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Abstract

Asymptotic lower bounds for estimation play a fundamental role in assessing the qual-
ity of statistical procedures. In this paper we consider the possibility of establishing semi-
parametric efficiency bounds for high-dimensional models and construction of estimators
reaching these bounds. We propose a local uniform asymptotic unbiasedness assump-
tion for high-dimensional models and derive explicit lower bounds on the variance of any
asymptotically unbiased estimator. We show that an estimator obtained by de-sparsifying
(or de-biasing) an ¢;-penalized M-estimator is asymptotically unbiased and achieves the
lower bound on the variance: thus it is asymptotically efficient. In particular, we consider
the linear regression model, Gaussian graphical models and Gaussian sequence models
under mild conditions.

Furthermore, motivated by the results of Le Cam on local asymptotic normality, we
show that the de-sparsified estimator converges to the limiting normal distribution with
zero mean and the smallest possible variance not only pointwise, but locally uniformly in
the underlying parameter. This is achieved by deriving an extension of Le Cam’s Lemma
to the high-dimensional setting.

1 Introduction

Following the development of numerous efficient methods for high-dimensional estimation,
more recently the need for statistical inference has emerged. The major approach to estimation
in high-dimensions is based on regularized M-estimators, where the regularization is in terms
of the /1-penalty. This approach produces near-oracle estimators under sparsity conditions on
the high-dimensional parameter. However, in contrast to the low-dimensional setting, it does
not easily yield estimators which are asymptotically normal. This is essentially due to the
regularization which introduces bias by shrinking all coefficients towards zero. One stream
of work then concentrates on “de-sparsifying” or “de-biasing” ([11], [9], [3]). This approach
uses the ¢i-regularized M-estimator as an initial estimator and implements a bias correction
step. This has been in particular studied for the linear model, generalized linear models and
some special cases of non-linear models such as Gaussian graphical models. The work in
essence shows an important result: an asymptotically normal estimator for low-dimensional
parameters can be constructed.

Further questions being studied concern optimality properties of these de-biased estima-
tors. In particular, what are lower bounds on the rate of convergence attainable in the supre-
mum norm and whether the constructed estimators achieve these optimal rates (see [2] and
[3]). The results reveal several things. Firstly, the parametric rate 1/4/n can be achieved. This
basically follows directly from the asymptotic normality of the de-biased estimators, under
sufficient sparsity which is of small order \/n/log p. Naturally, the parametric rate is optimal:
it cannot be improved in order (as was also shown in [2]). On the other hand, if there is
insufficient sparsity, in particular when s > n/log p, the minimax lower bounds diverge. This
is no surprise as oracle inequalities for certain M-estimators have only been shown under the
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condition s = o(n/logp). In the intermediate sparsity regime when \/n/logp < s < n/logp,
the parametric rate cannot be achieved. However, as we discuss in Section [.3] the sparsity
condition s = o(y/n/log p) is essentially necessary for asymptotically normal estimation. Thus
the analysis revealed that under sufficient sparsity of small order \/n/logp, the parametric
rate of order 1/4/n is optimal, and the de-biased estimator achieves it (in the above mentioned
settings).

However, the analysis on minimax rates does not address an important question. The
parametric bounds derived do not reveal any explicit lower bounds on the variance. The
question of efficiency in the spirit of the famous Cramér-Rao result thus remains open in the
high-dimensional setting. This motivates us to pose the following questions. Can we establish
lower bounds on the variance, similar to the Cramér-Rao bounds in the (semi-)parametric
setting, also in the high-dimensional setting? And if yes, can we construct an estimator that
achieves these bounds?

We give an affirmative answer to these questions. We propose Cramér-Rao type bounds on
the variance for sparse high-dimensional models. To this end, we propose a uniform asymptotic
unbiasedness assumption. This basically measures the rate at which the bias vanishes in
shrinking neighbourhoods of the true distribution Py of size 1/y/n. We then present a lower
bound on the variance of sequences of estimators that are uniformly asymptotically unbiased.
This essentially means that we obtain explicit minimax lower bounds.

We further show that one can construct an asymptotically unbiased estimator, which
achieves the lower bound. As one might expect, this is the de-biased estimator or an estimator
that is in some sense asymptotically equivalent to the de-biased estimator. Thus, compared
to previous results, which only showed asymptotic normality or minimaxity (up to order in
n) of the de-biased estimator, we show that the de-biased estimator is the best among all
asymptotically unbiased estimators: thus in this sense asymptotically efficient.

Furthermore, we extend the work of Le Cam on asymptotic efficiency ([5]) to the high-
dimensional setting. In particular, we show that the de-sparsified estimator converges locally
uniformly to the limiting normal distribution with zero mean and the smallest possible vari-
ance. This involves a careful adjustment of Le Cam’s arguments to the high-dimensional
setting.

As a by-product of our analysis, we establish new oracle results for the Lasso which hold in
expectation. These are needed to claim strong asymptotic unbiasedness of certain de-sparsified
estimators.

2 Notation

For a vector = (z1,...,1,) € RP we denote its ¢, norm by |z, = (327_, 27)1/P for
p=1,2,.... We further let ||z||o := max;—1__,|z;| and ||z|o = |{i : i € {1,...,p}, x; = 0}|.
We denote ||z|2 := ||z||3/n.

By e; we denote a p-dimensional vector of zeros with one at position i. For a matrix
A € R™*" we let ||AHoo = maXi:l,...,m,j:l,...,n|Aij|a |||A|||1 = maXi=1,..m Z?:1|AZJ| We

denote its j-th column by Aj;, which is a column vector. We recall here that for symmetric
matrices A, B € RP*P it holds that vec(A)” vec(B) = tr(AB), where vec(A) is the vectorized
version of a matrix A. For matrices A, B, C' € RP*P_ it holds that A® B vec(C) = vec(ATCB),
where ® denotes the Kronecker product. By Apin(A) and Apax(A) we denote the minimum
and maximum eigenvalue of A, respectively.

For real sequences f,, gn, we write f, = O(gy) if | fn| < C|gn| for some C' > 0 independent



of n and all n. We write f,, < g, if both f, = O(g,) and 1/f, = O(g,) hold. Finally,
o= O(Qn) if limy, 00 fn/gn = 0.

We use ~ to denote the convergence in distribution. By ®(:) we denote the cumulative
distribution function of a standard normal random variable.

3 Organization of the paper

The paper consists of two main parts. In the first part we develop an asymptotic version of
a semi-parametric Cramér-Rao lower bound for high-dimensional models. In particular, we
consider the linear model, the Gaussian graphical model and the Gaussian sequence model.
For each of these models, we establish lower bounds on the variance of any strongly asymptot-
ically unbiased estimator. Consequently, we give a construction of a strongly asymptotically
unbiased estimator which is asymptotically efficient, i.e. it reaches the derived lower bound.

The particular sections are divided as follows. In Section Ml we state preliminary results
on strong oracle inequalities for the Lasso. In Section ] we propose a strong asymptotic
unbiasedness assumption. Section [l gives lower bounds on the variance in the linear model,
considering random and fixed design. In Section [{l we propose an estimator that is asymp-
totically efficient for the considered linear model. In Section [§] we derive lower bounds on
the variance in Gaussian graphical models. Section [ then gives a construction of an asymp-
totically efficient estimator for Gaussian graphical models. In the second part of the paper
we extend the results of Le Cam’s to the high-dimensional setting, which shows that the de-
sparsified estimator is locally uniform converging to the limiting distribution with zero mean
and the smallest possible variance. This extension in contained in Section Il Finally, the
proofs are contained in Section

4 Strong oracle inequalities for the Lasso

We present new results on oracle inequalities for the Lasso in linear regression which will
be needed in subsequent sections, but can also be of independent interest. Typical high-
dimensional analysis derives oracle inequalities for the Lasso which hold with high-probability
(see [I] for an overview of such results). We derive stronger oracle inequalities that hold in
expectation.

Consider the linear model

Y =XBy+e, (1)
where X is the n x p design matrix with independent rows X;,7 = 1,...,n, Y is the n x 1 vector
of observations and the (unobservable) error e € R" satisfies Ee = 0 and ¢; are independent
for ¢ =1,...,n. Moreover, the error ¢ and the design matrix X are independent. The vector

Bo € RP is unknown, but assumed to only have s non-zero entries. The quantity s is called
the sparsity of (.
Consider the Lasso estimator with a tuning parameter A defined as follows:

- .
B = arg min [V — XBl3/n + 2|51 (2)

The following result shows that the error E||3 — Bol|1 is up to a logarithmic factor of the
same order as the oracle error E||B,.q — foll1 = O(s//n), where S, is the oracle estimator
(i.e. it has knowledge of the set of non-zero entries of y). Theorem [ presented below is



actually more general in that it considers the k-th order errors E[|§ — Bo|¥ for any fixed
ke{l,2,...}.

Theorem 1. Assume the linear model in (@) with e ~ N'(0,021), where o = O(1). Suppose
that X; ~ N(0,%0) are independent for i = 1,...,n, where |Xo]lcc = O(1) and Ayin(Xo) >
L > 0 for a universal constant L. Suppose that |||l = O(1), ||Bollo < s and slogp/n = o(1).
Let k € {1,2,...} be fired and let 7 > 0 fived be such that p~7/? = O((sA\?)*/2). Consider the
Lasso f3 defined in [2)) with tuning parameter X > ct+/log p/n, where c is a sufficiently large
universal constant. Then there exist universal constants C1,Co such that

(E[3 = BollF)/* < Cysa.
Moreover, for any v > 0 it holds with probability at least 1 — 1/1/k
18 = Boll1 < vCis.

Theorem [l is proved in Section I3.1l Taking k¥ = 1, under the conditions of Theorem [I]
we obtain R
E[[8 = Boll1 < CisA.

Moreover, Theorem[Il can be extended to the situation when the errors ¢; are independent and
sub-Gaussian (with a universal constant) and the design X has independent sub-Gaussian
rows (with a universal constant). It can also be easily extended to fixed design, under a
compatibility condition on the sample covariance matrix X7 X /n.

We note that to obtain strong oracle inequalities for higher powers of the error HB — Boll1,
we need to keep increasing 7 (because of the condition p~™/2 = O((sA?)*/?), where k is the
power). However, the regularization parameter A depends on 7, in particular A > c7/log p/n.
Hence the higher order of error we want to control, the stronger regularization must be chosen.

5 Local uniform asymptotic unbiasedness

In this section we introduce a local uniform asymptotic unbiasedness assumption. Consider the
model P := {Py : § € O}, where P is a probability distribution for every § € © C RP. Assume
that Py € P is dominated by some o-finite measure for all # and denote the corresponding
probability densities by pg. The log-likelihood will be denoted by ¢y := log pg. Further denote
the score function by sy := % and let Iy = EQSQSg.

