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ON CLIFFORD DOUBLE MIRRORS OF TORIC

COMPLETE INTERSECTIONS

LEV A. BORISOV AND ZHAN LI

Abstract. We present a construction of noncommutative double mir-
rors to complete intersections in toric varieties. This construction unifies
existing sporadic examples and explains the underlying combinatorial
and physical reasons for their existence.
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1. Introduction.

Two Calabi-Yau varieties X and Y are called a mirror symmetric pair
if, together with some Kähler data, they give rise to two superconformal
field theories that differ by a twist, see [CK99]. While this string-theoretic
statement can not be at present rigorously understood, some of its conse-
quences can be stated and even proved mathematically. For example, the
(stringy) Hodge numbers of the mirror pair X and Y are expected to obey
the relation hp,q(X) = hdimY−p,q(Y ). This so-called mirror duality test of
an alleged mirror pair connects rather accessible invariants of X and Y and
is the easiest to verify. A significantly more complicated test of mirror sym-
metry connects quantum cohomology of X with period integrals of Y . Even
in the simple case when X is a smooth quintic hypersurface in P4, this is a
highly nontrivial result due to Givental [Gi96], which was later clarified by
Lian, Liu and Yau in [LLY97]. When one considers surfaces with bound-
ary (open strings), then homological mirror symmetry [Kon94] predicts that
the bounded derived category of coherent sheaves on X is equivalent to the
Fukaya category of Y with the appropriate symplectic structure.

An arbitrary Calabi-Yau variety may not always possess a mirror, more-
over, even if a mirror exists, it may not be unique. In fact, it is common for
a Calabi-Yau variety Y to possess multiple mirror partners Xi. In physics
terms the expectation is that the superconformal field theories associated
to Xi are obtained from each other by some kind of analytic continuation
along the parameter space of such theories. In this case, it is reasonable to
refer to X1 and X2 as double mirrors of each other in the sense that X2

is a mirror of a mirror of X1 and vice versa. Even more generally, we will
say that X1 and X2 are double mirror to each other if they pass some basic
compatibility tests below.1

• Hodge numbers of X1 and X2 coincide.
• Complex moduli spaces of X1 and X2 coincide.
• Quantum cohomology of X1 and X2 are obtained from each other
by analytic continuation.

• Bounded derived categories of coherent sheaves on X1 and X2 coin-
cide (under some identification of the aforementioned complex mod-
uli spaces).

Common examples of such X1 and X2 differ from each other by flops or
more generally by K-equivalences. In this case the last two statements are
known as Ruan’s and Kawamata’s conjectures respectively.

There are other prominent examples of double mirror Calabi-Yau vari-
eties, such as the Pfaffian-Grassmannian example, where X1 and X2 are not
birational. In addition, it is natural to move a little bit beyond the category
of algebraic varieties to allow Deligne-Mumford stacks, as well as mildly

1As such, we don’t require that their mirror exists in any sense.
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noncommutative “varieties”. 2 It is the latter kind of varieties that are the
subject of this paper.

There is a number of results in the literature where some usual or non-
commutative varieties X1 and X2 satisfy Db(Coh−X1) = Db(Coh−X2) in
the sense of equivalence of categories. It is reasonable to postulate that most
if not all such examples should be viewed as particular cases of the double
mirror phenomenon.3 One such example is a construction of Kuznetsov,
who shows that the derived category of a Calabi-Yau complete intersection
of k quadrics in CP2k−1 is derived equivalent to a certain noncommutative
crepant resolution of the double cover of CPk−1 ramified over a determinant
of a symmetric 2k × 2k matrix of linear forms, twisted by a Brauer class.
More precisely, this variety can be viewed as a certain sheaf of even Clif-
ford algebras over CPk−1. A related example has been also considered by
Calabrese and Thomas [CT14].

The goal of this paper is to uncover the toric geometry that under-
lies Kuznetsov’s and Calabrese-Thomas’ constructions. This more general
framework allows us to construct additional examples and leads to the more
conceptual understanding of these derived equivalences.

Remark 1.1. We should also point out that there are examples of derived
equivalences between noncommutative varieties which are not covered by our
construction. For instance, Căldăraru studied the derived category of elliptic
fibration and the twisted derived category of its relative Jacobian [Cal00a,
Cal00b]. This is a family version of classical derived equivalence between
abelian varieties. The twists are used to glue the universal object in the
Fourier-Mukai transform which may not exist in the ordinary sense. There
are also Hosono-Takagi examples [HT14], which are closer in spirit to this
paper, since they involve quadric fibrations. However, they appear to be
non-toric in nature and thus not covered by our construction.

Our construction starts off with a pair of dual reflexive Gorenstein cones
(K,K∨) in dual lattices M and N . These are dual cones in the usual sense,
with the property that lattice generators of rays of K and K∨ lie in the
hyperplanes 〈−,deg∨〉 = 1 and 〈deg,−〉 = 1 respectively, where deg and
deg∨ are (uniquely defined) lattice elements of K and K∨. We consider
decompositions of the degree element deg∨ in K∨ under certain appropriate
conditions. We associate noncommutative varieties to such decompositions,
and the change of the decomposition results in conjectural double mirrors.

2While we do not wish to be explicit in this definition, by a mildly noncommutative
variety we mean a sheaf of finite rank algebras over a usual variety or stack.

3As far as we know, there is no systematic study of nonlinear sigma models with
noncommutative targets in the physics literature. Perhaps this paper may provide a
motivation for it.
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To make this a bit more precise, suppose we have

(1.1) deg∨ =
1

2
(s1 + · · · + s2r) + t1 + · · · + tk−r

where si and tj are linearly independent lattice elements of K∨ which satisfy
〈deg, si〉 = 〈deg, tj〉 = 1. The index k = 〈deg,deg∨〉 of reflexive Gorenstein
pair (K,K∨) is fixed, but r could vary. We construct a stack S which is a
complete intersection in a toric stack by equations associated to {ti}. Then
{si} give a sheaf of even Clifford algebras B0, and they combine to give us
a noncommutative variety (S,B0).

4

Two extreme cases are of particular importance: when r = 0, there are
no {si} in the expression of deg∨ and B0 = O. The noncommutative stacks
(S,B0) are just usual DM stacks S which are crepant resolutions of Calabi-
Yau complete intersections in toric Gorenstein Fano varieties. If there is a
mirror, then one gets the classical Batyrev-Borisov construction. On the
other end of the spectrum, when r = k, there are no {ti} in the expression
of deg∨. In this case S is a toric DM stack.

The main result of the paper is the following theorem.

Theorem 6.2. Suppose that a complete intersection X and a Clifford non-
commutative variety Y are given by different decompositions of the degree
element deg∨ of a reflexive Gorenstein cone K∨ and the appropriate regular
simplicial fans in K∨. Then the bounded derived categories of X and Y are
equivalent, provided the centrality and the flatness assumptions on Y hold.

For the benefit of the reader, we try to keep the paper as self-contained
as possible. It is structured as follows.

In Section 2 we review the definition of reflexive Gorenstein cones and
set up some of the notations that recur throughout the paper. We give a
quick introduction to Batyrev-Borisov construction from the viewpoint of
the pairs of reflexive Gorenstein cones (K,K∨). This is a slightly different
approach to the subject than the more traditional study of nef-partitions
as in [Bor93]. We find it more natural both in its own right and for the
purposes of this paper. In fact, we only mention nef-partitions in passing
remarks.

In Section 3 we outline the physical intuition that guides this paper and
is key to the proper understanding of the construction and its possible gen-
eralizations. We hope that even readers not interested in the more technical
details of the rest of the paper will read this section. We argue that the
principal category of interest is the graded equivariant derived category of
singularities of the potential in the homogeneous coordinates, considered
in [BFK12]. It is defined for every regular simplicial fan in K∨ but is unique
up to equivalence.

4For our construction to work best, we need some additional technical centrality con-
dition on a fan Σ in K∨ and a certain flatness assumption.
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In Section 4 we recall the construction of Kuznetsov of Clifford double
mirrors of complete intersections of quadrics in CPn. This section serves a
dual purpose. On the one hand, we introduce the key example that served as
the original motivation behind this paper. On the other hand, we introduce
(even) Clifford algebras which will be used further in the paper.

In Section 5 we consider the decompositions (1.1) with r = k. We con-
struct sheaves of Clifford algebras over toric DM stacks which generalize
Kuznetsov’s construction and open the door to many more examples of the
phenomenon. In particular, we describe a double mirror to the quotient of
complete intersection of four quadrics in CP7 by a fixed point free involution.

In Section 6 we prove the first case of our main result, namely the equiv-
alence of derived categories of Clifford double mirrors to the graded equi-
variant derived categories of singularities from Section 3. Our argument is
based heavily on the work of [BFK12].

In Section 7 we generalize the construction of Section 5 to the 0 < r < k
case of (1.1). We also conjecture that the derived equivalence statement of
Section 6 extends to this more general case.

In Section 8 we discuss in detail the combinatorics of Clifford double
mirrors. It is likely to be useful in further study of the phenomenon.

In Section 9 we describe several additional examples of the construction.
Some of them such as Calabrese-Thomas’ example [CT14] already appear in
the literature, and the others are new. We specifically look at what happens
if some of the assumptions of the main theorem are relaxed.

Finally, in Section 10 we make some concluding remarks and pose open
questions that we hope the readers or the authors will address in future
research.

Acknowledgements. We thank Nicolas Addington, Matt Ballard, Tyler
Kelly, Alexander Kuznetsov and Howard Nuer for stimulating conversations
and useful comments. L. Borisov was partially supported by NSF grant
DMS-1201466.

2. Review of reflexive Gorenstein cones, Batyrev-Borisov

mirror construction and double mirror phenomenon.

In this section we give an overview of Batyrev-Borisov mirror construction
with the emphasis on reflexive Gorenstein cones. This viewpoint is essen-
tial for understanding the rest of the paper. So even a reader familiar with
Batyrev-Borisov construction in terms of nef-partitions will find it necessary
to at least briefly look through this section. We describe the crucial work of
Batyrev and Nill [BatN08] which forms the basis for the double mirror phe-
nomenon in the Batyrev-Borisov setting. In the process we fix the notations
and explain the way they are used throughout the paper.
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2.1. Reflexive Gorenstein cones. Let M ∼= ZrankM be a lattice and let
N := HomZ(M,Z) be its dual. The natural pairing is given by

〈, 〉 : M ×N → Z.

Let MR := M ⊗ZR, NR := N ⊗ZR be the R-linear extensions of M,N . The
pairing can be R-linearly extended as well, and we still use 〈, 〉 to denote
this extension.

Definition 2.1. A rational polyhedral cone K ⊂ MR is a convex cone gen-
erated by a finite set of lattice points. We assume that K ∩ (−K) = {0}.
We call the first lattice point of a ray ρ of K a primitive element or a lattice
generator of ρ.

Definition 2.2. ( [BatBor94]) A full-dimensional rational polyhedral cone
K ⊂ MR is called a Gorenstein cone if all the primitive elements of its rays
lie on some hyperplane 〈−, n〉 = 1 for some degree element n in N . A
Gorenstein cone K ⊂ MR is called a reflexive Gorenstein cone iff its dual
cone K∨ := {y | 〈x, y〉 ≥ 0 ∀ x ∈ K} is also a Gorenstein cone with respect
to the dual lattice N .

Remark 2.3. Note that (K∨)∨ = K, which is why we typically talk about
a pair of dual reflexive Gorenstein cones K and K∨. For any such pair the
degree elements are unique and are denoted by deg∨ and deg respectively.
Observe that deg∨ is a lattice point in the interior (K∨)◦ of K∨ and there
holds

(K∨)◦ ∩N = deg∨+(K∨ ∩N).

Similarly K◦ ∩M = deg+(K ∩M).

Definition 2.4. For a pair of dual reflexive Gorenstein cones (K,K∨), the
pairing of their two degree elements 〈deg,deg∨〉 = k is called the index of
the pair. The index is always a positive integer.

The following is an example of a 3-dimensional reflexive Gorenstein cone
and its dual cone. Notice that two degree elements deg,deg∨ happen to lie
on the hyperplanes 〈−,deg∨〉 = 1 and 〈deg,−〉 = 1 which may not be the
case in general. Indeed, this will never happen as soon as the index of the
pair of Gorenstein cones is larger than 1.

deg
(1, 1,−1)

(1, 1, 1)(1,−1, 1)

(1,−1,−1)

(0, 0, 0)

Gorenstein cone K.

〈−,deg∨〉 = 1

deg∨ (1, 1, 0)

(1, 0, 1)
(1,−1, 0)

(1, 0,−1)

(0, 0, 0)

The dual Gorenstein cone K∨.

〈deg,−〉 = 1
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We will revisit this example in Section 9.4.

Remark 2.5. If a pair of Gorenstein cones leads to a complete intersection
in a toric variety, the index k of the pair is the codimension of the complete
intersection. The dimension of the complete intersection is d − 2k where
d = rankM = rankN . In particular, the original Batyrev’s hypersurface
construction corresponds to k = 1, as is the case in the above figure. In this
paper we are primarily interested in the case k > 1, so the reader should
not rely too much on their knowledge of the original Batyrev’s hypersurface
construction.

Given a pair of reflexive Gorenstein cones (K,K∨) we define two lattice
polytopes

∆ = {x ∈ K, 〈x,deg∨〉 = 1}, ∆∨ = {y ∈ K∨, 〈deg, y〉 = 1}.

Their sets of lattice points are denoted by

K(1) := ∆ ∩M, K∨
(1) := ∆∨ ∩N

respectively. When the index k is one, these are the original reflexive poly-
topes of Batyrev [Bat94]. For k > 1, these polytopes have no interior lattice
points, although they can and often do have non-vertex lattice points on the
boundary.

A crucial part of the data necessary to define Calabi-Yau varieties (or
more generally triangulated categories of Calabi-Yau type) in the setting of
Gorenstein reflexive cones, is a family of coefficient functions

c : K(1) → C.

We typically fix an element of this family in general position.

2.2. Reflexive cones to complete intersections. The original Borisov’s
extension of Batyrev’s construction was accomplished by the use of nef-
partitions. However, a more flexible and conceptually superior way of look-
ing at the construction has been later provided by the work of Batyrev and
Nill [BatN08]. This new approach allows for a very clear way of construct-
ing double mirrors in the Batyrev-Borisov setting. While we follow the idea
of Batyrev and Nill, the exposition below is different from their paper. In-
deed, we are trying to set up the viewpoint that will naturally extend to our
noncommutative double mirror setting.

The main idea of Batyrev-Nill’s paper is the following concept of the
decomposition of the dual degree element.

Definition 2.6. Let (K ⊂ MR,K
∨ ⊂ NR) be a pair of dual reflexive Goren-

stein cones of index k. We call

deg∨ = t1 + · · · + tk
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a decomposition of deg∨ if all ti are elements of K∨
(1).

5

Given a decomposition of deg∨, one can construct a singular toric variety
Psing and a family of Calabi-Yau complete intersections in it. We will later
describe how one can construct a Deligne-Mumford stack crepant resolution
of this family.

