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1 Introduction

Realization theory provides tools and techniques for a wide range of applica-
tions of mathematical systems theory. In particular, state space realizations
are used for systems identification (Kalman and Declaris 1970), linear se-
quential circuits (Gill 1966) and amplifier circuit synthesis (Newcomb 1967).
During the last decade realization techniques of algebraic systems theory have
been playing an increasing role in convolutional coding (Rosenthal 2001).
Various types of realizations serve as first order representations for convolu-
tional codes and are the basis for the construction of new codes of Rosenthal
and York (1999).

Overviews over the literature by De Schutter (2000) and Datta (1980)
show three distinct approaches to construct minimal realizations of a strictly
proper rational transfer matrix T (s). The starting point for the first approach
developed by Ho and Kalman (1966), Silverman (1971), Eising and Hautus
(1981), is the impulse response written as

∞∑

ν=1

Cνs
−ν = T (s).

A block Hankel matrix containing the Markov parameters Cν is then trans-
formed in such a way that it produces a triple (F,G,H) of a minimal real-
ization

H(sI − F )−1G = T (s). (1.1)

The algorithms of the second approach, e.g., of Mayne (1968), Rosenbrock
(1970), Datta (1980), take advantage of the fact that, according to Kailath
(1980: Chapter 2), it is fairly easy to write down a non-minimal controllable
(or observable) realization by inspection. A minimal realization is then ob-
tained by extracting the unobservable (or uncontrollable) parts. With the
exception of Datta (1980) the two methodes described above are not de-
signed to give a matrix F in (1.1) in a canonical form. In general, this can
only be achieved by a third class of approaches which employ factorizations
and transformations of the transfer matrix T (s). Kalman’s (1965) pioneer-
ing paper belongs to this group, and also Pace and Barnett (1974), Montes
(1976) and Coppel (1981). By transforming the partial fraction components
of a complex (or real) transfer matrix T (s) into Smith-McMillan form and
then using Taylor expansions, Kalman produced a minimal realization (1.1)
with F being in Jordan normal form (or in real Jordan normal form). That
procedure is restricted to algebraically (or real) closed fields.

In this paper we are dealing with transfer matrices over an arbitrary field
K. We will adapt Kalman’s approach to obtain a realization (1.1) where
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F is in Jacobson normal form. The motivation for our study comes from
applications of systems over finite fields such as linear sequential circuits
(Gill 1966). According to Massey and Sain (1967), Forney (1970), Rosenthal
et al. (1996), and Rosenthal (2001), convolutional codes can be interpreted
as linear sequential circuits. Therefore we have developed our realization
with the prospect of new constructions of codes in the spirit of Rosenthal
and York (1999).

2 The Jacobson normal form

Let us briefly recall how the Jacobson normal form extends the concept of
Jordan normal form. Throughout this paper p ∈ K[s] will be a fixed monic
irreducible polynomial,

p(s) = sn + an−1s
n−1 + · · ·+ a0.

Let

C = C(p) =




0 1 0
...

. . .
...

0 0 · · · 1
−a0 −a1 · · · −an−1


 (2.1)

be the companion matrix associated with p. In particular, if p = s− λ, then
C(p) = (λ)1×1. Define

V =




0 0 · · · 0
...
...

...
0 0 · · · 0
1 0 · · · 0




n×n

= ene
T
1 , (2.2)

where e1 = (1, 0 . . . , 0)T and en = (0, . . . , 0, 1)Tare unit vectors of Kn. We
call

J = J(pk) =




C V
C .

. .
. .

C V
C




nk×nk

(2.3)
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a Jacobson block corresponding to pk. The Jordan block

J [(s− λ)k] =




λ 1 0 · · · 0
0 λ 1 ·
...

. . .
· 1
0 · · · · · λ




k×k

is a special case of (2.3). The fact that the (i, i + 1)-entries of J are equal
to 1 implies that J is nonderogatory and that the Smith form of sI − J is
diag(1, . . . 1, pk). Hence, if A ∈ Kℓ×ℓ has pk as its only elementary divisor,
then A is similar (over K) to J = J(pk). The following, more general result
can be traced back to Krull’s (1921) Ph.D. thesis. More easily accessible
references are the books of Jacobson (1953), Ayres (1962) or Cohn (1974).