Let g : R? — R and let the parameter of interest be g(6p). Our goal is to derive an
asymptotic lower bound for the variance of an estimator 7,, of g(6), which is in some sense
asymptotically unbiased. To this end, we define strong asymptotic unbiasedness as presented
below.

Definition 1. Let a € RP and let 0 < 6, | 0. We call T,, a strongly asymptotically unbiased

estimator of g(6y) at Oy in the direction a with rate &, if for m, = n/d, and for 0 =
0o + a//my, and for 0 := 0y it holds that

Vmn(BeTn — g(0)) = o(1).

The motivation for this definition comes from the asymptotic unbiasedness assumption
for semi-parametric models. In particular, we consider shrinking neighbourhoods of 6y of size
1/y/n, where we require the bias to vanish at a rate 1/y/n. Note that if \/n(Ey(T},) — g(0)) =



o(1), then one may take e.g. 9, := /n(Eg(T),) — g(0)). Definition [l is particularly useful
when recognizing the concept of a worst possible sub-direction, as will be discussed later on.
Further we consider the following notion which assumes strong asymptotic unbiasedness in
every direction within the considered sparse model.

Definition 2. We say that T,, is strongly asymptotically unbiased for estimation of g(0) if
for all 8 € © and a € © it holds that

N <E9+a/ﬁTn —yg <9+ %)) = o(1).

6 Lower bounds for the linear model

In this part, we derive lower bounds for the variance of a strongly asymptotically unbiased
estimator in a high-dimensional linear regression model. Consider the linear model () with
e ~ Np(0,I). In the following sections we look first at the case of random Gaussian design
matrix and then a fixed design matrix.

6.1 Linear model with random design

Assume that X is a random n x p matrix independent of e with independent rows X; ~
N(0,%) for i =1,...,n. We assume the inverse covariance matrix ©g := X ! exists.

Theorem 2. Let a € RP be such that a’ Loa = 1. Suppose that Ty, is a strongly asymptotically
unbiased estimator of g(By) at By in the direction a with rate &,. Assume moreover that for
some §(Bo) € RP and for m, =n/d,

Vi (9(Bo + a/v/mn) — g(Bo)) = a’§(Bo) + o(1). (3)

Then
nvar(T,) > [aTg(ﬂo)]2 —o(1).

The condition () is a differentiability condition on g. By maximizing the lower bound
[aT§(B0)]? over all a such that a”¥ga = 1, we obtain the following corollary.

Corollary 1. The lower bound [a” §(5o)]? is mazimized at the value

ag := ©0d(Bo)/1/ 9(Bo)T ©0g(Bo)-

Hence under the conditions of Theorem[d, we get
nvar(T,) > §(B0)" ©0g(Bo) — o(1).
Definition 3. Let g be differentiable at By with derivative §(By). We call
co = ©0d(50)/9(Bo)" B0 (o)
the worst possible sub-direction for estimating g(p).

The motivation for the terminology in Definition Bis given by Corollary [l The normal-
ization by §(B80)T©0g(Bo) is arbitrary but natural from a projetion theory point of view.



As a special case, consider g(fy) = 5]0- for some fixed value of j. Then §(fy) = e;, the
J-th unit vector in RP. Clearly, ©ge; = (92 and ef@oej = @?j, where (99 is the j-th column
of ©y and @?j is its j-th diagonal element. It follows that C']Q = @? / @?j is the worst possible
sub-direction for estimating 5;-). Corollary Il implies the lower bound nvar(7},) > ©,; + o(1).

Finally, we reformulate Corollary 0 in view of Definition 2l In particular, we assume that
T, is strongly asymptotically unbiased in all directions a € B, where B := {5 € R : |||lo <

s, [1Bll2 = O(1)}.

Corollary 2. Let T,, be a strongly asymptotically unbiased estimator of g(Bo), and for all
Bo € B,a € B it holds

v (9(Bo + a/v/n) — g(Bo)) = a” §(Bo) + o(1).

Suppose that ©gg(Bo)/v/9(Bo)TO0g(Bo) € B for all By € B and suppose that Apax(Xo) = O(1).
Then it holds

nvarg, (Tn) > §(80)" ©0g(Bo) — o(1).
6.2 Linear model with fixed design

In this section, we assume that the design matrix X is fixed (non-random). Let $o=XTx /n
be the sample covariance matrix.

Theorem 3. Let a € R? be such that a’a < 1 + o(1). Suppose that T,, is a strongly
asymptotically unbiased estimator of g(By) at Py in the direction a with rate 6,. Assume
moreover that for some (o) € RP and for m, :=n/oy, it holds that

Via (9(Bo + a/v/mw) — g(Bo)) = a” §(Bo) + o(1). (4)

Then
nvar(T,|X) > [a” §(Bo)]> — o(1).

The following Lemma gives the lower bound in view of Definition 2l It assumes existence
of ©, which is a pseudoinverse of ¥ in the following sense: ||[X0 —1||o, = O(\). A construction
of such an estimator is possible and deferred to Section [

Lemma 1. Suppose that ©4(80)/+/§(80)TO0g(6o) € B for all By € B and suppose that |0 —
Il = O(N), where sA = o(1). Let T, be a strongly asymptotically unbiased estimator of
9(Bo), and assume that for all By, a € B it holds

Vi (9(Bo + a/v/n) = g(Bo)) = a” §(Bo) + o(1).
Further assume that 1/§(80)"©¢(Bo) = O(1) and ||§(Bo)|l1 = O(s). Then it holds

nvar(T,|X) > §(80)" (o) — o(1).

7 An asymptotically efficient estimator in the linear model

In this section we consider the construction of a strongly asymptotically unbiased estimator,
which achieves the corresponding lower bound on the variance derived in the previous sections
(for fixed and random design). We first consider estimation of single elements g(8) = g; for



some j € {1,...,p} and later estimation of linear functionals g(3) = ¢T3, where ¢ € RP is
known. Further extension to other functionals of interest might be also possible, under some
conditions on the transformation g.

The problem of estimation of low-dimensional parameters in high-dimensional linear re-
gression has been studied extensively (see [I] for an overview). The Lasso estimator (see
[1]) is a prime example. However, Lasso is biased due to the inclusion of the ¢;-penalty. A
de-sparsified or de-biased version of the Lasso was then considered (see [9]), which was shown
to be asymptotically normal in [9]. Here we consider the de-sparsified Lasso estimator and
show that it is strongly asymptotically unbiased. However, the analysis is not limited to this
example; other de-sparsified estimators (e.g. one based on the square-root Lasso) or other
estimators which are in some sense equivalent are likely to be applicable as well.

We consider the linear model ([I]) with € ~ N(0,021), where o. = O(1).

7.1 Linear model with random design

Assume that X in () is a random n x p matrix independent of e with independent sub-
Gaussian rows X; with mean zero and covariance matrix >g. The rows of X will be denoted
by X;,i=1,...,n. We assume the inverse covariance matrix ©¢ := X, ! exists.

Consider the Lasso defined in ([2) with A < /logp/n. We further need to construct an
estimator of ©q. Let @j be an estimate of @? be obtained by solving the following program,
that will be referred to as nodewise regression (see [9]). Denote by X_; the n x (p—1) matrix
obtained by removing the j-th column from X. For j =1,...,p, let

4y = arg_min [|X; — X_jy[3/n+ 275, (5)
~yeRp—1

7= 11X — Xj45l3/n,
OLasso = (= 1s -+ —Vij—1, L, =Yjjs1s- -+ —%,p)/f'jza (6)

where \; < X\ < /logp/nfor j =1,...,p. The necessary Karush-Kuhn-Tucker conditions cor-
responding to the nodewise regression (obtained by replacing derivatives by sub-differentials)
imply the condition |20, — ¢l = Op(\) (see [9]).

Define the de-biased Lasso introduced in [9] by

b:=pB+6TXT(Y — XB)/n, (7)

and let lA)j denote its j-th element.

Estimation of ()

We will next show that l;j with @j defined by the nodewise regression is strongly asymptotically
unbiased. We need the following assumptions and auxiliary Lemma 2l Recall that B :=
{8 €RP:|Bollo = O(s), IBoll2 = O(1)}. Condition ||Bpllo = O(s) represents the classical
sparsity condition on the high-dimensional parameter (here the sparsity s will be specified
later). Condition ||Bpll2 = O(1) can be justified in terms of the signal-to-noise ratio being
bounded. If the signal-to-noise ratio stays bounded, and the variance of the noise is bounded
(as assumed above), then the fo-norm of  also remains bounded. We further consider the
following condition on boundedness of eigenvalues of ¥ as follows.

(Al) 1/Amin(20) = O(l) and Amax(zo) = O(l)



Condition |(A1l)| guarantees that the compatibility condition is satisfied and that the node-
wise regression yields an oracle estimator (see [9], Theorem 2.4). The following Lemma is a
direct consequence of Theorem [II

Lemma 2. Suppose that condition |(A1) is satisfied and suppose that slogp/n = o(1). Let
B be the Lasso estimator defined in ([2) with a sufficiently large tuning parameter of order

V1ogp/n. Then for every By € B
Eg, |18 — Boll1 = O(sA).

We consider estimation of g(5) = f; and we show strong asymptotic unbiasedness of the
de-biased estimator for estimation of ﬂ?. To show strong asymptotic unbiasedness, we need

to assume the sparsity assumption s = o (ﬁ(gp) . This condition is necessary as discussed in
Section [T3l
Lemma 3. Suppose that condition (A1) is satisfied and suppose that s = o (1@) . Let l;j be

defined as in ([{) with @j satisfying Hf)(:)] — €jlloc < Aj. Then for every By € B

Vg, (b — ) = o(1).

Finally we show that the de-biased estimator achieves the lower bound on the variance de-
rived in previous section. Thus the de-sparsified estimator is strongly asymptotically unbiased
and has the smallest variance among all strongly asymptotically unbiased estimators.

log p
Let @Lasso,j be obtained using the nodewise regression as in ([@). Then Z)j defined in () using
the nodewise regression is strongly asymptotically unbiased and for any strongly asymptotically
unbiased estimator T of 5;-) it holds for all By € B

Theorem 4. Suppose that condition |(A1) is satisfied, s = o < \/ﬁ) and that H@?Ho = 0O(s).

R 0% +o(1
var(7T') > var(b;) = ”7()

n
Estimation of linear functionals

We consider estimation of linear functionals g(3) = ¢7' 3, where ¢ € R? is a known vector. In
this section, we assume that the design is random, however, similar results might be obtained
also for fixed design. We define the de-sparsified estimator for estimation of ¢T3 as a linear
combination £ of the de-sparsified estimator b. This yields

be :=¢Th=¢TO(B - o) + TOXT (Y — XB)/n. (8)
Then we have the following Lemma, which shows strong asymptotic unbiasedness of 135.