Definition 2.7. Since ti ∈ K∨ ∩ N , the pairing with ti provides the semi-
group ring C[K ∩M ] with a (Z≥0)

k grading. Indeed, a monomial associated
to m will have grading (〈m, t1〉, . . . , 〈m, tk〉). One can then define the multi-
Proj of this ring the same way one defines a usual Proj to get

Psing := multiProj(C[K ∩M ]).

Remark 2.8. We will later see a more conventional definition of this toric
variety Psing, which does not use the multi-Proj construction but is a bit less
intuitive.

The decomposition deg∨ =
∑k

i=1 ti provides a decomposition of the set
of lattice points of ∆ into a disjoint union of the sets

K(1) =
k
⊔

i=1

K(1),i, K(1),i = {x ∈ K(1),i, 〈x, tj〉 = δji }

where δji is the Kronecker delta. Importantly, these sets K(1),i are the sets of
lattice points of lattice polytopes ∆i in M , which are faces of ∆. A generic
coefficient function c : K(1) → C now allows one to define k homogeneous
elements of C[K ∩M ]

∑

m∈K(1),1

c(m)[m], . . . ,
∑

m∈K(1),k

c(m)[m],

where [m] is the monomial element of C[K ∩M ] that corresponds to m.

Definition 2.9. For a generic choice of c, we define the complete intersec-
tion Xc,sing ⊂ Psing by

Xc,sing := multiProj(C[K ∩M ]/〈
∑

m∈K(1),1

c(m)[m], . . . ,
∑

m∈K(1),k

c(m)[m]〉).

Remark 2.10. In the absence of a decomposition of deg∨, one may only
consider the usual

H = Proj(C[K ∩M ]/〈
∑

m∈∆

c(m)[m]〉) ⊂ Proj(C[K ∩M ])

which is a hypersurface in a toric variety. A choice of a decomposition allows
one to realize the above hypersurface as a so-called Cayley hypersurface of
a complete intersection. There are also situations where a decomposition of

5It is easy to show that these ti are linearly independent, so it does not need to be a
part of the definition.
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deg∨ does not exist, as in the example of [BatBor94]. In these cases one can
try to work with the hypersurface H as if it were a Cayley hypersurface of a
complete intersection, even though no such complete intersection is available.

Let us now describe Psing in a more traditional way, which will also allow
us to talk about its desingularizations.

Observe that the sublattice of N given by Zt1+ . . .+Ztk is of rank k and
is saturated. Indeed, if a set K(1),i were empty for some i, it would mean
that all elements of K(1) had zero pairing with ti, in contradiction to K
being full-dimensional. Thus, there are elements in each K(1),i and a pairing

with them provides a splitting to the natural map Zk → N given by ti. We
define the quotient lattice N of N and a sublattice M of M by

N := N/(Zt1 + . . .+ Ztk), M := Ann(Zt1 + . . .+ Ztk).

Note that M and N are naturally dual to each other. The image of the
polytope ∆∨ under the quotient map φ : NR → NR is a polytope φ(∆∨)
which is reflexive (see [Li13]). Consider the minimum fan Σ1 in NR associ-
ated to φ(∆∨), i.e. the fan whose maximum cones correspond to facets of
φ(∆∨). Then Psing is the toric Fano variety associated to Σ1.

Note that the polytopes ∆i lie in parallel translates ofM . We also observe
[Li13] that

k
∑

i=1

∆i − deg

is the reflexive polytope dual to φ(∆∨). This allows us to view polytopes
∆i as support polytopes for global sections of k globally generated line bun-
dles on Psing. The Minkowski sum of the polytopes is the anti-canonical
polytope, which means that the tensor product of the line bundles is the
anti-canonical bundle of Psing. Thus, provided that the intersection Xc,sing

is of expected dimension, it will be a Calabi-Yau variety by the adjunction
formula. We will see that for a generic choice of the coefficient function c
the resulting Xc,sing is of correct dimension and has a DM stack resolution
induced by a resolution of the ambient space Psing.

Before we prove the main result of this section, let us state and prove a
simple lemma.

Lemma 2.11. We have

K =
∑

i

R≥0∆i.

Moreover, if a point v ∈ K has 〈v, ti〉 = αi, then v ∈
∑

i αi∆i.

Proof. Since ∆i ⊂ K, we have
∑

iR≥0∆i ⊆ K. In the other direction,
observe that for every ray of K its generator lies in one of the ∆i. Finally,
the last statement follows by considering the pairing with t1, . . . , tk. �
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Let us now formulate an important result that connects triangulations of
the boundary of φ(∆∨) with fans on K∨.

Proposition 2.12. Let Σ be a simplicial fan in N which comes from a
regular triangulation of the boundary of φ(∆∨). Consider the fan Σ in N
which is the preimage of Σ intersected with K∨. Then preimages of the
maximum cones of Σ are themselves simplicial cones in NR, and the fan Σ
comes from a regular triangulation of ∆∨.

Proof. It is clear that the preimages of the cones of Σ form a fan, when
intersected with K∨. To make sure that the generators of the rays of Σ are
lattice points of ∆∨, we need to show that all lattice points of φ(∆∨) are
images of lattice points of ∆∨. Suppose that there is p ∈ φ(∆∨) ∩ N . We
have p = φ(q) for some q ∈ ∆∨. While we can not assume that q ∈ N , we
know that there exist αi ∈ R such that

q̂ =

k
∑

i=1

αiti + q ∈ N.

We may assume that q̂ ∈ K∨ and by picking such q̂ of minimum degree
〈deg, q̂〉 we can assure that for all i we have q̂ − ti 6∈ K∨. This means that
there are generators vi of K such that 〈vi, q̂− ti〉 < 0. Since 〈vi, q̂〉 ≥ 0, this
shows that 〈vi, ti〉 > 0, thus vi ∈ ∆i ∩ M . Since 〈vi, ti〉 = 1 and 〈vi, q̂〉 is
integer, we see that 〈vi, q̂〉 = 0. Since 〈vi, q̂〉 = αi + 〈vi, q〉 and 〈vi, q〉 are
nonnegative, we see that αi ≤ 0. Unless all αi are zero, we see that q̂ is of
degree zero, which implies that p = 0, in which case the above argument
shows that the only lattice preimages q of 0 ∈ N inside ∆∨ are ti. If all αi

are zero, it means that q = q̂ is a lattice point. In fact, the above argument
show the uniqueness of such q.

Let us now show that the intersection of the preimage of a maximum-
dimensional cone

σ1 = R≥0φ(w1) + · · ·+ R≥0φ(wd−k)

of Σ with K∨ is the cone

σ = R≥0w1 + · · ·+ R≥0wd−k +

k
∑

i=1

R≥0ti.

The inclusion

σ ⊆ φ−1(σ1) ∩K∨

is clear. In the other direction, observe that there is a facet of φ(∆∨) that
contains all φ(wj). This means that there is an element of v ∈ MR ⊂ MR

(we can pick it in M , but we will not need it) such that 〈v, ti〉 = 0 for all i,
〈v,∆∨〉 ≥ −1 and 〈v,wj〉 = −1 for all j. We see that (v+deg) is nonnegative
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on ∆∨, therefore v + deg ∈ K. By Lemma 2.11 we see that

v + deg =

k
∑

i=1

vk

with vi ∈ ∆i. Observe that 〈v + deg, wj〉 = 0 and v + deg ∈ K implies that
〈vi, wj〉 = 0 for all i and j.

Now suppose that

w =
∑

i

αiti +
∑

j

βjwj ∈ φ−1(σ1) ∩K∨

Then for all i we have 〈vi, w〉 ≥ 0 which implies that αi ≥ 0, so w ∈ σ.

Last, we observe that the fan Σ is regular, since we may simply use the
pullback of the convex piecewise-linear function on Σ to give one for Σ. �

As the result of the above Proposition, we can construct a regular sim-
plicial fan Σ on K∨ with the following property.

(2.1) All maximum dimensional cones of Σ contain t1, . . . , tk.

The toric variety PΣ is a vector bundle over the toric variety PΣ. However,
we are interested in the corresponding Deligne-Mumford stacks. We will
review the construction of these stacks briefly. It is much easier in this
setting than in general [BCS05] since the lattices in question do not have
torsion.

Consider the open torus-invariant subset UΣ of the variety C
K∨

(1) of complex-
valued functions on the finite set K∨

(1) given by the points z : K∨
(1) → C

with the zero locus a subset of some cone σ ∈ Σ. 6 There is a group G

which acts on UΣ. It is the subgroup of the torus (C∗)
K∨

(1) which consists of
λ : K∨

(1) → C∗ with the property that
∏

n∈K∨

(1)

λ(n)〈m,n〉 = 1

for all m ∈ M . The smooth Deligne-Mumford stack [UΣ/G] is a resolution
of singularities of Spec(C[K ∩M ]).

Similarly, we consider the open subset UΣ of the variety C
K∨

(1)
−{t1,...,tk}

given by the property that the zero locus of z lies in a cone of Σ. We see
that

UΣ = UΣ × Ck

where the second factor corresponds to the values of z on t1, . . . , tk. More-
over, our description of the set of lattice points of φ(∆∨) implies that the

6Here we mean that the indices of the zero locus form a set in the simplicial complex
that corresponds to Σ. In particular, if a point in K∨

(1) is not used in Σ, the corresponding

variable is always nonzero.
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group G used to construct the Deligne-Mumford stack that corresponds to
Σ coincides with the group G above. Specifically, every function

λ : K∨
(1) − {t1, . . . , tk} → C∗

which satisfies
∏

n∈K∨

(1)
−{t1,...,tk}

λ(n)〈m,n〉 = 1

for all m ∈ M = Ann(Zt1 + · · ·Ztk) can be uniquely extended to

λ : K∨
(1) → C∗

which satisfies the above condition for all m ∈ M . This gives UΣ a structure
of the G-equivariant vector bundle over UΣ and gives PΣ = [UΣ/G] a struc-
ture of a vector bundle over PΣ = [UΣ/G]. Moreover, this vector bundle
is naturally the direct sum of k line bundles that correspond to individual
coordinates z(ti).

As before, consider a generic coefficient function c. It allows us to define

polynomials hi in coordinates of C
K∨

(1)
−{t1,...,tk}

hi :=
∑

m∈K(1),i

c(m)
∏

n∈K∨

(1)
−{t1,...,tk}

z(n)〈m,n〉,

and the corresponding complete intersection on UΣ

Xc := {h1 = · · · = hk = 0} ⊂ UΣ.

Observe that we have

C(z) =

k
∑

i=1

z(ti)hi =
∑

m∈K(1)

c(m)
∏

n∈K∨

(1)

z(n)〈m,n〉,

and therefore {C = 0} is the Cayley hypersurface associated to the complete
intersection of {hi = 0}. Since the above construction is G-equivariant, we
see that the same is true for the stacks

Hc := [{C(z) = 0}/G] ⊂ PΣ

and

Xc := [∩i{hi = 0}/G] ⊂ PΣ.

We observe that if c is generic (for example ∆-nondegenerate in the sense
of Batyrev) then Xc is a smooth Deligne-Mumford stack. The stack Hc

is singular along Xc which is naturally included as a substack in the zero
section of the vector bundle PΣ → PΣ.

We have thus described how to associate to a decomposition

deg∨ = t1 + · · · + tk

and a fan Σ with the property (2.1) a family of smooth Calabi-Yau DM
stacks.
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2.3. Mirrors and double mirrors. To construct the mirror family, one
should consider a decomposition

deg = u1 + . . .+ uk

where ui ∈ K(1). One can reindex ui to ensure that 〈ui, tj〉 = δi,j. One
can show that the combinatorial data of (K,K∨) together with the pair of
decompositions of deg and deg∨ are precisely equivalent to the data of the
nef-partition considered originally in [BatBor94]. It allows one to construct
a family

{Yc∨}

for generic mirror coefficient functions c∨ : K∨
(1) → C, provided one picks a

simplicial subdivision of K.

The double mirrors of {Xc} are then defined as mirrors of mirrors of
{Xc}. As the above discussion shows, they can be obtained from the same
pair of cones (K,K∨) and the coordinate functions c by changing the fan Σ
and more interestingly by changing a decomposition of deg∨ to

deg∨ = t′1 + · · ·+ t′k.

A striking observation regarding this double mirror construction is that the
coefficients c(m) are generally sorted into different subsets to define the
complete intersection! Nonetheless the resulting stacks are expected to share
many properties.

Remark 2.13. In what follows we will call {X ′
c} a double mirror of {Xc}

even in the absence of a choice of a decomposition of deg. 7 We are less
interested in the choice of Σ and Σ′, although they of course are needed. The
reason is that different choices of the fans amount to a combination of toric
flops.

We collect existing results related to Batyrev-Borisov double mirrors X ,X ′.

Theorem 2.14. For any p, q, the stringy Hodge numbers hp,qst (Xc,sing) and
hp,qst (X

′
c,sing) coinside.

This is a direct consequence of the main theorem of [BatBor96] which
provides a combinatorial formula for hp,qst (Xc,sing) in terms of the combi-
natorics of the cones K and K∨. Note that these Hodge numbers are the
orbifold Hodge numbers of the crepant stacky resolutions Xc and X ′

c consid-
ered above.

In [BatN08], Batyrev and Nill proposed conjectures on the birationality
and derived equivalence of double mirrors. These conjectures have been
answered in [Li13,FK14].

7Such decomposition may not exist, in which case the families in questions are in some
sense generalized double-mirrors of each other. We do not expect this to be essential.
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Theorem 2.15. ( [Li13]) Under some mild technical assumptions, the dou-
ble mirrors Xc and X ′

c are birational.

Theorem 2.16. ( [FK14]) The double mirrors Xc and X ′
c are derived equiv-

alent.

There are other types of (commutative) mirror constructions in mirror
symmetry which also exhibit double mirror phenomenon. Among them, the
so called Berglund-Hübsch-Krawitz mirror construction [BerH93,Kra09] is
particularly well understood. We briefly mention the parallel results in BHK
setting.

Let ZA,G, ZA′,G be a pair of BHK double mirrors. The equivalence be-
tween orbifold Chen-Ruan cohomology of corresponding DM-stacks [ZA,G]
and [ZA′,G] is a consequence of the main result of [CR11]. The birationality
of double mirrors is established in various generality in [Sho12,Kel13,Cla13,
Bor13]. In [FK14], the derived categories of double mirrors are shown to be
equivalent.

3. The underlying philosophy: triangulated categories

associated to reflexive Gorenstein cones.

In this section we explain the underlying philosophy that guides our con-
struction. We construct triangulated categories of type IIB boundary condi-
tions for the data of reflexive Gorenstein cones and corresponding potentials.
We argue that these categories provide the correct definition and should be
the primary object of study.