Theorem 2.1. Let p1, . . . , pm be the distinct irreducible factors of the char-

acteristic polynomial of a matrix A ∈ Kℓ×ℓ and let

pk111 , . . . , p
k1τ1
1 , . . . , pkm1

m , . . . , pkmτm
m ,

k11 ≤ · · · ≤ k1τ1 , . . . , km1 ≤ · · · ≤ kmτm , (2.4)

be the corresponding elementary divisors. Then A is similar to

diag
(
J
(
pk111

)
, . . . , J

(
pkmτm
m

))
. (2.5)

The matrix (2.5) is called the Jacobson normal form of A.

3 Notation

Let K(s) be the field of rational functions over K. An element f ∈ K(s)
is called strictly proper if f = 0 or f = g/h, g, h ∈ K[s], gh 6= 0 and
deg g < deg h. Let Ksp(s) be the K-vector space of strictly proper rational
functions over K. Then each f ∈ K(s) can be decomposed uniquely as

f = w + y

such that w ∈ Ksp(s) and y ∈ K[s]. If we set π−f = w, then π− is the
projection of K(s) onto Ksp(s). In a natural way these definitions extend
elementwise to vectors and matrices of rational functions. For a nonzero
polynomial vector h = (h1, . . . hr)

T ∈ Kr[s] we define

deg h = max{deg hi, hi 6= 0, i = 1, . . . r} .
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We set deg h = −∞ if h = 0.
Let Ik denote the k × k identity matrix and define

Nk =




0 1 0 · · · 0
· 0 1 ·
...

. . .
· 1
0 · · · · · 0




k×k

.

According to Horn and Johnson (1991: Chapter 4) the Kronecker product
of two matrices A = (aij) and B is the block matrix

A⊗B = (aij B).

Note that the Jacobson block (2.3) can be written as J = Ik ⊗ C +Nk ⊗ V .
If the products AC and BD exist then

(A⊗ B)(C ⊗D) = (AC ⊗ BD) . (3.1)

4 A special case

In this section we shall focus on a particular type of transfer matrices. The
general realization problem will then be reduced to that special case. Let
W ∈ Kq×t(s), W 6= 0, be of rank 1,

W = h
1

pk
gT (4.1)

where h ∈ Kq[s], g ∈ Kt[s] are polynomial vectors. We want to construct a
realization of π−W . In addition to the companion matrix C associated with
p(s) = sn + an−1s

n−1 + · · ·+ a0 we shall need the matrix

M = M(p) =




a1 a2 · · · an−1 1

a2 a3 · · · 1 0
· · · · ·
· · · · ·
· · · · ·

an−1 1 · · · 0 0

1 0 · · · 0 0




. (4.2)

Note that M satisfies
MC = CTM . (4.3)
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Let h have the p-adic expansion

h = h0 + h1p+ · · ·+ hk−1p
k−1 + . . . (4.4)

where
hi ∈ Kq[s], deg hi < n = deg p, i ≥ 0 . (4.5)

We define Hi ∈ Kq×n, i ≥ 0, by

hi(s) = Hi




1
s
...

sn−1


 . (4.6)

Using the expansion

g = g0 + g1p+ · · ·+ gk−1p
k−1 + . . . (4.7)

with
gi ∈ Kt[s], deg gi < n, i ≥ 0 , (4.8)

we define matrices Gi ∈ Kt×n by

gi(s) = GiM




1
s
...

sn−1


 . (4.9)

Theorem 4.1. Let h ∈ Kq[s] and g ∈ Kt[s] be given. Assume that

W = h
1

pk
gT (4.10)

is a coprime factorization. Let Hi and Gi, i = 0, 1, . . . , k − 1, be defined by

(4.4) – (4.6) and (4.7) – (4.9). Set

H = (H0, . . . , Hk−1)

and

G =



GT

k−1
...

