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Abstract. We present a general expression for the values of the average kinetic energy and of
the temperature of kinetic decoupling of a WIMP, valid for any cosmological model. We show
an example of the usage of our solution when the Hubble rate has a power-law dependence on
temperature.

1. Introduction

Despite the various astrophysical observations in support of its existence [1, 2], the nature of dark
matter still remains an open question. Of the various candidates for dark matter, one of the most
compelling is the Weakly Interacting Massive Particle (WIMP) [3, 4, 5, 6, 7], with a mass ranging
from a few GeV to 10 TeV. In fact, when the WIMP annihilation rate falls below the Hubble
expansion rate, the chemical equilibrium between WIMPs and the primordial plasma is no longer
maintained, and the number of WIMPs per comoving volume naturally fixes to the value required
for explaining the present abundance of cold dark matter. Although chemical equilibrium at
this stage is no longer maintained, kinetic equilibrium between dark matter and the plasma
is still achieved through a high momentum exchange rate [8, 9, 10, 11, 12, 13, 14, 15, 16].
Eventually, when the Hubble rate equates the scattering process rate, WIMPs kinetically
decouple from the plasma and flow with a given free-streaming velocity. This velocity sets the
lowest value for the size of protohalos, which determines the subsequent evolution of primordial
structures [18, 19, 20, 21, 22, 23, 24]. In particular, Bringmann [13] defined the temperature of
the kinetic decoupling Tkd in the standard cosmological scenario, while Gelmini and Gondolo [22]
defined Tkd in the Low-Temperature Reheating (LTR) cosmology following a dimensionality
reasoning.

We present a full solution of the evolution equation governing the process of the kinetic
decoupling, and we generalize the definition of the temperature of kinetic decoupling and the
average kinetic energy of WIMPs in a generic non-standard cosmological model.

2. General solution of the temperature equation for Dark Matter in a thermal

bath

The scattering process between plasma at temperature T and WIMPs of mass Mχ ≫ T is
a Brownian motion in momentum space, with momentum transfer related to the number Ne

1 Talk based on L. Visinelli and P. Gondolo, Phys. Rev. D 91 (2015) 8, 083526 [astro-ph/1501.02233].

http://arxiv.org/abs/1601.00817v1
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.083526
http://arxiv.org/abs/1501.02233


of collisions required to change the momentum by p as p =
√
Ne∆p. Since p ∼

√

Mχ T is
much larger than the average momentum transfer ∆p ∼ T , the number of collisions required
to appreciably change the momentum of WIMP is Ne = (p/∆p)2 ∼ Mχ/T ≫ 1. The
momentum exchange rate Γ is suppressed with respect to the elastic collision rate Γel by a
factor T/Mχ. Thermal decoupling of WIMPs occurs at a temperature Tkd approximatively given
by H(Tkd) ∼ Γ, where H = H(T ) is the Hubble expansion rate at temperature T . Thermal
decoupling of a heavy dark matter particle with Mχ ≫ T and with small momentum transfer
per collision ∆p ≪ p is described by a Fokker-Planck equation for the dark matter particle
occupation number fχ = fχ(pχ) [8, 10, 11, 12, 13, 14, 16],

∂fχ
∂t

−H(T )pχ · ∂fχ
∂pχ

= γ(T )
∂

∂pχ

·
(

pχ fχ (1± fχ) +Mχ T
∂fχ
∂pχ

)

, (1)

where γ(T ) is a monotonically increasing function with T .
Defining the WIMP kinetic temperature Tχ as 2/3 of the average kinetic energy of the dark

matter particle,

Tχ =
2

3

∫

p2
χ

2Mχ

fχ(pχ) d
3pχ, (2)

and defining the function

Υ(T ) =
γ(T )

H(T )
, (3)

the Fokker-Planck Eq. (1) in the approximation 1± fχ ≈ 1 is rewritten as [14, 16, 17]

a
dTχ

da
+ 2 [1 + Υ(T )] Tχ = 2Υ(T )T. (4)

We solve Eq. (4) in terms of analytic expressions for a generic cosmological model, with the
boundary condition that the temperature be Ti for a given scale factor ai, to obtain

Tχ(a) = Ti

(ai
a

)2
es(a)−s(ai) +

2

a2

∫ a

ai

es(a)−s(a′)Υ(a′)T (a′) a′ da′, (5)

where

s(a) = 2

∫ a

Υ(a′)
da′

a′
. (6)

The solution obtained satisfies the behavior in the “tight coupling” limit γ(T ) ≫ H(T ) as
aTχ = constant, and in the “decoupled” limit γ(T ) ≪ H(T ) as a2 Tχ = const.

2.1. Temperature of kinetic decoupling

The temperature of kinetic decoupling Tkd expresses the temperature of the plasma at which
the kinetic decoupling of WIMPs occurs. Here, we use the definition [16, 17],

γ(Tkd) = H(Tkd), (7)

where H(Tkd) is the Hubble expansion rate when WIMPs decouple kinetically from the
primordial plasma. In the literature, different definitions of the temperature of kinetic decoupling
can be found.