Let K ⊂ MR and K∨ ⊂ NR be dual reflexive Gorenstein cones. Let

c : K(1) → C, c∨ : K∨
(1) → C

be generic coefficient functions. To this data one should be able to associate
(in some vague physical sense) N = (2, 2) superconformal field theories of
type IIA and IIB. The switch between the IIA and IIB should correspond to
the switch of the data and the dual data. For the purposes of the following
discussion we will focus on the IIB theory. We should view this theory as
some kind of generalized Landau-Ginzburg theory with the potential c and
the generalized Kähler data (or mirror potential) given by c∨.

A reasonably well understood feature of type IIB superconformal field
theory is the triangulated category of the boundary conditions on the open
strings. If the target is a Calabi-Yau manifold, then this is simply the derived
category of coherent sheaves on it. In what follows we propose a definition
of such triangulated category in our setting.

Consider the singular affine toric variety Spec(C[K ∩M ]) and the hyper-
surface in it

Xc := Spec(C[K ∩M ]/〈
∑

m∈K(1)

c(m)[m]〉).
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We want to define the triangulated category in question as some resolution
of the graded singularity category ofXc. The grading is given by deg∨ ∈ K∨.
The actual definition is given below in terms of the Cox construction.

Consider a regular triangulation Σ of K∨ and the corresponding Cox open
subset

UΣ ⊂ C
K∨

(1)

given by the points z : K∨
(1) → C with the zero locus a subset of some cone

σ ∈ Σ. There is a group G which acts on UΣ. It is a subgroup of the torus

(C∗)
K∨

(1) which consists of λ : K∨
(1) → C∗ with the property that

∏

n∈K∨

(1)

λ(n)〈m,n〉 = 1

for all m ∈ M . The smooth Deligne-Mumford stack [UΣ/G] is a resolution
of singularities of Spec(C[K ∩M ]).

The coefficient function c defines a hypersurface C = 0 in UΣ where

C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨

(1)

z(n)〈m,n〉

is the G-invariant polynomial that corresponds to
∑

m c(m)[m] ∈ C[K∩M ].

The action of C∗ on [UΣ/G] that we alluded to before manifests itself in

a natural supgroup Ĝ ⊃ G defined as

(3.1) Ĝ := {λ : K∨
(1) → C∗

∣

∣

∣

∏

n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ Ann(deg∨)}.

We have a natural inclusion G ⊂ Ĝ and the quotient Ĝ/G can be identified

with C∗ by choosing m ∈ M with 〈m,deg∨〉 = 1. Then the map Ĝ → C∗

given by

λ 7→
∏

n∈K∨

(1)

λ(n)〈m,n〉

is surjective, has kernel G and is independent from the choice of m above.

Definition 3.1. We define the triangulated category

DB(K, c; Σ)

as the graded category of singularities of {C = 0} ⊂ [UΣ/G]. Specifically,

it is obtained from the bounded derived category of Ĝ-equivariant coherent
sheaves on {C = 0} by taking quotient by the full subcategory generated by

locally free Ĝ-equivariant sheaves.
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We would like to argue that thus defined category should be viewed as
the correct mathematical definition of the triangulated category of type IIB
branes on the theory that corresponds to the above combinatorial data, even
if the said theory itself is not defined mathematically. Our first observation
is the result of Ballard, Favero and Katzarkov [BFK12], which clarifies the
earlier work of Herbst-Walcher [HW12].

Theorem 3.2. The category DB(K, c; Σ) does not depend on Σ in the sense
that for any two regular simplicial fans Σ+ and Σ− as above there is an
equivalence of triangulated categories

DB(K, c; Σ+) = DB(K, c; Σ−).

Proof. This statement follows from [BFK12, Theorem 3.5.2]. Since all of the
rays of the fans lie in a hyperplane, the parameter µ of [BFK12] is 0. �

Remark 3.3. As expected, the triangulated category of the data (K,K∨; c, c∨)
is independent of c∨. However, there should be some, yet unknown, construc-
tion of the family of such categories as c∨ varies. This family of categories
should have a flatness property. Then the above equivalences correspond to
the path in the Kähler moduli space of c∨ between the large Kähler limit
points that correspond to Σ+ and Σ−.

Importantly, we can relate the above defined category DB(K, c) to the
derived category of a Calabi-Yau complete intersection for any choice of a
decomposition

deg∨ = t1 + · · ·+ tk.

Specifically, there is the following result, due to multiple authors, see [FK14,
Isik13,Shi12].

Theorem 3.4. Let deg∨ = t1 + · · · + tk be a decomposition of deg∨ as in
Section 2. Let Σ be a regular simplicial fan in K∨ considered in that section.
Let Xc;Σ be the complete intersection considered in that section. Then

DB(K, c; Σ) = Db(Coh− Xc;Σ)

in the sense of equivalence of triangulated categories.

Remark 3.5. We can thus view the category DB(K, c) = DB(K, c; Σ) as
a primary object of interest. In a somewhat vague sense we view the above
Theorem 3.4 as large Kähler limit description of DB(K, c) as the size of the
coefficients c∨(ti) for the mirror coefficient function

c∨ : K∨
(1) → C

is large compared to the other values. In what follows we will describe an-
other explicit geometric realization of DB(K, c), this time coming from a
more complicated decomposition of deg∨ which corresponds to a more com-
plicated large Kähler limit.
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Remark 3.6. If the centrality assumption on the fan (2.1) does not hold,
then we expect some interesting structures along the lines of exoflops of
Aspinwall [Asp09,Asp15]. However, these are not the focus of the current
paper.

Remark 3.7. There must be a relation between the Hochschild cohomol-
ogy of the category DB(K, c) and the stringy cohomology of (K,K∨; c, c∨)
in [Bor14]. However, we can not presently formulate a precise conjecture,
beyond the basic equality of dimensions.

4. Review of Kuznetsov’s Clifford double mirrors of complete

intersections of quadrics in CPn.

The goal of this section is to review the construction due to Kuznetsov
of noncommutative (Clifford) double mirrors of complete intersections of
quadrics in projective spaces. One can view this paper as the generalization
of Kuznetsov’s construction to more general toric varieties, as well as an
explanation of the combinatorics behind it. We are interested in the Calabi-
Yau case of the construction, so we will be working with the intersection of
k quadrics in CP2k−1.

Let f1, . . . , fk be generic homogeneous degree two polynomials in the vari-
ables x := (x1 : . . . : x2k). Consider the complete intersection Y ⊂ CP2k−1

Y = {f1(x) = f2(x) = . . . = fk(x) = 0}.

This will be a smooth Calabi-Yau variety by Bertini’s theorem and the
adjunction formula. Note that the Cayley hypersurface of this complete
intersection Y may be thought of as the generic bi-degree (1, 2) divisor in
CPk−1 × CP2k−1 given by

u1f1(x) + · · ·+ ukfk(x) = 0.

We denote this hypersurface by X.

The double mirror noncommutative variety can be described as follows.
The polynomial

C(u,x) = u1f1(x) + · · · + ukfk(x)

allows one to define a graded noncommutative ring which is the quotient
of the free ring in k commuting central variables ui and 2k noncommuting
variables yj

A = C[u1, . . . , uk]{y1, . . . , y2k}/〈(
2k
∑

i=1

xiyi)
2 + C(u,x), x ∈ CP2k−1〉.

This is a finitely generated algebra over the homogeneous coordinate ring
C[u1, . . . , uk] of CP

k−1. It is equipped with a half-integer grading such that
the degree of ui is 1 and the degree of yj is 1

2 . By localizing for the central
variables ui and taking the degree zero component we get a sheaf of even
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Clifford algebras B0 over CP
k−1. Specifically, if we introduce a vector bundle

E = On+1 over CPk−1 then B0 is the direct sum of vector bundles

B0 = O ⊕ (∧2E)(1) ⊕ . . .⊕ (∧2kE)(k)

with a certain Clifford multiplication structure. 8

The following key result is due to Kuznetsov. It generalizes the work of
Kapranov [Kap89] and relates the bounded derived category of the Cayley
hypersurfaceX in CPk−1×CPn with the bounded derived category of sheaves
of B0-modules on CPk−1. It is the consequence of Theorem 4.2 in [Kuz08].

Theorem 4.1. Denote by p : X → Pk−1 the natural projection with quadric
fibers of dimension n−1. The derived category Db(X) admits a semiorthog-
onal decomposition

Db(X) = 〈Db(Pk−1,B0), p
∗D(Pk−1)⊗OX/Pk−1(1), . . . , p∗D(Pk−1)⊗OX/Pk−1(2k−2)〉

in the sense that the orthogonal complement of 〈p∗D(Pk−1)(1), . . . , p∗D(Pk−1)(2k−
2)〉 is naturally equivalent to Db(Pk−1,B0).

It was shown by Kuznetsov that Db(Pk−1,B0) is equivalent to Db(Y ).
Instead of Kuznetsov’s original proof that uses Lefschetz decompositions
and homological projective duality, we will sketch a proof of this statement
that will generalize later to more sophisticated examples.

Theorem 4.2. There is an equivalence of categories

Db(Pk−1,B0) = Db(Y ).

Proof. We can relate the derived category of X to the category of singular-
ities of the corresponding affine bundle over Pk−1. Specifically, let X+ be
the singular quadric in

CPk−1 × C2k

given by C(u,x) = 0. This variety X+ admits a C∗ action which scales x.
We consider the graded derived category of its singularities

Db
sg(X̂,C∗).

The relative version of the famous theorem of Orlov [Orl09] gives a semiorthog-
onal decomposition of Db(X)

Db(X) = 〈p∗D(Pk−1)(1), . . . , p∗D(Pk−1)(2k − 2),Db
sg(X+,C

∗)〉

because the Gorenstein parameter a is given by (2k − 2) by adjunction
formula. This implies that

Db
sg(X+,C

∗) = Db(Pk−1,B0).

8We identify the exterior algebra with a Clifford algebra via the composition of the
embedding into tensor algebra and projection.
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For the second step, the work of Ballard, Favero and Katzarkov [BFK12]
allows one to pass from X+ to the hypersurface X− ⊂ Ck × CP2k−1 given
by

C(u,x) = 0,

together with the action of C∗ on u. Indeed, we may consider two open sub-
sets U± ⊂ Ck ×C2k defined by x 6= 0 and u 6= 0 respectively. We define the

group Ĝ = C∗×C∗ that scales both sets of coordinates. Then the categories
Db

sg(X+,C
∗) and Db

sg(X−,C
∗) are the quotients of the derived categories of

Ĝ-equivariant sheaves on U± by the subcategory of free complexes. We have
by [BFK12]

Db
sg(X+,C

∗) = Db
sg(U+, Ĝ) = Db

sg(U−, Ĝ) = Db
sg(X−,C

∗).

The middle equivalence is due to a certain “conservation of canonical class”.
Specifically, the subgroup G of Ĝ that preserves C(u,x) acts by

λtu = t−2u, λtx = tx.

Therefore, the weight of it on the anticanonical bundle of Ck×C2k restricted

to the fixed point (0,0) is
∑k

i=1(−2) +
∑2k

j=1 1 = 0. This is the condition

needed for the equivalence Db
sg(U+, Ĝ) = Db

sg(U−, Ĝ), see [BFK12].

Thus we get

Db(Pk−1,B0) = Db
sg(X−,C

∗).

Finally, we observe that Db
sg(X−,C

∗) is equivalent to the derived category

of the complete intersection Db(Y ) by the work of Isik [Isik13] and Shipman
[Shi12]. �

5. Clifford double mirror construction.

In this section we generalize the Kuznetsov’s example by uncovering the
underlying toric geometry. Specifically, we construct noncommutative dou-
ble mirrors of Calabi-Yau complete intersections in Gorenstein toric vari-
eties, given certain natural combinatorial data. These noncommutative mir-
rors consist of a pair (S,B0) where S is a smooth toric DM stack and B0 is a
sheaf of algebras which serves as the structure sheaf of (S,B0). The coherent
sheaves on (S,B0) are coherent sheaves on S which are also B0-modules.

We work in the notations of Sections 2 and 3. Namely, we have dual
Gorenstein cones K and K∨ in lattices M and N , with degree elements deg
and deg∨. We denote by k the index 〈deg,deg∨〉. There is also given a
generic coefficient function

c : K(1) → C.
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5.1. Definition of (S,B0). The key idea of this paper is that Kuznetsov’s
and related examples correspond to the decomposition of deg∨

(5.1) deg∨ =
1

2
(s1 + · · ·+ s2k)

with si ∈ K∨
(1). We assume the elements s1, . . . , s2k are R-linearly inde-

pendent. Moreover, we assume that there exists (and is chosen) a regular
simplicial fan Σ with support K∨ and rays based on K∨

(1) such that

(5.2) All maximum dimensional cones of Σ contain s1, . . . , s2k.

We call this the centrality assumption on Σ. As usual, we will also denote
by Σ the corresponding simplicial complex on the set K∨

(1). Note that in the

case of decompositions that correspond to complete intersections considered
in Section 2 the analogous centrality condition (2.1) can always be assured.
It may no longer be the case in this setting, even for k = 1.

To orient the reader, the idea of our construction is the following. The cen-
trality assumption (5.2) allows us to view the resolution PΣ of Spec(C[K ∩
M ]) as vector bundle of rank 2k over a toric base. Then the coefficient
function c gives a quadric section of this vector bundle in the sense of
Kuznetsov [Kuz08]. This defines a sheaf of even Clifford algebras over the
base of the fibration.

Unfortunately, there are some inevitable technical difficulties that need to
be overcome to make the above picture precise. First of all, we need to work
with smooth toric DM stacks, rather than schemes. Second, we need to be
careful in our choice of the lattice for the base of the fibration as described
below.

Let UΣ be the Cox open subset of C
K∨

(1) which consists of maps z : K∨
(1) →

C such that the preimage of 0 is an element of the simplicial complex Σ.

We define an abelian group

N := N/Zs1 + · · ·+ Zs2k + Z deg∨ .

Notice that we also quotient deg∨ in the last component. Otherwise, N
would always have an order two torsion element which is the image of deg∨.
The abelian group N may still have torsion elements as explained in Remark
5.10. Next, we consider the stacky fan Σ in N which corresponds to the
simplicial complex in K∨

(1)−{s1, . . . , s2k} whose maximum sets are obtained

from those of Σ by removing all of si. We immediately observe that the
centrality condition (5.2) implies that the natural identification

C
K∨

(1) = C
K∨

(1)
−{s1,...,s2k} × C2k

induces the natural identification

UΣ = UΣ × C2k.
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We will now discuss the various groups associated to the construction.

Recall that in Section 3 we considered two subgroups G and Ĝ of (C∗)
K∨

(1)

defined by

G := {λ : K∨
(1) → C∗

∣

∣

∣

∏

n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ M}

Ĝ := {λ : K∨
(1) → C∗

∣

∣

∣

∏

n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ Ann(deg∨)}.

The group G is the group that corresponds to the smooth toric DM stack
PΣ = [UΣ/GΣ], and the group Ĝ defines a C∗ action on PΣ.

