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Semi-parametric efficiency bounds and efficient estimation

for high-dimensional models
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Abstract

Asymptotic lower bounds for estimation play a fundamental role in assessing the qual-
ity of statistical procedures. In this paper we consider the possibility of establishing semi-
parametric efficiency bounds for high-dimensional models and construction of estimators
reaching these bounds. We propose a local uniform asymptotic unbiasedness assump-
tion for high-dimensional models and derive explicit lower bounds on the variance of any
asymptotically unbiased estimator. We show that an estimator obtained by de-sparsifying
(or de-biasing) an ℓ1-penalized M-estimator is asymptotically unbiased and achieves the
lower bound on the variance: thus it is asymptotically efficient. In particular, we consider
the linear regression model, Gaussian graphical models and Gaussian sequence models
under mild conditions.

Furthermore, motivated by the results of Le Cam on local asymptotic normality, we
show that the de-sparsified estimator converges to the limiting normal distribution with
zero mean and the smallest possible variance not only pointwise, but locally uniformly in
the underlying parameter. This is achieved by deriving an extension of Le Cam’s Lemma
to the high-dimensional setting.

1 Introduction

Following the development of numerous efficient methods for high-dimensional estimation,
more recently the need for statistical inference has emerged. The major approach to estimation
in high-dimensions is based on regularized M-estimators, where the regularization is in terms
of the ℓ1-penalty. This approach produces near-oracle estimators under sparsity conditions on
the high-dimensional parameter. However, in contrast to the low-dimensional setting, it does
not easily yield estimators which are asymptotically normal. This is essentially due to the
regularization which introduces bias by shrinking all coefficients towards zero. One stream
of work then concentrates on “de-sparsifying” or “de-biasing” ([11], [9], [3]). This approach
uses the ℓ1-regularized M-estimator as an initial estimator and implements a bias correction
step. This has been in particular studied for the linear model, generalized linear models and
some special cases of non-linear models such as Gaussian graphical models. The work in
essence shows an important result: an asymptotically normal estimator for low-dimensional
parameters can be constructed.

Further questions being studied concern optimality properties of these de-biased estima-
tors. In particular, what are lower bounds on the rate of convergence attainable in the supre-
mum norm and whether the constructed estimators achieve these optimal rates (see [2] and
[3]). The results reveal several things. Firstly, the parametric rate 1/

√
n can be achieved. This

basically follows directly from the asymptotic normality of the de-biased estimators, under
sufficient sparsity which is of small order

√
n/ log p. Naturally, the parametric rate is optimal:

it cannot be improved in order (as was also shown in [2]). On the other hand, if there is
insufficient sparsity, in particular when s ≥ n/ log p, the minimax lower bounds diverge. This
is no surprise as oracle inequalities for certain M-estimators have only been shown under the
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condition s = o(n/ log p). In the intermediate sparsity regime when
√
n/ log p ≤ s < n/ log p,

the parametric rate cannot be achieved. However, as we discuss in Section 7.3, the sparsity
condition s = o(

√
n/ log p) is essentially necessary for asymptotically normal estimation. Thus

the analysis revealed that under sufficient sparsity of small order
√
n/ log p, the parametric

rate of order 1/
√
n is optimal, and the de-biased estimator achieves it (in the above mentioned

settings).
However, the analysis on minimax rates does not address an important question. The

parametric bounds derived do not reveal any explicit lower bounds on the variance. The
question of efficiency in the spirit of the famous Cramér-Rao result thus remains open in the
high-dimensional setting. This motivates us to pose the following questions. Can we establish
lower bounds on the variance, similar to the Cramér-Rao bounds in the (semi-)parametric
setting, also in the high-dimensional setting? And if yes, can we construct an estimator that
achieves these bounds?

We give an affirmative answer to these questions. We propose Cramér-Rao type bounds on
the variance for sparse high-dimensional models. To this end, we propose a uniform asymptotic
unbiasedness assumption. This basically measures the rate at which the bias vanishes in
shrinking neighbourhoods of the true distribution P0 of size 1/

√
n. We then present a lower

bound on the variance of sequences of estimators that are uniformly asymptotically unbiased.
This essentially means that we obtain explicit minimax lower bounds.

We further show that one can construct an asymptotically unbiased estimator, which
achieves the lower bound. As one might expect, this is the de-biased estimator or an estimator
that is in some sense asymptotically equivalent to the de-biased estimator. Thus, compared
to previous results, which only showed asymptotic normality or minimaxity (up to order in
n) of the de-biased estimator, we show that the de-biased estimator is the best among all
asymptotically unbiased estimators: thus in this sense asymptotically efficient.

Furthermore, we extend the work of Le Cam on asymptotic efficiency ([5]) to the high-
dimensional setting. In particular, we show that the de-sparsified estimator converges locally
uniformly to the limiting normal distribution with zero mean and the smallest possible vari-
ance. This involves a careful adjustment of Le Cam’s arguments to the high-dimensional
setting.

As a by-product of our analysis, we establish new oracle results for the Lasso which hold in
expectation. These are needed to claim strong asymptotic unbiasedness of certain de-sparsified
estimators.

2 Notation

For a vector x = (x1, . . . , xp) ∈ R
p we denote its ℓp norm by ‖x‖p := (

∑p
i=1 x

p
i )

1/p for
p = 1, 2, . . . . We further let ‖x‖∞ := maxi=1,...,p |xi| and ‖x‖0 = |{i : i ∈ {1, . . . , p}, xi = 0}|.
We denote ‖x‖2n := ‖x‖22/n.

By ei we denote a p-dimensional vector of zeros with one at position i. For a matrix
A ∈ R

m×n we let ‖A‖∞ := maxi=1,...,m,j=1,...,n |Aij |, |||A|||1 := maxi=1,...,m
∑n

j=1 |Aij |. We
denote its j-th column by Aj , which is a column vector. We recall here that for symmetric
matrices A,B ∈ R

p×p it holds that vec(A)T vec(B) = tr(AB), where vec(A) is the vectorized
version of a matrix A. For matrices A,B,C ∈ R

p×p, it holds that A⊗B vec(C) = vec(ATCB),
where ⊗ denotes the Kronecker product. By Λmin(A) and Λmax(A) we denote the minimum
and maximum eigenvalue of A, respectively.

For real sequences fn, gn, we write fn = O(gn) if |fn| ≤ C|gn| for some C > 0 independent
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of n and all n. We write fn ≍ gn if both fn = O(gn) and 1/fn = O(gn) hold. Finally,
fn = o(gn) if limn→∞ fn/gn = 0.

We use  to denote the convergence in distribution. By Φ(·) we denote the cumulative
distribution function of a standard normal random variable.

3 Organization of the paper

The paper consists of two main parts. In the first part we develop an asymptotic version of
a semi-parametric Cramér-Rao lower bound for high-dimensional models. In particular, we
consider the linear model, the Gaussian graphical model and the Gaussian sequence model.
For each of these models, we establish lower bounds on the variance of any strongly asymptot-
ically unbiased estimator. Consequently, we give a construction of a strongly asymptotically
unbiased estimator which is asymptotically efficient, i.e. it reaches the derived lower bound.

The particular sections are divided as follows. In Section 4 we state preliminary results
on strong oracle inequalities for the Lasso. In Section 5 we propose a strong asymptotic
unbiasedness assumption. Section 6 gives lower bounds on the variance in the linear model,
considering random and fixed design. In Section 7 we propose an estimator that is asymp-
totically efficient for the considered linear model. In Section 8 we derive lower bounds on
the variance in Gaussian graphical models. Section 9 then gives a construction of an asymp-
totically efficient estimator for Gaussian graphical models. In the second part of the paper
we extend the results of Le Cam’s to the high-dimensional setting, which shows that the de-
sparsified estimator is locally uniform converging to the limiting distribution with zero mean
and the smallest possible variance. This extension in contained in Section 11. Finally, the
proofs are contained in Section 13.

4 Strong oracle inequalities for the Lasso

We present new results on oracle inequalities for the Lasso in linear regression which will
be needed in subsequent sections, but can also be of independent interest. Typical high-
dimensional analysis derives oracle inequalities for the Lasso which hold with high-probability
(see [1] for an overview of such results). We derive stronger oracle inequalities that hold in
expectation.

Consider the linear model
Y = Xβ0 + ǫ, (1)

whereX is the n×p design matrix with independent rows Xi, i = 1, . . . , n, Y is the n×1 vector
of observations and the (unobservable) error ǫ ∈ R

n satisfies Eǫ = 0 and ǫi are independent
for i = 1, . . . , n. Moreover, the error ǫ and the design matrix X are independent. The vector
β0 ∈ R

p is unknown, but assumed to only have s non-zero entries. The quantity s is called
the sparsity of β0.

Consider the Lasso estimator with a tuning parameter λ defined as follows:

β̂ := arg min
β∈Rp

‖Y −Xβ‖22/n+ 2λ‖β‖1. (2)

The following result shows that the error E‖β̂ − β0‖1 is up to a logarithmic factor of the
same order as the oracle error E‖βora − β0‖1 = O(s/

√
n), where βora is the oracle estimator

(i.e. it has knowledge of the set of non-zero entries of β0). Theorem 1 presented below is
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actually more general in that it considers the k-th order errors E‖β̂ − β0‖k1 for any fixed
k ∈ {1, 2, . . . }.

Theorem 1. Assume the linear model in (1) with ǫ ∼ N (0, σ2ǫ I), where σ
2
ǫ = O(1). Suppose

that Xi ∼ N (0,Σ0) are independent for i = 1, . . . , n, where ‖Σ0‖∞ = O(1) and Λmin(Σ0) ≥
L > 0 for a universal constant L. Suppose that ‖β0‖2 = O(1), ‖β0‖0 ≤ s and s log p/n = o(1).
Let k ∈ {1, 2, . . . } be fixed and let τ > 0 fixed be such that p−τ/2 = O((sλ2)k/2). Consider the
Lasso β̂ defined in (2) with tuning parameter λ ≥ cτ

√

log p/n, where c is a sufficiently large
universal constant. Then there exist universal constants C1, C2 such that

(E‖β̂ − β0‖k1)1/k ≤ C1sλ.

Moreover, for any ν > 0 it holds with probability at least 1− 1/νk

‖β̂ − β0‖1 ≤ νC1sλ.

Theorem 1 is proved in Section 13.1. Taking k = 1, under the conditions of Theorem 1
we obtain

E‖β̂ − β0‖1 ≤ C1sλ.

Moreover, Theorem 1 can be extended to the situation when the errors ǫi are independent and
sub-Gaussian (with a universal constant) and the design X has independent sub-Gaussian
rows (with a universal constant). It can also be easily extended to fixed design, under a
compatibility condition on the sample covariance matrix XTX/n.

We note that to obtain strong oracle inequalities for higher powers of the error ‖β̂−β0‖1,
we need to keep increasing τ (because of the condition p−τ/2 = O((sλ2)k/2), where k is the
power). However, the regularization parameter λ depends on τ , in particular λ ≥ cτ

√

log p/n.
Hence the higher order of error we want to control, the stronger regularization must be chosen.

5 Local uniform asymptotic unbiasedness

In this section we introduce a local uniform asymptotic unbiasedness assumption. Consider the
model P := {Pθ : θ ∈ Θ}, where Pθ is a probability distribution for every θ ∈ Θ ⊂ R

p. Assume
that Pθ ∈ P is dominated by some σ-finite measure for all θ and denote the corresponding
probability densities by pθ. The log-likelihood will be denoted by ℓθ := log pθ. Further denote
the score function by sθ :=

∂ℓθ
∂θ and let Iθ = Eθsθs

T
θ .

Let g : Rp → R and let the parameter of interest be g(θ0). Our goal is to derive an
asymptotic lower bound for the variance of an estimator Tn of g(θ), which is in some sense
asymptotically unbiased. To this end, we define strong asymptotic unbiasedness as presented
below.

Definition 1. Let a ∈ R
p and let 0 < δn ↓ 0. We call Tn a strongly asymptotically unbiased

estimator of g(θ0) at θ0 in the direction a with rate δn if for mn := n/δn and for θ :=
θ0 + a/

√
mn and for θ := θ0 it holds that

√
mn(EθTn − g(θ)) = o(1).

The motivation for this definition comes from the asymptotic unbiasedness assumption
for semi-parametric models. In particular, we consider shrinking neighbourhoods of θ0 of size
1/
√
n, where we require the bias to vanish at a rate 1/

√
n. Note that if

√
n(Eθ(Tn)− g(θ)) =
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o(1), then one may take e.g. δn :=
√
n(Eθ(Tn)− g(θ)). Definition 1 is particularly useful

when recognizing the concept of a worst possible sub-direction, as will be discussed later on.
Further we consider the following notion which assumes strong asymptotic unbiasedness in
every direction within the considered sparse model.

Definition 2. We say that Tn is strongly asymptotically unbiased for estimation of g(θ) if
for all θ ∈ Θ and a ∈ Θ it holds that

√
n

(

Eθ+a/
√
nTn − g

(

θ +
a√
n

))

= o(1).

6 Lower bounds for the linear model

In this part, we derive lower bounds for the variance of a strongly asymptotically unbiased
estimator in a high-dimensional linear regression model. Consider the linear model (1) with
ǫ ∼ Nn(0, I). In the following sections we look first at the case of random Gaussian design
matrix and then a fixed design matrix.