Lemma 4. Suppose that condition|(A1) is satisfied and s = o <£) . Let Bg be the estimator

defined in (). Assume that ||€||y = O(1). Then for every By € B it holds that
Vg, (be — €7 Bo) = o(1).

Theorem [0 shows that the de-biased estimator () achieves the lower bound on the vari-
ance.



logp
mator defined in (§). Assume that ||©ollo = O(s) and ||£]l1 = O(1). Then 55 is strongly
asymptotically unbiased and for any strongly asymptotically unbiased estimator T of ¢T3 it
holds for all By € B

Theorem 5. Suppose that condition |(A1) is satisfied and s = o ( v/ > . Let ng be the esti-

T
varg, (T) > varg, (be) = M-

7.2 Linear model with fixed design

We consider X € R™ P to be a fixed design matrix. Denote the sample covariance matrix
by Y= XTx /n. An estimate © which is a surrogate inverse for 3 can be obtained in
the same way as for the random design, using the nodewise regression (6. The necessary
Karush-Kuhn-Tucker conditions of the nodewise regression (obtained by replacing derivatives
by sub-differentials) again imply the condition ||[£6; — ¢;]lcc = Op(\). The de-sparsified
estimator can then be defined in the same way as for the random design, as in (7).

We consider estimation of g(f) := 3;, although one could further consider estimation of
linear functionals, similarly as for the random design. Strong asymptotic unbiasedness for

estimation of 6? then follows similarly as in Lemma [ for all 8y € B, under s = o (h\)/gﬁp) and

if the compatibility condition (see [1]) is satisfied for X7 X /n with a universal constant. We
omit details of the proof of strong asymptotic unbiasedness of lA)j under fixed design since the
proof is analogous to the proof of Lemma [3Bl We formulate the lower bound for estimation of
g(B) := B; in the following theorem.

Theorem 6. Let @j be obtained using the nodewise regression as in (O)). Suppose that s =
0 <£), ||@j||0 = O(s), ||@j\|2 =0(1), 1/@jj = O(1) and that the compatibility condition is
satisfied for X7 X/n with a universal constant. Then l;j defined in () using éj s strongly

asymptotically unbiased and for any strongly asymptotically unbiased estimator T of 5;-) it
holds for all By € B

~

@fz@- +o(l) Oy +0(1).

J
n n

Varﬁo(T|X) > Varﬁo(gﬂX) =

7.3 Discussion on asymptotic efficiency in the linear model

To establish asymptotic efficiency of the de-sparsified estimator, we only considered mild con-
ditions analogous to the conditions assumed in [9]. These include conditions on the bound-
edness of the spectrum of the precision matrix, boundedness of the signal to noise ratio,
boundedness of the error variance, sparsity condition on the parameter 5y and row-sparsity
of the precision matrix.

In particular, our analysis requires the sparsity condition s = o(y/n/logp). However, this
condition is essentially necessary in the linear regression setting for construction of confidence
intervals, as argued in the following. First observe that if the (slightly weaker) condition
s = O(y/n/log p) is not satisfied, then there cannot exist an estimator 7}, of 5]0- € R such that
for all By

assuming that o, = O(1). Suppose that there exists an estimator 7T, that satisfies (@). Then
necessarily /n(T, — Bj)/on = Op(1). By similar reasoning as in [§], we have under the



conditions assumed the minimax rates for |1 — 5;-)| of order % + %. But then necessarily

slogp/n = O(1/4/n), which gives s = O(y/n/logp). This is only slightly weaker than the
condition we require, s = o(y/n/logp).

We remark that the above results can be easily extended to sub-Gaussian design and
sub-Gaussian error. The lower bounds clearly hold also for sub-Gaussian designs. As already
pointed out, strong oracle inequalities for sub-Gaussian designs and sub-Gaussian error may be
easily derived and used to show strong asymptotic unbiasedness of the de-sparsified estimator.

8 Lower bounds for Gaussian graphical models

In this part, we consider efficient estimation of edge weights in Gaussian graphical models.
Gaussian graphical models encode conditional dependencies between variables (nodes in the
graph) by including an edge between two variables if and only if they are not independent
given all the other variables. This corresponds to the problem of estimation of the precision
matrix of a multivariate normal distribution, which we now introduce. Let

XZ'NNP(O,Z()), 1= 1,...,71,

where the X;’s are independent for ¢ = 1,...,n. Denote the precision matrix by ©¢ := X L
where the inverse of X is assumed to exist. The matrix ©y € RP*P is unknown, but assumed
to only have row-sparsity (column-sparsity) of order s, i.e. let max;—1, ,[|©;llo < s, where
O; is the i-th column of the precision matrix.

There have been numerous methods proposed for estimation of the precision matrix in the
high-dimensional setting when p > n. These methods are based on ¢;-regularization and thus
lead to biased estimators. De-biasing was then studied similarly as in the linear regression,
and it was shown that de-biasing leads to estimators which are asymptotically normal. For
our further analysis, we consider the de-sparsified nodewise Lasso estimator proposed in [4].

In the following results, we restrict our attention to estimation of single elements of the
precision matrix and linear functionals of the precision matrix.

Let g : RP*P — R and let the parameter of interest be g(0g). Let T;, be some estimator of
9(©o).

We give some direct arguments for an asymptotic lower bound for the variance of T,, when
T, is strongly asymptotically unbiased. Contrary to previous parts, the parameter is a matrix,
therefore instead of vector direction a we shall write the capital letter A.

8.1 Estimation of elements of the precision matrix

As the first step we consider estimation of g(Qg) = @% for some fixed (i,5) € {1,...,p}>%.
The following Theorem gives a lower bound on the variance of any strongly asymptotically
unbiased estimator of @%. Define

g:= {@ € RP*P . H@]HO = 0(8)7] =1,...,p, 1/Amin(®) = 0(1)>Amax(@) = 0(1)}

Theorem 7. Suppose that T), is a strongly asymptotically unbiased estimator of g(©¢) := @%.
Suppose that (@?(@?)T + @?(@?)T)/@aij) € G, where where 02-2]- = (@%)2 + @?Z@?j. Then for
all®y e g

nvar(T,) > (07;)% + 6509, — o(1).

Theorem [7] follows from a more general result - Theorem 8 in the next section.
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8.2 Estimation of linear functionals

One could be further interested in estimation of linear functions of ©g, h(©g) = tr(¥0Oy),
where ¥ € RP*P is a known matrix. We shall consider the case when W is of rank one, i.e.
estimation of functions g(©g) = £ O&a, where &1, & € RP are known vectors.

Theorem 8. Suppose that T}, is a strongly asymptotically unbiased estimator of g(©) = £1 ©&;
at ©q in the direction A := O¢(&1&1 +£6T)00/(20), where 0% = £70p&163 O0és + (€10062)?,
with rate 6,,. Then it holds

nvare, (Th) > &1 ©0€1€3 Oola + (] ©p&2)? — o(1).

Corollary 3. Let T, be a strongly asymptotically unbiased estimator of g(©g) = &I ©p&s.
Suppose that O¢(&163 + £261)00/(20) € G for all ©g € G. Then for all ©g € G it holds that

nvare, (Tn) > &1 ©0€1€3 Ooéa + (&1 Oo&2)? — o(1).

9 An asymptotically efficient estimator for Gaussian graphical
models

We consider the de-sparsified nodewise Lasso estimator introduced in [4] and show that this
estimator is strongly asymptotically unbiased and reaches the lower bound on variance. To
this end, we consider the following construction, which was proposed in [6]. We recall the
construction again, although it is identical to the nodewise regression defined in (6]). Denote
by X_; the n x (p—1) matrix obtained by removing the j-th column from X. For j =1,...,p,
let

A = arg_min [|X; — X_jv[5 + 2A|), (10)

~yeRP—1

7= X - X507,

PJ = (_’Yj,h s Y551 17 —YjG+1 _’Yj,P)7

and define the nodewise Lasso estimator
0, =1,/ (11)
Define the de-sparsified nodewise Lasso (see [4])
T:=06+67 -o63%6. (12)

We will show that the T,-j is strongly asymptotically unbiased for estimation of (9% and
achieves the lower bound on variance.

We introduce further notation: let 7o := argmin, cgp—1 E[|X; — X_;7[|2 and let 7']-2 =
E||X; — X_jv0|?. To show strong asymptotic unbiasedness, we need a strong oracle inequality
for the estimator © of ©y. Namely, the paper [9] shows that under certain conditions (see
Theorem [I2)) it holds [|©; — (99”1 = Op(s)\). We aim to show a stronger claim, E||©; — (99”1 =
O(sA). This is a somewhat more difficult task than for the linear regression, since one has to
make sure that the estimate of the noise level, %J»z, does not blow up in expectation. Before
establishing strong asymptotic unbiasedness, we thus need the following auxiliary results.
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Lemma 5. Assume that slogp/n = o(1). Let k € {1,2,...} be fized and let 4; be defined as
in (IQ) with a sufficiently large tuning parameter A of order \/logp/n. Then for all ©y € G
it holds that

(B, 155 — 2 I1)/* = O(s).

The following Lemma shows that the noise estimator 1/ ?]2 does not blow up in expectation.
Lemma 6. Assume that slogp/n = o(1). Then for all ©g € G the following statements hold

1. E% =0O(1),

2. E]T — 7'32\2 O(s\?),

3. Bl — 2| = O(/5N).

J

Combination of results in Lemmas [B] and [6] gives the following result.

Lemma 7. Assume that slogp/n = o(1). Then for éj defined in ([II)) with a sufficiently large
tuning parameter of order \/logp/n it holds for all ©g € G that

Ee, (|6, — ©F11)"/% = O(sA).

Now we are at the point to prove strong asymptotic unbiasedness of TZ]

Lemma 8. Assume that s = o (1;{5;) Let TZ] be defined in (IZ), where © is the node-wise

Lasso estimator. Then Tij is strongly asymptotically unbiased, i.e. for all ©g € G it holds
\/H]EQO (Tw - @?j) = o(1).
Finally, we show that the de-sparsified estimator Tij reaches the lower bound on the variance.

Theorem 9. Assume that s = o ( v > Let T,] be defined in (I2), where © is the node-wise

Lasso estimator. Then Tij is a strongly asymptotically unbiased estimator of @ij and for any
strongly asymptotically unbiased estimator T of @?j it holds for all ©y € G

©50%; + (6§,)% +o(1)

n

vare, (T) > vare, (T};) =

9.1 Discussion on asymptotic efficiency for Gaussian graphical models

The conditions under which we show asymptotic efficiency only include eigenvalue conditions
on the true precision matrix and sparsity conditions on columns/rows of the precision matrix.
In particular, the condition on row sparsity required is the same as for the linear model:
s = o(y/n/logp). In view of results on minimax rates for estimation of elements of precision
matrices (see [§]), the condition s = o(y/n/logp) is necessary for construction of confidence
intervals.

