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Abstract

In this paper, mechanical models with Newton’s Law of impacts are studied.
One of the most interesting properties in some of these models is chattering.
This phenomenon is understood as the appearance of an infinite number of im-
pacts occurring in a finite time. Conclusion on the presence of chattering is
made exclusively by examination of the right hand side of impact models for
the first time. Criteria for the sets of initial data which always lead to chattering
are established. The Moon-Holmes model is subject to regular impact perturba-
tions for the chattering generation. Using the chattering solutions, continuous
chattering is generated. To depress the chattering, Pyragas control is applied.
Illustrative examples are provided to demonstrate the impact chattering.

Keywords: Impact mechanism, The Moon-Holmes model, Chattering,
Bouncing bead, Pyragas control.

The implementation of sliding mode control is often irritated by high fre-
quency oscillations known as “chattering” in system outputs issued by dynamics
from actuators and sensors ignored in system modeling [1]. In study [2], chat-
tering is considered as a special type of oscillation characterized by very small
amplitudes that are decreasing with time. In impacting systems, it is under-
stood as an infinite number of discontinuities moments occurring in a finite time
period, for instance, a ball bouncing to rest on a horizontal surface [3]. It is
asserted in [3] that chattering resembles with the inelastic collapse. The balls
dissipate their energy through an infinite number of collisions in a finite time
interval. Budd and Dux [4] showed that chattering can occur for a periodically
forced, single degree of freedom impact oscillator with a restitution law. They
demonstrated that chattering can form part of a periodic motion, and this re-
lates to certain types of chaotic behavior. However, they studied through an
example. Using the solution, they proved the existence of chattering for a linear
system.

Nordmark and Piiroinen[5] considered simulation problems for chattering as
well as analysis of stability of the limit cycle, which is chattering by solving the
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first variational equations. Moreover, they used the mappings, which are con-
structed with the help of a solution, in simulation schemes. Similar to the one
in paper [4], it was shown that the existence of chattering for a linear system.
Nonetheless, in both papers [4, 5], they do not consider the conditions which
guarantee the appearance of chattering. In this study, we consider the chatter-
ing as a motion with infinite number of discontinuities in a finite time. This is
the first time that sufficient conditions are provided for the chattering based on
properties not on maps derived with the help of solutions, but, on conditions for
the right-hand side of impulsive systems. Our models essentially are nonlinear
(see, for example, Example 1). Since this is the first result in this direction, the
models under consideration are respectively simple. Nevertheless, this is a class
of mechanical models which can be significantly enlarged in the future investi-
gations by consideration of large ensembles of impact oscillators and weakening
conditions of the present paper. We consider models with vibrating surface of
impacts as well as analyzed problems of Pyragas controllability and existence
of continuous chattering for a model connected unilaterally to a system with
an impact chattering. An interesting problem of the regular perturbation of a
system with chattering is discussed.

A particular feature of system with impacts is the existence of the chattering.
We have two different types of it, namely complete and incomplete chattering
[4, 5]. Complete chattering is the phenomenon wherein a system an infinite
number of discontinuities in a finite time occurs, where the velocity tends to
zero uniformly. Incomplete chattering bears on a sequence of the impacts that
initially has the same behavior as complete chattering, but it ends after a large
but finite number of impacts [5]. In section 2, we will discuss the transient
chattering for systems with small parameter considering the transformation of
the incomplete chattering to the complete one when the parameter diminishes
to zero.

It was first found by Arnold [6] that the significant characteristic property
of chatter vibration is that it is not generated by external periodic forces, but
rather it is generated in the dynamic process itself. Therefore, it is important to
emphasize that the systems under investigation in this paper are autonomous.