GT
0


 .

Then

π−W = H
(
sI − J

(
pk
))−1

G , (4.11)

and the realization in (4.11) is minimal.
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Let us briefly describe how in the case of p = s− λ the realization (4.11)
reduces to the realization of Kalman (1965: 532-533). Consider (4.1) with

W = h
1

(s− λ)k
gT

and

h =
∑

i≥0

hi(s− λ)i, hi ∈ Kq, and g =
∑

i≥0

gi(s− λ)i, gi ∈ Kt.

Because of deg p = 1 the matrix M in (4.2) reduces to M = I1. Furthermore,
in (4.6) and (4.9) we have hi(s) = hi and gi(s) = gi. Therefore (4.11) yields

π−h
1

(s− λ)k
gT = (h0, . . . , hk−1)

(
(s− λ)Ik −Nk

)−1



gTk−1
...

gT0


 .

The proof of Theorem 4.1 is based on two lemmas.

Lemma 4.2. Let the polynomial vector b ∈ Kn[s] be defined as

b(s) = (1, s, . . . , sn−1)T .

Let C = C(p) be the companion matrix for the polynomial p and let M =
M(p) be given by (4.2). Then

(sI − C)−1 = π−p
−1bbTM (4.12)

and (
sI − J(pk)

)−1
= π−

(
pIk −Nk

)−1
⊗ bbTM . (4.13)

Proof. Obviously (sI − C)b = p en is equivalent to

(sI − C)−1en = p−1b. (4.14)

From (4.14) and (4.3) we obtain

eT1 (sI − C)−1 = eTnM(sI − C)−1eTn (sI − CT )−1M = p−1bTM . (4.15)

It is easy to see that

sj(sI − C)−1 = (sj−1I + · · ·+ Cj−1) + Cj(s−1I + s−2C + · · · )

implies
π−s

j(sI − C)−1 = Cj(sI − C)−1 . (4.16)
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Therefore,

π−p
−1bbTM = π−be

T
1 (sI − C)−1 =

= π−

n∑

ν=1

sν−1eνe
T
1 (sI − C)−1 =

n∑

ν=1

eνe
T
1C

ν−1(sI − C)−1 =

=

( n∑

ν=1

eνe
T
ν

)
(sI − C)−1 = (sI − C)−1 . (4.17)

To verify (4.13) we note that

(
pIk −Nk

)−1
=




p−1 p−2 · · · p−k

0 p−1 · · · p−(k−1)

...
...

. . .
...

0 0 · · · p−1




. (4.18)

Put Q = V (sI − C)−1 where V is given by (2.2). Then

(sI − J)−1 =




(sI − C)−1 (sI − C)−1Q · · · (sI − C)−1Qk−1

O (sI − C)−1 · · · (sI − C)−1Qk−2

...
...

. . .
...

O O · · · (sI − C)−1




.

Now (4.14), (4.15) and

eT1 (sI − C)−1en = p−1

imply

(sI − C)−1Qi−1 = (sI − C)−1
[
ene

T
1 (sI − C)−1

]i−1
=

= (sI − C)−1en
[
eT1 (sI − C)−1en · · · e

T
1 (sI − C)−1en

]
eT1 (sI − C)−1 =

= (sI − C)−1en [p−i+2] eT1 (sI − C)−1 = p−1b p−i+2 p−1bTM =

= p−ibbTM = π− p−ibbTM, i = 2, . . . , k .

Hence, (4.12) and (4.18) together with the definition of the Kronecker product
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yield

(sI − J)−1 = π−




p−1bbTM · · · p−kbbTM
...

. . .
...

0 · · · p−1bbTM


 =

= π−

(
(pIk −Nk)

−1 ⊗ bbTM
)
.

For the following well known result on the dimension of minimal realiza-
tions we refer to Coppel (1974).

Lemma 4.3. Let P, S, A be polynomial matrices such that

R = PA−1S

is a coprime factorization. Then the dimension of a minimal realization of

π−R is equal to the degree of detA.

