface disorder with a strength compara-
ble to or larger than the bulk band gap will destroy the
Dirac cone, leading first to diffusive metallic behavior and
then to Anderson localization at the surface11,12.

Another way to affect the robust surface metallicity of
3D TIs is to break time-reversal symmetry. This can
be achieved by placing magnetic dopants into 3D TI.
As a result insulating massive Dirac electron states will
be formed, with striking topological features, see Fig. 1.
Such states have been observed in recent angle-resolved
photoemission experiments on magnetically doped dibis-
muth triselenid with a Dirac gap and a Fermi energy
tuned into this surface-state gap13. The effects of mag-
netic impurities solely on the surface of a TI has been
studied with the intention of a gap opening, which

certainly is a promising pathway for functionalizing a
TI14,15. The idea is that the Dirac electronic states medi-
ate an RKKY interaction among the impurities which is
ferromagnetic and therefore will produce a net (average
Zeeman) magnetic field that gaps the TI’s surface states.
Moreover, with a view to spintronics applications, spe-
cific time-reversal-breaking potentials have been explored
that constitute magnetically defined qubits by confining
topological surface states into quantum wires or quantum
dots16. Besides, we like to point out that applying mag-
netic fields will induce 1D edge channels which strongly
influence the quantum Hall physics of 3D TIs17.

Motivated by this situation, in this work, we exam-
ine the rather complex interplay of topology and disor-
der in 3D TIs8,9,11,12,14,15,18–24. To comprise the effect
of both nonmagnetic and magnetic impurities, we study
a minimal four-band Hamiltonian that allows to intro-
duce and control a gap into the Dirac cone by a homoge-
neous magnetic field and, in addition, includes random
on-site potentials as well as the orbital and Zeeman ef-
fects of spatially fluctuating magnetic fields. Using exact
numerical techniques, we analyze ground-state, spectral
and transport properties of this Hamiltonian, which may

FIG. 1. (Color online) Schematic picture of a topological
insulator with non-magnetic (left) and magnetic (right) im-
purities. The non-magnetically doped TI has a Dirac point
connecting the occupied lower and unoccupied surface states
as in the undoped case. In magnetically doped TI a gap sep-
arates the upper and lower Dirac cones13.
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realize—on a (contacted) slab geometry—distinct topo-
logical phases in different parameter regimes. We fur-
thermore will show that we can selectively induce states
into the surface Dirac gap, just by imprinting on the TI’s
surface a gate-defined quantum dot, and thereby can ma-
nipulate the surface currents. In the course of our inves-
tigations we will focus on the strong TI case; selected
results, however, will be contrasted by the corresponding
ones for a weak TI.

II. MODEL AND METHOD

The regular version of the theoretical model considered
below was introduced for TIs with cubic lattice structure,
inspired by the orbitals of strained 3D HgTe or the insu-
lators of the Bi2Se3 family6,17,25,26. The corresponding
four-band Hamiltonian is conveniently expressed using
the identity Γ0, the Dirac matrices Γa, and the commu-
tators Γab (see Fig. 2 for their matrix elements):

H = −t
∑
n,j

(
Ψ†n+êj

Γ1 − iΓj+1

2
eiτn,j Ψn + H.c.

)
(1)

+
∑
n

Ψ†n
(
mΓ1 + ∆1Γ5 + ∆2Γ15 + Vn1

)
Ψn +HZ

with

HZ =
∑
n Ψ†n

[
−BZn,x

(
g+Γ25 + g−Γ34

)
(2)

−BZn,y
(
g+Γ35 − g−Γ24

)
+BZn,z

(
g+Γ23 + g−Γ45

)]
Ψn .