Consider the problem of impact interaction of a body falling in the uniform
gravity force field with a fixed horizontal base. After colliding with the base
the body bounces back with the velocity whose norm is equal to the norm of
the pre-impact velocity multiplied by r, where r is the restitution coefficient,
0 < r < 1. Then, after some time interval the body will fall on the base again
and the norm of its velocity will be equal to the norm of bouncing velocity in
the previous collision multiplied by r. The process cannot end in a finite number
of collisions. Thus, the considered phenomenon consists in following: after the
initial collision a series of repeated collisions of attenuated to zero, which ends in
a finite time with establishing a long contact between interacted bodies. Arising
this contact results in decreasing number of degrees of freedom of the system
by a unit or more. So, it is reasonable to call this phenomenon the impact
chattering.

It is shown by investigations and observations that the impact chattering
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meets in operating almost every mechanism and machine of impact-oscillating
type [7]. Various problems of impact chattering are far from trivial, and their
solutions cannot be obtained in closed form for rather general case. As for the
use of approximate analytical and numerous methods, it is simplified essentially
if one proceeds from the conception about infinity number of impacts inside a
finite time range. For example, the existence of impact chattering was investi-
gated in [7, 8]. They simply consider the free falling of a bead on an immobile
base and on a vibrating table with constant velocity. In this paper, we consider
a more general system and prove the existence of impact chattering.

The chattering phenomena are unwanted in engineering since it is an ap-
pearance of multi-strikes in a short period of time. It is not desirable in models
of mechanics since it appears as infinite discontinuities in a finite time which
make theoretical analysis difficult. We have a research plan to consider theoret-
ical and mathematical complexities connected to chattering and we approach
the problem from one of the two possible points of view. The first one is when
mechanical models changed such that the theoretical chattering disappears [9].
The other point of view, which is considered in this paper, is that we approxi-
mate a model with infinite moments of discontinuities with those having a finite
number of impacts.

This article is organized as follows. The impact model is stated in the first
section. In this model each collision is assumed instantaneous, and it comes to
rest after an infinite number of impulse moments in a finite time. The existence
of chattering is proved. Asymptotic approximation of solutions with chattering
are discussed in section 2. Then, we show that the chattering occurs for a
bead bouncing on a sinusoidally vibrating table in section 3. The modified
Moon-Holmes model with a small perturbation is discussed in section 4. Using
the continuous dependence on parameters and initial value for the impulsive
differential equations with non-fixed moments, it is shown that the solution of
the modified Moon-Holmes model is chattering. Following that, the appearance
of continuous chattering by perturbation method is demonstrated in section 5.
Finally, by Pyragas control method the chattering solution is controlled to be
periodic.

1. Existence of Chattering

An impacting system admits a chattering if there is a solution with infinite
impulse moments in a finite time. Moreover, we will say that a perturbed system
admits a transient chattering, if a number of impacts increases to infinity on a
fixed interval as the small parameter tends to zero.

A mechanism with a rigid flat surface of impacts and the constant coefficient
of restitution r, 0 < r < 1, can be modeled by the following impulsive system

ẍ = f(x, ẋ),

∆ẋ|x=ϕ = −(1 + r)ẋ,
(1)

where x(t) is the coordinate of the bead which is over the impact surface x = ϕ,
ẋ(t) is its velocity, f(u, v) is a continuous function on the domain H = {0 <
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ϕ ≤ u ≤ h, |v| ≤ h̄} for fixed positive numbers h, h̄, and it satisfies the local
Lipschitz condition in its variables on H . The equality ∆ẋ(θ) = ẋ(θ+)− ẋ(θ−)
denotes the jump operator in which t = θ is the time when the bead reaches the
rigid obstacle, ẋ(θ−) is the pre-impact velocity and ẋ(θ+) is the post-impact
velocity.

In system (1), we need the following conditions.

(C1) There is a positive number m such that f(u, v) < −m for all (u, v) ∈ H ,

(C2) f(u, v) = f(u,−v) for all (u, v) ∈ H.

Conditions on function f(u, v) and compactness of domain H imply that there
exists a positive number M such that f(u, v) ≥ −M for all (u, v) ∈ H.

Theorem 1.1. If conditions (C1), (C2) are satisfied and the following inequal-
ity

M

√

2(h− ϕ)

m
< h̄ (2)

is valid, then all solutions with initial value (x(0), ẋ(0)) = (x0, 0), ϕ < x0 < h,
of system (1) are chattering.