3. Power-law cosmological model

3.1. General relations for a cosmological model

We assume that the Hubble rate depends on temperature as

H(T ) = Hi

(

T

Ti

)ν

, (8)

where ν is a positive constant, and Ti and Hi are the temperature of the plasma and the
expansion rate at the time at which we start considering the cosmological model. We also set

aα T = const. (9)

Equating Eqs. (8) and (9), we obtain the relation

H(a) = Hi

(ai
a

)ν α

, (10)

where ai is the scale factor at temperature Ti. Notice that, in the radiation-dominated cosmology
for which ν = 2 and α = 1, the temperature of the plasma drops as T ∝ a−1, while the WIMP
temperature drops at a faster rate Tχ ∝ a−2. For the momentum relaxation rate γ(T ) we assume
a power-law function of the form

γ(T ) = γi

(

T

Ti

)4+n

, (11)

where γi = γ(Ti) and n > 0. Finally, setting Υi = γi/Hi, Eq. (3) is given by

Υ =
γ

H
= Υi

(

T

Ti

)4+n−ν

= Υi

(ai
a

)α(4+n−ν)
. (12)

3.2. Kinetic temperature

Using the definition in Eq. (13) in the power-law model, we find

s ≡ s(a) =















2Υi

α(4 + n− ν)

(ai
a

)α(4+n−ν)
, for 4 + n 6= ν,

−2Υi ln

(

a

ai

)

, for 4 + n = ν.
(13)

Plugging Eqs. (10) and (9) into Eq. (5), computing the integrals, using the identity

Γ(1 + r, x) = rΓ(r, x) + xr e−x, (14)

and defining

λ =
2− α

α (4 + n− ν)
, (15)

we find

Tχ =

{

T sλ es
[

Γ (1− λ, s) + λΓ (−λ, si)
]

, for 4 + n 6= ν,

Ti

(

ai
a

)2+2Υi + 2Υi T
2+2Υi−α

[

1−
(

ai
a

)2+2Υi−α
]

, for 4 + n = ν.
(16)

To the best of our knowledge, the expressions in Eq. (16) have never been derived for the case
of an arbitrary power-law model.

If the initial scale factor ai is taken so far back in time that the WIMPs are initially tightly
coupled to the primordial plasma, then γi ≫ Hi and si → +∞, and we obtain

Tχ = T sλ es Γ (1− λ, s) . (17)

Eq. (17) is a generalization of the relation obtained in Ref. [12] for any cosmological power-law
model and for any value of the partial wave number n.



3.3. Late time behavior

When the plasma temperature is much smaller than Ti, the late-time behavior of the first line
of Eq. (16) gives

Tχ = Ti s
λ
i

(

T

Ti

)
2

α

Γ (1− λ) . (18)

In a cosmological model that approaches the radiation-dominated scenario where α = 1 and
ν = 2, Eq. (18) reads

Tχ =
T 2

Ti

(

2Υi

2 + n

)
1

2+n

Γ

(

1 + n

2 + n

)

. (19)

We compare this result with the theoretical behavior [13]

T th
χ =

T 2

Tkd,std

(

2

2 + n

)
1

2+n

Γ

(

1 + n

2 + n

)

, (20)

where Tkd,std is the temperature of kinetic decoupling in the radiation-dominated cosmology,

Tkd,std = Ti

(

Hrad(Ti)

γi

)

1

2+n

, (21)

and Hrad(T ) is the Hubble rate in the radiation-dominated cosmology. This latter equation can
be stated in terms of the function Υi in Eq. (23) as

Ti = Tkd,std Υ
1

2+n

i . (22)

This relation is also obtained by comparing the result in Eq. 19 with the theoretical Eq. (20).
We rewrite Eq. (22) in terms of the temperature of kinetic decoupling Tkd by using the relation
in Eq. (23) in the form

Υi =

(

Ti

Tkd

)4+n−ν

, (23)

as

Tkd =

(

T n+2
kd,std

T ν−2
i

)
1

4+n−ν

= Ti

(

Hrad(Ti)

γi

)

1

4+n−ν

. (24)

Eq. (24) gives the temperature of the WIMP kinetic decoupling in a generic cosmological model,
which might differ from the radiation-dominated scenario at the time of decoupling. Notice that,
in the particular case in which the decoupling occurs in a radiation-dominated scenario (ν = 2),
Eq. (24) gives

Tkd = Tkd,std. (25)

In the following, we discuss the decoupling of WIMPs in a broken power law cosmological
model, where a generic pre-BBN cosmology takes place before Ti, after which standard radiation-
dominated cosmology begins.

4. Summary

In Eq. (5), we presented a general expression that gives the value of the WIMP kinetic
temperature Tχ in terms of the temperature of the Universe T . In addition, we have presented
the expression for Tχ in the case of a power-law cosmology in Sec. 3. The expression for the
temperature of kinetic decoupling in a generic cosmology is found in Eq. (24).
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