Ψn is a four-component spinor at site n. In (1), nearest-
neighbor particle transfer takes place with amplitude t,
where the orbital effects of an external magnetic field are
considered by the Peierls factor eiτn,j , acting on the link
n→ n+~ej (j = 1, 2, 3). The parameter m can be used to
tune the band structure: For |m| < t, a weak TI with two
Dirac cones per surface arises, whereas for t < |m| < 3t,
a strong TI results, with a single Dirac cone per surface
(cf. Fig. 3). In case that |m| > 3t we have a conventional
band insulator. External magnetic fields cause finite ∆1

and ∆2, which will break the inversion symmetry. ∆1,
in addition, breaks the time inversion symmetry. The
Zeeman effect of the magnetic field is described by HZ ,

where ~BZ = µB
~B, and g± are linear combinations of the

g factors of the E1 and LH subbands17. Most notably,
both ∆1 and BZz g

+–but not ∆2, BZz g
−–open a gap in the

band structure, see Fig. 3 (there, and in what follows, we
have set t = 1, fixing the energy scale).

We implement the effect of nonmagnetic impurities
by random on-site potentials Vn. For (quenched) bulk
Anderson disorder, the Vn are drawn from a uniform
probability distribution, i.e., p[Vn] = 1

γ θ(
γ
2 − |Vn|). Sur-

face disorder is realized if n belongs to the lateral faces
of the sample (V = 0 otherwise). Note that we can
use Vn as well in order to establish gate-defined quan-
tum structures, such as electrostatically defined quan-
tum dots or quantum dot superlattices27. For example,

FIG. 2. (Color online) Schematic representation of the on-
site (orbital) matrix elements of the Hamiltonian (1) with (2),
according to the five Dirac matrices Γa, and their ten com-
mutators Γab = [Γa,Γb]/2i, which satisfy the Clifford algebra,
{Γa,Γb} = 2δa,bΓ

0 with Γ0 being the identity. The σi and si
denote the Pauli matrices.

Vn = VdotΘ(R−|~rn−~rdot|) imprints—for a suitable choice
of ~rn and ~rdot— a circular region on the surface, whereby
the additional potential Vdot will scatter or possibly even
trap the charge carriers.

The effect of (surface) magnetic impurities has been
previously studied—in the framework of a spin exchange
Hamiltonian14 or 3D tight-binding and effective contin-
uum surface models15—for the cases of an isolated im-
purity, uniformly distributed impurities and quenched
magnetic disorder. Thereby, mean-field, renormalization
group14, and T -matrix approaches15 were used. Here we
model magnetic impurities on the surface just as as in the
bulk by random Peierls phases p[τn,j ] = 1

ν θ(
ν
2 − |τn,j |),

or random magnetic fields, with | ~BZn − b~ez| uniformly

distributed in the interval [0, β], where 〈 ~BZ〉 = (0, 0, b).
In order to characterize the ground-state and spectral

properties of the model Hamiltonian, we analyze in what
follows the density of states (DOS), the local density of
states (LDOS), and the single-particle spectral function

A(~k, ω) for a given sample geometry and disorder real-
ization. These quantities are given as

DOS(ω) =

4N∑
m=1

δ(ω − ωm) , (3)

LDOS(~rn, ω) =

4∑
s=1

4N∑
m=1

|〈m|Ψ(~rn, s)〉|2δ(ω − ωm) , (4)

and

A(~k, ω) =

4∑
s=1

4N∑
m=1

|〈m|Ψ(~k, s)〉|2δ(ω − ωm) , (5)

where ω is the energy (frequency), ~rn denotes the po-

sition vector of Wannier site n, ~k is the wave vector
(crystal momentum) in Fourier space, N labels the num-
ber of lattice sites, and |m〉 designates the single-particle
eigenstates with energies ωm. The four-component (ket-)

spinor |Ψ(~k, s)〉 (s = 1 . . . 4) can be used to construct a
Bloch state, just by performing the scalar product with
the canonical (bra-) basis vectors of position and band
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FIG. 3. (Color online) Upper panels: Schematic representa-
tion of the TI slab geometry with periodic boundary condi-
tions (PBC) in x-, y- directions and open boundary conditions
(OBC) in z-direction [left], as well as of the bulk Brillouin
zone [right]. Lower panels: Band structure of a regular TI
for all sorts of different cases. Here, the top row shows strong
and weak TIs with one Dirac cone per surface and two Dirac
cones per site, respectively, where, ∆1,2 = 0, BZn,j = 0, and
τn,j = 0. Assuming that the magnetic field (moments of the
magnetic impurities) are aligned along the z-axis, the mid-
dle and bottom rows show that for ∆1 6= 0 or g+BZz 6= 0 a
gap opens at the at the Γ-point [left-hand figures]. ∆2 and
g−BZz , on the other hand, leave the Dirac cone(s) unaffected
[right-hand figures].