Proof. Consider an initial value (x0, 0) ∈ H, ϕ < x0 < h. Denoting x1 =
x, x2 = ẋ present the system (1) as

ẋ1 = x2,

ẋ2 = f(x1, x2),

∆x2|x1=ϕ = −(1 + r)x2.

(3)

The solution of system (3) starting at (x0, 0) is

x1(t) = x0 +

∫ t

0

(t− s)f(x1(s), x2(s))ds, (4a)

x2(t) =

∫ t

0

f(x1(s), x2(s))ds, (4b)

while it is continuous. By Eq. (4a) and condition (C1), the coordinate x1(t)
decreases to ϕ such that there exists a moment θ1 where x1(θ1) = ϕ and x2(θ1) <
0. Moreover, x1(θ1+) = ϕ and x2(θ1+) = −rx2(θ1) > 0.

Let us show that the solution is continuable to +∞ and it remains in the
domain H. First of all, consider the interval [0, θ1]. From conditions (C1) and
(C2), it implies that x1(t) ≤ x0 < h, t ∈ [0, θ1]. Using (4a) and inequality
ϕ < x0 < h we get

|h−ϕ| > |ϕ−x0| =
∣

∣

∣

∣

∣

∫ θ1

0

(θ1 − s)f(x1(s), x2(s))ds

∣

∣

∣

∣

∣

≥
∫ θ1

0

(θ1 − s)mds = m
θ21
2
,
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which implies that θ1 <
√

2(h−ϕ)
m .

Consequently, from (4b) and condition (2)

|x2(θ1)| =
∣

∣

∣

∣

∣

∫ θ1

0

f(x1(s), x2(s))ds

∣

∣

∣

∣

∣

≤ Mθ1 < h̄.

Thus, we obtain that ϕ ≤ x1(t) < h and |x2(t)| < h̄ for t ∈ [0, θ1].
Applying the same arguments as for θ1 one can show that there is an in-

tersection moment θ2 such that x1(θ2) = ϕ and x1(t) > ϕ, t ∈ (θ1, θ2). In this
interval, we have

x1(t) = ϕ+ x2(θ1+)(t− θ1) +

∫ t

θ1

(t− s)f(x1(s), x2(s))ds, (5a)

x2(t) = x2(θ1+) +

∫ t

θ1

f(x1(s), x2(s))ds, (5b)

By condition (C2), x2(θ1+) is the maximum value of |x2(t)| for t ∈ (θ1, θ2].
Thus, |x2(t)| ≤ r|x2(θ1)| < rh̄ < h̄. Moreover, from conditions (C1) and (C2),
there exists a moment ξ1, θ1 < ξ1 < θ2, such that x2(ξ1) = 0 and x1(ξ1)
is the maximum value of x1(t) on (θ1, θ2]. Thus, x1(t) ≤ x1(ξ1) < x0 < h,
and the trajectory of x(t) is in H for t ∈ [θ1, θ2]. Next, recursively, it can
be shown that there exists an increasing sequence θi, i = 1, 2, . . . , such that
x1(θi) = ϕ, i = 1, 2, . . . , and the orbit of x(t) is in H for all t ≥ 0.

Now, we will show that the sequence θi converges. The solution of system
(3) is defined by

x1(t) = ϕ+ x2(θi+)(t− θi) +

∫ t

θi

(t− s)f(x1(s), x2(s))ds, (6a)

x2(t) = x2(θi+) +

∫ t

θi

f(x1(s), x2(s))ds. (6b)

on the interval (θi, θi+1], i = 1, 2, . . . .
Using condition (C1), it can be shown that there exists a moment ξi, θi <

ξi < θi+1, such that x2(ξi) = 0. Also, utilizing condition (C2), we obtain

ξi =
θi+θi+1

2 . The solution on the interval (θi+1, θi+2] is

x1(t) = ϕ+ rx2(θi+)(t− θi+1) +

∫ t

θi+1

(t− s)f(x1(s), x2(s))ds,

x2(t) = rx2(θi+) +

∫ t

θi+1

f(x1(s), x2(s))ds.