We remark that extension of the above results to sub-Gaussian observations is straightfor-
ward. We note that similarly as for the linear regression, one can consider estimators of linear
functionals of the precision matrix. Then one may construct estimators of linear functionals
of O by taking linear combinations of the de-sparsified nodewise Lasso T’ to construct an
asymptotically efficient estimator.
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10 Lower bounds for the Gaussian sequence model

Finally, we consider the Gaussian sequence model, which might be viewed as a special case of
a linear model with fixed design. However, the number of parameters here is precisely equal
to the number of observations. Consider thus the model

Xi:/Bi+6i7 izla"'7n7

where ¢, ~ N(0,1) are independent. The following Theorem shows a lower bound on the
variance of any strongly asymptotically unbiased estimator.

Theorem 10. Let a € RP be such that a”a = 1. Suppose that T}, is a strongly asymptotically
unbiased estimator of g(fo) at B° in the direction a with rate &,. Assume moreover that for
some §(B") € RP and for m,, = n/d,

Via (9(8° + a/v/mw) — g(8%)) = a” §(8°) + o(1).

Then
nvar(T) > [a” §(6o)]* + o(1).

Similarly as in the linear model, the worst sub-direction is then

a=g(Bo)/\/9(Bo)T9(Bo),

and the lower bound
nvar(T) > §(50)" §(60) + o(1).

11 Le Cam’s Lemma

In the analysis in the previous part, we have shown for several settings that the de-sparsified
estimator is strongly asymptotically unbiased and reaches the lower bound on the variance.
This guaranteed us that the de-sparsified estimator is the best among all strongly asymp-
totically unbiased estimators in terms of variance. In this part, we further show that the
convergence of the de-sparsified estimator to the limiting normal distribution with smallest
possible variance is locally uniform in the underlying unknown parameter. This is motivated
by work of Le Cam on local asymptotic normality ([5]).

The motivation for locally uniform convergence can be seen in the classical examples of
superefficiency (see e.g. [10]). They show that pointwise convergence is insufficient for asymp-
totic efficiency and that we in fact need uniform convergence on shrinking neighbourhoods.
We show that for sparse high-dimensional models, asymptotic linearity of an estimator implies
this uniform convergence. This is in line with the results of Le Cam (see Lemma 8.14 in [10]).
We consider the model P := {Py : 6 € O}, where

©:={0cRP: |00 <s,]0]2=0(1)}.

Note that for many sparse high-dimensional models, one can often show that the de-sparsified
estimator T,, is asymptotically linear:

1 < _
T, —g(0) = EZZG(XZ') +op(n~1/?),
i=1
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where Egly = 0 and Elg < oo. For asymptotically linear estimators, one has the asymptotic
variance Vp := El2. Now consider the following condition for every h € ©

Py(lghTs) — KT 4(B) = 0.
If the condition is satisfied, then the Cauchy-Schwarz inequality implies
(hT§(0))% = (PylohTsg)? < var(lg)var(hT sg) = VyhT Igh.

Hence

> T . 2 T )
Vo = max(h"§(6)) /1" Iph (13)

Assuming that I, ¢(0) € ©, the right-hand side of (I3)) is maximized at I, (). Hence we
obtain the following lower bound on the asymptotic variance

Thus for Vy = g(0)TI,¢(9), the lower bound is reached. However, to avoid superefficiency
as discussed above, we require uniform convergence. Under the conditions of the central limit
theorem, asymptotic linearity implies that

V(T — g(6))/V, " % N (0, 1)

for every 0. We show that asymptotic linearity actually implies uniform convergence: the
limiting distribution remains the same under a disappearing change in the parameter. In
particular, this means that for every h € © and every 6 € © it holds that

Vi(Tn = 90 + h/v/n)) o+h/vw -
1/2
Vo

0,1).

This result is precisely formulated in the following Theorem.
Theorem 11. Let g : RP — R satisfy
V(g(8 +h/v/n) = g(8)) = T §(8) + o(1).

Suppose that for all 0 € ©

n

1 _
T, —g(0) = ” Zle(Xz’) +op, (n~1/?),
=1

where Pylg = 0 and Vy := PylZ < co. Suppose that Vo = O(1) and 1/Vy = O(1). Let sq be the
score function, let Iy := Esesg and assume that

1 n
- S Xz I 0o = )
||n ;:1 $0(Xi) + 1ol Op(A)

where X is such that sA = o(1). Assume further that Amax(lg) = O(1). Then for every h € ©
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it holds that

V(T — g(0 + h/v/n) — (Py(lghsg) — hT§(0)) o+h/v/n N

V91/2

0,1)

The result of Theorem 1] contains a bias term Pp(lgh”sg) — hT§(f) which depends on
h. However, in many cases, we have similarly as in the low-dimensional setting (when the
number of parameters p is fixed) that Py(lgh?sg) — hT §(8) = 0.

We look at this condition for the linear regression and Gaussian graphical models. First
consider the linear model with random design and the parameter of interest g(8) = 3;. Then
we have asymptotic linearity of the de-sparsified Lasso (see [9]) with lg(x;, ;) = (@?)Txiei,
where @? is the j-th column of the precision matrix. But then

Py(lgh" sg) = (@) Ezi€eiz] h = () EE(21ela] |1)h = OIS0h = h;.

Therefore in this case indeed Py(lgh”sg) — hT§(B) = 0. Next consider precision matrix es-
timation with the parameter of interest g(©) = ©;;. We have asymptotic linearity of the
de-sparsified nodewise Lasso (see [4]) with

lo(z) = tr(@iG;‘-F(:E:ET — X)) = Vec(GiG);fp)Tvec(xxT — )
and vec(H)Tvec(sg) = vec(H) vec(zz” — ¥g). Then by some algebra it follows

Po(lovec(H)Tvec(se)) = Vec(GiG)jT)TEO ® Mgvec(H)
= vec(Zo@iG?Eo)Tvec(H)
= GZTHGJ' = HZJ

Hence the condition is satisfied for Gaussian graphical models.

This shows that in the above cases, the bias term vanishes. Hence the de-sparsified
estimator converges uniformly to a normal distribution with zero mean and the smallest
possible variance.

12 Conclusions

In this paper we precisely formulated the concept of asymptotic efficiency in high-dimensional
models. We further analyzed the lower bounds on asymptotic efficiency and whether it is
possible to construct an estimator attaining the lower bounds. We showed that indeed con-
struction of asymptotically efficient estimator is possible: a de-sparsified estimator in linear
regression and Gaussian graphical models is asymptotically efficient. Our analysis identified
the theoretical conditions on the model and on the parameter sparsity under which asymptotic
efficiency is attained. The underlying analysis of the asymptotic Cramér-Rao bound involved
a detailed study of the remainders.

Furthermore, we showed that asymptotic linearity of an estimator implies that the esti-
mator converges uniformly to the limiting normal distribution with zero mean and smallest
possible variance. Thus we extended the classical results of Le Cam (see [5]). In high-
dimensional settings, the de-sparsified estimator is asymptotically linear in various settings
such as the linear regression, Gaussian graphical models and some cases of generalized linear
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models (see [9]).

Our analysis considered particular examples of de-sparsified estimators, however, other
estimators which are in some sense equivalent to these de-sparsified estimators (such as those
based on the square-root Lasso) are applicable.

13 Proofs

We recall a sub-Gaussianity assumption on random vectors (see Section 14 in [I]).

Definition 4. We say that a random vector X € RP is sub-Gaussian with a constant L if for
all € RP such that ||afl2 = 1 it holds that

Eel®" X)*/1* = 0(1).

13.1 Proofs for Section [

In this section we prove the oracle inequality for the Lasso as stated in Theorem [ We need
the following preliminary Lemmas [Q] 10l and Il Lemma[9 below is a version of Theorem 1 in
[7]). It gives sufficient conditions under which the restricted eigenvalue condition is satisfied.
For the definition of the restricted eigenvalue condition and the compatibility condition, see
Section 2.2.2 in [7] and Section 6.13 in [I]. Lemma [I0lis a concentration result which follows
from more general results for sub-Gaussian random variables in Section 14 in [I]. Lemma [TT]
is a version of Lemma 5.1 in [9].

Lemma 9. Let X € R"*P_ where the rows X; € RP i = 1,...,n are N(0,%)-distributed.
Suppose that ¥ := EXTX/n satisfies the compatibility condition with ¢ > 0, where 1/¢ =
O(1) and that ||Xollcc = O(1). Further suppose that slogp/n = o(1). Then there exists a
universal constant ¢' such that 1/¢' = O(1) and such that for any fived T > 0 it holds for all
n sufficiently large that

P(X satisfies the compatibility condition with ¢') >1—p~ 7.

Lemma 10. Suppose that € ~ Ny, (0,021) and X;,i = 1,...,n are independent and N'(0,%q)-
distributed. Then for any 7 > 0

P(HeTXHOO/n > 1epy/logp/n) < cop™ 7,
where ¢, co are some universal constants.

Lemma 11. Assume the linear model in ({l) with Gaussian error with variance o2 = O(1)

and suppose thatA X;,i = 1,...,n are independent and N (0,Xq)-distributed. Consider the
Lasso estimator 5 defined in ([2)) with tuning parameter X > 2Xg. Then on the set
T = {|lef X||oo /1 < N, X satisfies the compatibility condition with ¢}

it holds X <
||5 - 50”1 < 8)\@‘

Proof of Theorem [l First we summarize the oracle inequality for the Lasso which holds
with high probability. By Lemma [0, for the complement of the set 77 := {||¢? X|loo/n >
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c1y/log p/n} it holds that P(7y) < cop™" for any 7 > 0. The condition 1/Amin(Z0) = O(1)
implies that 3¢ satisfies the compatibility condition with some constant ¢ such that 1/¢ =
O(1). Furthermore, by assumption, we have that slogp/n = o(1) and |[Xo[[cc = O(1). Define
the event T3 := {X satisfies the compatibility condition with ¢}. Then by Lemma[it follows
that P(75) < p~7 (for all n Sufﬁ(uently large) for some constant ¢ such that 1/¢ = O(1).
Denote T := ’7’1 N T2. Then P(T¢) < p~7. By Lemma [IIl when \ > 2)\g := 27¢;4/log p/n, on
the set 7 it holds that ||3 — Bo|l1 < 8A§.