There is an additional group of interest H isomorphic to C∗ given by

λ(si) = t, λ(v) = 1, for all v ∈ K∨
(1) − {s1, . . . , s2k}

with t ∈ C∗. Notice that H ⊆ Ĝ, because for any m ∈ Ann(deg∨) there
holds

∏

n∈K∨

(1)

λ(n)〈m,n〉 = t
∑

i〈m,si〉 = t〈m,2 deg∨〉 = 1.

Analogous calculation shows that H ∩G = {±1}.

Remark 5.1. The group H acts by scaling the fibers of the C2k fibration
UΣ → UΣ. Note also that the inclusion H ⊆ Ĝ is split, since one can

consider the evaluation at s1 as the splitting map Ĝ → H. While such
splitting is not completely natural, as it requires a choice of one of si, it will
suffice for our purposes.

Notice that there is a natural map Ĝ/H → (C∗)
K∨

(1)
−{s1,...,s2k} since the

coordinates of H that correspond to K∨
(1)−{s1, . . . , s2k} are equal to 1. This

gives an action of Ĝ/H on UΣ. We observe that this is precisely the action
used in the definition of the toric DM stack PΣ.

Lemma 5.2. We denote by G the quotient group Ĝ/H. Then the toric DM
stack associated to Σ in N is given by [UΣ/G].

Proof. According to [BCS05] we need to identify Ĝ/H with the character
group of the derived Gale dual of the complex

(5.3) 0 → Z
K∨

(1)
−{s1,...,s2k} → N → 0

defined by looking at linear combinations of images in N of degree one
elements of K∨.

To define the derived Gale dual one needs to resolve N by free groups.
Even in the case when it is already free, it will be convenient to consider the
short exact sequence of free abelian groups

0 → L → N/Z deg∨ → N → 0.
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Here L is the subgroup of N/Z deg∨ generated by the images of s1, . . . , s2k.
It is naturally isomorphic to the quotient of Z2k by (1, . . . , 1). Note that
Z deg∨ is saturated, since deg∨ is the smallest degree lattice element in the
interior of K∨.

Following the definitions of [BCS05] we now replace the complex (5.3)
above by a quasiisomorphic complex of free groups

0 → Z
K∨

(1)
−{s1,...,s2k} ⊕ L → N/Z deg∨ → 0.

The group that corresponds to the stacky fan Σ inN is given as the character
group of the cokernel L1 of the (injective) dual map

Ann(deg∨) → Z
K∨

(1)
−{s1,...,s2k} ⊕ L∨.

We have the exact sequence (in the multiplicative notation)

1 → Hom(L1,C
∗) → (C∗)

K∨

(1)
−{s1,...,s2k}×(C∗)2k/{t, . . . , t} → Hom(Ann(deg∨),C∗).

When compared with the definition of Ĝ via

1 → Ĝ → (C∗)
K∨

(1)
−{s1,...,s2k} × (C∗)2k → Hom(Ann(deg∨),C∗)

we recover the needed natural isomorphism between Hom(L1,C
∗) and G =

Ĝ/H. It is also easy to see that the action on UΣ is induced by the map

G → (C∗)
K∨

(1)
−{s1,...,s2k}. �

Remark 5.3. We recall that a quadric fibration in the sense of [Kuz08,
Section 3] is given by the following data:

• a smooth algebraic variety S;
• a vector bundle E → S;
• a line bundle L on S;
• an embedding of vector bundles σ : L → Sym2(E∨).

This data defines π : PS(E) → E the projectivization of E → S. The data
of σ gives a section of H0(PS(E),O(2) ⊗ π∗L∨) where O(1) be the dual of
the tautological line bundle on PS(E). Kuznetsov denotes by X ⊂ PS(E)
the zero locus of σ in PS(E). Then the restriction of π to X denoted by
p : X → S is a flat fibration with (possibly singular) quadric fibers. The
embedding assumption above is crucial. It is equivalent to the flatness of the
fibration p : X → S.

The coefficient function c gives a global function on UΣ given by

C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨

(1)

z(n)〈m,n〉.

We observe that C naturally fits into the definition of quadric fibration as
above which is G-equivariant.

Proposition 5.4. The zero set {C = 0} defines a G-equivariant quadric
fibration over UΣ.
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Proof. It follows immediately from the definition of C that it is invariant
under G and is semi-invariant under Ĝ. Specifically, the action of λ on C
scales each summand by

∏

n∈K∨

(1)

λ(n)〈m,n〉.

Since different m ∈ K(1) differ by an element of Ann(deg∨), the above term

is independent of m. Moreover, for λ ∈ H the above term is t〈m,
∑

i si〉 =
t〈m,2 deg∨〉 = t2. In other words, C(z) has total degree 2 in the variables
z(s1), . . . , z(s2k). �

Remark 5.5. It is important to point out that flatness of the quadric fibra-
tion can not be taken for granted. We will see later in Section 9.6 that it is
not always the case. Since the fibration is defined by a hypersurface C = 0,
the geometric criterion for flatness is that all of the fibers are hypersurfaces,
i.e. for all points z ∈ UΣ the restriction of C to the fiber of UΣ → UΣ is not
identically zero. We will refer to this condition on our combinatorial data
as the flatness assumption. If true, it can be typically established by Bertini
theorem arguments, so we will tacitly assume it, unless stated otherwise.

We are now ready to define the noncommutative variety (S,B0) that
corresponds to the decomposition 5.1, fan Σ and the choice of the coefficient
function c.

Definition 5.6. The noncommutative mirror (S,B0) is the sheaf of even
Clifford algebras B0 over the smooth DM stack S = [UΣ/G] associated to the
quadratic function C(z) of the stacky bundle

[UΣ/G] → [UΣ/G]

where we use the splitting of Ĝ → G to define the action of G on UΣ.

Remark 5.7. More explicitly, the category of coherent sheaves on (S,B0)
is defined as the category of G-equivariant sheaves over the even part of the
(locally constant) sheaf of Clifford algebras over UΣ given by

(5.4)
(

OUΣ
{y1, . . . , y2k}/〈(

2k
∑

i=1

ziyi)
2 + C(z), for all z1, . . . , z2k〉

)

even

where y1, . . . , y2k are free noncommuting variables and zi is a shorthand
notation for z(si). The subscript even refers to the parity of the number of
yi. Here the action of G on y1, . . . , y2k is defined as follows. For an element
λ ∈ G consider the lift λ to Ĝ from the splitting Ĝ = G × H. Denote by
ϕ(λ) the image of λ in Ĝ/G = C∗. Then we define

λ(yiyj) = λ−1
i λ−1

j ϕ(λ)yiyj

where λi is the coordinate of λ that corresponds to si. This definition is
ensures that (

∑

i ziyi)
2+C(z) is semi-invariant with respect to G with char-

acter ϕ.
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Remark 5.8. One could in principle define the action of G on the sheaf of
Clifford algebras without a choice of the splitting Ĝ = G ×H. For any lift
λ ∈ Ĝ of λ ∈ G the formula

λ(yiyj) = λ−1
i λ−1

j ϕ(λ)yiyj

gives the same result. Indeed, for an element t ∈ H = C∗ we have ϕ(h) = t2,
and λi = λj = t, so the right hand side is 1. However, we find it convenient
to pick a splitting.

We will now describe some simple examples of our construction. In par-
ticular, we make a connection to the Kuznetsov’s example that we studied
in Section 4 to show how it fits into the above toric formalism. For the sake
of simplicity, we will start with the classical example of (2, 2, 2, 2)-complete
intersections in CP7 which has been thoroughly studied by multiple authors
(see [Add09,CDHPS10]). It corresponds to the k = 4 case of Section 4.

Afterwards, we will consider a free Z2 quotient of the above example which
is a family of Calabi-Yau threefolds with Hodge numbers (1, 33). Its Clifford
double mirror could be obtained completely analogously but appears to be
new.

5.2. Example: (2, 2, 2, 2)-complete intersections in CP7. We start with
the lattice N1

∼= Z7 of the fan of CP7. We try to keep the construction as
natural as possible, in particular, we try to keep it symmetric with respect
to the permutations of coordinates of CP7. Thus we view this lattice as the
quotient of the lattice

⊕8
i=1 Zei by the sublattice Z(

∑8
i=1 ei). The fan of

CP7 has maximum cones that are generated by subsets of 7 out of 8 elements
of {ei}. The rays of the fan are generated by ei and correspond to coordinate
hyperplanes Di ⊂ CP7.

The dual lattice M1 is naturally identified with the rank 7 sublattice of
⊕

Ze∨i with the property that the sum of the entries is 0. Here we use {e∨i }
to denote the dual basis of {ei}.

To consider the complete intersection of four general quadrics in CP7, we,
as usual, subdivide the standard anitcanonical divisor of CP7 as

(D1 +D2) + (D3 +D4) + (D5 +D6) + (D7 +D8) = −KCP7 .

We introduce the extended lattices M = M1 ⊕ Z4 and N = N1 ⊕ Z4 and
consider the reflexive Gorenstein cone K∨ in N generated by the lattice
elements

s1 = (e1; 1, 0, 0, 0), s2 = (e2; 1, 0, 0, 0), t1 = (0; 1, 0, 0, 0),

s3 = (e3; 0, 1, 0, 0), s4 = (e4; 0, 1, 0, 0), t2 = (0; 0, 1, 0, 0),

s5 = (e5; 0, 0, 1, 0), s6 = (e6; 0, 0, 1, 0), t3 = (0; 0, 0, 1, 0),

s7 = (e7; 0, 0, 0, 1), s8 = (e8; 0, 0, 0, 1), t4 = (0; 0, 0, 0, 1).

The above si and tj form the set of degree one elements K∨
(1).
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The dual cone K in M is generated by 32 elements

(−e∨1 − e∨2 + 2e∨i ; 1, 0, 0, 0), (−e∨3 − e∨4 + 2e∨i ; 0, 1, 0, 0),

(−e∨5 − e∨6 + 2e∨i ; 0, 0, 1, 0), (−e∨7 − e∨8 + 2e∨i ; 0, 0, 0, 1)

for all i = 1, . . . , 8. The degree 1 lattice elements that form K(1) are given
by

(−e∨1 − e∨2 + e∨i + e∨j ; 1, 0, 0, 0), (−e∨3 − e∨4 + e∨i + e∨j ; 0, 1, 0, 0),

(−e∨5 − e∨6 + e∨i + e∨j ; 0, 0, 1, 0), (−e∨7 − e∨8 + e∨i + e∨j ; 0, 0, 0, 1)

for all 36 unordered pairs (i, j). The corresponding coefficient function

c : K(1) → C

encodes the coefficients of 4 quadrics at the standard monomials xixj .

In what follows, we will adapt a somewhat different way of looking at K
and K∨. We can think of the lattice N as the rank 11 quotient of Z12 by
the sublattice Z(

∑8
i=1 si − 2

∑4
j=1 tj). The cone K∨ is then just the image

of the positive orthant Z12
≥0. The dual lattice M can be viewed as a corank

one sublattice of
⊕8

i=1 Zs
∨
i ⊕

⊕4
j=1Zt

∨
j , namely

M = {
8

∑

i=1

ais
∨
i +

4
∑

j=1

bjt
∨
j |

∑

i

ai = 2
∑

j

bj}.

The cone K is then the intersection of M with the positive orthant.

The degree element deg∨ in K∨ is given by

(5.5) deg∨ =
1

2

8
∑

i=1

si =

4
∑

j=1

tj.

The degree element deg ∈ K is
∑8

i=1 s
∨
i +

∑4
j=1 t

∨
j . The elements of K∨

(1)

are the aforementioned si and tj . The elements of K(1) are of the form
s∨i + s∨j + t∨k where i may or may not equal j. When i = j we get the above
32 generators of the rays of K.

The equation (5.5) is a prototypical situation where for two different large
Kähler limits of the N = (2, 2) theories one gets the description of the
triangulated category in two ways. On the one hand, the decomposition

deg∨ =
4

∑

j=1

tj

allows one to see this category as the derived category of the complete in-
tersection of four quadrics in CP7. On the other hand, the decomposition

deg∨ =
1

2

8
∑

i=1

si
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leads to its description as the derived category of coherent sheaves for the
Clifford algebra over CP3.

For the first construction, we consider the regular simplicial fan on K∨

with eight maximum cones obtained by removing one of the eight elements
si. It is easy to see that the resulting complete intersection is that of four
quadrics in CP7. The coefficient of the xixj monomial of the k-th quadric
is the coefficient c(s∨i + s∨j + t∨k ).

For the second construction, we use the fan Σ inK∨ whose maximal cones
are given by eight elements si and three out of four ti. We observe that the
group Ĝ described in (3.1) is given by C∗ × C∗ with the action

(λ1, λ2)(tj) = λ1; (λ1, λ2)(si) = λ2.

The map to C∗ whose kernel is G is given by

(λ1, λ2) 7→ λ1λ
2
2.

The group H is given by {(1, λ2), λ2 ∈ C∗} ⊂ Ĝ, and the group G = Ĝ/H
is naturally isomorphic to C∗ with the diagonal map to (C∗)4 in view of
(λ1,−)(tj) = λ1. The lattice N is the quotient of N by the lattice generated
by si and deg∨. Therefore, it can be naturally identified with the quotient
of ⊕4

j=1Ztj by the span of
∑

j tj . The fan Σ is the standard fan of CP3.

Then it is easy to see that the sheaf of Clifford algebras constructed in
Definition 5.6 is the same sheaf on CP3 as the one constructed in Section 4.

Remark 5.9. The Clifford noncommutative variety (B,S0) should be viewed
as a crepant resolution of the singular double cover of CP3 ramified over the
determinantal octic which is the determinant of the symmetric 8× 8 matrix
of degree 1 forms encoded by c. See [Kuz15] for details.

5.3. Free involution quotients of (2, 2, 2, 2)-complete intersections.

In this example, we consider complete intersections of four quadrics in CP7

which admit a free Z2 action. This is a particular case of more general con-
struction of such complete intersections with more sophisticated free group
actions, see [Bea98,Hua11]. While the more interesting non-abelian actions
can not be easily realized in the toric setting of this paper, 9 the simple case
of an involution fits nicely into our construction.

An involution τ on a smooth complete intersection X of four quadrics
in CP7 always comes from a linear action on C8. In view of holomorphic
Lefschetz formula (or by direct inspection of fixed point sets), if this involu-
tion is fixed point free on X, then it must act with trace 0 on H0(X,O(1)).
Without loss of generality we may assume that this involution τ acts by

τ(x1 : x2 : . . . : x8) = (−x1 : −x2 : −x3 : −x4 : x5 : x6 : x7 : x8).

9One can try to extend to such actions by looking at automorphisms of the fan, similar
to [St12].
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Then the action of τ on the space of degree two polynomials in xi has 1
and (−1)-eigenspaces of dimension 20 and 16 respectively. Holomorphic
Lefschetz formula then forces us to consider 4 τ -invariant quadrics in CP7,
so that the action of τ on H0(X,O(2)) has eigenspaces of dimension 16 each,
see [Hua11].