(7)

From x2(ξi) = 0 and x2(ξi+1) = 0, we get

x2(θi+) = −
∫ ξi

θi

f(x1(s), x2(s))ds, (8)

rx2(θi+) = −
∫ ξi+1

θi+1

f(x1(s), x2(s))ds. (9)
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Let us divide (9) by (8) in order to get

r =

∫ ξi+1

θi+1
f(x1(s), x2(s))ds

∫ ξi
θi

f(x1(s), x2(s))ds
.

Using mean value theorem, we have

r =
(ξi+1 − θi+1)f(x1(s

∗), x2(s
∗))

(ξi − θi)f(x1(s∗∗), x2(s∗∗))
, (10)

for some s∗∗ and s∗ in (θi, θi+1) and (θi+1, θi+2) respectively.
Then,

θi+2 − θi+1

θi+1 − θi
=

ξi+1 − θi+1

ξi − θi
<

Mi

mi
r, i = 1, 2, 3...., (11)

where Mi = max
[θi,θi+1]

|f(x1(t), x2(t))| and mi = min
[θi,θi+1]

|f(x1(t), x2(t))|. Since

r < 1, max
[θi,θi+1]

|x1(t)| → ϕ and max
[θi,θi+1]

|x2(t)| → 0 as i → ∞.Moreover, continuity

of f(u, v) implies that Mi

mi

→ 1 as i → ∞. This and (11) prove the convergence.
The theorem is proved.

Example 1. Consider the following non-linear system

ẍ+ cos(ẋ) + x3 = 0,

∆ẋ|x=2 = −(1 + r)ẋ,
(12)

in the domain 2 ≤ x ≤ 2.5, |ẋ| < 7. We have f(x, ẋ) = − cos(ẋ) − x3 ≤ −7,
f(x, ẋ) = f(x,−ẋ), f(x, ẋ) ≥ −16.625 in the domain. Condition (2) is true
since 16.625

√

1/7 ≈ 6.28 < 7. That is, we are in circumstances of Theorem 1.1
and if we choose r = 0.8, x(0) = 2.1, ẋ(0) = 0, the solution of system (12) is
chattering. The simulation of this solution can be seen in Figure 1.
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1
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t
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Figure 1: The graphs of coordinates x(t) and ẋ(t) with initials x(0) = 2.1 and ẋ(0) = 0 of
system (12) with r = 0.8.

2. Asymptotics

Solutions of the system (1) admit infinitely many jumps, and this makes, in
general, impossible to find an exact solution or adequately to simulate it. So, in
this section we suggest considering degenerate equation to find the perturbed
system approximately. In order to increase the precision of approximation we
follow the idea of asymptotic approximations. Consider the system

ẍ = f(x, ẋ),

∆ẋ| x=ϕ
i<[ 1

r
]
= −(1 + r)ẋ, (13)

where i is the index of impacts θi, [.] denotes the greatest integer function, with
additional condition that the number of impulsive moments has to be not more
than

[

1
r

]

, i.e., θi, i = 1, 2, ...,
[

1
r

]

. One can guarantee for the fixed value of the
parameter r, the incomplete chattering occurs only. The number of impacts
increases unboundedly as the parameter tends to zero. For this reason, we say
that system (13) admits the transient chattering. Assume that this system
satisfy all conditions of Theorem 1.1. For time t > θ[ 1r ]

, the system is only

governed by ẍ = f(x, ẋ). Condition (C1) implies that on the interval [θ[ 1r ]
, θ∞]

the bead stays on the position x = ϕ.
For each its solution, system (13) has finite number of discontinuity moments.

That is why, one can find an exact solution of the problem or at least it is
possible to make proper simulations. One can easily see that solutions of the
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last system and system (1) with identical initial data coincide on the interval
[0, θ[ 1r ]

). They are different only in the interval [θ[ 1r ]
, θ∞]. The length of the last

interval diminishes to 0 as r → 0. Consequently, the solutions of system (13)
are asymptotic approximations for the solutions of system (1).