Proof of Theorem 4.1:
From (4.4) and (4.7) follows

π−W = π−(h0, . . . , hk−1)




p−1 p−2 · · · p−k

0 p−1 · · · p−(k−1)

...
...

. . .
...

0 0 · · · p−1






gTk−1
...

gT0


 .

Hence the relations

(h0, . . . , hk−1) = (H0, . . . , Hk−1)(Ik ⊗ b)

and
(gk−1, . . . , g0) = (Gk−1, . . . , G0)(Ik ⊗Mb) ,

the identity (4.18), and the product formula (3.1) imply

π−W = π− H(I ⊗ b)(pI −N)−1(I ⊗ bTM)G =

= Hπ−

[(
pI −N

)−1
⊗ bbTM

]
G .

Now (4.11) follows immediately form (4.13). According to Lemma 4.3 the
realization (4.11) is minimal. �
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5 Reduction to realizations with a single Ja-

cobson block

Let T ∈ Kq×t(s), T 6= 0, be a strictly proper rational matrix, let d ∈ K[s] be
the monic least common denominator of all elements of T , and let p1, . . . , pm
be monic irreducible polynomials such that pℓ11 . . . pℓmm is a prime factorization
of d. To build a realization of T based on Theorem 4.1 we carry out two steps.
First we take a partial fraction decomposition of each entry of T . Then we
decompose T accordingly as

T =

m∑

µ=1

Tpµ (5.1)

such that each component Tpµ is strictly proper having only powers of pµ as
denominators of its entries. If

Hµ(sI − Fµ)
−1Gµ = Tpµ(s), µ = 1, . . . , m , (5.2)

are minimal realizations and if we set

F = diag(F1, . . . , Fm), G =




G1
...

Gm


 , H = (H1, . . . , Hm) ,

then
H(sI − F )−1G = T (s) (5.3)

is a minimal realization. We call (5.3) the direct sum of the realizations (5.2).
At this point we may restrict ourselves to a strictly proper rational ma-

trix T where the least common denominator of its entries is a power of an
irreducible polynomial p. In the second reduction step we want to decompose
such a matrix T into a sum of rank 1 matrices. Assume rank T = r and let

Σ =

(
D 0
0 0

)

be the Smith-McMillan form of T with

D = diag
( a1
pk1

, . . . ,
ar
pkr

)
, k1 ≥ · · · ≥ kr ≥ 0 ,

and
ai ∈ K[s], gcd(p, ai) = 1, i = 1, . . . , r, a1| . . . |ar .

9



Let U = (u1, . . . , uq) ∈ Kq×q[s] and V = (v1, . . . , vt) ∈ Kt×t[s] be unimodular

matrices such that
T = UΣV T . (5.4)

It follows from Lemma 4.3 that a minimal realization of T has dimension
equal to

∑r

i=1 nki. Now let ãi ∈ K[s] be such that

π−

(
aip

−ki
)
= ãip

−ki ,

and define

wi =
(
uiãi

) 1

pki
vTi , i = 1, . . . , r . (5.5)

Then (5.4) and T = π−T imply

T =
r∑

i=1

π−wi . (5.6)

Clearly, π−wi = 0 if ki = 0. If ki > 0 then (5.5) is a coprime factorization
since ui and vi are columns of unimodular matrices and gcd(p, ãi) = 1. In
that case nki is the dimension of a minimal realization of π−wi. Therefore
a direct sum of minimal realizations of the matrices π−wi yields a minimal
realization of T . We remark that (5.6) puts us in the position to apply
Theorem 4.1. �

It has been pointed out by Gill (1966) that the resolvent

T (s) = (sI − A)−1 (5.7)

of a matrix A ∈ Kℓ×ℓ is a special case of transfer matrix. Thus our realization
algorithm applied to (5.7) yields (sI−A)−1 = H (sI−F )−1G and G = H−1.
Hence A = H F H−1, and H transforms A into Jacobson normal form. A
different approach to derive the Jacobson normal form from the resolvent is
due to Della Dora and Jung (1996).