6.1 Linear model with random design

Assume that X is a random n × p matrix independent of ǫ with independent rows Xi ∼
N (0,Σ0) for i = 1, . . . , n. We assume the inverse covariance matrix Θ0 := Σ−1

0 exists.

Theorem 2. Let a ∈ R
p be such that aTΣ0a = 1. Suppose that Tn is a strongly asymptotically

unbiased estimator of g(β0) at β0 in the direction a with rate δn. Assume moreover that for
some ġ(β0) ∈ R

p and for mn = n/δn

√
mn (g(β0 + a/

√
mn)− g(β0)) = aT ġ(β0) + o(1). (3)

Then
nvar(Tn) ≥ [aT ġ(β0)]

2 − o(1).

The condition (3) is a differentiability condition on g. By maximizing the lower bound
[aT ġ(β0)]

2 over all a such that aTΣ0a = 1, we obtain the following corollary.

Corollary 1. The lower bound [aT ġ(β0)]
2 is maximized at the value

a0 := Θ0ġ(β0)/
√

ġ(β0)TΘ0ġ(β0).

Hence under the conditions of Theorem 2, we get

nvar(Tn) ≥ ġ(β0)
TΘ0ġ(β0)− o(1).

Definition 3. Let g be differentiable at β0 with derivative ġ(β0). We call

c0 := Θ0ġ(β0)/ġ(β0)
TΘ0ġ(β0)

the worst possible sub-direction for estimating g(β0).

The motivation for the terminology in Definition 3 is given by Corollary 1. The normal-
ization by ġ(β0)

TΘ0ġ(β0) is arbitrary but natural from a projetion theory point of view.
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As a special case, consider g(β0) = β0j for some fixed value of j. Then ġ(β0) = ej , the

j-th unit vector in R
p. Clearly, Θ0ej = Θ0

j and eTj Θ0ej = Θ0
jj, where Θ0

j is the j-th column

of Θ0 and Θ0
jj is its j-th diagonal element. It follows that C0

j = Θ0
j/Θ

0
jj is the worst possible

sub-direction for estimating β0j . Corollary 1 implies the lower bound nvar(Tn) ≥ Θjj + o(1).
Finally, we reformulate Corollary 1 in view of Definition 2. In particular, we assume that

Tn is strongly asymptotically unbiased in all directions a ∈ B, where B := {β ∈ R
p : ‖β‖0 ≤

s, ‖β‖2 = O(1)}.

Corollary 2. Let Tn be a strongly asymptotically unbiased estimator of g(β0), and for all
β0 ∈ B, a ∈ B it holds

√
n
(
g(β0 + a/

√
n)− g(β0)

)
= aT ġ(β0) + o(1).

Suppose that Θ0ġ(β0)/
√

ġ(β0)TΘ0ġ(β0) ∈ B for all β0 ∈ B and suppose that Λmax(Σ0) = O(1).
Then it holds

nvarβ0(Tn) ≥ ġ(β0)
TΘ0ġ(β0)− o(1).

6.2 Linear model with fixed design

In this section, we assume that the design matrix X is fixed (non-random). Let Σ̂ := XTX/n
be the sample covariance matrix.

Theorem 3. Let a ∈ R
p be such that aT Σ̂a ≤ 1 + o(1). Suppose that Tn is a strongly

asymptotically unbiased estimator of g(β0) at β0 in the direction a with rate δn. Assume
moreover that for some ġ(β0) ∈ R

p and for mn := n/δn it holds that

√
mn (g(β0 + a/

√
mn)− g(β0)) = aT ġ(β0) + o(1). (4)

Then
nvar(Tn|X) ≥ [aT ġ(β0)]

2 − o(1).

The following Lemma gives the lower bound in view of Definition 2. It assumes existence
of Θ̂, which is a pseudoinverse of Σ̂ in the following sense: ‖Σ̂Θ̂−I‖∞ = O(λ). A construction
of such an estimator is possible and deferred to Section 7.

Lemma 1. Suppose that Θ̂ġ(β0)/

√

ġ(β0)T Θ̂ġ(β0) ∈ B for all β0 ∈ B and suppose that ‖Σ̂Θ̂−
I‖∞ = O(λ), where sλ = o(1). Let Tn be a strongly asymptotically unbiased estimator of
g(β0), and assume that for all β0, a ∈ B it holds

√
n
(
g(β0 + a/

√
n)− g(β0)

)
= aT ġ(β0) + o(1).

Further assume that 1/ġ(β0)
T Θ̂ġ(β0) = O(1) and ‖ġ(β0)‖1 = O(s). Then it holds

nvar(Tn|X) ≥ ġ(β0)
T Θ̂ġ(β0)− o(1).

7 An asymptotically efficient estimator in the linear model

In this section we consider the construction of a strongly asymptotically unbiased estimator,
which achieves the corresponding lower bound on the variance derived in the previous sections
(for fixed and random design). We first consider estimation of single elements g(β) = βj for
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some j ∈ {1, . . . , p} and later estimation of linear functionals g(β) = ξTβ, where ξ ∈ R
p is

known. Further extension to other functionals of interest might be also possible, under some
conditions on the transformation g.

The problem of estimation of low-dimensional parameters in high-dimensional linear re-
gression has been studied extensively (see [1] for an overview). The Lasso estimator (see
[1]) is a prime example. However, Lasso is biased due to the inclusion of the ℓ1-penalty. A
de-sparsified or de-biased version of the Lasso was then considered (see [9]), which was shown
to be asymptotically normal in [9]. Here we consider the de-sparsified Lasso estimator and
show that it is strongly asymptotically unbiased. However, the analysis is not limited to this
example; other de-sparsified estimators (e.g. one based on the square-root Lasso) or other
estimators which are in some sense equivalent are likely to be applicable as well.

We consider the linear model (1) with ǫ ∼ N (0, σ2ǫ I), where σǫ = O(1).

7.1 Linear model with random design

Assume that X in (1) is a random n × p matrix independent of ǫ with independent sub-
Gaussian rows Xi with mean zero and covariance matrix Σ0. The rows of X will be denoted
by Xi, i = 1, . . . , n. We assume the inverse covariance matrix Θ0 := Σ−1

0 exists.
Consider the Lasso defined in (2) with λ ≍

√

log p/n. We further need to construct an

estimator of Θ0. Let Θ̂j be an estimate of Θ0
j be obtained by solving the following program,

that will be referred to as nodewise regression (see [9]). Denote by X−j the n× (p−1) matrix
obtained by removing the j-th column from X. For j = 1, . . . , p, let

γ̂j := arg min
γ∈Rp−1

‖Xj −X−jγ‖22/n + 2λj‖γ‖1, (5)

τ̂2j := ‖Xj −X−j γ̂j‖22/n,

Θ̂Lasso,j := (−γ̂j,1, . . . ,−γ̂j,j−1, 1,−γ̂j,j+1, . . . ,−γ̂j,p)/τ̂2j , (6)

where λj ≍ λ ≍
√

log p/n for j = 1, . . . , p. The necessary Karush-Kuhn-Tucker conditions cor-
responding to the nodewise regression (obtained by replacing derivatives by sub-differentials)
imply the condition ‖Σ̂Θ̂j − ej‖∞ = OP (λ) (see [9]).

Define the de-biased Lasso introduced in [9] by

b̂ := β̂ + Θ̂TXT (Y −Xβ̂)/n, (7)

and let b̂j denote its j-th element.

Estimation of β0
j

We will next show that b̂j with Θ̂j defined by the nodewise regression is strongly asymptotically
unbiased. We need the following assumptions and auxiliary Lemma 2. Recall that B :=
{β ∈ R

p : ‖β0‖0 = O(s), ‖β0‖2 = O(1)}. Condition ‖β0‖0 = O(s) represents the classical
sparsity condition on the high-dimensional parameter (here the sparsity s will be specified
later). Condition ‖β0‖2 = O(1) can be justified in terms of the signal-to-noise ratio being
bounded. If the signal-to-noise ratio stays bounded, and the variance of the noise is bounded
(as assumed above), then the ℓ2-norm of β also remains bounded. We further consider the
following condition on boundedness of eigenvalues of Σ0 as follows.

(A1) 1/Λmin(Σ0) = O(1) and Λmax(Σ0) = O(1).
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Condition (A1) guarantees that the compatibility condition is satisfied and that the node-
wise regression yields an oracle estimator (see [9], Theorem 2.4). The following Lemma is a
direct consequence of Theorem 1.

Lemma 2. Suppose that condition (A1) is satisfied and suppose that s log p/n = o(1). Let
β̂ be the Lasso estimator defined in (2) with a sufficiently large tuning parameter of order
√

log p/n. Then for every β0 ∈ B

Eβ0‖β̂ − β0‖1 = O(sλ).

We consider estimation of g(β) = βj and we show strong asymptotic unbiasedness of the
de-biased estimator for estimation of β0j . To show strong asymptotic unbiasedness, we need

to assume the sparsity assumption s = o
( √

n
log p

)

. This condition is necessary as discussed in

Section 7.3.

Lemma 3. Suppose that condition (A1) is satisfied and suppose that s = o
( √

n
log p

)

. Let b̂j be

defined as in (7) with Θ̂j satisfying ‖Σ̂Θ̂j − ej‖∞ ≤ λj. Then for every β0 ∈ B
√
nEβ0(b̂j − β0j ) = o(1).

Finally we show that the de-biased estimator achieves the lower bound on the variance de-
rived in previous section. Thus the de-sparsified estimator is strongly asymptotically unbiased
and has the smallest variance among all strongly asymptotically unbiased estimators.

Theorem 4. Suppose that condition (A1) is satisfied, s = o
( √

n
log p

)

and that ‖Θ0
j‖0 = O(s).

Let Θ̂Lasso,j be obtained using the nodewise regression as in (6). Then b̂j defined in (7) using
the nodewise regression is strongly asymptotically unbiased and for any strongly asymptotically
unbiased estimator T of β0j it holds for all β0 ∈ B

var(T ) ≥ var(b̂j) =
Θ0

jj + o(1)

n
.

Estimation of linear functionals

We consider estimation of linear functionals g(β) = ξTβ, where ξ ∈ R
p is a known vector. In

this section, we assume that the design is random, however, similar results might be obtained
also for fixed design. We define the de-sparsified estimator for estimation of ξTβ as a linear
combination ξ of the de-sparsified estimator b̂. This yields

b̂ξ := ξT b̂ = ξT Θ̂(β̂ − β0) + ξT Θ̂XT (Y −Xβ̂)/n. (8)

Then we have the following Lemma, which shows strong asymptotic unbiasedness of b̂ξ.

Lemma 4. Suppose that condition (A1) is satisfied and s = o
( √

n
log p

)

. Let b̂ξ be the estimator

defined in (8). Assume that ‖ξ‖1 = O(1). Then for every β0 ∈ B it holds that

√
nEβ0(b̂ξ − ξTβ0) = o(1).

Theorem 5 shows that the de-biased estimator (8) achieves the lower bound on the vari-
ance.
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Theorem 5. Suppose that condition (A1) is satisfied and s = o
( √

n
log p

)

. Let b̂ξ be the esti-

mator defined in (8). Assume that ‖Θ0ξ‖0 = O(s) and ‖ξ‖1 = O(1). Then b̂ξ is strongly
asymptotically unbiased and for any strongly asymptotically unbiased estimator T of ξTβ it
holds for all β0 ∈ B

varβ0(T ) ≥ varβ0(b̂ξ) =
ξTΘ0ξ + o(1)

n
.

7.2 Linear model with fixed design

We consider X ∈ R
n×p to be a fixed design matrix. Denote the sample covariance matrix

by Σ̂ := XTX/n. An estimate Θ̂ which is a surrogate inverse for Σ̂ can be obtained in
the same way as for the random design, using the nodewise regression (6). The necessary
Karush-Kuhn-Tucker conditions of the nodewise regression (obtained by replacing derivatives
by sub-differentials) again imply the condition ‖Σ̂Θ̂j − ej‖∞ = OP (λ). The de-sparsified
estimator can then be defined in the same way as for the random design, as in (7).

We consider estimation of g(β) := βj , although one could further consider estimation of
linear functionals, similarly as for the random design. Strong asymptotic unbiasedness for

estimation of β0j then follows similarly as in Lemma 3 for all β0 ∈ B, under s = o
( √

n
log p

)

and

if the compatibility condition (see [1]) is satisfied for XTX/n with a universal constant. We
omit details of the proof of strong asymptotic unbiasedness of b̂j under fixed design since the
proof is analogous to the proof of Lemma 3. We formulate the lower bound for estimation of
g(β) := βj in the following theorem.

Theorem 6. Let Θ̂j be obtained using the nodewise regression as in (6). Suppose that s =

o
( √

n
log p

)

, ‖Θ̂j‖0 = O(s), ‖Θ̂j‖2 = O(1), 1/Θ̂jj = O(1) and that the compatibility condition is

satisfied for XTX/n with a universal constant. Then b̂j defined in (7) using Θ̂j is strongly
asymptotically unbiased and for any strongly asymptotically unbiased estimator T of β0j it
holds for all β0 ∈ B

varβ0(T |X) ≥ varβ0(b̂j |X) =
Θ̂T

j Σ̂Θ̂j + o(1)

n
=

Θ̂jj + o(1)

n
.

7.3 Discussion on asymptotic efficiency in the linear model

To establish asymptotic efficiency of the de-sparsified estimator, we only considered mild con-
ditions analogous to the conditions assumed in [9]. These include conditions on the bound-
edness of the spectrum of the precision matrix, boundedness of the signal to noise ratio,
boundedness of the error variance, sparsity condition on the parameter β0 and row-sparsity
of the precision matrix.