3. The Dynamics of Repeated Impacts against a Sinusoidally Vibrat-

ing Table

In this section, we consider a mechanical model consisting of a bead bounc-
ing on a vibrating table, which is investigated in the papers of Holmes and
Guckenheimer [10, 11]. It is demonstrated that the model can generate chaos
[10]. In this paper, we show that in the mechanism one can observe another
type of complex dynamics, namely chattering.

Consider a bouncing bead colliding with a sinusoidally vibrating table. As-
sume that the table is so massive that it does not react to collisions with the
bouncing bead and it moves according to law X(t) = X0 sinωt. The change of
the velocity of the bouncing bead at the impact moment is given by the relation

r = Ẋ+−ẋ+

ẋ
−
−Ẋ

−

, where r is the restitution coefficient, 0 < r < 1, Ẋ−, Ẋ+, ẋ−, ẋ+

are the velocities of the table and the bouncing bead before and after impact,
respectively. Since the collision does not affect the velocity of the table, we can
write Ẋ− = Ẋ+. Then the model will be as follows

ẍ = −g,

∆ẋ|x=X = −(1 + r)(ẋ − Ẋ),

X(t) = X0 sin(ωt),

(14)

where g is the gravitational acceleration (g ≈ 9.8m/s2).
Now, let us consider a general form. Instead of gravitational constant g, take

a function f(u, v). Then, the model will be of the form

ẍ = f(x, ẋ),

∆ẋ|x=X = −(1 + r)(ẋ − Ẋ),

X(t) = X0 sinωt,

(15)

where function f(u, v) is a continuous function on the domain G = {X0/10 ≤
u ≤ h, |v| ≤ h̄}, for fixed positive numbers h, h̄, and it satisfies the local Lipschitz
condition in its variables on G. Also, this system has conditions (C1), (C2)
defined in the first section for all (u, v) ∈ G. By conditions on function f(u, v)
and compactness of the domain G, we have a positive number M such that
f(u, v) ≥ −M for all (u, v) ∈ G.

Next, consider the graph of the function X(t) = X0 sinωt. The slope of the
graph is Ẋ(t) = X0ω cosωt. It is easily seen that if ω is small and t is near π/2ω
the graph is close to a horizontal line. Consequently, for sufficiently small ω and
for time t near π/2ω if the following inequality

M

√

2(h−X0/10)

m
< h̄, (16)
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0
tπ/2ω

X

X
0

P(π/2ω,X
0
)

Figure 2: The graph of X(t) = X0 sinωt on the interval [0, π/ω].

is true and conditions (C1), (C2) are satisfied, according to Theorem 1.1 there is
chattering for solutions whose integral curves are near to the point P (π/2ω,X0)
(see Figure 2).

Finally, to demonstrate the result through simulation, we continue with the
bouncing bead on the sinusoidally vibrating table.

Figure 3: The bouncing bead on the sinusoidally vibrating table.

Example 2. Let us return to the bouncing bead on the sinusoidally
vibrating table, see Figure 3, with the same properties of system (15). Then
the model will be as follows

ẍ = −g,

∆ẋ|x=X = −(1 + r)(ẋ − Ẋ),

X(t) = X0 sin(ωt),

(17)

where t ≥ 0. Let us take ϕ = X0 = 1 and consider the domain 0.1 ≤ x ≤
2, |ẋ| < 7. Then, we have f(x, ẋ) = −g < 0, |f(x, ẋ)| = | − g| = g = M = m and

M
√

2(h−X0/10)
m =

√
37.24 < 7. If we choose the initial conditions x(2π/ω) =

1.9, ẋ(2π/ω) = 0, where r = 0.9, ω = 0.29, it can be seen that the conditions
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of Theorem 1.1 are satisfied and consequently, this solution is chattering. In
Figure 4, one can observe the coordinates of system (17) which supports our
theoretical result.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

2

t

x
,
X

21 22 23 24 25 26 27
−6

−4

−2

0

2

4

6

t

ẋ

Bead
Table

2π

ω
+

π

2ω

Figure 4: The graph of the coordinates of system (17).