In terms of toric geometry, the situation is extremely similar to the setting
of the previous example, except that the lattice Z8/Z

∑8
i=1 ei is now replaced

by a suplattice of index two to include 1
2 (e1+e2+e3+e4). On the dual side,

we must consider the corresponding sublattice of index two. When extended
to N , we now have

N =
(

(
8

⊕

i=1

Zsi +
1

2
Z(s1 + s2 + s3 + s4))⊕

4
⊕

j=1

Ztj

)

/Z(
8

∑

i=1

si − 2
4

∑

j=1

tj)

with the cone K∨ still given as the image of the nonnegative orthant. The
dual lattice M is now given by

M = {
8

∑

i=1

ais
∨
i +

4
∑

j=1

bjt
∨
j |

8
∑

i=1

ai = 2

4
∑

j=1

bj and

4
∑

i=1

ai is even}.

The cone K is the intersection of M with the positive orthant.

The degree elements deg∨ and deg are given by the same formulas as
before. The set K∨

(1) is unchanged, however, the set K(1) is now smaller. It

consists of elements of the form

s∨i + s∨j + t∨k

where i and j are either both in the range of 1, . . . , 4 or are both in the
range 5, . . . , 8. Observe that this is consistent with the choice of quadrics
from the invariant eigenspace of τ .

Again, we now look at the groups Ĝ, G and H. The group Ĝ is now equal
to C∗ × C∗ × {±1} which is written in coordinates as

(λ1, λ2,±1)(tj) = λ1, (λ1, λ2,±1)(si) = λ2, if 1 ≤ i ≤ 4,

(λ1, λ2,±1)(si) = ±λ2, if 5 ≤ i ≤ 8.

The map Ĝ → C∗ still sends

(λ1, λ2,±1) 7→ λ1λ
2
2.

The subgroup H of Ĝ that scales the variables that correspond to si is
(1,C∗, 1). The quotient group G = Ĝ/H is naturally identified with C∗ ×
{±1}.

Remark 5.10. In this example, the lattice Zs1 + Zs2 + . . . + Zs8 is not
saturated in M , even after adding deg∨ = 1

2

∑8
i=1 si. Indeed, there is also

an element 1
2 (s1+s2+s3+s4) in the real span of si, which is not an integer

linear combination of si and deg∨.
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Let us now discuss the noncommutative variety (S,B0) in view of the
above remark. The images of t1, . . . , t4 still add up to 0, so the base S is a
Z2 gerbe over CP3 given by the quotient [CP3/Z2] by the trivial Z2 action.
Alternatively, it is a quotient of C4−{0} by C∗×{±1} where the first factor
acts in the usual way and the second factor acts trivially. The vector bundle
used to construct the Clifford algebra is now a bit different. Namely, it is a
direct sum of two rank four bundles on which the extra involution acts as
(−1) and 1 respectively.

It is interesting to investigate this case further along the lines of Remark
5.9. On the coarse moduli space CP3 of S, the symmetric determinantal
octic is now a union of two symmetric determinantal quartics Q+ and Q−,
since the corresponding matrix consists of two 4× 4 blocks.

The fact that we consider a gerbe [CP3/Z2] can be encoded by looking at
the semidirect product of the even Clifford algebra of Kuznetsov’s original
construction with the group algebra C[h]/〈h2 − 1〉 of Z2. Let us investigate
the center of this algebra in more detail. Let us first localize over the generic
point of CP3, i.e. we will work over the field F of rational functions on CP3.
If we diagonalize the quadratic forms on V+ and V−, then the semidirect
product of the even Clifford algebra with the group ring of Z2 gives the even
part (in y) of the quotient of the free algebra

F{y+1 , . . . , y
+
4 , y

−
1 , . . . , y

−
4 , h}

by the two-sided ideal generated by the relations that h commutes with
y+i and anti-commutes with y−i , the relation h2 − 1, and the usual Clifford
relations

(y+i )
2 + c+i , (y

−
i )

2 + c−i , y
+
i y

−
j + y−j y

+
i

for all i and j and

y+i y
+
j + y+j y

+
i , y

−
i y

−
j + y−j y

−
i

for i 6= j. Note that ci may not assumed to be 1, since F is not algebraically
closed.

There is a grading by Z9
2 that looks at parity of monomials in y+i , y

−
i and

h. In fact, the algebra is easily seen to be of dimension 28 over F with the
basis given by

(5.6) hl
∏

i∈I

y+i

∏

j∈J

y−j

for sets I, J with |I|+ |J | even and l ∈ {0, 1}.

The same grading descends to the center, so to calculate the center we just
need to determine which monomials in (5.6) are central. If one has I which
is neither empty nor the whole set {1, . . . , 4}, then by taking a commutator
with y+i y

+
j with i in I and j not in I we get a factor of (−1). The same



ON CLIFFORD DOUBLE MIRRORS OF TORIC COMPLETE INTERSECTIONS 29

happens for J . So there are 8 monomials to consider as possible elements of
the center.

1, h, y+1 · · · y+4 , hy
+
1 · · · y+4 , y

−
1 · · · y−4 , hy

−
1 · · · y−4 ,

y+1 · · · y+4 y
−
1 · · · y−4 , hy

+
1 · · · y+4 y

−
1 · · · y−4 .

Of these, commutator with y+1 y
−
1 excludes all but

1, hy+1 · · · y+4 , hy
−
1 · · · y−4 , y

+
1 · · · y+4 y

−
1 · · · y−4

which are indeed central. It remains to observe that the relations of the
algebra imply that

(hy+1 · · · y+4 )
2 = c1,+ · · · c4,+ = det(C+)

and

(hy−1 · · · y−4 )
2 = c1,− · · · c4,+ = det(C−)

so at least generically the center of the algebra is the (Z2)
2 Galois cover of

CP3 obtained by attaching the square roots of the two quartics Q+ and Q−.

This motivates the following more precise conjecture.

Conjecture 5.11. The Clifford double mirror of Definition 5.6 is a crepant
categorical resolution of the Z2×Z2 Galois cover of CP3 ramified at the two
quartics Q+ and Q−.

In support of this conjecture, let us calculate the stringy Euler numbers
of this Galois cover. Each quartic Q± has 10 nodes and Euler characteristics
14. They intersect in a smooth curve Y with 2g − 2 = 64, so χ(Y ) = −64.
We have the following Euler characteristics

χ(Y ) = −64, χ(Q± − Y ) = 78, χ(CP3 − (Q+ ∪Q−)) = −88.

On the Galois cover, the first kind of points gives preimage of 1 point, the
second gives 2 points, and the last gives 4 points. Therefore, we get the
usual Euler characteristics of the Galois cover

(−64) + 2(78 + 78) + 4(−88) = −104.

The singularities on the Galois cover are the preimages of the 10 nodes of Q+

and 10 nodes of Q−, which gives 40 three-dimensional ODPs. Each of them
contributes an extra 1 to stringy Euler characteristics since their crepant
resolution locally involves replacing a point with a 2-sphere. So we get the
stringy Euler characteristics of −104+40 = −64. As expected, this matches
the Euler characteristics of the quotient of the complete intersection of type
(2, 2, 2, 2) in CP7 by a free involution.

Remark 5.12. We find it fascinating that the free quotient on the complete
intersection side leads to a double cover on the Clifford double mirror side
by means of enlarging the center of the corresponding sheaf of algebras. This
phenomenon depends crucially on the parity of the number of quadrics. We
will see later in Section 9.2 that in the case of Enriques surfaces realized as
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quotients of (2, 2, 2) complete intersections in CP5 by a free involution, the
center will be generically just the field of functions on CP2.

6. Derived categories of Clifford double mirrors.

The goal of this section is to provide a proof that the derived category
of the sheaf of Clifford algebras over a toric DM stack constructed in the
previous section is equivalent to the Ĝ-equivariant derived category of sin-
gularities considered in Section 3. This immediately implies that in the case
when different large Kähler limits give complete intersection and a sheaf
of Clifford algebras, there is an equivalence of the corresponding derived
categories. This is our main result Theorem 6.2.

Recall that we have a reflexive Gorenstein cone K ⊂ MR with the dual
cone K∨ ⊂ NR. Suppose there exists a decomposition

deg∨ =
1

2
(s1 + · · · + s2k), sj ∈ K∨

(1),

and a regular triangulation Σ of K∨
(1) such that every maximum dimensional

cone of Σ contains all {sj}. For a fixed generic coefficient function

c : K(1) → C

we define a noncommutative variety/stack (S,B0), as in Section 5. Recall
that S = [UΣ/G] is the toric DM stack associated to the action of the group

G = Ĝ/H

on an open set UΣ of C
K∨

(1)
−{s1,...,s2k}.

Let D(S,B0) be the bounded derived category of coherent sheaves on S
which are also B0-modules. Let us also consider the derived category

DB(K, c; Σ)

as the graded category of singularities of the hypersurface in [UΣ/G] defined

by c. Specifically, it is obtained from the bounded derived category of Ĝ-
equivariant coherent sheaves on {C(z) = 0} ⊂ UΣ by factoring out the

complexes of locally free Ĝ-equivariant sheaves.

The main result of this section is the following.

Theorem 6.1. Under the flatness assumption of Remark 5.5 there exists a
derived equivalence

D(S,B0) ∼= DB(K, c; Σ).

Proof. The argument uses the intermediate category Db(X ), which contains
both of the triangulated categories in question as left and right orthogonal
complements to an admissible subcategory. We will use the results of [Kuz08,
BDFIK14].

In order to construct X and Db(X ), recall that we have

UΣ = UΣ × C2k.
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There is a group Ĝ acting on UΣ. There is a subgroup H of Ĝ which acts
by scaling the coordinates of C2k. Moreover, the inclusion H ⊆ Ĝ is split
by Remark 5.1. Thus we will now consider

Ĝ = H ×G

where G = Ĝ/H and have G act UΣ as well.

Consider CP2k−1 bundle UΣ × CP2k−1 over UΣ given by

UΣ × (C2k − {0})/H.

The coefficient function c : K(1) → C gives rise to a quadric fibration over
UΣ in the sense of [Kuz08, Section 3]. Specifically, the polynomial

C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨

(1)

z(n)〈m,n〉

has total degree 2 in the variables z(s1), . . . , z(s2k), because

∑

n=si,i=1,...,2k

〈m,n〉 = 〈m,

2k
∑

i=1

si〉 = 〈m, 2 deg∨〉 = 2.

While our situation is slightly more general, since we are interested in work-
ing equivariantly with respect to the group G (or alternatively work over a
DM stack base rather than a scheme base), we can still use the framework
of Kuznetsov. However, we do need to assume that the fibration is flat, see
Remark 5.5 and Section 9.6.

We denote by X the DM quotient substack [{C = 0}/H ×G] of the DM
stack [UΣ × (C2k −{0})/H ×G]. Note that the action of G descends to the

action on UΣ × CP2k−1 and is compatible with the action on the base UΣ.
Thus we have a quadric fibration

π : X → S.

Our definition of the sheaf of even Clifford algebras (S,B0) matches that
of [Kuz08, Section 3]. We now wish to apply a slight generalization of
[Kuz08, Theorem 4.2] to the equivariant setting which states that Db(X )
admits a semiorthogonal decomposition
(6.1)

Db(X ) =
〈

Db(S,B0), π
∗Db(S)⊗OX/S(1), . . . , π

∗Db(S)⊗OX/S(2k − 2)
〉

in the sense that a left orthogonal to the category generated by π∗Db(S)⊗
OX/S(i), i = 1, . . . , 2k − 2 is equivalent to Db(S,B0). Kuznetsov’s argu-
ments apply in our slightly more general situation since his construction is
functorial.

To compare Db(X ) with the category DB(K, c; Σ) we need to consider a
relative and equivariant version of the main theorem of Orlov [Orl09, Theo-
rem 16]. In this particular setting it is provided by the idea of [BDFIK14].
We thank Matt Ballard for providing this reference.
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The idea is to consider a fan Σnew obtained from Σ by blowup at deg∨.
One can view passing from the original fan to the new one as an inverse of
a toric flip which allows one to get a comparison of two categories.

More specifically, we subdivide every maximum cone of Σ into 2k cones
by replacing one of si by deg∨. The resulting open subset10

UΣnew ⊂ C
K∨

(1)
⊔deg∨

= C
K∨

(1) × C

lies in UΣ × C. In fact, it is given by

(UΣ − UΣ)× C

where we think of UΣ embedded via the zero section. We also consider the
polynomial

Cnew(z) = uC(z).

where u is the coordinate that corresponds to the last factor. The natural
analog of the group Ĝ is simply Ĝ×C∗ with the second factor acting on u.

We consider the derived category of singularities of Cnew = 0 on two open
subspaces UΣnew and UΣ × C∗, with the group action of Gnew = Ĝ× C∗, as
in [BFK12].

On UΣnew = (UΣ−UΣ)×C, the Gnew-equivariant category of singularities

is equal to the Ĝ-equivariant category for the singular locus of Cnew = 0
which is precisely the Ĝ equivariant category of {C = 0}∩ (UΣ−UΣ). Since

X = [{C = 0} ∩ (UΣ − UΣ)/Ĝ]

we get

(6.2) Db(X ) = Db
sg(UΣnew , Ĝ× C∗;Cnew).

On the other side we have

(6.3) Db
sg(UΣ × C∗, Ĝ× C∗;Cnew) = Db

sg(UΣ, Ĝ;C).

Indeed, we have [UΣ × C∗/Ĝ ×C∗] = [UΣ/Ĝ].

Now the results of [BFK12] allow us to compare the two categories. We
recall that one needs to consider the parameter µ which is the weight of
the normal bundle to the fixed point locus of a one-parameter subgroup of
Ĝ×C∗. Specifically, in the notations of Theorem 3.5.2 of [BFK12], we have

X+ = UΣ × C∗, X− = UΣnew , X = UΣ × C.

The group GBFK
11 is given by

GBFK = Ĝ× C∗.

The GBFK -line bundle L is trivial with the action given by the character of
Ĝ× C∗ such that Cnew gives an invariant section.

10If k = 1, then deg∨ lies in K∨

(1) and we consider an additional copy of it.
11The notation G has a different meaning in our paper.
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The parameter µ of [BFK12] is calculated by considering a subgroup

λBFK : C∗ → Ĝ which corresponds to the linear relation

0 = 2deg∨−
2k
∑

i=1

si.

Explicitly, this subgroup lies in H × C∗ and is given by (t, t−2) in it. Thus
the parameter µ is given by

µ = 2−
2k
∑

i=1

1 = 2k − 2.

Then [BFK12, Theorem 3.5.2] combined with (6.2) and (6.3) leads to the
semiorthogonal decomposition for any d

(6.4) Db(X ) =
〈

(Υ−)d+1, . . . , (Υ−)d+2k−2,D
b
sg([UΣ/Ĝ], C)

〉

where the fully faithful functors

(Υ−)j : D
b([UΣ/Ĝ])j → Db(X )

are defined in [BFK12]. It remains to argue that the images of these these
functors are simply the pullbacks twisted by integers. This follows from the
definition of the functors Υ in [BFK12, Section 3] and is left to the reader.