We now proceed to show that the oracle inequality for the Lasso holds also in expectation.
The definition of £ gives

1Y = XB15 + AlBlh < llell7 + AllSollr-

Consequently,

1811 < llella /A + [1Boll1-
Then, and by the triangle inequality
18 = Bollr < 18Il + 1Bollx < llell7/A+ 211 Boll1,

and thus for any k € {1,2,...}

E|l5 — Bollt < E(llell?/A+2l|60ll)*.

Then it follows

k
J

0
(ﬁmwmwww>

k
B/ + 2150 = EY (

J=

)M|m%m

‘We have

2\7 1 d d 2 2
B2y = —3 > B
=1  ij=1

< max Ee e

1, 77'j g
By assumption we have ¢; ~ N(0,02), and hence by the well-known formula: Ee® = o (m —

1)!'if m is even. Furthermore, we assume that o = O(1). Hence, and by the Cauchy-Schwarz
inequality, we can conclude that

max Re? ...62j =0(1),

Zl7 7743

because j < k, where k is fixed. Next observe that by assumption we have ||G|l2 = O(1) and
hence

180T < (Vsl1Boll2)* < O(s*/2).
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We can thus conclude that

koK
E(lel2/A+218o)* = Z(j) @5l E(le]2)
=0
: k (k=)
< 2k Jo(k—J 20( )
>(5)
< O(s"?).

Hence
(EgollB — Bollf) /% = O(s'/?).

On the set 7 we have || — fo|l1 = O(s)) and thus Hﬁ Boll¥ = O(s*AF), and otherwise (so
also on the set 7¢) we have the rough bound Eg, |5 — Boll¥ = O(s*/?). Denote by 14 the
indicator function of a set A. Then it follows using the Cauchy-Schwarz inequality

EgllB— Bollf = E|B—Bolf1r +E|B — Bol¥17e

< O(*N) + VE||B = Bol 3 VEL

= O(s"\F) + Vst /P(T?)

5 O(Sk)\k) k/2 —7/2

where we used the assumption p~7/2 = O((sA?)¥/2) which implies that s*/2p=7/2 = O(sF\F).
Hence we conclude that

(Ego 15 = Boll))/* = O(sN). (14)
The second statement of the Theorem follows by Markov’s inequality. Take any v > 0. Then

E[8 — Boll}

1
= Chykshpk < ok

P(||B — Boll > vCisX) = P(||B — Bollk > v*Cr*s*Ak) <
where C} is the constant from (I4]). O

13.2 Proofs for Section

Before proving the statement of Theorem 2] we need the following two auxiliary Lemmas.
Lemma 12. Let Z ~ N(0,1). Then for all t € R

E etZ_t2/2—1—tZ 2:et2—1—152.

Moreover, for 2t* < 1 we have
1

V1—2t2

Ee’ % =
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Proof of LemmalI2 By direct calculation
2
E [etz ~*/ 2] —E[2tZ — 2] =€,

EftZ —t?/2] =1

and ,
EZe?~/2 —(R[tZ — /2] =t.

The first result follows immediately. The second result is also easily found by standard

calculations: )
Fet’2® — /et2z2 2)dz = / V1 —2t2) = ——.

O

Lemma 13. Suppose that 2hTSoh < 1. Let Z = (X,Y), denote the corresponding probability
measure by v and the density by pg. Then it holds

Eﬁ <pﬁ0+a/m(z) — PBo (Z)
’ pﬁo(z)

Proof of Lemma[I3. Denote the density of Y given X by pg,(-|X), i.e.

2
— SBO(Z)TQ/\/E> = (1—2h"S0h) "2 =1 — nhTSgh.

n

eyl X) = [ [ o(wi — 2 Bo), v = (01, ),
=1

where ¢ is the standard normal density. R
Given X, the random variable e/ Xh is N(0,nh” ¥h)-distributed. It follows therefore from
the first result of Lemma [I2] that
Ej <p50+h(y - Xh’X) - ng(Y‘X
? Ppq (Y ‘ X )

Since X;h ~ N(0,hTSgh) for i = 1,...,n, we have by the second result of Lemma

2 )
) _ sBO(Z)Th> =Ee"™" > — 1 — nhTxh.

1
V1-=2hTS0h

Whence the result. O

EelXih)?* =

Proof of Theorem[2. By assumption (B]) and by strong asymptotic unbiasedness, it follows

aT3(Bo) = /mm (9(Bo +a/y/mn) — (B0)) + o(1)
= Vi (EgyarymmTn — By Tn ) +o(1)

Denoting Z = (X,Y’), the corresponding probability measure by v and the density by pg, we
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may further rewrite the expressions to obtain

Vi (Eﬁo+a/an - EﬁoTn) +o(l) = / Ta(2)(Pgo-tafymn (2) = Ppo(2))dV(2)

Po+a)yim (Z) — Dpo(Z)
pﬁo(Z)
Ppota/yma(£) —Ppo(£) Sﬁo(Z)Ta>
Py (Z) Vi
SBO(Z)T‘I
Vn

= En(Tu(2) - 9(f) (

55,(Z)a
+ B, Tn(2) 22— —

= EﬁoTn(Z)

= EsTn(2) <

+ EﬁoTn(Z)

pﬁo+a/m(z) _pﬁo(Z) B Sgo(Z)Ta>
pﬁo(Z) NG

We assume the variance of T is O(1), otherwise the statement trivially holds. But then
Eso (Tu(2) = 9(50))? = var(T(2)) + [Eg, (Tn(Z) — 9(5o))]* = O(1) + o(1/n) = O(1).

By Lemma [13] and some basic calculations,

Pooraryim(Z) — p(Z) . t

Consequently, and by the Cauchy-Schwarz inequality, we have the upper bound

o/ (Z) — g, (Z
B (T(2) - (o) (22 /“;’;f( Z)) pao(Z) _ S5 a/ )

o/ i (Z) = pgy(Z 2
< \/Eﬁo(Tn(Z)—g(ﬁo))Q\/E (p/“ /“;’;((Z)) 2l )—sgo<Z>Ta/m> = O(3n).

Hence, and since 6,, | 0

alq(By) = cov(Th, e Xa//m) +o(1)
Vny/var(Ty,) + o(1).

IN

13.3 Proofs for Section

Proof of Theorem[3. The proof follows the same lines as the proof of Theorem 2l The only
difference is that we need to check the condition

Po+al i\ Z) —P3(Z) r C_
g, (L w2 o/ =06,
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for fixed design. To this end, consider the density pg(z), which is given by

= 1 1 T
A R ) T —Ly-xp)T(v-X8
pp(2i) = pa(zi, yi) = Z'|:|1 o(yi —x; B) = (zﬂ)n/ze a( ) ( ).

For simplicity, denote h := a/\/m,,. By direct calculation, we obtain

p3(Z) — pso(2) e~ 3V =X(B+h)T(Y=X(B+h)) _ ,—5(Y=XB)T(Y-Xp)

ps,(Z) e 3(Y=XB)T(Y-XP)
e—hTXT(Y—Xﬁ)—%hTXTXh 1

We have hT XT(Y — X8) = hTXTe ~ N'(0, kT XT Xh). Hence Ee'e' Xh = oW XTXh Thyg
we obtain

E (e—eTXh—I—%hTXTXh 1 6TXh>2 — MNTXTXh _ 1 _pTXTxH
= OMWTXTXh) = O(mhTSh).
Then by the assumption a”$a < 1+ o(1) we obtain
OnhTSh) = O(na’Sa/my) = O(aTSad,) < O(5,).
U

Proof of Lemmall. By the assumptions |03 —1||oo = O(N), [|84(80)|l1 = O(/5]€4(B0)]l2) =
O(v/s) and ||g(Bo)|l1 = O(1/s) we obtain
9(B0)TO204(80)/3(80) O9(Bo) < 9(Bo)" (O — 1)O3(50)/9(B0)" ©d (o)
+ 9(50)"09(50)/3(50)"O9(Bo)
19(80) 11 119% = Il 104 (Bo)l11 /(o) T ©d(Bo)
+ 1

< O(1)sA/\/§(Bo)TOG(Bo) +1 =1+ o(1).

IN

13.4 Proofs for Section [7.1]
Proof of Lemmal2. We apply Theorem [l Conditions ||Bollo < s,||Boll2 = O(1) and |(A1)]

imply that conditions of Theorem [ are satisfied.
O
Proof of Lemma[3. First note that

EOTXTe¢/n = EE(OT XTe/n|X) = EOTXTE(e|X)/n = 0.
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We then have by the definition of l;j and Holder’s inequality

A~ A~

Eﬁo(bj - /8?) = Eﬁoé?XTe/n +E50(2éj - ej)T(B — Bo)
=0

< Eﬁouiéj - ejHooH/@ - /BOHL

Hence, by assumption [|[20; — e;]joc < A and using Lemma 2 we obtain that Eg, (b; — ﬂ?) =
O(s\?) = o(1/4/n), where we used the sparsity assumption.
O

Proof of Theorem[§). By taking g(f) = f; and a := @2/, /@?j in Theorem 2] we obtain the

lower bound.
Since ©; is constructed using the nodewise regression, it satisfies

1£6; = ejlloo < A

Hence Lemma [l implies that Bj is strongly asymptotically unbiased.
Note now that E(@?)TXTE/n =0 and

var((09)" X" e/n) = E(E[((09)TXTe/n)? X)) = E(O))"XTX/n6Y) = 0Y;.
We then have the following decomposition
by — B = (ONTXTe/n+(0; — ONTXTe/n+ (26, — ;) (B — Bo).
Thus, and by the Cauchy-Schwarz inequality and some basic calculations, we have

~

var(Bj — B?) = V&I‘((@?)TXTE/TI) —l—(’)(var((éj — @2)TXT6/TI)) + O(Var((ﬁ(:)j - ej)T(ﬁ —5o)))-

—@0 i i
=6j;/n ’

We show that the terms ¢ and 4i are of small order 1/n.
First consider the term ¢. By Lemma [, which is proved in the Section on Gaussian
graphical models, we have that E||©; — ®2H4 = O(s*)\*). Hence

i= var((é)j - @9)TXTe/n)

E((0; —0))" X e/n)* — (E((©; — 6))T X ¢/n))?

< E((©; - 0)TXTe/n)?
< E|6; - YFI1X €] /n?
< (B XTell5/n")"?