index spaces11. The conductance of a lead-contacted TI,
can be obtained—in the limit of a vanishing bias voltage
within the standard Landauer–Büttiker approach—as

G =
e2

h

∑
l∈L,r∈R

|Sl,r|2 , (6)

where Sl,r is the scattering matrix between all open (i.e.,
active) L–R lead channels28.

For the calculation of the (L)DOS and spectral func-
tion we employ state-of-the-art exact diagonalization
techniques29, combined with a Chebyshev expansion and
kernel polynomial methods30,31. To evaluate numerically
the conductance for a two-terminal setup, we use the
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FIG. 4. (Color online) Magnitude of the DOS at the band
center, ω = 0, as a function of the gap parameter ∆1 and the
strength of the bulk disorder γ, for a strong [left] and weak
[right] TIs with 512× 512× 10 sites. OBC (PBC) are applied
in z-direction (x-, y-directions). We note that the finite DOS
at ∆1 = 0 (very small ∆1) is due to finite-size effects including
the finite number (2048) of Chebyshev moments used in the
KPM calculation and the finite KPM resolution with variance
of σ2 = 0.012.

‘Kwant’ software package32.

III. NUMERICAL RESULTS AND DISCUSSION

A. TI with non-magnetic disorder

We begin by investigating the effect of non-magnetic
impurities in the bulk on the electronic properties of weak
and strong TIs, in the case where the midgap Dirac cone
formed by the surface states is splitted by a finite ∆1,
caused, e.g., by an external magnetic field (cf. Fig. 3).
In order to simulate an infinite (bounded) system we ap-
ply PBC (OBC) in x- and y- (z-) direction. As a start,
in Eq. (1) the Zeeman term is neglected and we consider
random on-site potentials in the bulk with p[Vn]. Figure 4
gives the DOS at ω = 0, i.e., in the band center of the
spectrum (band gap), in dependence on both the mag-
nitude of ∆1 and the strength of disorder γ. Albeit the
DOS displayed corresponds to a single sample (disorder
realization) the contour plot is nevertheless characteris-
tic of the system’s behavior because of the large system
size and the PBC being in use. This has been checked by
calculating the DOS data for a couple of samples. The
plots show that increasing the disorder strength, more
and more electronic states pop up at the band center.
This effect is stronger pronounced, i.e., the gap fills more
readily, for weak than for strong TIs. Of course, the DOS
at the band center saturates if γ reaches the magnitude
of the bulk band gap.

The entire DOS is shown in the upper panel of Fig. 5
for the strong TI case (m = 2). We see how bulk disorder
induces electron states in the band gap region; even so a
pseudo-gap feature remains for weak-to-intermediate dis-
order strengths. At the same time any finite-size effects
in the bulk-state DOS are washed out by disorder. The



4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
ω

0

0.001

0.002

0.003

0.004

D
O

S

γ = 0.5

γ = 1.0

γ = 1.5

γ = 2.0

γ = 2.5

γ = 3.0

-4 -2 0 2 4
0

0.05

0.1

0.15

0.2

 0  0.05  0.1

kx,y  / π

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

ω

γ = 1

 0  0.05  0.1

kx,y  / π

10
-2

10
-1

10
0

A
(k

,ω
)