Now the two decompositions of Db(X ) given by equations (6.1) and (6.4)
show the desired equivalence of categories. �

As the consequence of Theorem 6.1 we get the derived equivalence of
double mirrors.

Theorem 6.2. Suppose that a complete intersection X and a Clifford non-
commutative variety Y are given by different decompositions of the degree
element deg∨ of a reflexive Gorenstein cone K∨ and the appropriate regular
simplicial fans in K∨. Then the bounded derived categories of X and Y are
equivalent, provided the centrality and the flatness assumptions on Y hold.

Proof. By Theorem 6.1 and Theorem 3.4 the derived categories in question
are equivalent to two derived categories of singularities defined by different
fans in K∨. These are then equivalent by Theorem 3.2. �

7. Generalization to Clifford algebras over complete

intersections.

The goal of this section is to indicate a generalization of the Clifford
algebra construction which would encompass both complete intersections
and Clifford algebras over toric bases.

As always, we consider a pair of reflexive Gorenstein cones K and K∨

in lattices M and N respectively. Let us denote the degree elements by
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deg ∈ K and deg∨ ∈ K∨ and introduce the index k = 〈deg,deg∨〉. In
addition, we consider generic coefficient function

c : K(1) → C.

As explained in Section 2, Calabi-Yau complete intersections in toric va-
rieties appear as a consequence of a decomposition of deg∨ into a linear
combination of elements of K∨

(1) with coefficients 1. As we saw in Section 5

the Clifford algebras over toric bases arise in the context of decomposition
of deg∨ into a linear combination with coefficients 1

2 . We will now consider
a more general case where both types of coefficients may appear.

Suppose that we have

deg∨ =
1

2
(s1 + · · ·+ s2r) + t1 + · · ·+ tk−r

for some 0 ≤ r ≤ k. The (k + r) elements si and tj are supposed to be
linearly independent. In addition, there should exist (and be chosen) a
regular simplicial fan Σ with support K∨ such that the following centrality
condition holds.
(7.1)
All maximum dimensional cones of Σ contain {si, tj} as ray generators.

Remark 7.1. The motivation for the above condition is our philosophy
of large Kähler limits of the families of N = (2, 2) SCFTs. There is a
large class of such limits given by different regular simplicial cones Σ. We
are interested in the situation where maximum cones of Σ contain deg∨.
While other limits may be of interest as well, they are likely to lead to more
complicated geometric descriptions of the triangulated category of boundary
conditions. Given such fan Σ it is natural to try to describe the minimum
cone that deg∨ lies in, which is the intersection of all the maximum cones
of Σ. The element deg∨ is a positive rational combination of the generators
of this cone, and in this paper we consider the case when these coefficients
are 1

2 or 1.

Remark 7.2. The case r = k was considered in Section 5 and led to (sheaves
of) Clifford algebras over toric bases. The case r = 0 is the usual complete
intersection case reviewed in Section 2.

As in Section 5 we consider the open subset UΣ of C
K∨

(1) of functions

z : K∨
(1) → C

such that the preimage of 0 is a subset of Σ. Similarly, we consider the
subset

UΣ ⊂ C
K∨

(1)
−{s1,...,s2r,t1,...,tk−r}

that corresponds to the stacky fan Σ for the group

N = N/Zs1 + · · ·+ Zs2r + Z deg∨ +Zt1 + · · · + Ztk−r.
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We have
UΣ = UΣ × C2r × Ck−r

where the last coordinates correspond to values of z at si and ti.

There is a group Ĝ defined as usual by

Ĝ := {λ : K∨
(1) → C∗

∣

∣

∣

∏

n∈K∨

(1)

λ(n)〈m,n〉 = 1, for all m ∈ Ann(deg∨)}

as in Section 5. The analog of the subgroup H of Ĝ which will be denoted
by the same name is given by C∗ with

λ(si) = t, λ(ti) = t2, λ(v) = 1, for all v ∈ K∨
(1) − {s1, . . . , s2r, t1, . . . , tk−r}.

As in Section 5, we see that the toric DM stack that corresponds to (N,Σ)

can be realized as the quotient of UΣ by G = Ĝ/H.

Note that the homogeneous polynomial

C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨

(1)

z(n)〈m,n〉

C(z) =
∑

m∈K(1)

c(m)
∏

n∈K∨

(1)

z(n)〈m,n〉

has total degree 2 with respect to H. It has terms linear in z(ti) and terms
that have no z(ti) but are quadratic in z(si). We define the quadratic term
by

C2(z) =
∑

m∈K(1)∩Ann(t1,...,tk−r)

∏

n∈K∨

(1)

z(n)〈m,n〉.

We use the linear terms to define the complete intersection Y ⊂ UΣ given
by

Y =
k−r
⋂

i=1

{

∑

m∈K(1),〈m,ti〉=1

c(m)
∏

n∈K∨

(1)
−{s1,...,s2r,t1,...,tk−r}

z(n)〈m,n〉 = 0
}

where this intersection may assumed to be transversal if the coefficient
function c is general. We then define the sheaf of Clifford algebras B0 on
S = [Y/G] as the pullback of the sheaf of Clifford algebras on [UΣ/G] un-
der the natural inclusion. The aforementioned sheaf of Clifford algebras is
defined by using the quadratic part C2(z) of C(z). We will formulate this
definition along the lines of Remark 5.7.

Definition 7.3. The category of coherent sheaves on (S,B0) is defined as the
category of G-equivariant sheaves over the even part of the (locally constant)
sheaf of Clifford algebras over the (reduced) scheme Y ⊆ UΣ given by

(

OY {y1, . . . , y2r}/〈(
2r
∑

i=1

ziyi)
2 + C2(z), for all z1, . . . , z2r〉

)

even
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where y1, . . . , y2r are free noncommuting variables.

Remark 7.4. The subscript even refers to the parity of the number of yi.
Here the action of G = Ĝ/H on y1, . . . , y2k is defined as follows. We have

the group Ĝ act by scaling on all z(n), in particular on z1, . . . , z2r. We will

define its action on products of even number of yi as follows. For λ ∈ Ĝ
such that its image in Ĝ/G = C∗ is ϕ(λ) we define

λ(yiyj) = λ−1
i λ−1

j ϕ(λ)yiyj

to be the inverse of the action on corresponding zi twisted by ϕ(λ). This

ensures that λ
(

(
∑2r

i=1 ziyi)
2
)

= ϕ(λ)(
∑2r

i=1 ziyi)
2. On the other hand, C2(z)

is also semi-invariant with respect to Ĝ with the character ϕ(λ). Thus the

ideal in Definition 7.3 is preserved under Ĝ. Note that an element t ∈ H =
C∗ acts trivially on OUΣ

and on yiyj, since λi = λj = t and ϕ(λ) = t2. Thus

the action of Ĝ descends to the action of Ĝ/H = G.

It is now reasonable to conjecture that these more sophisticated Clifford
limits give the same triangulated categories as any other limits we have
considered.

Conjecture 7.5. Under the centrality and appropriate flatness assump-
tions, the bounded derived category of coherent sheaves on (S,B0) is equiv-
alent to the category DB(K, c,Σ).

8. Combinatorics of Clifford decompositions.

In the first part, we explore the combinatorics associated to a decompo-
sition

(8.1) deg∨ =
1

2
(s1 + · · ·+ s2r) + t1 + · · ·+ tk−r.

Large parts of this section can be read independently from the more technical
parts of the paper that discuss derived equivalences and Clifford algebras.

Just as before, we have a pair of reflexive Gorenstein conesK ⊂ MR,K
∨ ⊂

NR of index k. Suppose there exists a decomposition (8.1) where si, tj ∈ K∨
(1)

are linearly independent lattice elements. We define a lattice

Nfree = N/(N ∩ (
2r
∑

i=1

R · si +
k−r
∑

j=1

R · tj)).

Notice that Nfree is the quotient of N defined in Section 2 by its torsion
subgroup. Induced from the pairing between M and N , the dual lattice of
Nfree is

M = Ann(s1, · · · , s2r, t1, · · · , tk−r)

= {m ∈ M | 〈m, si〉 = 〈m, tj〉 = 0 ∀ 1 ≤ i ≤ 2r, 1 ≤ j ≤ k − r}.

We also use 〈−,−〉 to denote the induced perfect pairing M ×Nfree → Z.
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Let Θ be the image of the convex hull of K∨
(1) in N . It is a lattice polytope

by the definition of Gorenstein cone, and it contains the origin as an interior
element. Indeed, any linear function on Nfree lifts to a linear function on
N which is zero on deg∨. Since deg∨ is in the interior of K∨, this function
takes positive and negative values on some rays of K∨. Therefore, any linear
function on Nfree takes positive and negative values on Θ, which implies
that the origin lies in the interior of Θ.

We introduce a polytope in MR defined by

(8.2) T := {x ∈ K | 〈x, si〉 = 〈x, tj〉 = 1 ∀ i, j} − deg .

We should point out that T may not be a lattice polytope, however, we will
show that its dual polytope is the lattice polytope Θ.

Lemma 8.1. The polytope T contains origin in its interior. There holds

T∨ = {y ∈ NR, such that 〈T, y〉 ≥ −1} = Θ.

Proof. Let us investigate the dual of Θ. By definition of the dual polytope
and of Θ, the dual Θ∨ is a subset of MR which consists of x such that
〈x,K∨

(1)〉 ≥ −1. In other words, this is a subset of MR such that 〈x,K∨
(1)〉 ≥

−1 and 〈x, si〉 = 〈x, tj〉 = 0 for all i and j.

Equivalently, x+ deg can be characterized by

〈x+ deg,K∨
(1)〉 ≥ 0, 〈x+ deg, si〉 = 〈x+ deg, tj〉 = 1, for all i, j

which is precisely the definition of T +deg. This shows that T = Θ∨, which
implies T∨ = Θ and 0 ∈ T ◦. �

We will now define the following three sets of polytopes:

Ai = Conv{x ∈ K(1) | 〈x, ti〉 = 1}, 1 ≤ i ≤ k − r

and

Ti,i = Conv{x ∈ K(1) | 〈x, si〉 = 2}, 1 ≤ i ≤ 2r

Ti,j = Conv{x ∈ K(1) | 〈x, si〉 = 〈x, sj〉 = 1}, 1 ≤ i, j ≤ 2r and i 6= j.

Because a lattice point x ∈ K(1) pairs with deg∨ at 1, x must uniquely lie in
one of Ai, Ti,i and Ti,j. In other words, the primitive elements of rays of K
can be classified according to the polytopes Ai, Ti,i or Ti,j they lie in. Note
that elements of these sets pair by 0 with the other s and t points.

We now define

D((Ti,j)i,j) := Conv





⋃

σ∈S2r

∑

1≤i≤2r

Ti,σ(i)




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be a lattice polytope, where S2r denotes the 2r-symmetric group. A priori,
D((Ti,j)i,j) could be empty, but it is a consequence of Theorem 8.4 that this
can never happen in our setting. Let

S :=

2r
∑

i=1

Ai +
1

2
D((Ti,j)i,j)− deg

be a polytope. By pairing with si, tj, one can verify directly that S ⊂ M ,
and we will show in Theorem 8.4 that it coincides with T , that is S = Θ∨. In
order to prove it we need to first recall the following so called Birkhoff–von
Neumann theorem.

Definition 8.2. A permutation matrix is the matrix with exactly one entry
1 in each row and column and 0 elsewhere.

Lemma 8.3. (Birkhoff–von Neumann theorem) Suppose Bn is an n × n
matrix whose entries are non-negative real numbers and whose rows and
columns each add up to 1. Then Bn lies in the convex hull of the set of
n× n permutation matrices.

We now state the following key result:

Theorem 8.4. The polytope

S :=
k−r
∑

i=1

Ai +
1

2
Conv





⋃

σ∈S2r

∑

1≤i≤2r

Ti,σ(i)



− deg

is equal to T . In particular, its dual polytope is Θ.

Proof. By definition of T (see equation (8.2)), we only need to show

k−r
∑

i=1

Ai +
1

2
Conv





⋃

σ∈S2r

∑

1≤i≤2r

Ti,σ(i)





= {x ∈ K | 〈x, si〉 = 〈x, tj〉 = 1 ∀ i, j}.

The inclusion ⊆ is obtained by definition, thus we only need to show the
inverse inclusion.

Suppose x ∈ {x ∈ K | 〈x, si〉 = 〈x, tj〉 = 1 ∀ i, j}, then

x =
∑

v∈K(1)

λvv, λv ≥ 0.

Because the generators of K can be classified according to the polytopes
Ai, Ti,i or Ti,j they lie in, we can rewrite the summation as

x =
∑

i

∑

v∈Ai

λvv +
∑

i,j

∑

v∈Ti,j

λvv.

Notice that when i 6= j, we have Ti,j = Tj,i.
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Let

(8.3)

xt =
∑

i

∑

v∈Ai

λvv,

xs =
∑

i,j

∑

v∈Ti,j

λvv =
∑

i,j

bi,jyi,j,

with yi,j ∈ Ti,j. Besides, we require yi,j = yj,i and bi,j = bj,i.

We have x = xt + xs, moreover, by pairing with ti, we have

1 = 〈x, ti〉 = 〈xt, ti〉 =
∑

v∈Ai

λv.

This implies that
∑

v∈Ai
λvv ∈ Ai, thus xt ∈

∑k−r
i=1 Ai. Hence, all we need

to show is xs ∈
1
2D((Ti,j)i,j).

By pairing with sj, we have

(8.4) 1 = 〈x, sj〉 = 〈xs, sj〉 = 2bj,j +
∑

1≤i≤2s
i 6=j

bi,j +
∑

1≤i≤2s
i 6=j

bj,i = 2
∑

1≤i≤2s

bi,j.

Let B2r = (bi,j)i,j be a 2r×2r-symmetric matrix. Then by (8.4), we have
∑

1≤i≤2r

bi,j =
∑

1≤j≤2r

bi,j =
1

2
.

According to the Birkhoff–von Neumann theorem (Lemma 8.3), B2r is a
convex linear combination of permutation matrices.

There is a 1-1 correspondence between elements of 2r-symmetric group
S2r and 2r × 2r permutation matrices under the map

σ 7→ (δj,σ(i))i,j,

where δj,σ(i) is the Kronecker delta. Because of this, there exist rσ ≥ 0, such
that

bi,j =
∑

σ∈S2r

rσδj,σ(i).

For fixed j, because
∑

1≤i≤2r bi,j =
1
2 , we have

(8.5)
∑

1≤i≤2r

∑

σ∈S2r

rσδj,σ(i) =
∑

σ∈S2r

∑

j=σ(i)
1≤i≤2r

rσ =
∑

σ∈S2r

rσ =
1

2
.