In particular, our analysis requires the sparsity condition s = o(
√
n/ log p). However, this

condition is essentially necessary in the linear regression setting for construction of confidence
intervals, as argued in the following. First observe that if the (slightly weaker) condition
s = O(

√
n/ log p) is not satisfied, then there cannot exist an estimator Tn of β0j ∈ R such that

for all β0 √
n(Tn − β0j )/σn  N (0, 1), (9)

assuming that σn = O(1). Suppose that there exists an estimator Tn that satisfies (9). Then
necessarily

√
n(Tn − βj)/σn = OP (1). By similar reasoning as in [8], we have under the

9



conditions assumed the minimax rates for |T − β0j | of order 1√
n
+ s log p

n . But then necessarily

s log p/n = O(1/
√
n), which gives s = O(

√
n/ log p). This is only slightly weaker than the

condition we require, s = o(
√
n/ log p).

We remark that the above results can be easily extended to sub-Gaussian design and
sub-Gaussian error. The lower bounds clearly hold also for sub-Gaussian designs. As already
pointed out, strong oracle inequalities for sub-Gaussian designs and sub-Gaussian error may be
easily derived and used to show strong asymptotic unbiasedness of the de-sparsified estimator.

8 Lower bounds for Gaussian graphical models

In this part, we consider efficient estimation of edge weights in Gaussian graphical models.
Gaussian graphical models encode conditional dependencies between variables (nodes in the
graph) by including an edge between two variables if and only if they are not independent
given all the other variables. This corresponds to the problem of estimation of the precision
matrix of a multivariate normal distribution, which we now introduce. Let

Xi ∼ Np(0,Σ0), i = 1, . . . , n,

where the Xi’s are independent for i = 1, . . . , n. Denote the precision matrix by Θ0 := Σ−1
0 ,

where the inverse of Σ0 is assumed to exist. The matrix Θ0 ∈ R
p×p is unknown, but assumed

to only have row-sparsity (column-sparsity) of order s, i.e. let maxi=1,...,p ‖Θi‖0 ≤ s, where
Θi is the i-th column of the precision matrix.

There have been numerous methods proposed for estimation of the precision matrix in the
high-dimensional setting when p≫ n. These methods are based on ℓ1-regularization and thus
lead to biased estimators. De-biasing was then studied similarly as in the linear regression,
and it was shown that de-biasing leads to estimators which are asymptotically normal. For
our further analysis, we consider the de-sparsified nodewise Lasso estimator proposed in [4].

In the following results, we restrict our attention to estimation of single elements of the
precision matrix and linear functionals of the precision matrix.

Let g : Rp×p → R and let the parameter of interest be g(Θ0). Let Tn be some estimator of
g(Θ0).

We give some direct arguments for an asymptotic lower bound for the variance of Tn when
Tn is strongly asymptotically unbiased. Contrary to previous parts, the parameter is a matrix,
therefore instead of vector direction a we shall write the capital letter A.

8.1 Estimation of elements of the precision matrix

As the first step we consider estimation of g(Θ0) = Θ0
ij for some fixed (i, j) ∈ {1, . . . , p}2.

The following Theorem gives a lower bound on the variance of any strongly asymptotically
unbiased estimator of Θ0

ij. Define

G := {Θ ∈ R
p×p : ‖Θj‖0 = O(s), j = 1, . . . , p, 1/Λmin(Θ) = O(1),Λmax(Θ) = O(1)}.

Theorem 7. Suppose that Tn is a strongly asymptotically unbiased estimator of g(Θ0) := Θ0
ij.

Suppose that (Θ0
i (Θ

0
j)

T +Θ0
i (Θ

0
j )

T )/(2σij) ∈ G, where where σ2ij := (Θ0
ij)

2 +Θ0
iiΘ

0
jj. Then for

all Θ0 ∈ G
nvar(Tn) ≥ (Θ0

ij)
2 +Θ0

iiΘ
0
jj − o(1).

Theorem 7 follows from a more general result - Theorem 8 in the next section.
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8.2 Estimation of linear functionals

One could be further interested in estimation of linear functions of Θ0, h(Θ0) = tr(ΨΘ0),
where Ψ ∈ R

p×p is a known matrix. We shall consider the case when Ψ is of rank one, i.e.
estimation of functions g(Θ0) = ξT1 Θ0ξ2, where ξ1, ξ2 ∈ R

p are known vectors.

Theorem 8. Suppose that Tn is a strongly asymptotically unbiased estimator of g(Θ) = ξT1 Θξ2
at Θ0 in the direction A := Θ0(ξ1ξ

T
2 + ξ2ξ

T
1 )Θ0/(2σ), where σ

2 = ξT1 Θ0ξ1ξ
T
2 Θ0ξ2 + (ξT1 Θ0ξ2)

2,
with rate δn. Then it holds

nvarΘ0(Tn) ≥ ξT1 Θ0ξ1ξ
T
2 Θ0ξ2 + (ξT1 Θ0ξ2)

2 − o(1).

Corollary 3. Let Tn be a strongly asymptotically unbiased estimator of g(Θ0) = ξT1 Θ0ξ2.
Suppose that Θ0(ξ1ξ

T
2 + ξ2ξ

T
1 )Θ0/(2σ) ∈ G for all Θ0 ∈ G. Then for all Θ0 ∈ G it holds that

nvarΘ0(Tn) ≥ ξT1 Θ0ξ1ξ
T
2 Θ0ξ2 + (ξT1 Θ0ξ2)

2 − o(1).

9 An asymptotically efficient estimator for Gaussian graphical

models

We consider the de-sparsified nodewise Lasso estimator introduced in [4] and show that this
estimator is strongly asymptotically unbiased and reaches the lower bound on variance. To
this end, we consider the following construction, which was proposed in [6]. We recall the
construction again, although it is identical to the nodewise regression defined in (6). Denote
by X−j the n×(p−1) matrix obtained by removing the j-th column from X. For j = 1, . . . , p,
let

γ̂j := arg min
γ∈Rp−1

‖Xj −X−jγ‖2n + 2λ‖γ‖1, (10)

τ̂2j := ‖Xj −X−j γ̂j‖2n,

Γ̂j := (−γ̂j,1, . . . ,−γ̂j,j−1, 1,−γ̂j,j+1, . . . ,−γ̂j,p),
and define the nodewise Lasso estimator

Θ̂j := Γ̂j/τ̂
2
j . (11)

Define the de-sparsified nodewise Lasso (see [4])

T̂ := Θ̂ + Θ̂T − Θ̂Σ̂Θ̂. (12)

We will show that the T̂ij is strongly asymptotically unbiased for estimation of Θ0
ij and

achieves the lower bound on variance.
We introduce further notation: let γ0 := argminγ∈Rp−1 E‖Xj − X−jγ‖2n and let τ2j :=

E‖Xj−X−jγ0‖2n. To show strong asymptotic unbiasedness, we need a strong oracle inequality
for the estimator Θ̂ of Θ0. Namely, the paper [9] shows that under certain conditions (see
Theorem 12) it holds ‖Θ̂j−Θ0

j‖1 = OP (sλ).We aim to show a stronger claim, E‖Θ̂j−Θ0
j‖1 =

O(sλ). This is a somewhat more difficult task than for the linear regression, since one has to
make sure that the estimate of the noise level, τ̂2j , does not blow up in expectation. Before
establishing strong asymptotic unbiasedness, we thus need the following auxiliary results.
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Lemma 5. Assume that s log p/n = o(1). Let k ∈ {1, 2, . . . } be fixed and let γ̂j be defined as
in (10) with a sufficiently large tuning parameter λ of order

√

log p/n. Then for all Θ0 ∈ G
it holds that

(EΘ0‖γ̂j − γ0j ‖k1)1/k = O(sλ).

The following Lemma shows that the noise estimator 1/τ̂2j does not blow up in expectation.

Lemma 6. Assume that s log p/n = o(1). Then for all Θ0 ∈ G the following statements hold

1. E
1
τ̂8j

= O(1),

2. E|τ̂2j − τ2j |2 = O(sλ2),

3. E| 1
τ̂2j

− 1
τ2j
| = O(

√
sλ).

Combination of results in Lemmas 5 and 6 gives the following result.

Lemma 7. Assume that s log p/n = o(1). Then for Θ̂j defined in (11) with a sufficiently large
tuning parameter of order

√

log p/n it holds for all Θ0 ∈ G that

EΘ0(‖Θ̂j −Θ0
j‖21)1/2 = O(sλ).

Now we are at the point to prove strong asymptotic unbiasedness of T̂ij .

Lemma 8. Assume that s = o
( √

n
log p

)

. Let T̂ij be defined in (12), where Θ̂ is the node-wise

Lasso estimator. Then T̂ij is strongly asymptotically unbiased, i.e. for all Θ0 ∈ G it holds

√
nEΘ0(T̂ij −Θ0

ij) = o(1).

Finally, we show that the de-sparsified estimator T̂ij reaches the lower bound on the variance.

Theorem 9. Assume that s = o
( √

n
log p

)

. Let T̂ij be defined in (12), where Θ̂ is the node-wise

Lasso estimator. Then T̂ij is a strongly asymptotically unbiased estimator of Θ0
ij and for any

strongly asymptotically unbiased estimator T of Θ0
ij it holds for all Θ0 ∈ G

varΘ0(T ) ≥ varΘ0(T̂ij) =
Θ0

iiΘ
0
jj + (Θ0

ij)
2 + o(1)

n
.

9.1 Discussion on asymptotic efficiency for Gaussian graphical models

The conditions under which we show asymptotic efficiency only include eigenvalue conditions
on the true precision matrix and sparsity conditions on columns/rows of the precision matrix.
In particular, the condition on row sparsity required is the same as for the linear model:
s = o(

√
n/ log p). In view of results on minimax rates for estimation of elements of precision

matrices (see [8]), the condition s = o(
√
n/ log p) is necessary for construction of confidence

intervals.
We remark that extension of the above results to sub-Gaussian observations is straightfor-

ward. We note that similarly as for the linear regression, one can consider estimators of linear
functionals of the precision matrix. Then one may construct estimators of linear functionals
of Θ0 by taking linear combinations of the de-sparsified nodewise Lasso T̂ to construct an
asymptotically efficient estimator.
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10 Lower bounds for the Gaussian sequence model

Finally, we consider the Gaussian sequence model, which might be viewed as a special case of
a linear model with fixed design. However, the number of parameters here is precisely equal
to the number of observations. Consider thus the model

Xi = βi + ǫi, i = 1, . . . , n,

where ǫi ∼ N (0, 1) are independent. The following Theorem shows a lower bound on the
variance of any strongly asymptotically unbiased estimator.

Theorem 10. Let a ∈ R
p be such that aTa = 1. Suppose that Tn is a strongly asymptotically

unbiased estimator of g(β0) at β0 in the direction a with rate δn. Assume moreover that for
some ġ(β0) ∈ R

p and for mn = n/δn

√
mn

(
g(β0 + a/

√
mn)− g(β0)

)
= aT ġ(β0) + o(1).

Then
nvar(T ) ≥ [aT ġ(β0)]

2 + o(1).

Similarly as in the linear model, the worst sub-direction is then

a = ġ(β0)/
√

ġ(β0)T ġ(β0),

and the lower bound
nvar(T ) ≥ ġ(β0)

T ġ(β0) + o(1).

11 Le Cam’s Lemma

In the analysis in the previous part, we have shown for several settings that the de-sparsified
estimator is strongly asymptotically unbiased and reaches the lower bound on the variance.
This guaranteed us that the de-sparsified estimator is the best among all strongly asymp-
totically unbiased estimators in terms of variance. In this part, we further show that the
convergence of the de-sparsified estimator to the limiting normal distribution with smallest
possible variance is locally uniform in the underlying unknown parameter. This is motivated
by work of Le Cam on local asymptotic normality ([5]).

The motivation for locally uniform convergence can be seen in the classical examples of
superefficiency (see e.g. [10]). They show that pointwise convergence is insufficient for asymp-
totic efficiency and that we in fact need uniform convergence on shrinking neighbourhoods.
We show that for sparse high-dimensional models, asymptotic linearity of an estimator implies
this uniform convergence. This is in line with the results of Le Cam (see Lemma 8.14 in [10]).
We consider the model P := {Pθ : θ ∈ Θ}, where

Θ := {θ ∈ R
p : ‖θ‖0 ≤ s, ‖θ‖2 = O(1)}.

Note that for many sparse high-dimensional models, one can often show that the de-sparsified
estimator Tn is asymptotically linear:

Tn − g(θ) =
1

n

n∑

i=1

lθ(Xi) + oP (n
−1/2),
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where Eθlθ = 0 and El2θ < ∞. For asymptotically linear estimators, one has the asymptotic
variance Vθ := El2θ. Now consider the following condition for every h ∈ Θ

Pθ(lθh
T sθ)− hT ġ(β) = 0.

If the condition is satisfied, then the Cauchy-Schwarz inequality implies

(hT ġ(θ))2 = (Pθlθh
T sθ)

2 ≤ var(lθ)var(h
T sθ) = Vθh

T Iθh.

Hence
Vθ ≥ max

h∈Θ
(hT ġ(θ))2/hT Iθh. (13)

Assuming that I−1
θ ġ(θ) ∈ Θ, the right-hand side of (13) is maximized at I−1

θ ġ(θ). Hence we
obtain the following lower bound on the asymptotic variance

Vθ ≥ ġ(θ)T I−1
θ ġ(θ).