γ = 3

FIG. 5. (Color online) Upper panel: Density of states
for bulk disordered TIs. Lower panels: Corresponding
momentum- and energy-resolved single-particle spectral func-
tion. The finite ∆1 = 0.1 leads to a gapped bare band struc-
ture. Since a finite ∆2 does not change the results qualita-
tively, we show results for ∆2 = 0 only. The Zeman term (2)
is neglected.

momentum-resolved single-particle spectral function de-
picted in the lower panels provides detailed information
about the way disorder influences bulk and surface states.
Measured by angle-resolved photoemission spectroscopy,
this quantity reflects the electronic band structure of dis-
ordered TIs. Interestingly the surface states are almost
unaffected by noticeable disorder γ = 1, even though the
Dirac cone is destroyed by ∆1. For weak disorder the
spectral weight transfer into the gap is small. Clearly
the gap closes if the on-site disorder exceeds a certain
critical value, but note that γ has to be much larger than
∆1 in order to close the gap. This indicates that the main
gap-closing mechanism is the transfer of bulk states into
the gap, not the blurring of surface states.

In order to discuss the transport properties of strong
TIs we now consider a slab geometry with contacts. The
leads are assumed to have a gapless band structure, while
in the TI sample a gap is induced by ∆1. As can be seen
from Fig. 6, this inherently changes the conductance of
the system without disorder: While one has a finite size
gap around ω = 0 and a stepwise enhancement of the
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FIG. 6. (Color online) Two-terminal conductance G(ω) of
a bulk disordered strong TI (m = 2) slab with 32 × 32 × 6
sites and OBC. For the leads we assume ∆1 = 0; the TI
is contacted at x = 0 and x = 33. The results shown are
averages over ten disorder realizations.

conductance when more and more conducting channels
contribute to G increasing ω for ∆1 = 0 (homogeneous
system), one finds—besides the gap due to ∆1—a spikey
G which can be attributed to resonances of the finite sys-
tem sandwiched between half-infinite leads33 (see Fig. 7).
Disorder suppresses these conductance fluctuation of the
clean lead-TI-lead junction and thereby reduces the con-
ductance within the bulk-state region. On the other
hand, inside the (γ = 0) gap region, new disorder-induced
surface states appear which give rise to diffusive trans-
port, enhancing thereby the conductance.

Further information about the nature of these states is
obtained from the LDOS displayed in Fig. 7. Data are
given at ω = 0.2, i.e., near the edge of the ∆1–gap, for
the first (surface) and second (first inward) layer of the
contacted strong TI sample. We observe, first of all, a
finite LDOS in the TI sample near the contacts. This is a
pure boundary effect which significantly affects the sur-
face layer only. More remarkably bulk disorder induces
states which are preferentially localized at the surface
and are ”self-organized” in such a way that conducting
paths evolve on the surface between the leads. In the first
instance this tendency continues if the disorder is further
enhanced. Since we have OBC in y-direction such edge
channels are formed on the lower and upper boundaries
as well (see lower panels). However, at very strong dis-
order, Anderson localization appears and surface states
having a on-site potential much larger than the hopping
amplitude effectively decouple from the bulk with the re-
sult that an effective disorder in the first inward layer is
induced11.
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FIG. 7. (Color online) Spatially resolved LDOS at ω = 0.2
on the surface [left] and within the first inward layer [right]
of a single disordered strong TI (m = 2) sample with γ = 1,
2, and 3 [from top to bottom]. Here ∆1 = 0.25.

B. TI with magnetic disorder

In this subsection we first address the orbital effects of
a random magnetic field modeled by a fluctuating Peierls
phase factor attached to the electronic transfer ampli-
tude. Figure 8 shows the DOS and single-particle spec-
tral function at various disorder strengths. In comparison
with Fig. 5 the gap induced by ∆1 is less affected by bulk
orbital disorder (simply because we have no shift of the
local potentials but only a modulation of the hopping,
i.e., of the electronic bandwidth). Accordingly the ∆1-
gap shrinks somewhat in magnitude but persists. Apart
from that, enhancing the disorder, a lot of spectral weight
(DOS) is transferred from the bulk states into the bulk
pseudo-gap. There, as a new feature, a strong, almost
dispersionless signal evolves.