We use the equation (8.3) to get

xs =
∑

i,j

bi,jyi,j =
∑

i,j

(
∑

σ∈S2r

rσδj,σ(i))yi,j

=
∑

σ∈S2r

rσ(
∑

j=σ(i)
i,j

yi,j) =
∑

σ∈S2r

rσ(
∑

1≤i≤2r

yi,σ(i))
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Combining this with (8.5), we have

xs ∈
1

2
Conv





⋃

σ∈S2r

∑

1≤i≤2s

Ti,σ(i)



 ,

which finishes the proof. �

Corollary 8.5. The polytope 2T has lattice vertices.

Proof. Indeed, by Theorem 8.4 we see that

2T = 2S =

k−r
∑

i=1

2Ai +Conv





⋃

σ∈S2r

∑

1≤i≤2r

Ti,σ(i)



− 2 deg

is a lattice polytope, since Minkowski sums, convex hulls and lattice shifts
of lattice polytopes are again lattice polytopes. �

Remark 8.6. The geometric meaning of the above corollary is that the toric
variety P defined by T is Fano Q-Gorenstein with (−2KP) an ample Cartier
divisor.

The data of the coefficient function

c : K(1) → C

may be equivalently encoded as a collection of (k−r) Laurent polynomials fi
with Newton polytopes Ai and an (2r)×(2r) symmetric matrix R of Laurent
polynomials with Newton polytopes Ti,j . These data allow us to consider
a double cover of the complete intersection of fi = 0 in the toric variety
defined by T , ramified over deg(R) = 0. The resulting variety is Calabi-
Yau. However, it has singularities other than the ones coming from the
ambient toric varieties due to the loci of corank two or higher of the matrix
R. One can view the Clifford variety of Section 5 as a noncommutative
crepant resolution of this double cover (with a certain Brauer class).

In many (though not all) cases we have the important technical centrality
assumption (7.1) that there exists a regular simplicial fan Σ all of whose
maximum dimensional cones contain all si and all tj .

As a consequence of the assumption (7.1), there is a (stacky) fan Σ on
the quotient

N = N/Zs1 + · · ·+ Zs2r + Z deg∨+Zt1 + · · ·+ Ztk−r

obtained by removing si and tj from the sets of Σ. Then we have natural
line bundles L′

1, . . . ,L
′
2r and L1, . . . ,Lk−r on the stack PΣ with the property

that
2r
⊗

i=1

L′
i ⊗

k−r
⊗

j=1

L⊗2
j

is the square of the anticanonical bundle on PΣ, as considered in Section 7.
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Remark 8.7. While Li are pullbacks of the Cartier divisors from the coarse
moduli space, the same can not be guaranteed for L′

j. The data of the co-

efficient function c : K(1) → C amounts to a choice of (k − r) sections
f1, . . . , fk−r of L′

1, . . . ,L
′
k−r respectively.

Then we can view Ai as the Newton polytopes that support the sections
of Li, and the polytopes Ti,j are the ones that support sections of L′

i ⊗ L′
j

under appropriate linearizations.

Remark 8.8. In the absence of the centrality condition (7.1), we still ob-
tain a singular Calabi-Yau variety which is a double cover of the complete
intersection in a toric Q-Gorenstein Fano variety given by the polytope Θ.
It would be interesting to see if one can find noncommutative resolutions of
its singularities and whether there is still a derived equivalence statement. A
priori, one no longer has the vector bundle structure on UΣ, which prevents
one from directly using the work of Kuznetsov.

Remark 8.9. It would be interesting to investigate possible torsion in

N = N/Zs1 + · · ·+ Zs2r + Z deg∨+Zt1 + · · ·+ Ztk−r

If the sets Tii are nonempty, then we one can show that this is at most
2-torsion. However, we don’t know if Tii 6= ∅ holds in general.

9. More examples.

We will describe some examples of Clifford double mirrors in the literature
as well as new examples. Each of these examples consists of a pair of Calabi-
Yau varieties, and the evidence for the double mirror property comes from
equivalence of derived categories.

9.1. Example: (2, 2, 2)-complete intersections in CP5. This example
is given by Mukai in [Muk88] (see Examples (1.5)(1.6)(2.2)). Let qi, 0 ≤
i ≤ 2 be quadratic equations in CP5, and Qi be the corresponding quadric
hypersurfaces. Suppose these Qi intersect transversally in CP5, then their
complete intersection X is a K3 surface. On the other hand, let Ai be the
symmetric 6 × 6 matrix corresponding to the quadratic form qi. Then a
quadric {a0q0 + a1q1 + a2q2 = 0} is smooth if and only if the matrix a0A0 +
a1A1 + a2A2 is regular. Hence, their singular members are parameterized
by the degree 6 curve D := {det(a0A0 + a1A1 + a2A2) = 0} in CP2 (where
a0, a1, a2 are variables). The double cover ramified along D is a K3 surface,
and we denote it by Y .

We further assume that every quadric containing X is of rank ≥ 5. Let
h ∈ H2(X,Z) be the cohomology class of hyperplane sections of X, then
the moduli space of stable (with respect to polarization X → CP5) rank
2 vector bundle with c1 = h and c2 = 4 is canonically isomorphic to Y .
By [Cal00a, Section 5.5], there exists an α ∈ Br(Y ) in the Brauer group of
Y such that Db(X) ∼= Db(Y, α).
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This example is a particular case of Kuznetsov’s construction for k = 4
and can consequently be reconstructed by our method. The reader can
either follow the discussion of Section 5.2 or the description below along the
lines of Section 8.

Let ∆ be the polytope which is the convex hull of {e1, . . . , e5, e6}, where
ei, 1 ≤ i ≤ 5 are standard basis of Z5, and e6 = −

∑5
i=1 ei. The normal fan

of ∆ is the fan of CP5. Let ∆j = Conv{e2j−1, e2j ,0} ∀ 1 ≤ j ≤ 3. Then
{∆i | 1 ≤ i ≤ 3} is a nef-partition of ∆.

We can define a reflexive Gorenstein cone associated to ∆i by

K∨ =: {(a, b, c; a∆1 + b∆2 + c∆3) | a, b, c ∈ R≥0} ⊂ R8.

This is exactly how one can associate a reflexive Gorenstein cone to a nef-
partition (see [BatBor94]). The (2, 2, 2)-complete intersection X is just
the complete intersection defined by decomposition deg∨ = (1, 0, 0;0) +
(0, 1, 0;0) + (0, 0, 1;0)).

On the other hand, deg∨ can also be presented by

deg∨ =
1

2
(s1 + · · ·+ s6),

where

s1 = (1, 0, 0; e1), s2 = (1, 0, 0; e2)

s3 = (0, 1, 0; e3), s4 = (0, 1, 0; e4)

s5 = (0, 0, 1; e5), s6 = (0, 0, 1; e6).

Then Z8 ∩ (
∑6

i=1 Rsi) = Z deg∨ +
∑6

i=1 Zsi, hence

Nfree = N = Z8/(Z deg∨ +

6
∑

i=1

Zsi).

Again, let Θ be the image of the K∨
(1) in N ∼= Z2. Then Θ is a convex hull

of {v1 := (1, 0, 0;0), v2 := (0, 1, 0;0), v3 := (0, 0, 1;0)}, because all the other
vertices of K∨

(1) is zero in N . Moreover, because (1, 0, 0;0) + (0, 1, 0;0) +

(0, 0, 1;0) = 2deg∨, we have v1 + v2 + v3 = 0. Thus, the normal fan of Θ is
exactly the fan for CP2.

We can define g = x−2 deg det((gi,j)i,j) as above, where gi,j is the Laurent
polynomial constructed from Ti,j. By Theorem 8.4, g is a global section of
H0(CP2,O(−2KCP2)), hence of degree 6. The Calabi-Yau variety Y in the
construction is exactly the double cover ramified along the sextic D := {g =
0}.
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9.2. Double mirrors of Enriques surfaces. We recall that Enriques sur-
faces are quotients of certain K3 surfaces by a fixed point free involution.
One of the many constructions of these surfaces is provided by the quotients
of (2, 2, 2) complete intersections in CP5. Specifically, we need to consider
an action of an involution on V = C6 that has trace 0 and take a complete
intersection of three invariant quadrics on PV . The involution fixes this
surface and acts freely on it. The resulting quotient surface is Enriques.

The corresponding Gorenstein cones are given as in Section 5.3 as follows.
We have

N =
(

(

6
⊕

i=1

Zsi +
1

2
Z(s1 + s2 + s3))⊕

3
⊕

j=1

Ztj

)

/Z(

6
∑

i=1

si − 2

3
∑

j=1

tj).

The cone K∨ is the image of the nonnegative orthant. The dual lattice M
is given by

M = {
6

∑

i=1

ais
∨
i +

3
∑

j=1

bjt
∨
j |

6
∑

i=1

ai = 2

3
∑

j=1

bj and

3
∑

i=1

ai is even}.

The cone K is the intersection of M with the nonnegative orthant.

The usual Kuznetsov’s double mirror is the sheaf of Clifford algebras over
CP2 whose center is the double cover of CP2 ramified at the union of two
elliptic curves E+ and E− which are written as determinants of symmetric
3× 3 matrices of linear forms. The action of the involution means that we
need to consider the corresponding Clifford algebra over the gerbe [CP2/Z2].

As in Section 5.3, we consider the semidirect product of the Kuznetsov’s
sheaf of Clifford algebras over CP2 and the group ring C[h]/〈h2 − 1〉 of Z2.
Over the generic point of CP2, after diagonalization of the quadratic forms,
we get the even part of the quotient of the free algebra over the field of
rational functions F on CP2

F{y+1 , y
+
2 , y

+
3 , y

−
1 , y

−
2 , y

−
3 , h}

by the two-sided ideal generated by the relations

h2 − 1, hy+i − y+i h, hy
−
i + y−i h, (y

+
i )

2 + c+i , (y
−
i )

2 + c−i , y
+
i y

−
j + y−j y

+
i

for all i and j and

y+i y
+
j + y+j y

+
i , y

−
i y

−
j + y−j y

−
i

for i 6= j. Again c±i ∈ F may not be assumed to be 1, since F is not alge-

braically closed. In fact, up to squares, the products
∏3

i=1 c
±
i give equations

of E±.

The calculation of the center of the above algebra is done analogously to
Section 5.3 but yields a different result. In fact, one simply gets F as the
center.
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Remark 9.1. Some more delicate preliminary calculations seem to indi-
cate that the structure of the double mirror of an Enriques surface is that of
(smooth) Z2×Z2 root stack over CP2, ramified over the union of two elliptic
curves E+ and E−, presumably with a Brauer element. The corresponding
orbifold Euler characteristics calculation is as follows. The complement of
the union of two elliptic curves has χ = 12. The elliptic curves contribute
nothing, since the ages of the corresponding involutions are 1

2 so the contri-
bution of the twisted sector cancels that of the untwisted sector. Similarly,
the contributions of the 9 intersection points are zero, since the 4 sectors
cancel each other. Thus the Euler characteristics of the root stack matches
that of the Enriques surface. We thank Howard Nuer for pointing out a likely
relationship between these double mirrors and the construction of Enriques
surfaces as logarithmic transformations of elliptic surfaces in [GH78, p.599].

9.3. Calabrese-Thomas’ example. We state the construction of Calabrese
and Thomas’ first example in [CT14].12 Let V,W be complex vector spaces
of dimension 3, and P(V ⊕W ) = CP5. Let

π : Z := BlP(V )(CP
5) → CP5

be the blowup along P(V ) with exceptional divisor E. Then one can show
that π∗OCP5(3)(−E) is a base point free line bundle. Let f1, f2 be two
general global sections of π∗OCP5(3)(−E). Let

X := {f1 = f2 = 0} ⊆ Z

be their complete intersection. Since the anticanonical bundle of Z is equal
to π∗OCP5(6)(−2E), we see that X is a Calabi-Yau variety by the adjunction
formula.

Let ρ : Z → P(W ) be the projection from the plane P(V ) ⊆ CP5 to P(W ),
then one can show that the universal hypersurfaceH := {x1f1+x2f2 = 0} ⊆
Z × CP1 is a quadric fibration over Y = P(W ) × CP1 under the morphism
ρ× id. In particular, this quadric fibration corresponds to an even Clifford
algebra sheaf B0. As a consequence of the relative version of homological
projective duality, there is a derived equivalence Db(X) ∼= Db(Y,B0).

One can modify the right hand side of the equivalence by considering the
relative Fano scheme of lines of ρ × id : H → P(W ) × CP1 (see [Kuz14]).
Since ρ× id is a quadric fibration, we can consider the loci D′ where the rank
of the quadratic form on the fibre is not of full rank (i.e. < 4). Then one can
show that D′ is a (6, 4)-bidegree divisor on Y = P(W )×CP1 ∼= CP2 ×CP1.
Let F → P(W ) × CP1 be the relative Fano scheme of lines of ρ × id, and
F → X ′ → Y be its Stein factorization, then X ′ → Y is a double cover
ramified along D′. Finally, let X ′′ → X ′ be some small resolution (in the

12The second example of [CT14] falls into the framework of Batyrev-Nill double mirrors
from Section 2.
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analytic category), then there exists an α ∈ Br(X ′′), such that

Db(X) ∼= Db(Y,B0) ∼= Db(X ′′, α).

The reconstruction of this example is similar to the above cases, but a
little bit involved:

We start by considering a Z5 with the usual CP5 fan on it, namely the
one with e1 = (1, 0, 0, 0, 0), ..., e5 = (0, 0, 0, 0, 1), e6 = (−1, ... − 1). Then the
blowup of P(V ) ∼= P2 introduces an additional vertex e0 = (1, 1, 1, 0, 0). Let
∆ be the convex hull of {e0, · · · , e6}, then it has a nef-partition with

∆1 = Conv({0, e0, e1, e2, e6}), ∆2 = Conv({0, e3, e4, e5}).

Let K∨ ⊆ R7 be the reflexive cone defined by

K∨ := {(a, b; a∆1 + b∆2 | a, b ∈ R≥0)} ⊆ R7.

Again, X is the complete intersection associated to deg∨ = (1, 0;0) +
(0, 1;0), and one can verify that the nef divisors associated to ∆i, i = 1, 2 are
both linearly equivalent to π∗OCP5(3)(−E) in Calabrese-Thomas’ example.

Next, we write

deg∨ =
1

2
(s1 + s2 + s3 + s4),

where

s1 = (1, 0; e0), s2 = (1, 0; e6), s3 = (0, 1; e4), s4 = (0, 1; e5).

One can show that

Z7 ∩
4

∑

i=1

R · si = Z · deg∨+
4

∑

i=1

Z · si,

hence

Nfree = N = Z7/(Z · deg∨+

4
∑

i=1

Z · si).

Let Θ be the image of K∨
(1) under the quotient map. Recall that K∨

(1) has 9
generators

(1, 0;0), (1, 0; e0), (1, 0; e1), (1, 0; e2), (1, 0; e6)

(0, 1;0), (0, 1; e3), (0, 1; e4), (0, 1; e5).

After taking the quotient, 4 of them disappear, and the other 5 forms a fan
of Y = P(W )× CP1 ∼= CP2 × CP1. Specifically,

(0, 1;0) + (1, 0;0) = deg∨ (= 0 ∈ N),

(1, 0; e1) + (1, 0; e2) + (0, 1; e3) = deg∨ +(0, 1; e0) (= 0 ∈ N).