Thus for Vθ = ġ(θ)T I−1
θ ġ(θ), the lower bound is reached. However, to avoid superefficiency

as discussed above, we require uniform convergence. Under the conditions of the central limit
theorem, asymptotic linearity implies that

√
n(Tn − g(θ))/V

1/2
θ

θ
 N (0, 1)

for every θ. We show that asymptotic linearity actually implies uniform convergence: the
limiting distribution remains the same under a disappearing change in the parameter. In
particular, this means that for every h ∈ Θ and every θ ∈ Θ it holds that

√
n(Tn − g(θ + h/

√
n))

V
1/2
θ

θ+h/
√
n

 N (0, 1).

This result is precisely formulated in the following Theorem.

Theorem 11. Let g : Rp → R satisfy

√
n(g(θ + h/

√
n)− g(θ)) = hT ġ(θ) + o(1).

Suppose that for all θ ∈ Θ

Tn − g(θ) =
1

n

n∑

i=1

lθ(Xi) + oPθ
(n−1/2),

where Pθlθ = 0 and Vθ := Pθl
2
θ <∞. Suppose that Vθ = O(1) and 1/Vθ = O(1). Let sθ be the

score function, let Iθ := Esθs
T
θ and assume that

‖ 1
n

n∑

i=1

ṡθ(Xi) + Iθ‖∞ = OP (λ),

where λ is such that sλ = o(1). Assume further that Λmax(Iθ) = O(1). Then for every h ∈ Θ
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it holds that
√
n(Tn − g(θ + h/

√
n))− (Pθ(lθh

T sθ)− hT ġ(θ))

V
1/2
θ

θ+h/
√
n

 N (0, 1)

The result of Theorem 11 contains a bias term Pθ(lθh
T sθ) − hT ġ(θ) which depends on

h. However, in many cases, we have similarly as in the low-dimensional setting (when the
number of parameters p is fixed) that Pθ(lθh

T sθ)− hT ġ(θ) = 0.
We look at this condition for the linear regression and Gaussian graphical models. First

consider the linear model with random design and the parameter of interest g(β) = βj . Then
we have asymptotic linearity of the de-sparsified Lasso (see [9]) with lβ(xi, yi) = (Θ0

j)
Txiǫi,

where Θ0
j is the j-th column of the precision matrix. But then

Pθ(lθh
T sθ) = (Θ0

j)
T
Ex1ǫ

2
1x

T
1 h = (Θ0

j)
T
EE(x1ǫ

2
1x

T
1 |x1)h = Θ0

jΣ0h = hj .

Therefore in this case indeed Pθ(lθh
T sθ) − hT ġ(β) = 0. Next consider precision matrix es-

timation with the parameter of interest g(Θ) = Θij. We have asymptotic linearity of the
de-sparsified nodewise Lasso (see [4]) with

lΘ(x) = tr(ΘiΘ
T
j (xx

T − Σ0)) = vec(ΘiΘ
T
j )

Tvec(xxT − Σ0)

and vec(H)Tvec(sΘ) = vec(H)T vec(xxT − Σ0). Then by some algebra it follows

PΘ(lΘvec(H)T vec(sΘ)) = vec(ΘiΘ
T
j )

TΣ0 ⊗ Σ0vec(H)

= vec(Σ0ΘiΘ
T
j Σ0)

Tvec(H)

= eTi Hej = Hij.

Hence the condition is satisfied for Gaussian graphical models.
This shows that in the above cases, the bias term vanishes. Hence the de-sparsified

estimator converges uniformly to a normal distribution with zero mean and the smallest
possible variance.

12 Conclusions

In this paper we precisely formulated the concept of asymptotic efficiency in high-dimensional
models. We further analyzed the lower bounds on asymptotic efficiency and whether it is
possible to construct an estimator attaining the lower bounds. We showed that indeed con-
struction of asymptotically efficient estimator is possible: a de-sparsified estimator in linear
regression and Gaussian graphical models is asymptotically efficient. Our analysis identified
the theoretical conditions on the model and on the parameter sparsity under which asymptotic
efficiency is attained. The underlying analysis of the asymptotic Cramér-Rao bound involved
a detailed study of the remainders.

Furthermore, we showed that asymptotic linearity of an estimator implies that the esti-
mator converges uniformly to the limiting normal distribution with zero mean and smallest
possible variance. Thus we extended the classical results of Le Cam (see [5]). In high-
dimensional settings, the de-sparsified estimator is asymptotically linear in various settings
such as the linear regression, Gaussian graphical models and some cases of generalized linear
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models (see [9]).
Our analysis considered particular examples of de-sparsified estimators, however, other

estimators which are in some sense equivalent to these de-sparsified estimators (such as those
based on the square-root Lasso) are applicable.

13 Proofs

We recall a sub-Gaussianity assumption on random vectors (see Section 14 in [1]).

Definition 4. We say that a random vector X ∈ R
p is sub-Gaussian with a constant L if for

all α ∈ R
p such that ‖α‖2 = 1 it holds that

Ee(α
TX)2/L2

= O(1).

13.1 Proofs for Section 4

In this section we prove the oracle inequality for the Lasso as stated in Theorem 1. We need
the following preliminary Lemmas 9, 10 and 11. Lemma 9 below is a version of Theorem 1 in
[7]. It gives sufficient conditions under which the restricted eigenvalue condition is satisfied.
For the definition of the restricted eigenvalue condition and the compatibility condition, see
Section 2.2.2 in [7] and Section 6.13 in [1]. Lemma 10 is a concentration result which follows
from more general results for sub-Gaussian random variables in Section 14 in [1]. Lemma 11
is a version of Lemma 5.1 in [9].

Lemma 9. Let X ∈ R
n×p, where the rows Xi ∈ R

p, i = 1, . . . , n are N (0,Σ0)-distributed.
Suppose that Σ0 := EXTX/n satisfies the compatibility condition with φ > 0, where 1/φ =
O(1) and that ‖Σ0‖∞ = O(1). Further suppose that s log p/n = o(1). Then there exists a
universal constant φ′ such that 1/φ′ = O(1) and such that for any fixed τ > 0 it holds for all
n sufficiently large that

P (Xsatisfies the compatibility condition with φ′) ≥ 1− p−τ .

Lemma 10. Suppose that ǫ ∼ Nn(0, σ
2
ǫ I) and Xi, i = 1, . . . , n are independent and N (0,Σ0)-

distributed. Then for any τ > 0

P (‖ǫTX‖∞/n > τc1
√

log p/n) ≤ c2p
−τ ,

where c2, c2 are some universal constants.

Lemma 11. Assume the linear model in (1) with Gaussian error with variance σ2ǫ = O(1)
and suppose that Xi, i = 1, . . . , n are independent and N (0,Σ0)-distributed. Consider the
Lasso estimator β̂ defined in (2) with tuning parameter λ ≥ 2λ0. Then on the set

T := {‖ǫTX‖∞/n ≤ λ0,Xsatisfies the compatibility condition with φ}

it holds
‖β̂ − β0‖1 ≤ 8λ

s

φ2
.

Proof of Theorem 1. First we summarize the oracle inequality for the Lasso which holds
with high probability. By Lemma 10, for the complement of the set T1 := {‖ǫTX‖∞/n >
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τc1
√

log p/n} it holds that P (T c
1 ) ≤ c2p

−τ for any τ > 0. The condition 1/Λmin(Σ0) = O(1)
implies that Σ0 satisfies the compatibility condition with some constant φ such that 1/φ =
O(1). Furthermore, by assumption, we have that s log p/n = o(1) and ‖Σ0‖∞ = O(1). Define
the event T2 := {X satisfies the compatibility condition with φ̃}. Then by Lemma 9 it follows
that P (T c

2 ) ≤ p−τ (for all n sufficiently large) for some constant φ̃ such that 1/φ̃ = O(1).
Denote T := T1 ∩ T2. Then P (T c) . p−τ . By Lemma 11, when λ ≥ 2λ0 := 2τc1

√

log p/n, on

the set T it holds that ‖β̂ − β0‖1 ≤ 8λ s
φ̃2
.

We now proceed to show that the oracle inequality for the Lasso holds also in expectation.
The definition of β̂ gives

‖Y −Xβ̂‖22 + λ‖β̂‖1 ≤ ‖ǫ‖2n + λ‖β0‖1.

Consequently,
‖β̂‖1 ≤ ‖ǫ‖2n/λ+ ‖β0‖1.

Then, and by the triangle inequality

‖β̂ − β0‖1 ≤ ‖β̂‖1 + ‖β0‖1 ≤ ‖ǫ‖2n/λ+ 2‖β0‖1,

and thus for any k ∈ {1, 2, . . . }

E‖β̂ − β0‖k1 ≤ E(‖ǫ‖2n/λ+ 2‖β0‖1)k.

Then it follows

E(‖ǫ‖2n/λ+ 2‖β0‖1)k = E

k∑

j=0

(
k

j

)

(‖ǫ‖2n)j(2‖β0‖1)k−j

=

k∑

j=0

(
k

j

)

(2‖β0‖1)k−j
E(‖ǫ‖2n)j.

We have

E(‖ǫ‖2n)j =
1

nj

j
∑

i1=1

· · ·
j
∑

ij=1

Eǫ2i1 . . . ǫ
2
ij

≤ max
i1,...,ij

Eǫ2i1 . . . ǫ
2
ij .

By assumption we have ǫi ∼ N (0, σ2ǫ ), and hence by the well-known formula: Eǫmi = σmǫ (m−
1)! if m is even. Furthermore, we assume that σǫ = O(1). Hence, and by the Cauchy-Schwarz
inequality, we can conclude that

max
i1,...,ij

Eǫ2i1 . . . ǫ
2
ij = O(1),

because j ≤ k, where k is fixed. Next observe that by assumption we have ‖β0‖2 = O(1) and
hence

‖β0‖k1 ≤ (
√
s‖β0‖2)k ≤ O(sk/2).
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We can thus conclude that

E(‖ǫ‖2n/λ+ 2‖β0‖1)k =
k∑

j=0

(
k

j

)

(2‖β0‖1)k−j
E(‖ǫ‖2n)j

≤
k∑

j=0

(
k

j

)

2k−js(k−j)/2O(1)

≤ O(sk/2).

Hence

(Eβ0‖β̂ − β0‖k1)1/k = O(s1/2).

On the set T we have ‖β̂ − β0‖1 = O(sλ) and thus ‖β̂ − β0‖k1 = O(skλk), and otherwise (so
also on the set T c) we have the rough bound Eβ0‖β̂ − β0‖k1 = O(sk/2). Denote by 1A the
indicator function of a set A. Then it follows using the Cauchy-Schwarz inequality

Eβ0‖β̂ − β0‖k1 = E‖β̂ − β0‖k11T + E‖β̂ − β0‖k11T c

≤ O(skλk) +

√

E‖β̂ − β0‖2k1
√

E1T c

= O(skλk) +
√
sk
√

P(T c)

. O(skλk) + sk/2p−τ/2

= O(skλk),

where we used the assumption p−τ/2 = O((sλ2)k/2) which implies that sk/2p−τ/2 = O(skλk).
Hence we conclude that

(Eβ0‖β̂ − β0‖k1)1/k = O(sλ). (14)

The second statement of the Theorem follows by Markov’s inequality. Take any ν > 0. Then

P (‖β̂ − β0‖1 > νC1sλ) = P (‖β̂ − β0‖k1 > νkC1
kskλk) ≤ E‖β̂ − β0‖k1

Ck
1 ν

kskλk
≤ 1

νk
,

where C1 is the constant from (14).

13.2 Proofs for Section 6.1

Before proving the statement of Theorem 2, we need the following two auxiliary Lemmas.

Lemma 12. Let Z ∼ N (0, 1). Then for all t ∈ R

E

[

etZ−t2/2 − 1− tZ
]2

= et
2 − 1− t2.

Moreover, for 2t2 < 1 we have

Eet
2Z2

=
1√

1− 2t2
.
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Proof of Lemma 12. By direct calculation

E

[

etZ−t2/2
]2

= E[2tZ − t2] = et
2
,

E[tZ − t2/2] = 1

and
EZetZ−t2/2 = tE[tZ − t2/2] = t.

The first result follows immediately. The second result is also easily found by standard
calculations:

Eet
2Z2

=

∫

et
2z2φ(z)dz =

∫

φ(z
√

1− 2t2) =
1√

1− 2t2
.

Lemma 13. Suppose that 2hTΣ0h < 1. Let Z = (X,Y ), denote the corresponding probability
measure by ν and the density by pβ. Then it holds

Eβ0

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

T a/
√
m

)2

= (1− 2hTΣ0h)
−n/2 − 1− nhTΣ0h.

Proof of Lemma 13. Denote the density of Y given X by pβ0(·|X), i.e.

pβ0(y|X) :=

n∏

i=1

φ(yi − xTi β0), y = (y1, . . . , yn),

where φ is the standard normal density.
Given X, the random variable ǫTXh is N (0, nhT Σ̂h)-distributed. It follows therefore from
the first result of Lemma 12 that

Eβ0

(
pβ0+h(Y −Xh|X) − pβ0(Y |X)

pβ0(Y |X)
− sβ0(Z)

Th

)2

= Eenh
T Σ̂h − 1− nhTΣ0h.

Since Xih ∼ N (0, hTΣ0h) for i = 1, . . . , n, we have by the second result of Lemma 12

Ee(Xih)
2
=

1
√

1− 2hTΣ0h
.