4. The Modified Moon-Holmes Model

The main task of this section is to consider the modified Moon-Holmes
Model. Moon and Holmes [12, 13] showed that the Duffing equation in the
form

ẍ+ δẋ− x+ x3 = γ coswt

provides the simplest possible model for the forced vibrations of a cantilever
beam in the nonuniform field of two permanent magnets. Such an equation
describes the dynamics of a buckled beam or plate when only one mode of
vibration is considered. We modify the model as adding a rigid obstacle over
the magnet and in front of the beam such that the beam collides the obstacle
and from Newton Law of impacts it bounces back. (The system is sketched in
Figure 5.) The suggested model has the form of the following impulsive system

ẍ = −δẋ+ x− x3 + γ coswt,

∆ẋ|x=ϕ = −(1 + r)ẋ,
(18)

where x is the distance from the wall to the end of the beam, ϕ is the position
of the obstacle, r is the restitution coefficient. Now, if the coefficients γ and δ
are equal to zero, one obtains
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Figure 5: The magneto-elastic beam with the obstacle.

ẍ = x− x3,

∆ẋ|x=ϕ = −(1 + r)ẋ.
(19)

For this system, choose ϕ = 1.1 and for the domain H let h = 1.5, h̄ = 3. One
can see that function f(x, ẋ) = x − x3 satisfies conditions (C1) and (C2), i.e.
−1.875 ≤ f(u, v) ≤ −0.331 for all (u, v) ∈ H and f(u, v) is an even function in

v. Moreover, condition (2) is valid since 1.875
√

2(1.5−1.1)
0.331 ≈ 2, 91 < 3. Therefore,

by Theorem 1.1 all solutions of system (19) with initial values (x(0), ẋ(0)) =
(x0, 0), ϕ < x0 < h, are chattering. Obviously, system (18) does not satisfy
condition (C2). But, one can easily notice that for sufficiently small δ and γ,
by the continuous dependence on parameters and initial value for the impulsive
differential equations with non-fixed moments [14], the solutions of (18) with
the same initial conditions of (19) are chattering as well. For the numerical
simulation, let (x(0), ẋ(0)) = (1.3, 0) and r = 0.9. Then, one can see that
Figure 6 supports our theoretical discussion.
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Figure 6: The coordinates of systems (18) and (19) with w = 0.1. It can be seen that the
solution of perturbed system (18) is also chattering.

5. Continuous Chattering

In this section, we demonstrate the continuous chattering which is under-
stood as infinitely many oscillations in finite time. Let us observe how continu-
ous chattering appears if a mechanical model is perturbed with a discontinuous
one. For this reason, we couple system (1) with the following equation of a
mass-spring-damper equation

mÿ + cẏ + ky = 0, (20)

with mass m, spring constant k, and viscous damper of damping coefficient
c. If the characteristic equation of system (20) has roots with negative real
parts, then it admits asymptotically stable equilibrium. By the argument of
periodicity theorem for system with stable equilibrium, one can expect that in
system (20), continuous chattering appears if it is perturbed by a chattering
solution of (1). Thus, let us write the coupled system taking f(x, ẋ) = −g in
(1), m = 1, c = 3, k = 2 in (20) and x = x1, ẋ = x2, y = x3, ẏ = x4, in the form

ẋ1 = x2,

ẋ2 = −g,

∆|x1=1 = −(1 + r)x2

ẋ3 = x4,

ẋ4 = −2x3 − 3x4 + 20x2
2.

(21)

with initial conditions x1(0) = 6, x2(0) = 0, x3(0) = 10, x4(0) = −1000 and
r = 0.9.
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Figure 7: The graphs of the coordinates of system (21).

Since the first coupling is unilateral, the second equation does not influence
the first one. That is why, its dynamics are the same as in Figure 7. But, for
the second coupling in Figure 7, we can see the effect of perturbation which we
call as continuous chattering.