By a computer search, there are 96 lattice points in K(1) which fall into
10 classes depending on the pairing with si. By pairing with

(1, 0;0), (1, 0; e1), (1, 0; e2) ∈ N,



46 LEV A. BORISOV AND ZHAN LI

we can find out the degree of these classes in C[N ]. It turns out that the
determinantal equation g is exactly of bidegree (6, 4). Hence the double
cover of Y ramified along D′ = {g = 0} gives the Calabi-Yau variety X ′

which coincides with the construction in Calabrese-Thomas’ example.

Remark 9.2. Calabrese and Thomas consider analytic small resolutions of
the singular double cover, similar to [Add09]. In contrast, our construc-
tion gives a noncommutative algebraic resolution by a sheaf of Clifford alge-
bras. We also remark that the flatness assumption is satisfied in Calabrese-
Thomas’ example.

9.4. An example with k = 1. As we mentioned before, even when the
index 〈deg,deg∨〉 is equal to 1, there may exist double mirrors in our con-
struction, in contrast to the Batyrev’s original construction [Bat94]. In the
following, we will give an example of such type in a 2 dimensional lattice.
The resulting Calabi-Yau varieties are (elliptic) curves, therefore the Brauer
class has to be trivial. This could be viewed as an almost trivial example of
our construction, but it is informative to work it out in detail.

We consider the 2 dimensional reflexive polytope

∆ = Conv{(1, 1), (1,−1), (−1,−1), (−1, 1)},

whose dual polytope is

∆∨ = Conv{(1, 0), (0,−1), (−1, 0), (0, 1)}.

Then we have a pair of reflexive Gorenstein cones

K = {(a; a ·∆) | a ≥ 0} ⊂ MR, K∨ = {(b; b ·∆∨) | b ≥ 0} ⊂ NR.

The picture of these cones is given in Section 2.1. We can decompose deg∨

in two different ways:

deg∨ = (1;0) =
1

2
(s1 + s2),

where s1 = (1,−1, 0), s2 = (1, 1, 0).

Let X be the elliptic curve defined by the decomposition deg∨ = (1;0).
This is exactly the Batyrev-Borisov variety as we just take the complete
intersection and do not need to take the double cover. It is a hypersur-
face associated to the anticanonical divisor in the toric variety CP1 × CP1.
Hence, a global section f of the anticanonical divisor can be identified with
{
∑

avx
v ∈ C[M ] | v ∈ ∇}. Since a smooth curve is uniquely determined up

to birational equivalence, X is uniquely determined by its intersection with
(C∗)2 ⊂ CP1 × CP1. Let

f = a11x
−1y + a12y + a13xy

+ a21x
−1 + a22 + a13x

+ a31x
−1y−1 + a32y

−1 + a33xy
−1

be the equation of X in (C∗)2.
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The projection (C∗)2 → C∗ induces a projection X ∩ (C∗)2 → C∗ given
by (x, y) 7→ y. Because f = 0 is the same as xf = 0 on (C∗)2, and

xf = (a13y + a23 + a33y
−1)x2

+ (a12y + a22 + a32y
−1)x

+ (a11y + a21 + a31y
−1),

this projection is a degree 2 morphism which is ramified along the discrimi-
nant

(a12y + a22 + a32y
−1)2 − 4(a11y + a21 + a31y

−1)(a13y + a23 + a33y
−1) = 0.

Next, we will construct the double mirror X ′ associated to deg∨ = 1
2 (s1+

s2).

Because N = Z2/Z2 ∩ (Rs1 + Rs2) ∼= Z, and Θ = K∨
(1) = Conv(−1, 1),

the toric stack PΘ is actually the smooth toric variety CP1. One can find
Ti,j from K(1) by pairing with si. Specifically,

T1,1 ∩M = {(1,−1, 1), (1,−1, 0), (1. − 1,−1)},

T1,2 ∩M = T2,1 ∩M = {(1, 0, 1), (1, 0, 0), (1, 0,−1)},

T2,2 ∩M = {(1, 1, 1), (1, 1, 0), (1, 1,−1)}.

Hence a global section g in H0(CP1,O(−2KCP1)) is

g = x−2 · det

(

g11 g12
g21 g22

)

where

g11 = a11xy
−1z + a21xy

−1 + a31xy
−1z−1

g12 = ω21 =
1

2
(a12xz + a22x+ a32xz

−1)

g22 = a13xyz + a23xy + a33xyz
−1.

It is straightforward to compute that

g = (a11z + a21 + a31z
−1)(a13z + a23 + a33z

−1)−
1

4
(a12z + a22 + a32z

−1).

Hence, the ramification loci (i.e. g = 0) on CP1 is exactly the same as those
of X on C∗ ⊆ CP1. This shows that X,X ′ are isomorphic elliptic curves. In
particular Db(X) ∼= Db(X ′).

Of course, this isomorphism is not unexpected and in fact follows from
the results of our paper as follows. As a consequence of Theorem 6.1, the
double mirrors should have equivalent derived categories. It is well known
that derived equivalent smooth projective curves are isomorphic [Huy06,
Corollary 5.46]. However, it is worthwhile to see this isomorphism explicitly.
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Remark 9.3. One can view this example as the k = 2 case of Kuznetsov’s
construction for complete intersections in of two quadrics in CP3, where we
fix one of the quadrics and view it as a toric variety CP1 × CP1.

9.5. An example of double mirrors without a central fan. Let us
consider the reflexive Gorenstein cone K∨ in R3 with the usual lattice Z3

generated by
(−1,−1, 1), (2,−1, 1), (−1, 2, 1).

The dual cone K is generated by

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1)

in Z3. The degree elements are given by

deg = (0, 0, 1), deg∨ = (0, 0, 1).

The coefficient function c : K(1) → C is determined by four values

c1 = c(v1), c2 = c(v2), c3 = c(v3), c0 = c(deg).

The corresponding hypersurface is the elliptic curve whose open part (in the
big torus) is given by the equation

(9.1) c1x+ c2y + c3x
−1y−1 + c0 = 0.

We can think of these curves as the mirrors to the usual elliptic curves in
CP2.

Consider now the decomposition

deg∨ =
1

2
(0,−1, 1) +

1

2
(0, 1, 1).

On the one hand, the points s1 = (0,−1, 1) and s2 = (0, 1, 1) are in K∨
(1). On

the other hand, there is no simplicial fan in K∨ which has all maximum di-
mensional cones that contain both of these points. As such, the construction
of Section 5 does not apply.

Nevertheless, we may consider the construction of Section 8. We sort
the points of K(1) according to their pairings with s1 and s2 and take their
convex hulls to get polytopes Tij . We get

T1,1 = {v3}, T1,2 = T2,1 = Conv{v1,deg}, T2,2 = {v2}.

The polytope S = T is then given by

1

2
Conv

(

v3 + v2, 2v1, v1 + deg, 2 deg
)

− deg = Conv
(

(−
1

2
, 0, 0), (1, 0, 0)

)

.

The corresponding Calabi-Yau double cover of the toric variety CP1 that
corresponds to 2T is given by the determinant of the symmetric matrix

det

(

c3x
−1y−1 1

2(c1x+ c0)
1
2(c1x+ c0) c2y

)

which is, up to an invertible element, equal to

−4c2c3x
−1 + (c1x+ c0)

2.
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It remains to observe that the elliptic curve

z2 = −4c2c3x
−1 + (c1x+ c0)

2

is isomorphic to the one given in (9.1) under a change of variables z =
2c2y + c1x+ c0.

Remark 9.4. It appears that in k = 1 case the commutative variety that
underlies the Clifford double mirror is always birational to the original toric
hypersurface. Indeed, the set K(1) has “width two” and one can look at
the corresponding double cover structure on the hypersurface. Moreover, in
k = 1 (or more generally r = 1 case) the even part of Clifford algebra of a
two-dimensional space is commutative, so one simply gets a double cover.

9.6. An example without flatness assumption. In this subsection we
discuss a case where the flatness assumption of Remark 5.5 does not hold.

The variety in question is the Clifford double mirror of the n-dimensional
Calabi-Yau hypersurface H of bidegree (2, n + 1) in CP1 × CPn for n ≥ 3.
The corresponding reflexive Gorenstein cone K∨ in the lattice

Z2 ⊕ (

n+1
⊕

i=1

Zei/Z

n+1
∑

i=1

ei)

is generated by

(1,−1;0), (1, 1;0), (1, 0; ei), i = 1, . . . , n+ 1.

The degree element is given by deg∨ = (1, 0;0) and is the only non-vertex
lattice point in K∨

(1). The dual cone K in the lattice

Z2 ⊕ {
n+1
∑

i=1

aie
∨
i ,

∑

i

ai = 0}

is generated by

(1,−1; (n + 1)e∨i −
n+1
∑

j=1

e∨j ), (1, 1; (n + 1)e∨i −
n+1
∑

j=1

e∨j )

for i = 1, . . . , n+1. The degree element is deg = (1, 0;0) so the index of the
pair of cones is k = 1. The lattice points in K(1)

(1, j,

n+1
∑

l=1

ale
∨
l −

n+1
∑

l=1

e∨l ), −1 ≤ j ≤ 1, al ≥ 0,

n+1
∑

l=1

al = n+ 1

correspond to monomials uj+1
1 u1−j

2

∏n+1
l=1 vall for the homogeneous coordi-

nates (u1 : u2, v1 : · · · : vn+1) on CP1 × CPn. The coefficient function
c : K(1) → C encodes the coefficients of the defining equation of H.

The Clifford limit corresponds to the decomposition

deg∨ =
1

2
(1,−1;0) +

1

2
(1, 1;0).
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There is a fan Σ which satisfies (5.2) whose maximum dimensional cones are
spanned by (1,−1;0), (1, 1;0) and all but one of (1, 0; ei). The construction
of (S,B0) shows that S = CPn.

To describe B0 observe that H → CPn has fibers that are not two disjoint
points over the locus which is the determinant of a symmetric 2×2 matrix of
degree n+1 forms on CPn. This is a hypersurfaceD ⊂ CPn of degree (2n+2)
which is singular at the locus of codimension 3 in CPn. The sheaf of algebras
B0 is in this case commutative and is a pushforward of the structure sheaf of
the double cover H1 of CPn ramified at D. While H is a small resolution of
this cover, the map H → H1 is not an isomorphism under our assumption
n ≥ 3.

In this case, the Clifford double mirror construction produces the derived
category of coherent sheaves on H1. It is not equivalent to that of H because
of the singularities of H1. The reason for this failure is rooted in the absence
of flatness condition of Remark 5.5. It fails precisely over the locus where
the 2× 2 matrix is identically zero, which is a complete intersection of three
hypersurfaces of degree n + 1 in CPn. The Kuznetsov’s theorem is thus
inapplicable, so the argument of Section 6 falls apart.

Remark 9.5. We believe that even without the flatness or the central fan
assumption, there is some kind of Calabi-Yau geometry associated to the
decomposition of deg∨ with coefficients 1 and 1

2 . However, its precise nature
appears more complicated. This is another reason why the primary object of
interest is the derived category DB(K, c; Σ) for a regular simplicial fan Σ in
K∨.

10. Concluding remarks and open questions.

There are non-toric double mirror examples which this paper does not
address. For example the Pfaffian-Grassmannian double mirrors in [Rod00],
whose derived equivalence is established in [BC09]; the Hosono-Takagi’s
construction of Reye congruence [HT14], whose derived equivalence is es-
tablished in [HT13]. Note also the construction of Bak and Schnell [Bak09,
Sch12] related to the Gross-Popescu Calabi-Yau varieties [GP01]. Besides,
our method may not be able to cover some examples on derived equiva-
lence between elliptic fibration and its relative Jacobian, see [Cal00a] for
discussions on this direction.

Remark 10.1. Much of the string-theoretic machinery that exists for com-
mutative varieties and even for DM stacks does not exist in the general
setting of noncommutative varieties. This paper is an indication that it
should be possible to define a class of such mildly noncommutative smooth
varieties, that would include smooth DM stacks and to try to extend the
following definitions to this class.

• Non-linear sigma models with noncommutative targets.
• Gromov-Witten and Donaldson-Thomas invariants.
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• String-theoretic Hodge numbers (to generalize orbifold Hodge num-
bers)

• Chiral de Rham complexes.

Remark 10.2. Perhaps the most important takeaway from our paper could
be the definition of the derived category associated to reflexive Gorenstein
cones. It clearly indicates the need for better understanding of the theories
with potentials. One can pose and try to answer the same questions as in
Remark 10.1 in this setting.

Remark 10.3. It would be interesting to see if there is a Berglund-Hübsch-
Krawitz analog of our construction.

Remark 10.4. We believe that the double mirror construction for Enriques
surfaces in Section 9.2 needs to be investigated further along the lines of
Remark 9.1.
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139.

[Kra09] M. Krawitz, FJRW rings and Landau-Ginzburg mirror symmetry, (2010) Uni-
versity of Michigan thesis.

[Kuz08] A. Kuznetsov, Derived categories of quadric fibrations and intersections of
quadrics, Adv. in Math., vol. 218, 5, (2008), 1340-1369.

http://arxiv.org/abs/1408.4063
http://arxiv.org/abs/1412.1354
http://arxiv.org/abs/1302.5883


ON CLIFFORD DOUBLE MIRRORS OF TORIC COMPLETE INTERSECTIONS 53

[Kuz14] A. Kuznetsov, Scheme of lines on a family of 2-dimensional quadrics: geom-
etry and derived category, Math. Z, vol. 276, 3-4, (2014), p. 655-672.

[Kuz15] A. Kuznetsov, Semiorthogonal decompositions in algebraic geometry, preprint
arXiv:1404.3143.

[Li13] Z. Li, On the birationality of complete intersections associated to nef-
partitions, arXiv preprint arXiv:1310.2310.

[LLY97] B. Lian, K. Liu, S.-T. Yau, Mirror Principle. I, Asian J. Math. 1 (1997), no.
4, p. 729-763.

[Muk88] S. Mukai, Moduli of vector bundles on K3 surfaces, and symplectic manifolds,
Sugaku Expositions, vol.1, 2, (1988), p. 138-174.

[Orl09] D. Orlov, Derived categories of coherent sheaves and triangulated categories
of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I.Manin.
Vol. II, Progr. Math., vol. 270, (2009), p. 503-531.

[Rod00] E. Rødland, The Pfaffian Calabi–Yau, its mirror, and their link to the Grass-
mannian G(2, 7), Comp. Math., vol. 122, 2, (2000), p.135-149.

[Shi12] I. Shipman, A geometric approach to Orlov’s theorem, Comp. Math., vol.148,
5, (2012), p. 1365-1389.

[Sch12] C. Schnell, The fundamental group is not a derived invariant, Derived cat-
egories in algebraic geometry, 279-285, EMS Ser. Congr. Rep., Eur. Math.
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