Whence the result.

Proof of Theorem 2. By assumption (3) and by strong asymptotic unbiasedness, it follows

aT ġ(β0) =
√
mn (g(β0 + a/

√
mn)− g(β0)) + o(1)

=
√
mn

(

Eβ0+a/
√
mn
Tn − Eβ0Tn

)

+ o(1)

Denoting Z = (X,Y ), the corresponding probability measure by ν and the density by pβ, we
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may further rewrite the expressions to obtain

√
mn

(

Eβ0+a/
√
mn
Tn − Eβ0Tn

)

+ o(1) =

∫

Tn(z)(pβ0+a/
√
mn

(z)− pβ0(z))dν(z)

= Eβ0Tn(Z)
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)

= Eβ0Tn(Z)

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

Ta√
mn

)

+ Eβ0Tn(Z)
sβ0(Z)

Ta√
mn

= Eβ0(Tn(Z)− g(β0))

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

Ta√
mn

)

+ Eβ0Tn(Z)
sβ0(Z)

Ta√
mn

We assume the variance of T is O(1), otherwise the statement trivially holds. But then

Eβ0(Tn(Z)− g(β0))
2 = var(Tn(Z)) + [Eβ0(Tn(Z)− g(β0))]

2 = O(1) + o(1/n) = O(1).

By Lemma 13 and some basic calculations,

Eβ0

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

T a/
√
m

)2

= O(δn).

Consequently, and by the Cauchy-Schwarz inequality, we have the upper bound

∣
∣
∣
∣
Eβ0(Tn(Z)− g(β0))

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

Ta/
√
m

)∣
∣
∣
∣

≤
√

Eβ0(Tn(Z)− g(β0))2

√

E

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

T a/
√
m

)2

= O(δn).

Hence, and since δn ↓ 0

aT ġ(β0) = cov(Tn, ǫ
TXa/

√
m) + o(1)

≤ √
n
√

var(Tn) + o(1).

13.3 Proofs for Section 6.2

Proof of Theorem 3. The proof follows the same lines as the proof of Theorem 2. The only
difference is that we need to check the condition

Eβ0

(
pβ0+a/

√
mn

(Z)− pβ0(Z)

pβ0(Z)
− sβ0(Z)

T a/
√
m

)2

= O(δn),

20



for fixed design. To this end, consider the density pβ(z), which is given by

pβ(zi) := pβ(xi, yi) =

n∏

i=1

φ(yi − xTi β) =
1

(2π)n/2
e−

1
2
(Y−Xβ)T (Y−Xβ).

For simplicity, denote h := a/
√
mn. By direct calculation, we obtain

pβ(Z)− pβ0(Z)

pβ0(Z)
=

e−
1
2
(Y−X(β+h))T (Y−X(β+h)) − e−

1
2
(Y−Xβ)T (Y−Xβ)

e−
1
2
(Y−Xβ)T (Y−Xβ)

= e−hTXT (Y−Xβ)− 1
2
hTXTXh − 1

We have hTXT (Y −Xβ) = hTXT ǫ ∼ N (0, hTXTXh). Hence Eetǫ
TXh = e

1
2
t2hTXTXh. Thus

we obtain

E

(

e−ǫTXh+ 1
2
hTXTXh − 1− ǫTXh

)2
= eh

TXTXh − 1− hTXTXh

= O(hTXTXh) = O(nhT Σ̂h).

Then by the assumption aT Σ̂a ≤ 1 + o(1) we obtain

O(nhT Σ̂h) = O(naT Σ̂a/mn) = O(aT Σ̂aδn) ≤ O(δn).

Proof of Lemma 1. By the assumptions ‖Θ̂Σ̂−I‖∞ = O(λ), ‖Θ̂ġ(β0)‖1 = O(
√
s‖Θ̂ġ(β0)‖2) =

O(
√
s) and ‖ġ(β0)‖1 = O(

√
s) we obtain

ġ(β0)
T Θ̂Σ̂Θ̂ġ(β0)/ġ(β0)

T Θ̂ġ(β0) ≤ ġ(β0)
T (Θ̂Σ̂− I)Θ̂ġ(β0)/ġ(β0)

T Θ̂ġ(β0)

+ ġ(β0)
T Θ̂ġ(β0)/ġ(β0)

T Θ̂ġ(β0)

≤ ‖ġ(β0)‖1‖Θ̂Σ̂− I‖∞‖Θ̂ġ(β0)‖1/ġ(β0)T Θ̂ġ(β0)
+ 1

≤ O(1)sλ/

√

ġ(β0)T Θ̂ġ(β0) + 1 = 1 + o(1).

13.4 Proofs for Section 7.1

Proof of Lemma 2. We apply Theorem 1. Conditions ‖β0‖0 ≤ s, ‖β0‖2 = O(1) and (A1)
imply that conditions of Theorem 1 are satisfied.

Proof of Lemma 3. First note that

EΘ̂T
j X

T ǫ/n = EE(Θ̂T
j X

T ǫ/n|X) = EΘ̂T
j X

T
E(ǫ|X)/n = 0.
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We then have by the definition of b̂j and Hölder’s inequality

Eβ0(b̂j − β0j ) = Eβ0Θ̂
T
j X

T ǫ/n
︸ ︷︷ ︸

=0

+Eβ0(Σ̂Θ̂j − ej)
T (β̂ − β0)

≤ Eβ0‖Σ̂Θ̂j − ej‖∞‖β̂ − β0‖1.

Hence, by assumption ‖Σ̂Θ̂j − ej‖∞ ≤ λ and using Lemma 2, we obtain that Eβ0(b̂j − β0j ) =

O(sλ2) = o(1/
√
n), where we used the sparsity assumption.

Proof of Theorem 4. By taking g(β) = βj and a := Θ0
j/
√

Θ0
jj in Theorem 2 we obtain the

lower bound.
Since Θ̂j is constructed using the nodewise regression, it satisfies

‖Σ̂Θ̂j − ej‖∞ ≤ λ.

Hence Lemma 3 implies that b̂j is strongly asymptotically unbiased.
Note now that E(Θ0

j)
TXT ǫ/n = 0 and

var((Θ0
j )

TXT ǫ/n) = E(E[((Θ0
j )

TXT ǫ/n)2|X]) = E(Θ0
j)

TXTX/nΘ0
j) = Θ0

jj.

We then have the following decomposition

b̂j − β0j = (Θ0
j)

TXT ǫ/n+ (Θ̂j −Θ0
j)

TXT ǫ/n+ (Σ̂Θ̂j − ej)
T (β̂ − β0).

Thus, and by the Cauchy-Schwarz inequality and some basic calculations, we have

var(b̂j − β0j ) = var((Θ0
j )

TXT ǫ/n)
︸ ︷︷ ︸

=Θ0
jj/n

+O(var((Θ̂j −Θ0
j)

TXT ǫ/n)
︸ ︷︷ ︸

i

) +O(var((Σ̂Θ̂j − ej)
T (β̂ − β0))

︸ ︷︷ ︸

ii

).

We show that the terms i and ii are of small order 1/n.
First consider the term i. By Lemma 5, which is proved in the Section 8.2 on Gaussian
graphical models, we have that E‖Θ̂j −Θ0

j‖41 = O(s4λ4). Hence

i = var((Θ̂j −Θ0
j)

TXT ǫ/n) = E((Θ̂j −Θ0
j)

TXT ǫ/n)2 − (E((Θ̂j −Θ0
j)

TXT ǫ/n))2

≤ E((Θ̂j −Θ0
j)

TXT ǫ/n)2

≤ E‖Θ̂j −Θ0
j‖21‖XT ǫ‖2∞/n2

≤ (E‖XT ǫ‖4∞/n4)1/2
≤ s2λ4 = o(1/n),

where we used that E‖XT ǫ‖4∞/n4 = O(λ2), which follows by concentration results for sub-
Gaussian random variables (see [1]).
For the second term ii, by Lemma 2 it follows

E[(Σ̂Θ̂j − ej)(β̂ − β0)]
2 = O((sλ2)2).
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Hence

ii = var((Σ̂Θ̂j − ej)(β̂ − β0))

= E((Σ̂Θ̂j − ej)(β̂ − β0))
2 − (E(Σ̂Θ̂j − ej)(β̂ − β0))

2

= O((sλ2)2) = o(1/n).

Thus we obtain

var(b̂j) =
Θ0

jj + o(1)

n
.

13.5 Proofs for Section 7.2

Proof of Theorem 6. The lower bound follows by Theorem 1 (note that g(β) = βj and thus
the condition on g is satisfied) since by assumption, ‖Θ̂j‖0 = O(s), ‖Θ̂j‖2 = O(1).

Strong asymptotic unbiasedness of b̂j follows similarly as in Lemma 3 under the assumptions

‖β0‖0 ≤ s, ‖β0‖2 = O(1), s = o
( √

n
log p

)

and if XTX/n satisfies the compatibility condition

with a universal constant.
First observe that by the assumption on Θ̂j we obtain

Θ̂T
j Σ̂Θ̂j/Θ̂jj ≤ ‖Θ̂T

j ‖1‖Σ̂Θ̂j − ej‖∞/Θ̂jj + Θ̂T
j ej/Θ̂jj ≤ O(sλ) + 1 = 1 + o(1).

Hence for the variance of

b̂j − β0j = (Θ̂j)
TXT ǫ/n+ (Σ̂Θ̂j − ej)

T (β̂ − β0),

we get

var(b̂j |X) = Θ̂T
j Σ̂Θ̂j/(Θ̂jjn) +O(‖Σ̂Θ̂j − ej‖2∞‖β̂ − β0‖21)

= Θ̂T
j Σ̂Θ̂j/(Θ̂jjn) + o(1/n) = Θ̂jj/n+ o(1/n).

13.6 Proofs for Section 7.1

Proof of Lemma 4. We have

Eβ0(b̂ξ − ξTβ0) = Eβξ
T Θ̂XT ǫ/n

︸ ︷︷ ︸

=0

+Eβ0ξ
T (Σ̂Θ̂− I)T (β̂ − β0)

≤ Eβ0‖ξ‖1‖Σ̂Θ̂− I‖∞‖β̂ − β0‖1
= O(sλ2) = o(1/

√
n).

Proof of Theorem 5. By Corollary 2 with g(β) = ξTβ we obtain the lower bound by assump-
tions ‖Θ0ξ‖0 ≤ s, ‖ξ‖1 = O(1).
Lemma 4 implies that b̂ξ is strongly asymptotically unbiased.
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It remains to calculate the variance of b̂ξ. Consider the following decomposition

b̂ξ − ξTβ0 = ξTΘT
0X

T ǫ/n+ ξT (Θ̂−Θ0)
TXT ǫ/n+ ξT (Σ̂Θ̂− I)T (β̂ − β0).

Then one can show using basic calculations and the Cauchy-Schwarz inequality that

var(b̂ξ) = var(ξTΘXT ǫ/n) +O(var(ξT (Θ̂ −Θ0)
TXT ǫ/n)

︸ ︷︷ ︸

i

) +O(var(ξT (Σ̂Θ̂− I)T (β̂ − β0))
︸ ︷︷ ︸

ii

).

We have var(X) ≤ EX2 and hence

i = var(ξT (Θ̂ −Θ0)
TXT ǫ/n)

≤ E(ξT (Θ̂−Θ0)
TXT ǫ/n)2

≤ ‖ξ‖21E
∣
∣
∣

∣
∣
∣

∣
∣
∣Θ̂−Θ

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

1
‖XT ǫ/n‖2∞ = O(s2λ4).

and
ii = E(ξT (Σ̂Θ̂− I)T (β̂ − β0))

2 ≤ ‖ξ‖21E‖Σ̂Θ̂− I‖2∞‖β̂ − β0‖21 = O(s2λ4).

Thus we conclude var(b̂ξ) =
ξTΘ0ξ+o(1)

n .

13.7 Proofs for Section 8.2

We first need several auxiliary Lemmas (Lemmas 14, 15, 16, 17). Although we state results
only for estimation of linear functions, we carry out the calculations below to allow for handling
general functionals.

Lemma 14. Let x ∼ N (0p,Σ0) and let Θ0 = Σ−1
0 . Then for any symmetric A ∈ R

p×p it holds

Eetx
TAx =

(
det(Θ0)

det(Θ0 − 2tA)

)1/2

.

Proof of Lemma 14. By direct calculation, we obtain

Eetx
TAx =

∫

Rp

det(Θ0)
1/2

(2π)p/2
e−

1
2
xTΘ0xetx

TAxdx

=

∫

Rp

det(Θ0)
1/2

(2π)p/2
e−

1
2
xTΘ0xetx

TAxdx

=

∫

Rp

det(Θ0)
1/2

(2π)p/2
e−

1
2
xT (Θ0−2tA)xdx

=

∫

Rp

det(Θ0)
1/2det(Θ0 − 2tA)1/2

(2π)p/2det(Θ0 − 2tA)1/2
e−

1
2
xT (Θ0−2tA)xdx

=
det(Θ0)

1/2

det(Θ0 − 2tA)1/2
.
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Lemma 15.

E

(
pΘ0+A(x)

pΘ0(x)
− 1− ntr((Σ̂ − Σ0)A)

)2

=
det(Θ0 +A)n

det(Θ0)n

(
det(Θ0)

det(Θ0 + 2A)

)n/2

− 1

+

n∑

i=1

var(xTi Axi)

− 2ntr[((Θ0 +A)−1 − Σ0)A].