< At =o(1/n),

where we used that E||XTe||% /n* = O(A\?), which follows by concentration results for sub-
Gaussian random variables (see [1]).
For the second term i, by Lemma [2] it follows

E[(£6; — ¢j)(8 — Bo)]* = O((sX*)?).
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Hence

W = Var((fléj — ej)(B — Bo))

Thus we obtain

13.5 Proofs for Section

Proof of Theorem[6. The lower bound follows by Theorem [I] (note that g(8) = 8; and thus
the condition on g is satisfied) since by assumption, [|©;|lo = O(s),[©;l]2 = O(1).
Strong asymptotic unbiasedness of b; follows similarly as in Lemma [3] under the assumptions

1Bollo < s, |lBoll2 = O(1), s = o <l(\)/gﬁp) and if X7 X/n satisfies the compatibility condition

with a universal constant.
First observe that by the assumption on ©; we obtain

07%0;/0;; < 6] 1126, — ejlleo/Osj + O] €;/0; < O(sA) +1 = 1+ o(1).
Hence for the variance of
by — 89 = (0,)TXTe/n+ (20; —e;)T (B — Bo),

we get

O
13.6 Proofs for Section [7.1]
Proof of Lemma [ We have
Eso(be ") = Es€"OX"e/n+E5¢" (56 - 1)7 (B - Bo)
=0
< Eﬁon”luié - IHOOH/é - ﬂOHl
= O(s\?) = o(1//n).
O

Proof of Theorem [3. By Corollary 2l with g(3) = ¢T3 we obtain the lower bound by assump-
tions [|©0¢llo < s, [I[1 = O(1).
Lemma [l implies that b¢ is strongly asymptotically unbiased.
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It remains to calculate the variance of Z)g. Consider the following decomposition
be — €70 = TOFX e/n +£7(0 — ©0) X e/n+E7(£6 — )T (5 — Bo).

Then one can show using basic calculations and the Cauchy-Schwarz inequality that

~

var(be) = var(€70XTe/n) + O(var(€T(© — ©0)T X e/n)) + O(var(€T(26 — )T (6 — bo))).

We have var(X) < EX? and hence

var(€7(©& — ©9)"XTe/n)
< E(ET(O-00)" XTe/n)

lelzE]|6 - o[ IxTe/nl = o2,

1

IN

and
ii = E(67(20 — )T (B — o)) < [€IZE]S6 — 112,118 — Boll3 = O(*AY).

Thus we conclude var(lsg) = w.

13.7 Proofs for Section

We first need several auxiliary Lemmas (Lemmas [[4] [I5] 6] I7). Although we state results
only for estimation of linear functions, we carry out the calculations below to allow for handling
general functionals.

Lemma 14. Let z ~ N (0,, %) and let Oy = Egl. Then for any symmetric A € RP*P 4t holds

EetmTAm _ det(@o) 12 )
det(0 — 2A)

Proof of Lemma|[1j] By direct calculation, we obtain

EethA:c _ det(®0)1/2e—%xT@ox
re  (2m)P/2

_ / det(®0)1/2 e—%xT@ox
re  (2m)P/2
B / det(©g)!/2 o377 (©0-2tA)z g,
re  (2m)P/2
_ / det(B)'/*det(0g — 2tA)!/2 o~ a7 (©0-214)
RP (27T)P/2det(®0 — 2tA)1/2
det(@0)1/2
det(@() — 2tA)1/2 ’

T
et:c Az dz

T
etm Az dr

Tdx
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Lemma 15.

Poyta(®) - 2 det(Q+A)" [ det(9g) \"?
B (et -1 -] = R (e, ) !

+ Zvar(:EZTAxi)
i=1
— 2ntr[((©g + A)~ — Xg) Al
Proof of LemmalId The density is given by

— det(@o)"/2 -1y aleg;

p@‘)(xl"“7xn)_W€ i=1%;
Then we have o
poota(z) - det(©p + A)n/2e=4 Ticy ol A »
pey(z) det(09)"/?

The score function is given by se, () = n(% — Xg). Let
7 := vec(A) vec(sg,(2)) = tr(z zirl A —nY¥oA) = Z ol Az — ntr(2oA).
i=1 i=1
First observe that . .
EZ% = Var(z al Axy) = ZV&F(:EZTA:EZ').
i=1 i=1

We have
2 n/2g-3 S, T A ?
E<p@O+A(.Z') —1—Z> - E det(@0+A) e 22 1 _1_z
“pey () det(©0)"/
det(©pg+ A)" . s T uL. 2
— —E Zz: Ty ATq 1 EZ
det(@g) TR
det(©g + A2 15w 1
_9 E i=1T A%i 4 o 7
det(@g)2 "
n/2 n
_ gdet(@o + AV, i oTar,
det(@o)n/z
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Using Lemma [I4] we obtain

E <p90+A($) _q_ Z>2 _ det(© + A)" ( det(©o) ))n/2 +1+ En: var(z] Az;)

pe,(2) det(©9)" det (g + 24 i=1
 det(®g + A2 [ det(€g) \"*
det(©9)™/2  \det(Og + A)
n/2 n
B 2det(®o + A) EZe—s S T Az
det(@o)"/2
det(©g + A)" det(©g) ik - T
_ -1 ; Ax;
det(@o)" <det(®0 n 2A) + ZZ:; Val'(xz x )
_pdet@o+ AL i e
det(©¢)"/2

Next we calculate 7. We have

_ n . _ det(@o) n/2
FetZ — ntr(ZoA)tE tY 0wl Az _ —ntr(SoA)t
© = ‘ ‘ det(©y — 2tA)

We also have
EZetZ — (EetZ)/

o n/2
_ e—ntr(ZoA)t <%> n [tr((@o — 2tA)_1A) — tI‘(EOA)]

Finally, we obtain
2 n n/2 n
Poo+a(r) | ~ det(©g + A) det(60) ) -
E < poy (z) 1 Z> = det(Og)" det(6 + 24) 1+ Zvar(xi Ax;)
— 2ntr[((Qg + A)~! — %) A]

=1

This finishes the proof.

We apply the Lemmas above to the special case when g(©) = ff@fg.
Lemma 16. Let A := 0¢(&1&5 + &¢1)00 /(20 (/). Then

pogialr) . \*_
E(W ! Z) = Oln).

Proof of LemmalI8. We apply Lemma [[5 with A := Og(&1&1 + £¢7)00/(20\/my,), where
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02 = 1% £10%; + (¢70%,)%. Then tr(XgA) = £70%, and

pegral) N\ (0°6)2/ (40’m,) \"*
E(p@ow ! Z> - <”1+251T@052/<amn>> !

(T 0%l 0% + (¢10%,)?) n (700%,)?

n
* a’my, CoZm, 1+ rO0% ) /mn,
n
= O0n) +0(— ) =0(6n),
(6)+0 () = 0(6,)
where in the last step we used Lemma [I7] to conclude that i = O(dy,). O

Lemma 17. Let 0 < § =, — 0 and let a,b = O(1). Then

< ad >n/2 0(5)
1+ —1= .
Va(bVs + v/n)
Proof of Lemma [17
n/2 n o
(1 n ad ) B o) I
V(b5 + /)
n ad ad
_ 65[ﬁ<bﬁ+m+°<ﬁ<bﬁ+ﬁ)>] -1
Next 5
an
= O(9).
VTN

Hence, and using that e* — 1 = o(x) for x — 0, we obtain

e%[\/ﬁ(b:}%\/ﬁ)—i_o(ﬁ(b%*ﬁ))]_l = 00).

O

Proof of Theorem[8. The proof follows in the same way as the proof of Theorem 2] but we
need to use Lemma [16] to conclude that

PoytA(2) r t_
E <W —1—vec(A) vec(seo(aj))> = O(6n).

13.8 Proofs for Section

We first recall a version of Theorem 2.4 from [9].

Theorem 12 (a version of Theorem 2.4 in [9]). Suppose that X ~ N(0, Op'), assume that
slogp/n = o(1). Consider the nodewise regression estimator ©; and the corresponding %3»2 with

Aj = A=< y/logp/n forj =1,...,p. Then on the set T := {\|ij(Xj - X_jV?)HOO/n < cA}
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(where ¢ is some sufficiently large constant), we have the following claims for j =1,...,p for

all®ye g .
1©; — @ng = 0O(sA), |7A'J2 — 7]2| = O(y/slogp/n).

Proof of Lemmald. Letting €; := X —X_ﬂ? for j=1,...,p, we have ¢; ~ Nn(O,F;fFFjI). We
have by assumption 1/Apin(0) = O(1), Amax(©) = O(1) that T'] T'; = O(1). Further we have
X_ji~ Np_1(0, 29]’7—]')' Then under 1/Anin(0) = O(1), one can check that Amin(29j7_j) >
L >0and ||X° j—jllooc = O(1). Hence the conditions of Theorem [I] are satisfied and it follows
that

(E3; =3 I1)V* = O(sN).

Proof of Lemmalf. Proof of part 1]
Without loss of generality, let j = 1. We first show that E<dy = O(n?). First observe that
1

P(i <t) = PITSE+AAlh < 1)
< PETSOr <t AXlh <)

fipifl = 3 — 22{7_1’% + ’??2—1,—1’?1

i — 2|i{_ﬁ1| + 7?2_1,—1%

2:311 - 2\[21,—1”00”%”1 +A S
S — 250t/A

S11(1 = 2t/)),

v

AV

we obtain that

PCTSTy <t AXAlh <) < P

P(

(1—2t/))
(1—2t/))

tAMALl <t)
).

Next 1 = e{X TXe, /n ~ ¥11x2 (by assumed Gaussianity of X). Using Chernoff bounds,
we have for Z ~ x2 the following upper bound

< i <
< 1 <

P(Z <zx)< (Eel_m/”>n/2 = <E>n/2 g 2e=/2,

- —\n n

Hence for /X < 1/2 it holds

PE(-2/N <0 = P(Su/% S )

(" (i)
n (1—=2t/0)%n

Hence collecting the above inequalities, we have so far shown that for any ¢t/A < 1/2 it holds

n/2 t n/2 (e
2 o< (& —_— ((172t/x>2 >/2_
]P(Tl - t) - (n> <(1 — 2t/)\)211> ¢ ! (15)
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Then by rewriting the expectation as an integral

1 o0
E— = /0 P(1/7} > z)dx

71
1 (%)\ - 0o
= / P(1/78 > z)dx +/ P(1/7} > z)dx + /1 ) P(1/78 > z)dx
0 1 ix
1\t 2
< 1+ <—A> +/ P(1/78 > z)dx
2 ()"

13

Next we calculate an upper bound on ii.
/( PR > 2)de = /( Py > 2y da

A)
= /( PG < hyda

[NIES

Now we can use the bound (I5)) since z~'/* < 1/2X. We obtain

§ e\ nro 4
/( AN PO <a”hde = (ﬁ) "’ /(%A)zx (95(1—2/1@:)\))211) e (z(l—z/(m))zu)/zdx

%
e\n/2 [ 1 n/2 ~ (Gt ) /2
< — z(1—2/(zN\)=
- <") /( S <$(1—2/(33>\))211> ‘ i

1
2 <1 since m*1/4§%)\

n/2 00 n/2
V" fo )
(1) * \e=n
n/2 roo n/2
(&) Sy (B
Zun) oy \e

2¢ \ /2 (log p/n)™/4=1/2
2n —4

VAN
—
Slo

= o(1),

where we used that under 1/Anin (©) = O(1), it holds that 1/©1; = O(1). Hence

1 1\!
IE{_—{3 =0 ((5)\) ) = O(n?*/(log p)?).