6. Pyragas Control

There are many papers which are searching methods to minimize and con-
trol different types of chattering [15, 16, 17]. The problem definitely has to be
analyzed for the impact chattering, also. One can accept that the control of
impact chattering is a concrete perturbation, which brings the system under
control to a regular motion. That is, equilibria or periodic motions. In the
circumstances of the present research, it is desired that a family of chattering
solutions has to be regularized, if not all of them. We will discuss, in this part
of the paper, system (12) of Example 1. It was shown that any solution of this
system, which starts in a domain, is chattering. Let us apply the control of the
form C[x1(t − τ) − x1(t)] to the system. It is applied, for instance, to stabi-
lize periodic motions of chaotic dynamics, and it is called Pyragas control[18].
Now, we will apply the control to depress the chattering in the system. Let us
construct the following system denoting x1 = x and x2 = ẋ

ẋ1 = x2,

ẋ2 = −x3
1 − cosx2 + C[x1(t− τ)− x1(t)]

∆x2|x1=2 = −(1 + r)x2.

(22)
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We performed a series of simulations of the system with fixed C = −30, τ = 1
and r = 0.6. Consider x2(0) as it was requested to prove family of chattering
solutions in Theorem 1.1. For the initial first coordinate x1(0) we tried values
starting from 2.5 to 200.

x1(0) 2.5 3 5 10 100 200
Period T 1.22 1.22 1.22 1.22 1.22 1.22
Amplitude 2.933 2.933 2.933 2.933 2.933 2.933

Table 1: Periods and amplitudes of the first coordinate x1(t) of system (22) for different values
of x1(0).

For all these solutions the ultimate periodicity has been approved with period
T = 1.22. Observe that the period is different from the delay term τ = 1. One
can see from the table that the amplitudes are equal to 2.933 for all values of
x1(0) as well. At the same time, the chattering has not been decaying for the
solution with x1(0) = 2.1. These all demonstrate that the control problem can
be solved for the chattering, but certain conditions have to be determined to
specify the controllable domains and conditions for the stability of the arranged
periodic motions. We suppose that these problems will be researched in next
papers.

For x1(0) = 3, the periodic orbit x1(t) can be seen in Figure 8, which shows
the effectiveness of the control.

0 5 10 15 20 25
1.5

2

2.5

3

3.5

4

4.5

5

5.5

t

x 1(t)

Figure 8: Simulation of the first coordinate x1(t) of controlled system (22) with initial condi-
tions x1(0) = 3, x2(0) = 0.

7. Conclusion

In this article, we have considered the mechanical models with impacts. For
these models, the chattering phenomenon, which is defined as a motion with in-
finitely many discontinuities in a finite time, is studied. The sufficient conditions
are determined for the existence of the chattering. Asymptotics are discussed
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to find an approximation solution and to simulate the chattering solution. We
study the famous example: the bouncing bead on a sinusoidally vibrating ta-
ble which generates chaos [10]. It is shown that this mechanism has chattering
solutions. Furthermore, we modify the Moon-Holmes model [12], which yields
chaos also, with an obstacle to obtain an impacting model. We demonstrate
that this model provides chattering. Perturbing a continuous mechanical pro-
cess by a discontinuous one having chattering solutions, continuous chattering,
which is defined as the appearance of infinitely many oscillations in a finite time,
is constructed.

The application of results of paper [5] is to prove the existence of a unique
chattering solution of the bouncing ball, see Section 3.5. At the same time,
by simulation it is proven that a double pendulum admits chattering. Our
method, in some sense, is more wider than the one in paper [5]. For example,
by Theorem 1.1 in this paper, we have verified that there are infinitely many
chattering motions with initial values in an interval. Thus, the present result is
complement to that one accomplished in [5]. However, our approach does not
work for the double pendulum, since condition (C2) is not valid for the model.
Nevertheless, in our next investigation, we plan to extend the method without
condition (C2).
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