Proof of Lemma 15. The density is given by

pΘ0(x1, . . . , xn) =
det(Θ0)

n/2

(2π)np/2
e−

1
2

∑n
i=1 x

T
i Θ0xi

Then we have
pΘ0+A(x)

pΘ0(x)
− 1 =

det(Θ0 +A)n/2e−
1
2

∑n
i=1 x

T
i Axi

det(Θ0)n/2
− 1

The score function is given by sΘ0(x) = n(Σ̂−Σ0). Let

Z := vec(A)Tvec(sΘ0(x)) = tr(
n∑

i=1

xix
T
i A− nΣ0A) =

n∑

i=1

xTi Axi − ntr(Σ0A).

First observe that

EZ2 = var(

n∑

i=1

xTi Axi) =

n∑

i=1

var(xTi Axi).

We have

E

(
pΘ0+A(x)

pΘ0(x)
− 1− Z

)2

= E

(

det(Θ0 +A)n/2e−
1
2

∑n
i=1 x

T
i Axi

det(Θ0)n/2
− 1− Z

)2

=
det(Θ0 +A)n

det(Θ0)n
Ee−

∑n
i=1 x

T
i Axi + 1 + EZ2 +

− 2
det(Θ0 +A)n/2

det(Θ0)n/2
Ee−

1
2

∑n
i=1 x

T
i Axi + 2EZ

− 2
det(Θ0 +A)n/2

det(Θ0)n/2
EZe−

1
2

∑n
i=1 x

T
i Axi .
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Using Lemma 14, we obtain

E

(
pΘ0+A(x)

pΘ0(x)
− 1− Z

)2

=
det(Θ0 +A)n

det(Θ0)n

(
det(Θ0)

det(Θ0 + 2A)

)n/2

+ 1 +

n∑

i=1

var(xTi Axi)

− 2
det(Θ0 +A)n/2

det(Θ0)n/2

(
det(Θ0)

det(Θ0 +A)

)n/2

− 2
det(Θ0 +A)n/2

det(Θ0)n/2
EZe−

1
2

∑n
i=1 x

T
i Axi

=
det(Θ0 +A)n

det(Θ0)n

(
det(Θ0)

det(Θ0 + 2A)

)n/2

− 1 +
n∑

i=1

var(xTi Axi)

− 2
det(Θ0 +A)n/2

det(Θ0)n/2
EZe−

1
2

∑n
i=1 x

T
i Axi

︸ ︷︷ ︸

i

.

Next we calculate i. We have

EetZ = e−ntr(Σ0A)t
Eet

∑n
i=1 x

T
i Axi = e−ntr(Σ0A)t

(
det(Θ0)

det(Θ0 − 2tA)

)n/2

.

We also have

EZetZ = (EetZ)′

= e−ntr(Σ0A)t

(
det(Θ0)

det(Θ0 − 2tA)

)n/2

n
[
tr((Θ0 − 2tA)−1A)− tr(Σ0A)

]

Finally, we obtain

E

(
pΘ0+A(x)

pΘ0(x)
− 1− Z

)2

=
det(Θ0 +A)n

det(Θ0)n

(
det(Θ0)

det(Θ0 + 2A)

)n/2

− 1 +

n∑

i=1

var(xTi Axi)

− 2ntr[((Θ0 +A)−1 − Σ0)A]

This finishes the proof.

We apply the Lemmas above to the special case when g(Θ) = ξT1 Θξ2.

Lemma 16. Let A := Θ0(ξ1ξ
T
2 + ξ2ξ

T
1 )Θ0/(2σ

√
mn). Then

E

(
pΘ0+A(x)

pΘ0(x)
− 1− Z

)2

= O(δn).

Proof of Lemma 16. We apply Lemma 15 with A := Θ0(ξ1ξ
T
2 + ξ2ξ

T
1 )Θ0/(2σ

√
mn), where
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σ2 := ξT1 Θ
0ξ1ξ

T
2 Θ

0ξ2 + (ξT1 Θ
0ξ2)

2. Then tr(Σ0A) = ξT1 Θ
0ξ2 and

E

(
pΘ0+A(x)

pΘ0(x)
− 1− Z

)2

=

(

1 +
(ξT1 Θ

0ξ2)
2/(4σ2mn)

1 + 2ξT1 Θ
0ξ2/(σmn)

)n/2

− 1

︸ ︷︷ ︸

i

+
n(ξT1 Θ

0ξ1ξ
T
1 Θ

0ξ1 + (ξT1 Θ
0ξ2)

2)

σ2mn
− n

σ2mn

(ξT1 Θ
0ξ2)

2

1 + ξT1 Θ
0ξ2/

√
mn

= O(δn) +O
(
n

mn

)

= O(δn),

where in the last step we used Lemma 17 to conclude that i = O(δn).

Lemma 17. Let 0 < δ = δn → 0 and let a, b = O(1). Then

(

1 +
aδ

√
n(b

√
δ +

√
n)

)n/2

− 1 = O(δ).

Proof of Lemma 17.

(

1 +
aδ

√
n(b

√
δ +

√
n)

)n/2

− 1 = e
n
2
log

(

1+ δa
√

n(b
√

δ+
√

n)

)

− 1

= e
n
2

[

aδ
√

n(b
√

δ+
√

n)
+o

(

aδ
√

n(b
√

δ+
√

n)

)]

− 1

Next
anδ

√
n(b

√
δ +

√
n)

= O(δ).

Hence, and using that ex − 1 = o(x) for x→ 0, we obtain

e
n
2

[

aδ
√

n(b
√

δ+
√

n)
+o

(

aδ
√

n(b
√

δ+
√

n)

)]

− 1 = O(δ).

Proof of Theorem 8. The proof follows in the same way as the proof of Theorem 2, but we
need to use Lemma 16 to conclude that

E

(
pΘ0+A(x)

pΘ0(x)
− 1− vec(A)T vec(sΘ0(x))

)2

= O(δn).

13.8 Proofs for Section 9

We first recall a version of Theorem 2.4 from [9].

Theorem 12 (a version of Theorem 2.4 in [9]). Suppose that X ∼ N (0,Θ−1
0 ), assume that

s log p/n = o(1). Consider the nodewise regression estimator Θ̂j and the corresponding τ̂2j with

λj = λ ≍
√

log p/n for j = 1, . . . , p. Then on the set T := {‖XT
−j(Xj −X−jγ

0
j )‖∞/n ≤ cλ}
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(where c is some sufficiently large constant), we have the following claims for j = 1, . . . , p for
all Θ0 ∈ G

‖Θ̂j −Θ0
j‖1 = O(sλ), |τ̂2j − τ2j | = O(

√

s log p/n).

Proof of Lemma 5. Letting ǫj := Xj−X−jγ
0
j for j = 1, . . . , p, we have ǫj ∼ Nn(0,Γ

T
j ΓjI).We

have by assumption 1/Λmin(Θ) = O(1),Λmax(Θ) = O(1) that ΓT
j Γj = O(1). Further we have

X−j,i ∼ Np−1(0,Σ
0
−j,−j). Then under 1/Λmin(Θ) = O(1), one can check that Λmin(Σ

0
−j,−j) ≥

L > 0 and ‖Σ0
−j,−j‖∞ = O(1). Hence the conditions of Theorem 1 are satisfied and it follows

that
(E‖γ̂j − γj‖k1)1/k = O(sλ).

Proof of Lemma 6. Proof of part 1

Without loss of generality, let j = 1. We first show that E 1
τ̂81

= O(n2). First observe that

P(τ̂21 ≤ t) = P(Γ̂T
1 Σ̂Γ̂1 + λ‖γ̂1‖1 ≤ t)

≤ P(Γ̂T
1 Σ̂Γ̂1 ≤ t ∧ λ‖γ̂1‖1 ≤ t)

Using the following lower bound

Γ̂T
1 Σ̂Γ̂1 = Σ̂11 − 2Σ̂T

1,−1γ̂1 + γ̂T1 Σ̂−1,−1γ̂1

≥ Σ̂11 − 2|Σ̂T
1,−1γ̂1|+ γ̂T1 Σ̂−1,−1γ̂1

≥ Σ̂11 − 2‖Σ̂1,−1‖∞‖γ̂1‖1 + γ̂T1 Σ̂−1,−1γ̂1

≥ Σ̂11 − 2Σ̂11t/λ

= Σ̂11(1− 2t/λ),

we obtain that

P(Γ̂T
1 Σ̂Γ̂1 ≤ t ∧ λ‖γ̂1‖1 ≤ t) ≤ P(Σ̂11(1− 2t/λ) ≤ t ∧ λ‖γ̂1‖1 ≤ t)

≤ P(Σ̂11(1− 2t/λ) ≤ t).

Next Σ̂11 = eT1X
TXe1/n ∼ Σ11χ

2
n (by assumed Gaussianity of X). Using Chernoff bounds,

we have for Z ∼ χ2
n the following upper bound

P (Z ≤ x) ≤
(x

n
e1−x/n

)n/2
=
( e

n

)n/2
xn/2e−x/2.

Hence for t/λ ≤ 1/2 it holds

P(Σ̂11(1− 2t/λ) ≤ t) = P

(

Σ̂11/Σ11 ≤
t

(1− 2t/λ)Σ11

)

≤
( e

n

)n/2
(

t

(1− 2t/λ)Σ11

)n/2

e
−
(

t
(1−2t/λ)Σ11

)

/2
.

Hence collecting the above inequalities, we have so far shown that for any t/λ ≤ 1/2 it holds

P(τ̂21 ≤ t) ≤
( e

n

)n/2
(

t

(1− 2t/λ)Σ11

)n/2

e
−
(

t
(1−2t/λ)Σ11

)

/2
. (15)

28



Then by rewriting the expectation as an integral

E
1

τ̂81
=

∫ ∞

0
P(1/τ̂81 > x)dx

=

∫ 1

0
P(1/τ̂81 > x)dx+

∫ ( 1
2
λ)

−4

1
P(1/τ̂81 > x)dx+

∫ ∞

( 1
2
λ)

−4
P(1/τ̂81 > x)dx

≤ 1 +

(
1

2
λ

)−4

+

∫ ∞

( 1
2
λ)

−4
P(1/τ̂81 > x)dx

︸ ︷︷ ︸

ii

Next we calculate an upper bound on ii.

∫ ∞

( 1
2
λ)

−4
P(1/τ̂81 > x)dx =

∫ ∞

( 1
2
λ)

−4
P(1/τ̂21 > x1/4)dx

=

∫ ∞

( 1
2
λ)

−4
P(τ̂21 < x−1/4)dx

Now we can use the bound (15) since x−1/4 ≤ 1/2λ. We obtain

∫ ∞

( 1
2
λ)

−4
P(τ̂21 < x−1/4)dx =

( e

n

)n/2
∫ ∞

( 1
2
λ)

−4

(
1

x(1− 2/(xλ))Σ11

)n/2

e
−
(

1
x(1−2/(xλ))Σ11

)

/2
dx

≤
( e

n

)n/2
∫ ∞

( 1
2
λ)

−4

(
1

x(1− 2/(xλ))Σ11

)n/2

e
−
(

1
x(1−2/(xλ))Σ11

)

/2

︸ ︷︷ ︸

≤1 since x−1/4≤ 1
2
λ

dx

≤
( e

n

)n/2
∫ ∞

( 1
2
λ)

−4

(
2

xΣ11

)n/2

dx

≤
(

2e

Σ11n

)n/2 ∫ ∞

( 1
2
λ)

−4

(
1

x

)n/2

dx

≤
(

2e

Σ11n

)n/2 (log p/n)n/4−1/2

2n− 4
= o(1),

where we used that under 1/Λmin(Θ) = O(1), it holds that 1/Θ11 = O(1). Hence

E
1

τ̂81
= O

((
1

2
λ

)−4
)

= O(n2/(log p)2).

Denote

T := {‖XT
−j(Xj −X−jγ

0
j )‖∞/n ≤ cλ,

XT
−jX−j/n satisfies the compatibility condition with a universal constant}.
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Then by Theorem 12, on T we have 1/τ̂81 = O(1). But then

E
1

τ̂81
= E

1

τ̂81
1T + E

1

τ̂81
1T c

≤ O(1) +O(n2)e−τ log p = O(1).

Proof of part 2 First we show that τ̂4j = O(1).

τ̂2j = ‖Xj −X−j γ̂j‖22/n+ λ‖γ̂j‖1
= Γ̂T

j Σ̂Γ̂j/n + λ‖γ̂j‖1
≤ ‖Γ̂j‖21‖Σ̂‖∞ + λ‖γ̂j‖1
= ‖Γ̂j‖21‖Σ̂‖∞ + λ‖γj‖1

+ ‖Γ̂j‖21‖Σ̂‖∞ − ‖Γj‖21‖Σ‖∞ + λ(‖γ̂j‖1 − ‖γ̂j‖1).

Hence by basic calculations

Eτ̂4j =
∥
∥Γj‖21‖Σ‖∞ + λ‖γj‖1

]2

+
[
‖Γj‖21‖Σ‖∞ + λ‖γj‖1

]
O(E

[

‖Γ̂j‖21‖Σ̂‖∞ − ‖Γj‖21‖Σ‖∞ + λ(‖γ̂j‖1 − ‖γj‖1)
]

︸ ︷︷ ︸

i

)

+ O(E
[

‖Γ̂j‖21‖Σ̂‖∞ − ‖Γj‖21‖Σ‖∞ + λ(‖γ̂j‖1 − ‖γj‖1)
]2

︸ ︷︷ ︸

ii

).