Denote

T = {IXTX — Xop)lloo/n < e,

ijX_j /n satisfies the compatibility condition with a universal constant}.
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Then by Theorem [[2, on 7 we have 1/7% = O(1). But then

1 1
Ti Ti 1

< 0O(1) 4+ On2)e T8 = 0(1).

Proof of part 2] First we show that %]‘-1 =0(1).

>
N

= X = X503 /n + A3l

= T7ST/n+ Ml

< TSRS o + All51x

TS 1T oo + Al

+ P11l = I3 IS lo0 + AUAS 1 = 1A5110).

<.

Hence by basic calculations

N 2
Ert = |05131S )0 + Allglh]
+[MMHMM+AMMJOﬁwﬂﬁﬁmm—wmﬂmm+kwwh—hmﬂ)

7
A ~ 2
+ O (IS5 o0 = IT5IRIS oo + AR 1 = Isl1)] -

i

First observe that [||T;|2[%]le + Al111]% = O(s).
We now consider i. By the triangle inequality and Lemma

EAi Ml = lvjlln) < AE[95 = 51l = O(sA).
Further, we have E||I'; — T;[|{ = O(s*A*) (as in Lemma) and ||T||; = O(y/5). Hence
E|Ly]l1 = E; — T + T;]i < O(s?).
Thus

E[[|T5 112l — 1T 1Z oo

A

ElIT5 1312 lo0 = IT511Z o] + BT TS lo0 = 1T 111 lloo]
O(s%).

Therefore, we conclude that ¢ = O(s?). Next we consider 4i. This can be bounded similarly,
but we also need (E[|T; — T;[|$)"/® = O(s\). Then we can show ii = O(s%).
Hence, by Theorem 12, on 7 we have that %]2 = O(1), hence it follows
E#} = E7/ 17 + E#/17e = O(1).
We have under 1/Anin(0©) = O(1), that 7; = O(1) and hence

72 — 7212 < |F22 4 2072 |72 + |72 = O(FF + 7).
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We can then apply the same procedure:
2 212 _ |52 212 -2 2|2
E|7; — 7717 = E|7} — 77 "1 + E[7; — 77["17e,

to show the claim.

Proof of part [3

~2 2

1 TS — T%

El = — =l < El-Z;5%
T3 T 7j

7j
1/ JEIF — 722\ [E1/7L.

Using Parts [Il and 2] we obtain the claim.

IN

]
Proof of Lemma[7. By Theorem 12 when \ > ¢71/logp/n, on the set
T = {||E?X||w/n < 207+/logp/n}
it holds that R
185 = Ol = O(sA), |77 — 77| = O(VsN).
Next we rewrite
E|©; - 6f|f = E||©; - 6}[i17 + E|6; — 6} {17
Then
A . . . 2
Eo,[0; —6%IT = Ee, [I7; = I1/77 + InjIul1/7} —1/77]]
= Ee,ll% —1IIR/7] + 2Beyll3; — 711 /77 1177 11 [1/7F — 1/77|
+ BRI - 1731
< VEoull4s — I EL/7S + 201700 Bey 155 — 19 [7Ee, |77 — 722
+ SRR/ — 172
< $2A20(1) 4 VssAVsA 4 sO(1)s\?
= O(s*\?),
where in the last display we used Lemmas [B] and [
]

Proof of Lemmal8. By the Karush-Kuhn-Tucker conditions corresponding to the nodewise
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Lasso estimator, we have ||f?@ — I||oc = Op(A). Hence, and applying Lemma [7] we obtain

Eo,(Ti; — 0%) = Ee,(09)T (X — X0)0) +Ee,(0; — 69)7 (26 — ¢))
=0

+ Eo,(20; — )" (0, — 0)

Eeyl|0i — ©7 (111267 — ¢)]lo + EeyAllO; — 671

AEo||©; — 691 + O(sA?)

O(s\?) = o(1/+/n).

IN N IA

O

Proof of Theorem[d. The lower bound fo}lows by Theorem [8]
The strong asymptotic unbiasedness of Tj; follows by Lemma [8l It remains to calculate the
variance of T;;. First we have that

- 1
var((09)7 (2 — %0)0)) = ;Var((@?)T&XlT@?) = (05,05; + (67;)%)/n.

By basic calculations, it follows that

var(T;;) = var((09)7209 — (267 — )" (6, — 09) + (6; — ©))T(£0; — ¢;))
< (8%0Y% +(8%)%)/n+ OE((26 - ¢)T(6; — 6%))?)
+ O(E((6: — 0))T(£6; —¢;))*) A
< (0909 + (82)%)/n+ OE[26Y! — ¢|%16; — 0913)

+ O(E|6; — 6Y[F1£6; — ¢]17).
Now we have by Lemma,[7]
E|26] — | %]10; — ©7[F < NE[6; — 6%|F = O(s°A") = o(1/n).

Hence we conclude

var(7;;) = (Gzoi@?j + (@?j)Q)/” +o(1/n).
13.9 Proofs for section [0l
Proof of Theorem[I0. Denote h := a/\/m,,. The density is given by

1 —La— T—
po(e) = py(en, - a) = [ ol = B0) = ooe BT,
i=1
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Then we have

pa(x) — ps, () e~ 2@=B=)T(@=p=h) _ ;=3 (@=B)T(2-H)
P, () N e 3(@=B)T(z—p)
o~ 3(@=B)" (@=B)+(z—p)h—zhTh
= -1
e~z (@=B)T (z=p)
— o (@Ph—3hTh _4
We have €Zh ~ N'(0, hTh). Then Eete'h = ¢2t*4"h_ Hence
E (e - eTh)2 = P 1 pTh
= O(h'h).
Therefore, we can conlude the result as in the proof of Theorem [2 O

13.10 Proofs for Section [11]
Proof of Theorem [I1l. Let

An = Z 10gp9+h/\/ﬁ(X2) - lng@(XZ)
i=1

Under Py, by a two-term Taylor expansion we obtain
Ap = Zn: W s(X;) + ~hT L zn: 59(X:)h + o(hT < zn: 56(X)h)
n - \/ﬁ £ 7 9 n - ) n £ i .

By assumption, we have that |2 Y% | $6(X;) + Ipllcc = Op()). Note that every h € © is
s-sparse and furthermore we assume that ||h|l2 = O(1). Then ||h||; = O(V/s). Hence

IIhT(% D 30(X0) + 10)hlloo < IRITND $6(X0) + Lolloe = Op(sA) = 0p(1).
i=1 i=1

Therefore,
A, = L ihTSQ(X‘) — 1hTI((9)h+ op(1)
Vg co2 '

We introduce the following notation. Let

Vo Vo Py(lghT sg)
T\ Py(lghTsg)  ATI(0)R

Furthermore, we denote the entries of the matrix V' by v;;. Then by the central limit theorem
we have for any a € R? that

TV (n(T, — g(0)), A + %hTI(H)h) ~ al Z, where Z ~ N(0,I5).
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Then by the Wold device we have

2,y ( fiTgh—T %;2 > 2 N3 (0,1) ~ Z.

Now let f: R — R be bounded and continuous. We may write

(LU tD) vz _ g, (V29D vz .

Eoin/ymf

Consider the function
_( /o 0 1/2 —V12
Y(z1,22) = < 0 | > {V (z1,72) + 32

Let X, = (X1, Xnz2) = ¥(Z,) = (%AO Then we have

Eyf <\/ﬁ(Tn - 9(9)) - U12> eAn _ Eef(Xn,1)€X7l’2-

VUi
Similarly,
o = s = (4 ) o ()|

Since we know that Z,, ~ Z, we hope that in some sense X,, = 1/(Z,) is close to U,, = ¢(Z).
Note that the function v depends on n.

We aim to apply Lemma 22] with X,, = ¢(Z,) and U,, = ¥(Z) defined above and with the
function g(z1,x2) = f(z1)e*2. By Lemmal2I] we have that lim,,—, lim, I[EeU”»QLE;g1 (Un) =
0, where B, := {z € R? : ||z||2 > m}.

Hence we get by the second part of Lemma

11_}111 [Eg(Xn) — Eg(Uy)| = 0.
Next we calculate Eg(U,,). We have
Eog(Un) = Ef(Up,1)e™? = /2 f(ur) e fu, (u1, uz)du,
R

where fy denotes the density of a random variable Y. We use Lemma [I§] to obtain that
fu, (w)e"2 = fy(u), where

O 1 V12
Y ~N <U22/2>’< v12 g))
v11

Bao(U) = [ | Flwn) il uhdu = EF (YD),

Hence
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where Y ~ N(0,1). Hence for any bounded continuous function f we have shown
(\/E(Tn —9(8)) — v
V11

By the Portmanteau Lemma (note that Y in the above display does not depend on n), we
thus have

Tim [Egyymf ) - Es)| =

V(Tn — g(0)) —vio O+h/Vi )
NGIT

Therefore, by the assumption on g, we get

(0,1).

VT, — g(0)) + kT §(0) — Pylgh” sg S INENY:
%1/2

0,1).

Lemma 18. Let Z € R? be N (i, X)-distributed, where

#:<M1>,E:<011 012>'
w2 012 022

Suppose that pig = —092/2. Let Y € R? be N'(iu + a, X)-distributed, with

-(72)
a = .
022
Let ¢z be the density of Z and ¢y be the density of Y. Then we have the following equality
for all z = (21, z2) € R%:

dz(2)e”? = gy (2).
Proof. The density of Z is
1

T 2n/det (D)

e 3(z=) T2 (zp)

¢z(2)

It holds that
> la=(0,1)7T.

Then

1 1
5(73 — )TNz —p) = i(z —pu—a) 'S M e—p—a)+ad"'27 Nz —p) - a2

We also have

1
0, 1)"a =2 — po — —099 = 2.

1
a’Y Nz —p) - za" Y a = (0,1)T (2 — p) 5

1
2 2

Lemma 19. Let pu and X be defined as follows

V12
p={ var ], =
2

Il
N
S —
= o
=

=
SN—



Suppose that Vy = O(1),1/Vy = O(1) and Apax(Ip) = O(1). (The relationship between these
quantities and the v;;’s is given in the proof of Le Cam’s lemma). Then

13 =0@1) and Apax(Z) = O(1).