Next we demonstrate that magnetic impurities on the
surface of a TI will rapidly destroy the topological pro-
tected bands. To this end, we set Vn = 0, τn = 0 and
∆1 = ∆2 = 0 in our model Hamiltonian, and consider a
random Zeeman term HZ only, where g+ = 1 and g− = 0
without loss of generality. Here the gap in the surface
state band structure is induced by a finite mean value
b = 〈BZz 〉. Figure 9 illustrates the radical spectral weight
(DOS) transfer into the bulk gap when magnetic surface
disorder is present. In addition two notches in the DOS
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FIG. 8. (Color online) DOS (upper panel) and spectral
function (lower panels) for a strong TI (m = 2) with orbital
disorder described by a fluctuating Peierls factor ∝ eiτn,j . We
consider a (512× 512× 10)–site system with PBC-OBC and
∆1 = 0.1. Again the HZ term (2) is neglected.

appear at ω ' ±2.5 (the DOS even vanishes at these
points for magnetic bulk disorder with 1.9 < β < 2.8;
for still larger β Anderson disorder sets in). Note that
already for a rather moderate disorder strength (β = 2)
the midband gap closes and the photoemission spectrum
becomes completely incoherent.

C. TI with a gate-defined quantum dot

Finally we analyze the capabilities of a controlled
modification of transport through gate-defined nanos-
tructures imprinted on the TI’s surface. This can be
achieved, just as for graphene nanoribbons34, by apply-
ing nanoscale top gates. That way a circular quantum
dot can be created that causes quasi-bound states inside
the gap of the TI surface states produced by b > 0 (see
Fig. 10). In the following we consider a contacted strong
TI sample with 32× 32× 6 sites and PBC in y-direction;
the quantum dot has Rdot = 8 (in units of the lattice
constant). Within the leads we have b = 0.

Figure 11 gives the conductance for such a setup. In
the case Vdot = 0 (no dot) G is reduced in the vicinity of
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FIG. 9. (Color online) DOS (upper panel) and spectral func-
tion (lower panels) for a strong TI (m = 2) with “magnetic
impurities” on the surface only, modeled by a random Zee-
man term (2) with g+ = 1, g− = 0. We zeroized ∆1, ∆2, Vn,
and the τn,j .

FIG. 10. (Color online) Schematic representation of a lead-
contacted TI with a circular gate-defined quantum dot (red),
which induces quasi-localized states in the surface state band
gap produced by a finite b. In the gated region Vdot > 0.

the band center because of the gap triggered by b (see up-
per panel). The maximum value for G tells us that our
finite system develops two open transport channels at
most. When a quantum dot exists a series of resonances
appears in the gap region owing to possible excitation of
dot normal modes. Within the Dirac (continuum) ap-
proximation for massless fermions these scattering res-
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FIG. 11. (Color online) Conductance of a contacted strong
TI (m = 2) in a homogenous magnetic field b = 〈BZz 〉. For
comparison only, the upper figure gives G without imprint-
ing a quantum dot. In the middle and lower panels the
dot potential Vdot is chosen such that the product RdotVdot
equals j0,0 ' 2.4 and j1,0 ' 3.8, i.e., Vdot = 0.3006 and
Vdot = 0.47896, respectively.

onances occur for particular combinations of Rdot and
Vdot

35. For an equilibrium situation (without incident
wave) the normal modes can be interpreted as decaying
states, where, for small values of ω, the lifetime of these
quasi-bound dot states (appearing for RdotVdot = jn,m,
where jn,m denotes the m-th zero of the n-th Bessel func-
tion of the first kind) can be extraordinary long. This has
been confirmed for a discrete (graphene) lattice by exact
diagonalization27,36. As can be seen from the middle and
lower panel of Fig. 11, in our case the resonances can ac-
tuate resonant tunneling. In a sense they act as doorway
states37. Interestingly, thereby even the maximum pos-
sible value of G can be achieved. When the gap is small
the dot-bound states will hybridize with extended states.
Accordingly much broader peaks in G emerge than for a
large-gap situation (large values of b). Higher dot-bound
modes narrow theG-signal as well. Note that the conduc-
tance undergoes a dramatic change if ω (or, alternatively,
Vdot) is slightly varied near the resonance points. In this
way, such a system may act as a switch.