First observe that
[
‖Γj‖21‖Σ‖∞ + λ‖γj‖1

]2
= O(s).

We now consider i. By the triangle inequality and Lemma 5

Eλ(‖γ̂j‖1 − ‖γj‖1) ≤ λE‖γ̂j − γj‖1 = O(sλ).

Further, we have E‖Γ̂j − Γj‖41 = O(s4λ4) (as in Lemma 5) and ‖Γj‖1 = O(
√
s). Hence

E‖Γ̂j‖41 = E‖Γ̂j − Γj + Γj‖41 ≤ O(s2).

Thus

E|‖Γ̂j‖21‖Σ̂‖∞ − ‖Γj‖21‖Σ‖∞| ≤ E|‖Γ̂j‖21‖Σ̂‖∞ − ‖Γj‖21‖Σ̂‖∞|+ E|‖Γj‖21‖Σ̂‖∞ − ‖Γj‖21‖Σ‖∞|
= O(s2).

Therefore, we conclude that i = O(s2). Next we consider ii. This can be bounded similarly,
but we also need (E‖Γ̂j − Γj‖81)1/8 = O(sλ). Then we can show ii = O(s4).
Hence, by Theorem 12, on T we have that τ̂2j = O(1), hence it follows

Eτ̂4j = Eτ̂4j 1T + Eτ̂4j 1T c = O(1).

We have under 1/Λmin(Θ) = O(1), that τj = O(1) and hence

|τ̂2j − τ2j |2 ≤ |τ̂2j |2 + 2|τ̂2j ||τ2j |+ |τ2j |2 = O(τ̂2j + τ̂4j ).
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We can then apply the same procedure:

E|τ̂2j − τ2j |2 = E|τ̂2j − τ2j |21T + E|τ̂2j − τ2j |21T c ,

to show the claim.

Proof of part 3

E| 1
τ̂2j

− 1

τ2j
| ≤ E|

τ̂2j − τ2j
τ̂2j τ

2
j

|

≤ 1/τ2j

√

E|τ̂2j − τ2j |2
√

E1/τ̂4j .

Using Parts 1 and 2, we obtain the claim.

Proof of Lemma 7. By Theorem 12, when λ ≥ cτ
√

log p/n, on the set

T := {‖ǫTj X‖∞/n ≤ 2στ
√

log p/n}

it holds that
‖Θ̂j −Θ0

j‖1 = O(sλ), |τ̂2j − τ2j | = O(
√
sλ).

Next we rewrite

E‖Θ̂j −Θ0
j‖21 = E‖Θ̂j −Θ0

j‖211T + E‖Θ̂j −Θ0
j‖211T c .

Then

EΘ0‖Θ̂j −Θ0
j‖21 = EΘ0

[
‖γ̂j − γ0j ‖1/τ̂2j + ‖γ0j ‖1|1/τ̂2j − 1/τ2j |

]2

= EΘ0‖γ̂j − γ0j ‖21/τ̂4j + 2EΘ0‖γ̂j − γ0j ‖1/τ̂2j ‖γ0j ‖1|1/τ̂2j − 1/τ2j |
+ E‖γ0j ‖21|1/τ̂2j − 1/τ2j |2

≤
√

EΘ0‖γ̂j − γ0j ‖41
√

E1/τ̂8j + 2‖γ0j ‖1
√

EΘ0‖γ̂j − γ0j ‖21EΘ0 |τ̂2j − τ2j |2

+ ‖γ0j ‖21E|1/τ̂2j − 1/τ2j |2

≤ s2λ2O(1) +
√
ssλ

√
sλ+ sO(1)sλ2

= O(s2λ2),

where in the last display we used Lemmas 5 and 6.

Proof of Lemma 8. By the Karush-Kuhn-Tucker conditions corresponding to the nodewise
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Lasso estimator, we have ‖Σ̂Θ̂− I‖∞ = OP (λ). Hence, and applying Lemma 7, we obtain

EΘ0(T̂ij −Θ0
ij) = EΘ0(Θ

0
i )

T (Σ̂ −Σ0)Θ
0
j

︸ ︷︷ ︸

=0

+EΘ0(Θ̂i −Θ0
i )

T (Σ̂Θ0
j − ej)

+ EΘ0(Σ̂Θ̂i − ei)
T (Θ̂j −Θ0

j)

≤ EΘ0‖Θ̂i −Θ0
i ‖1‖Σ̂Θ0

j − ej‖∞ + EΘ0λ‖Θ̂i −Θ0
i ‖1

≤ λEΘ‖Θ̂i −Θ0
i ‖1 +O(sλ2)

≤ O(sλ2) = o(1/
√
n).

Proof of Theorem 9. The lower bound follows by Theorem 8.
The strong asymptotic unbiasedness of T̂ij follows by Lemma 8. It remains to calculate the
variance of T̂ij. First we have that

var((Θ0
i )

T (Σ̂− Σ0)Θ
0
j ) =

1

n
var((Θ0

i )
TX1X

T
1 Θ

0
j ) = (Θ0

iiΘ
0
jj + (Θ0

ij)
2)/n.

By basic calculations, it follows that

var(T̂ij) = var((Θ0
i )

T Σ̂Θ0
j − (Σ̂Θ0

i − ei)
T (Θ̂j −Θ0

j ) + (Θ̂i −Θ0
i )

T (Σ̂Θ̂j − ej))

≤ (Θ0
iiΘ

0
jj + (Θ0

ij)
2)/n+O(E((Σ̂Θ0

i − ei)
T (Θ̂j −Θ0

j))
2)

+ O(E((Θ̂i −Θ0
i )

T (Σ̂Θ̂j − ej))
2)

≤ (Θ0
iiΘ

0
jj + (Θ0

ij)
2)/n+O(E‖Σ̂Θ0

i − ei‖2∞‖Θ̂j −Θ0
j‖21)

+ O(E‖Θ̂i −Θ0
i ‖21‖Σ̂Θ̂j − ej‖21).

Now we have by Lemma 7

E‖Σ̂Θ0
i − ei‖2∞‖Θ̂j −Θ0

j‖21 ≤ λ2E‖Θ̂j −Θ0
j‖21 = O(s2λ4) = o(1/n).

Hence we conclude
var(T̂ij) = (Θ0

iiΘ
0
jj + (Θ0

ij)
2)/n + o(1/n).

13.9 Proofs for section 10

Proof of Theorem 10. Denote h := a/
√
mn. The density is given by

pβ(x) = pβ(x1, . . . , xn) =
n∏

i=1

φ(xi − βi) =
1

(2π)n/2
e−

1
2
(x−β)T (x−β).
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Then we have

pβ(x)− pβ0(x)

pβ0(x)
=

e−
1
2
(x−β−h)T (x−β−h) − e−

1
2
(x−β)T (x−β)

e−
1
2
(x−β)T (x−β)

=
e−

1
2
(x−β)T (x−β)+(x−β)h− 1

2
hTh

e−
1
2
(x−β)T (x−β)

− 1

= e−(x−β)h− 1
2
hT h − 1

We have ǫTh ∼ N (0, hT h). Then Eetǫ
Th = e

1
2
t2hTh. Hence

E

(

e−ǫTh+ 1
2
hTh − 1− ǫTh

)2
= eh

Th − 1− hTh

= O(hTh).

Therefore, we can conlude the result as in the proof of Theorem 2.

13.10 Proofs for Section 11

Proof of Theorem 11. Let

Λn :=

n∑

i=1

log pθ+h/
√
n(Xi)− log pθ(Xi).

Under Pθ, by a two-term Taylor expansion we obtain

Λn :=
1√
n

n∑

i=1

hT sθ(Xi) +
1

2
hT

1

n

n∑

i=1

ṡθ(Xi)h+ o(hT
1

n

n∑

i=1

ṡθ(Xi)h).

By assumption, we have that ‖ 1
n

∑n
i=1 ṡθ(Xi) + Iθ‖∞ = OP (λ). Note that every h ∈ Θ is

s-sparse and furthermore we assume that ‖h‖2 = O(1). Then ‖h‖1 = O(
√
s). Hence

‖hT ( 1
n

n∑

i=1

ṡθ(Xi) + I(θ))h‖∞ ≤ ‖h‖21‖
n∑

i=1

ṡθ(Xi) + Iθ‖∞ = OP (sλ) = oP (1).

Therefore,

Λn :=
1√
n

n∑

i=1

hT sθ(Xi)−
1

2
hT I(θ)h+ oP (1).

We introduce the following notation. Let

V :=

(
Vθ Pθ(lθh

T sθ)
Pθ(lθh

T sθ) hT I(θ)h

)

Furthermore, we denote the entries of the matrix V by vij . Then by the central limit theorem
we have for any a ∈ R

2 that

aTV −1/2(
√
n(Tn − g(θ)),Λn +

1

2
hT I(θ)h) aTZ, where Z ∼ N (0, I2).
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Then by the Wold device we have

Zn := V −1/2

( √
n(Tn − g(θ))

Λn + 1
2h

T I(θ)h

)
θ
 N2(0, I) ∼ Z.

Now let f : R → R be bounded and continuous. We may write

Eθ+h/
√
nf

(√
n(Tn − g(θ))− v12√

v11

)

= Eθf

(√
n(Tn − g(θ))− v12√

v11

)

eΛn .

Consider the function

ψ(x1, x2) =

(
1/
√
v11 0

0 1

)[

V 1/2(x1, x2) +

(
−v12
−v22/2

)]

Let Xn := (Xn,1,Xn,2) = ψ(Zn) =
(√

n(Tn−g(θ))−v12√
v11

,Λn

)

. Then we have

Eθf

(√
n(Tn − g(θ))− v12√

v11

)

eΛn = Eθf(Xn,1)e
Xn,2 .

Similarly,

Un := (Un,1, Un,2) = ψ(Z) =

(
1/
√
v11 0

0 1

)[

V 1/2N (0, I2) +

(
−v12

−v22/2

)]

= N
((

− v12√
v11

− v22
2

)

,

(

1 v12√
v11

v12√
v11

v22

))

.

Since we know that Zn  Z, we hope that in some sense Xn = ψ(Zn) is close to Un = ψ(Z).
Note that the function ψ depends on n.
We aim to apply Lemma 22 with Xn = ψ(Zn) and Un = ψ(Z) defined above and with the
function g(x1, x2) = f(x1)e

x2 . By Lemma 21, we have that limm→∞ limn→∞ EeUn,21Bc
m
(Un) =

0, where Bc
m := {x ∈ R

2 : ‖x‖2 ≥ m}.
Hence we get by the second part of Lemma 22

lim
n→∞

|Eg(Xn)− Eg(Un)| = 0.

Next we calculate Eg(Un). We have

Eθg(Un) = Ef(Un,1)e
Un,2 =

∫

R2

f (u1) e
u2fUn(u1, u2)du,

where fY denotes the density of a random variable Y. We use Lemma 18 to obtain that
fUn(u)e

u2 = fY (u), where

Y ∼ N
((

0
v22/2

)

,

(

1 v12√
v11

v12√
v11

v22

))

.

Hence

Eθg(Un) =

∫

R2

f (u1) fY (u1, u2)du = Ef(Y1),
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where Y ∼ N (0, 1). Hence for any bounded continuous function f we have shown

lim
n→∞

|Eθ+h/
√
nf

(√
n(Tn − g(θ))− v12√

v11

)

− Ef(Y )| = 0.

By the Portmanteau Lemma (note that Y in the above display does not depend on n), we
thus have √

n(Tn − g(θ))− v12√
v11

θ+h/
√
n

 N (0, 1).

Therefore, by the assumption on g, we get

√
n(Tn − g(θ)) + hT ġ(θ)− Pθlθh

T sθ

Vθ
1/2

θ+h/
√
n

 N (0, 1).

Lemma 18. Let Z ∈ R
2 be N (µ,Σ)-distributed, where

µ =

(
µ1
µ2

)

,Σ =

(
σ11 σ12
σ12 σ22

)

.

Suppose that µ2 = −σ22/2. Let Y ∈ R
2 be N (µ + a,Σ)-distributed, with

a =

(
σ12
σ22

)

.

Let φZ be the density of Z and φY be the density of Y. Then we have the following equality
for all z = (z1, z2) ∈ R

2:
φZ(z)e

z2 = φY (z).

Proof. The density of Z is

φZ(z) =
1

2π
√

det(Σ)
e−

1
2
(z−µ)TΣ−1(z−µ).

It holds that
Σ−1a = (0, 1)T .

Then

1

2
(z − µ)TΣ−1(z − µ) =

1

2
(z − µ− a)TΣ−1(z − µ− a) + aTΣ−1(z − µ)− 1

2
aTΣ−1a.

We also have

aTΣ−1(z − µ)− 1

2
aTΣ−1a = (0, 1)T (z − µ)− 1

2
(0, 1)T a = z2 − µ2 −

1

2
σ22 = z2.

Lemma 19. Let µ and Σ be defined as follows

µ =

(

− v12√
v11

− v22
2

)

, Σ =

(

1 v12√
v11

v12√
v11

v22

)

.
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Suppose that Vθ = O(1), 1/Vθ = O(1) and Λmax(Iθ) = O(1). (The relationship between these
quantities and the vij ’s is given in the proof of Le Cam’s lemma). Then

‖µ‖22 = O(1) and Λmax(Σ) = O(1).