Proof. First observe that v, = (ElphT's9)? < I[ElgIE(hTs@)2 = %hEsesgh < %AmaX(ESQSg)hTh.
Then by assumption Amax(Esgsy) = O(1), Vp = O(1) and since hTh = O(1), we have that
(ElghTsg)? = O(1). Also observe that vay = hTIph < Amax(Ig)h"h = O(1) by assumption
Anmax(Ip) = O(1).

Then, and by 1/Vy = O(1), it follows that

1l3 = viy/v11 + v3,/4 = (Polgh” s9)?/ Ve + (W Igh)? /4 = O(1).

We proceed to check that the eigenvalues of ¥ are bounded. We have

where D = (1 +v22)% — 4(va — U%Q/’UH) = (1 —vg9)? +4v%2/v11. Clearly, D > 0, and as above,
one sees that D = O(1). Hence also Apax(X) = O(1). O

Lemma 20. Suppose that X ~ Ny(u,Y), where ||u||? < K, Anax(3) < L and assume that ¥
is invertible. Then it holds that for all r > max{K, Ld}

_ K e d/2 2 2 d/2
PUXIE> ) < (e 38 ) (et )

Proof. First consider Y ~ N4(0,%) and denote Z := $~Y2Y ~ Ny(0, I). Note that Z7Z ~ X2
Since for any y € R? we have y”y < Apax(2)y" X"y < LyT S~ 1y, then it follows

P(|YI3>r) < PLYTST'Y >r)

—p (ZTZ > %)
< (&el—ﬁ)dﬂ, (16)

where we used a Chernoff bound for X% in the last inequality, which holds provided that
r> Ld.
Consider now for any r > K (assume that K > 0, otherwise if K = 0 we are done)

P(IXI3 >r) = PIX —p+pll>r)

< P(IX = pll3 + 21X — pllallulle + lull3 > r)
< P(|X —pll3 +2(X — plo2VE + K > )
r—K T
< P(Ix-ulp> 255w e (1 - > )

WK

K r?
PlIX —ul2>—).
)+ (1% - u > )

r —

_ P@X—m%>
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Now since X — p ~ Ng(0,%), we can apply (I6]) to conclude that

9 9 T—K 9 72
P(X]z>r) < PIX —ulz> +PIX —plz>
2 1K
r—K e\ [ 2 2\ Y2
= < 2rd 2Ld> * <4LdKel_4LdK> ’

which holds if » > max{K, Ld}. O

Lemma 21. Suppose that

T 1 V12
U ~ N’ V11 1/ V11
n _ v ) V12 V99 .
2 4/V11

Suppose that Vo = O(1),1/Vy = O(1), Amax(lp) = O(1). (The relationship between these
quantities and the v;;’s is given in the proof of Le Cam’s lemma).
Then it holds that

lim lim EeY»21g. =0,
M—00 N—00 m
where BS, = {x € R? : ||z||s > m}.
Proof. By Lemma [I8 we have that

Ee'"21p. (X) =Elp. (Y),

O 1 V12
Y ~ N ( ) vy VT .
v92/2 T V22

Elp: (Y)=P(Y € By,) = P(||[Y ]2 > m).
Denote py = EY and Xy = var(Y). By Lemma 20, for m > max{Ld, K} we have

— K m— d/2 2 m2 d/2
P(HY”% >m) < <m2Ld el_Té(> + <4Z;Kel_4LdK> , (17)

where

Further we have

where ||py||3 < K and Apax(Xy) < L and d = 2. By Lemma [0 we have L = O(1) and by
assumption Apax(ly) = O(1) we have K = O(1). Therefore, and using (I7]), we can obtain
an upper bound on P(||Y||3 > m) that depends on m but does not depend on n. This upper
bound tends to zero for m — oo, therefore we have shown that

lim lim EeV21p. (U,) = 0.

mM—00 N—00

O

Lemma 22. Assume the conditions of Theorem [I1. Suppose that Z, ~~ Z, where Z is a
random vector with values in R%. Let X, = (Z,) and U,, = ¢(Z) with ¢ as in Theorem [
Then the following statements hold.
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1. For any function f : R? — R which is bounded and continuous it holds that

lim Ef(X,) — Ef(Uy,) = 0.

n— oo
2. Let f be any bounded and continuous function f : R — R. Suppose that

lim lim EeY»21g. =0,
m—00 N—00 m

where BE, := {x € RY: ||z||o > m}. Then it holds that

lim Ef(X,1)eX"2 —Ef(Un,1)el2 = 0.

n—o0

Proof. We first prove the first statement. Let € > 0 and let f : R? — R be continuous and
bounded.
Consider the map

st = (T Y [ (2 ) (S0, )]

D

The map 4 is linear, i.e. ¥(x) = Az + b for some A € R>*? and b € R? (A, b depending on
n). Observe that for any z € R?

|Az||3 = 2T AT Az = 2" DV Dz < Apax(DV D)z 2.
By Lemma [[0 we have that Apax(DV D) = O(1) and ||b||2 = O(1). Therefore, for all z € R?
[ Az + bll2 = O([|2[|2)- (18)

Take a compact rectangle R C R? not depending on n and such that P(Z ¢ R) < e.

Divide the rectangle R into a finite number of non-overlapping rectangles of diameter at most
1) /Ll/ 2 where L is a universal constant such that L > Ay (DV D). By construction, the
number of these rectangles, denote it N, does not depend on n. So we have R = Uévlej,

where each R; is a rectangle of diameter at most §/L'/2.
For all ,y € R; it holds that ||z — y[j2 < §/L'/? and thus

(@) = d()ll2 = Al = y)ll2 < L[z = y|l2 < 6. (19)

Note that by (I8]), there exists a compact set S not depending on n such that ¢(R) C S
for all n. The continuous function f is uniformly continuous on the compact set S. Hence
for our e there exists a 6 > 0 such that for all z,v € S it holds that if ||z — v|]2 < ¢ then
|f(2) — f(v)] < e. But then since for all z,y € R; we have that ¢(z),¢(y) € S, we obtain by
(I9) and the absolute continuity of f that

[f () = fF((y))] <€

for all n. Take a point x; from each set R; and define f, = Z;VZI f(@(x5))1R,. Then |f(¢(x))—
fe(z)| < efor all z € R (and all n) and hence if f takes values in [— K, K], we have the following
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upper bounds

[Ef((Z)) —Ef(Z)| < e+ 2KP(Z ¢ R), (20)
[Ef((Zn)) = Efe(Zn)| < €+ 2KP(Z, & R), (21)
N
[Efe(Zn) — Efd(Z)] < ) |P(Zn € Ry) — P(Z € R))||f (¢(a))]. (22)
j=1

Since Z,, ~ Z, for all j =1,..., N it holds
|P(Z, € Rj) — P(Z € R;)| — 0.
Similarly,
|P(Z ¢ R)— P(Z, ¢ R)|=|P(Z € R)— P(Z, € R)| = 0.

Finally, by construction we have P(Z ¢ R) < e. We thus conclude that the upper bounds
20), @I) and ([22)) can be made smaller than Ce for n sufficiently large. The claim follows
by combining the three upper bounds.

Next we prove the second statement. Denote g(z1,z2) = f(x1)e®2. We write g = g* — g,
where g7 = max{g,0} is the positive part and g~ := max{—g, 0} is the negative part. We
first prove for the positive part g™ that

lim Eg*(X,)—Eg"(U,) = 0. (23)

n—oo

For every m, since g is non-negative, it holds that g™ (z) > g™ (z)1p,, (z), where B, := {z €
R?: ||z||2 < m}. Hence

Eg+(Xn) - Eg+(Un)

v

Eg+(Xn)1B7n - Eg+(Un)
= [Eg+(Xn)1Bm - E9+(Un)1Bm]
+ [Eg* (Un)1B,, —Eg" (Un)]

We have 1p, — 1 = —1pc . Taking limes inferior of both sides, it follows that

n—oo

+ liniinf —Eg* (Un)1pe .

For every fixed m, the function x — g™ (x)1p, () is bounded since g is continuous on the
compact set B,,. We may thus apply the first result of the lemma to conclude

liminf Eg"(X,)1p,, — Eg"(U,)1p,, = 0.

n—oo

Therefore, we have

liminf Eg" (X,,) — Eg*(Uy,) > liminf —Eg" (U,)1p . (24)

n—o0 n—oo

Next since |f+| < K we have | — Eg"(U,)1p¢ | < KEeV"21ge . Then the assumption

lim lim EeVr2? 1gc =0
m—00 Nn—00 m
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implies that also

lim liminf —~Eg* (U,)1pe = — lim limsupEg*(U,)1p: =0,

m—0o0 n m—0o0 n

so we conclude that

liminf Eg*(X,,) — Eg™ (U,,) > 0. (25)

n—o0

Now similarly, since K — f* > 0 (K is an upper bound on f), we have that

lim inf E(K — FH(Xn1)eXm? —E(K — fH(Upn))eUn?

> liminf E(K — f*(Xp1)e""?1p, — E(K = f*(Una))e" 15,
+ liminf E(K — fT(Un1))eV 215, — E(K — fH(Un1))eVm2.

n— o0

By the the first part of the lemma, we have that for every m it holds

liminf B(K — f7(X,1))eX21p,, —E(K — fH(U,1))e21p, =0,

since the function (x1,z2) — (K — f*(x1))e*?1p, (x1,22) is bounded and continuous.
For the second term, we have since |[K — f1| < 2K

| = E(K — fT(Un1))e"21p. | < 2KEeU 215, .
Hence by the assumption lim,,_, e limy, o EeV21 Be, = 0, we have that

liminf —E(K — f+(Un,1))€U”’213;31 =0.

n—oo

Thus we conclude that

liminf B(K — f7(X,1))eX"2 —E(K — fT(U,1))e’2 > 0.

n—oo

Now note that
lim inf E(K — FH(Xp1))eXm2 —EB(K — fT(Upq))eV?
= liminf - FH(Xn1)em2 BT (U, 1)el2
= —limsup IEf"’(Xn,l)eX”’2 - Ef""(Un,l)eU”’?.
n

So in conclusion we have shown that

limsup EfH (X, 1)eXm? —Bf T (U,1)eV2 <0 < liminf EfH (X, 1)eXm2 —Bf (U, 1)eV2.
n n

This proves (23]).
The same procedure can be used for the negative part f~ (since f~ is also bounded and
positive) to show that

lim Ef~(Xn1)e™? —Ef~(Una)e”? =0.

n—o0
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We then conclude that

lim Ef(Xn,l)esz - Ef(Un,l)eUn’z < h_>m |Ef+(Xn,1)eXm2 - Ef+(Un,1)eUn’2|

n—oo
+ lim [Ef 7 (Xpq)eXm2 —Ef~(Un1)el2|
n—oo
= 0.
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