Magnetic disorder will split, shift and partly suppress
the conductance maxima, see Fig. 12. The general fea-
tures of the conductance, including the resonant tunnel-
ing via quasi-bound dot states, persist however. That
means the tunability of transport is guaranteed even
for (moderate) magnetic disorder. Figure 13 shows the
LDOS for three representative gate-potentials without
(left-hand panels) and with (right-hand panels) random
magnetic potentials. In the upper panels Vdot = 0.25 is
chosen to realize the dot mode lowest in energy. The
spatial localization of the ω = 0 surface states is obvi-
ous. Remarkably the corresponding conductance equals
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FIG. 12. (Color online) Conductance of a strong TI (m = 2)
with a quantum dot (Rdot = 8) imprinted on the top surface.
The system is subjected to a (random) magnetic field BZ with
offset b = 0.1 and β = 0 (β = 0.5), see black (red) curves. For
the disordered case (β = 0.5), data for G were averaged over
ten samples.
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FIG. 13. (Color online) LDOS at ω = 0 for a TI with a gate-
defined quantum dot (Rdot = 8) on the surface. Here Vdot =
0.25, 0.44 (0.32) were chosen in order to realize a resonance
(a minimum) in the conductance, cf. Fig. 12. The left (right)
panels give the LDOS without (with) random magnetic fields.

those for a junction without quantum dot (cf. Fig. 12).
Disorder softens the circular shape, but the resonance
still exists. That is why the conductance is finite, al-
beit reduced. At Vdot = 0.32 the quantum dot states
are out of resonance. Consequently the LDOS on the
surface almost vanishes. Here disorder may induce some
states with the result that the conductance slightly in-
creases. A higher dot bound mode (with larger orbital
momentum) is implemented by Vdot = 0.44. It possesses
a ring-shaped LDOS intensity, which is again weakened

by disorder. Figure 14 finally gives the conductance in
dependence on ω, for strong and weak TI with a b-field
induced gap, where RdotVdot = j0,0. Having two Dirac
cones instead of a single one, the conductance of the weak
TI is twice as large as for the strong TI. Since Vdot > 0, G
is not symmetric with respect to ω → −ω. On account of
disorder (β) the resonances will be suppressed and G is
smeared out. This effect is more pronounced for weak TI
because of the scattering between the two Dirac cones.
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FIG. 14. (Color online) Conductance of a strong (upper
panel) and weak (lower panel) TI with a gate-defined quan-
tum dot (Rdot = 8, Vdot = 0.3006) subjected to a random
magnetic field BZ with offset b = 0.1. G-data are averages
over ten samples.

IV. CONCLUSIONS

To summarize, the electronic properties of strong (and
also weak) topological insulators are dramatically af-
fected by external magnetic fields that break the inver-
sion symmetry and time inversion symmetry. The re-
sultant gap formation causes massive Dirac fermion sur-
face states. Both non-magnetic and magnetic impuri-
ties (modeled by diagonal random potentials and Zee-
man fields, respectively)—but not orbital non-diagonal
disorder—induces states into this midband gap, yielding
diffusive metallicity at the surface. Even so, the calcu-
lated angle-resolved photoemission spectra indicate that
the surface states largely retain their bare dispersion, up
to the point where disorder with a strength comparable
to or larger than the bulk gap leads to Anderson local-
ization. From an application-technological point of view,
the tunability of the transport properties of TIs by ex-
ternal electric and magnetic fields is of particular impor-
tance. We showed that quantum dots can be engineered
on the TI’s surface by nanoscale top-gates and used to
control the conductance, meeting device requirements.
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