Proof. First observe that v212 = (Elθh
T sθ)

2 ≤ El2θE(h
T sθ)

2 = VθhEsθs
T
θ h ≤ VθΛmax(Esθs

T
θ )h

Th.
Then by assumption Λmax(Esθs

T
θ ) = O(1), Vθ = O(1) and since hTh = O(1), we have that

(Elθh
T sθ)

2 = O(1). Also observe that v22 = hT Iθh ≤ Λmax(Iθ)h
Th = O(1) by assumption

Λmax(Iθ) = O(1).
Then, and by 1/Vθ = O(1), it follows that

‖µ‖22 = v212/v11 + v222/4 = (Pθlθh
T sθ)

2/Vθ + (hT Iθh)
2/4 = O(1).

We proceed to check that the eigenvalues of Σ are bounded. We have

λ1,2 =
1 + v22 ±

√
D

2
,

where D = (1+ v22)
2− 4(v22− v212/v11) = (1− v22)2+4v212/v11. Clearly, D ≥ 0, and as above,

one sees that D = O(1). Hence also Λmax(Σ) = O(1).

Lemma 20. Suppose that X ∼ Nd(µ,Σ), where ‖µ‖2 ≤ K, Λmax(Σ) ≤ L and assume that Σ
is invertible. Then it holds that for all r > max{K,Ld}

P (‖X‖22 > r) ≤
(
r −K

2Ld
e1−

r−K
2Ld

)d/2

+

(
r2

4LdK
e1−

r2

4LdK

)d/2

.

Proof. First consider Y ∼ Nd(0,Σ) and denote Z := Σ−1/2Y ∼ Nd(0, I). Note that Z
TZ ∼ χ2

d.
Since for any y ∈ R

d we have yT y ≤ Λmax(Σ)y
TΣ−1y ≤ LyTΣ−1y, then it follows

P (‖Y ‖22 > r) ≤ P (LY TΣ−1Y > r)

= P
(

ZTZ >
r

L

)

≤
( r

Ld
e1−

r
Ld

)d/2
, (16)

where we used a Chernoff bound for χ2
d in the last inequality, which holds provided that

r > Ld.
Consider now for any r > K (assume that K > 0, otherwise if K = 0 we are done)

P (‖X‖22 > r) = P (‖X − µ+ µ‖22 > r)

≤ P (‖X − µ‖22 + 2‖X − µ‖2‖µ‖2 + ‖µ‖22 > r)

≤ P (‖X − µ‖22 + 2‖X − µ‖2
√
K +K > r)

≤ P

(

‖X − µ‖22 >
r −K

2

)

+ P

(

‖X − µ‖2 >
r

2
√
K

)

= P

(

‖X − µ‖22 >
r −K

2

)

+ P

(

‖X − µ‖22 >
r2

4K

)

.
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Now since X − µ ∼ Nd(0,Σ), we can apply (16) to conclude that

P (‖X‖22 > r) ≤ P

(

‖X − µ‖22 >
r −K

2

)

+ P

(

‖X − µ‖22 >
r2

4K

)

≤
(
r −K

2Ld
e1−

r−K
2Ld

)d/2

+

(
r2

4LdK
e1−

r2

4LdK

)d/2

,

which holds if r > max{K,Ld}.

Lemma 21. Suppose that

Un ∼ N
((

− v12√
v11

− v22
2

)

,

(

1 v12√
v11

v12√
v11

v22

))

.

Suppose that Vθ = O(1), 1/Vθ = O(1), Λmax(Iθ) = O(1). (The relationship between these
quantities and the vij ’s is given in the proof of Le Cam’s lemma).
Then it holds that

lim
m→∞

lim
n→∞

EeUn,21Bc
m
= 0,

where Bc
m = {x ∈ R

2 : ‖x‖2 > m}.

Proof. By Lemma 18 we have that

EeUn,21Bc
m
(X) = E1Bc

m
(Y ),

where

Y ∼ N
((

0
v22/2

)

,

(

1 v12√
v11

v12√
v11

v22

))

.

Further we have
E1Bc

m
(Y ) = P (Y ∈ Bc

m) = P (‖Y ‖2 > m).

Denote µY = EY and ΣY = var(Y ). By Lemma 20, for m > max{Ld,K} we have

P (‖Y ‖22 > m) ≤
(
m−K

2Ld
e1−

m−K
2Ld

)d/2

+

(
m2

4LdK
e1−

m2

4LdK

)d/2

, (17)

where ‖µY ‖22 ≤ K and Λmax(ΣY ) ≤ L and d = 2. By Lemma 19, we have L = O(1) and by
assumption Λmax(Iθ) = O(1) we have K = O(1). Therefore, and using (17), we can obtain
an upper bound on P (‖Y ‖22 > m) that depends on m but does not depend on n. This upper
bound tends to zero for m→ ∞, therefore we have shown that

lim
m→∞

lim
n→∞

EeUn,21Bc
m
(Un) = 0.

Lemma 22. Assume the conditions of Theorem 11. Suppose that Zn  Z, where Z is a
random vector with values in R

2. Let Xn = ψ(Zn) and Un = ψ(Z) with ψ as in Theorem 11.
Then the following statements hold.
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1. For any function f : R2 → R which is bounded and continuous it holds that

lim
n→∞

Ef(Xn)− Ef(Un) = 0.

2. Let f be any bounded and continuous function f : R → R. Suppose that

lim
m→∞

lim
n→∞

EeUn,21Bc
m
= 0,

where Bc
m := {x ∈ R

d : ‖x‖2 > m}. Then it holds that

lim
n→∞

Ef(Xn,1)e
Xn,2 − Ef(Un,1)e

Un,2 = 0.

Proof. We first prove the first statement. Let ǫ > 0 and let f : R2 → R be continuous and
bounded.
Consider the map

x 7→ ψ(x1, x2) =

(
1/
√
v11 0

0 1

)

︸ ︷︷ ︸

D

[

V 1/2

(
x1
x2

)

+

(
−v12
−v22/2

)]

.

The map ψ is linear, i.e. ψ(x) = Ax + b for some A ∈ R
2×2 and b ∈ R

2 (A, b depending on
n). Observe that for any x ∈ R

2

‖Ax‖22 = xTATAx = xTDVDx ≤ Λmax(DVD)xTx.

By Lemma 19 we have that Λmax(DVD) = O(1) and ‖b‖2 = O(1). Therefore, for all x ∈ R
2

‖Ax+ b‖2 = O(‖x‖2). (18)

Take a compact rectangle R ⊂ R
2 not depending on n and such that P (Z 6∈ R) < ǫ.

Divide the rectangle R into a finite number of non-overlapping rectangles of diameter at most
δ/L1/2, where L is a universal constant such that L ≥ Λmax(DVD). By construction, the
number of these rectangles, denote it N , does not depend on n. So we have R = ∪N

j=1Rj,

where each Rj is a rectangle of diameter at most δ/L1/2.
For all x, y ∈ Rj it holds that ‖x− y‖2 ≤ δ/L1/2 and thus

‖ψ(x) − ψ(y)‖2 = ‖A(x− y)‖2 ≤ L1/2‖x− y‖2 ≤ δ. (19)

Note that by (18), there exists a compact set S not depending on n such that ψ(R) ⊂ S
for all n. The continuous function f is uniformly continuous on the compact set S. Hence
for our ǫ there exists a δ > 0 such that for all z, v ∈ S it holds that if ‖z − v‖2 < δ then
|f(z)− f(v)| < ǫ. But then since for all x, y ∈ Rj we have that ψ(x), ψ(y) ∈ S, we obtain by
(19) and the absolute continuity of f that

|f(ψ(x)) − f(ψ(y))| < ǫ

for all n. Take a point xj from each set Rj and define fǫ =
∑N

j=1 f(ψ(xj))1Rj . Then |f(ψ(x))−
fǫ(x)| < ǫ for all x ∈ R (and all n) and hence if f takes values in [−K,K], we have the following
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upper bounds
|Ef(ψ(Z))− Efǫ(Z)| ≤ ǫ+ 2KP (Z 6∈ R), (20)

|Ef(ψ(Zn))− Efǫ(Zn)| ≤ ǫ+ 2KP (Zn 6∈ R), (21)

|Efǫ(Zn)− Efǫ(Z)| ≤
N∑

j=1

|P (Zn ∈ Rj)− P (Z ∈ Rj)||f(ψ(xj))|. (22)

Since Zn  Z, for all j = 1, . . . , N it holds

|P (Zn ∈ Rj)− P (Z ∈ Rj)| → 0.

Similarly,
|P (Z 6∈ R)− P (Zn 6∈ R)| = |P (Z ∈ R)− P (Zn ∈ R)| → 0.

Finally, by construction we have P (Z 6∈ R) < ǫ. We thus conclude that the upper bounds
(20), (21) and (22) can be made smaller than Cǫ for n sufficiently large. The claim follows
by combining the three upper bounds.

Next we prove the second statement. Denote g(x1, x2) = f(x1)e
x2 . We write g = g+ − g−,

where g+ = max{g, 0} is the positive part and g− := max{−g, 0} is the negative part. We
first prove for the positive part g+ that

lim
n→∞

Eg+(Xn)− Eg+(Un) = 0. (23)

For every m, since g+ is non-negative, it holds that g+(x) ≥ g+(x)1Bm(x), where Bm := {x ∈
R
2 : ‖x‖2 ≤ m}. Hence

Eg+(Xn)− Eg+(Un) ≥ Eg+(Xn)1Bm − Eg+(Un)

= [Eg+(Xn)1Bm − Eg+(Un)1Bm ]

+ [Eg+(Un)1Bm − Eg+(Un)]

We have 1Bm − 1 = −1Bc
m
. Taking limes inferior of both sides, it follows that

lim inf
n→∞

Eg+(Xn)− Eg+(Un) ≥ lim inf
n→∞

[Eg+(Xn)1Bm(Xn)− Eg+(Un)1Bm ]

+ lim inf
n→∞

−Eg+(Un)1Bc
m
.

For every fixed m, the function x 7→ g+(x)1Bm(x) is bounded since g is continuous on the
compact set Bm. We may thus apply the first result of the lemma to conclude

lim inf
n→∞

Eg+(Xn)1Bm − Eg+(Un)1Bm = 0.

Therefore, we have

lim inf
n→∞

Eg+(Xn)− Eg+(Un) ≥ lim inf
n→∞

−Eg+(Un)1Bc
m
. (24)

Next since |f+| ≤ K we have | − Eg+(Un)1Bc
m
| ≤ KEeUn,21Bc

m
. Then the assumption

lim
m→∞

lim
n→∞

EeUn,21Bc
m
= 0
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implies that also

lim
m→∞

lim inf
n

−Eg+(Un)1Bc
m
= − lim

m→∞
lim sup

n
Eg+(Un)1Bc

m
= 0,

so we conclude that

lim inf
n→∞

Eg+(Xn)− Eg+(Un) ≥ 0. (25)

Now similarly, since K − f+ ≥ 0 (K is an upper bound on f), we have that

lim inf
n→∞

E(K − f+(Xn,1))e
Xn,2 − E(K − f+(Un,1))e

Un,2

≥ lim inf
n→∞

E(K − f+(Xn,1))e
Xn,21Bm − E(K − f+(Un,1))e

Un,21Bm

+ lim inf
n→∞

E(K − f+(Un,1))e
Un,21Bm − E(K − f+(Un,1))e

Un,2 .

By the the first part of the lemma, we have that for every m it holds

lim inf
n

E(K − f+(Xn,1))e
Xn,21Bm − E(K − f+(Un,1))e

Un,21Bm = 0,

since the function (x1, x2) 7→ (K − f+(x1))e
x21Bm(x1, x2) is bounded and continuous.

For the second term, we have since |K − f+| ≤ 2K

| − E(K − f+(Un,1))e
Un,21Bc

m
| ≤ 2KEeUn,21Bc

m
.

Hence by the assumption limm→∞ limn→∞ EeUn,21Bc
m
= 0, we have that

lim inf
n→∞

−E(K − f+(Un,1))e
Un,21Bc

m
= 0.

Thus we conclude that

lim inf
n→∞

E(K − f+(Xn,1))e
Xn,2 − E(K − f+(Un,1))e

Un,2 ≥ 0.

Now note that

lim inf
n→∞

E(K − f+(Xn,1))e
Xn,2 − E(K − f+(Un,1))e

Un,2

= lim inf
n

−Ef+(Xn,1)e
Xn,2 + Ef+(Un,1)e

Un,2

= − lim sup
n

Ef+(Xn,1)e
Xn,2 − Ef+(Un,1)e

Un,2 .

So in conclusion we have shown that

lim sup
n

Ef+(Xn,1)e
Xn,2 − Ef+(Un,1)e

Un,2 ≤ 0 ≤ lim inf
n

Ef+(Xn,1)e
Xn,2 − Ef+(Un,1)e

Un,2 .

This proves (23).
The same procedure can be used for the negative part f− (since f− is also bounded and
positive) to show that

lim
n→∞

Ef−(Xn,1)e
Xn,2 − Ef−(Un,1)e

Un,2 = 0.
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We then conclude that

lim
n→∞

Ef(Xn,1)e
Xn,2 − Ef(Un,1)e

Un,2 ≤ lim
n→∞

|Ef+(Xn,1)e
Xn,2 − Ef+(Un,1)e

Un,2 |

+ lim
n→∞

|Ef−(Xn,1)e
Xn,2 − Ef−(Un,1)e

Un,2 |
= 0.

References
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