6 An example

In the following example the underlying field is K = Z5. We consider the
transfer matrix

T (s) =



2 s6 + 3 s3 + 2 s2 + s+ 4

(s2 + s+ 2)2 (s3 + 3 s2 + s+ 1)

s6 + 4 s3 + s2 + 2 s+ 2

(s2 + s+ 2)2 (s3 + 3 s2 + s+ 1)

2 s6 + 3 s3 + 2 s2 + s+ 1

(s2 + s+ 2)2 (s3 + 3 s2 + s+ 1)

2 (3 s6 + 2 s3 + 3 s2 + s + 3)

(s2 + s+ 2)2 (s3 + 3 s2 + s+ 1)




(6.1)
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with entries in Z5(s). We shall proceed along the lines of Section 5 and
Section 4.
(1.) Partial fraction decomposition of T
Let p1 = s2 + s+ 2 and p2 = s3 + 3 s2 + s + 1. Then

T = Tp1 + Tp2

and

Tp1(s) =




3 s3 + 4 s2 + s

(s2 + s+ 2)2
3 s3 + 2 s2 + 3 s+ 4

(s2 + s+ 2)2

s+ 3

(s2 + s+ 2)2
2 s3 + 4 s2 + 3 s

(s2 + s+ 2)2




and

Tp2(s) =




4 s2 + 4 s+ 1

s3 + 3 s2 + s+ 1

3 s2 + 3 s+ 2

s3 + 3 s2 + s+ 1

2 s2 + s+ 2

s3 + 3 s2 + s+ 1

4 s2 + 2 s+ 4

s3 + 3 s2 + s+ 1


 .

(2.) Realization of Tp1

The Smith-McMillan form of Tp1 is

Σ = diag
(a1
p2

,
a2
p

)
=




1

(s2 + s+ 2)2
0

0
(s+ 1) (s3 + 3 s2 + 4)

s2 + s+ 2


 .

We have Tp1 = UΣV T , and the unimodular matrices U and V are given by

U = (u1, u2) =

(
s (3 s2 + 4 s+ 1) 4 s2 + 3

s+ 3 3

)
,

and

V = (v1, v2) =

(
1 0

2 s5 + 4 s4 + s3 + 4 s2 + 2 1

)
.

Note that
a2
p

=
(s+ 1)(s3 + 3s2 + 4)

s2 + s+ 2

is not strictly proper. We calculate ã2 and obtain

π−

a2
p

=
ã2
p

=
3

s2 + s+ 2
.

11



Set

w1 = u1
ã1
p2

vT1 =

(
s (3 s2 + 4s+ 1)

3 + s

)
1

(s2 + s+ 2)2

(
1

2 s5 + 4 s4 + s3 + 4 s2 + 2

)T

and

w2 = u2
ã2
p
vT2 =

(
4 s2 + 3

3

)
3

s2 + s+ 2

(
0
1

)T

.

Then Tp1 = π−w1 + π−w2.

(2.1) Realization of π−w1.
We set

h = u1 ã1 =

(
s (3 s2 + 4s+ 1)

3 + s

)

and

g = v1 =

(
1

2 s5 + 4 s4 + s3 + 4 s2 + 2

)
.

Then h = h0 + h1p with

h0 =

(
4s+ 3
s+ 3

)
, h1 =

(
3s+ 1

0

)
.

Similarly, g = g0 + g1 p+ g2 p
2 with

g0 =

(
1
2

)
, g1 =

(
0
s

)
, g2 =

(
0
2 s

)
.

This leads to

H0 =

(
3 4
3 1

)
, H1 =

(
1 3
0 0

)
,

and

(H0 |H1) =

(
3 4 1 3
3 1 0 0

)
= H.

The matrix M in (4.2) is given by

M =

(
1 1
1 0

)
.

Hence

G0 =

(
0 1
0 2

)
, G1 =

(
0 0
1 −1

)

12



such that

(
GT

1

GT
0

)
=




0 1
0 −1
0 0
1 2


 = G .

Finally, for p = s2 + s+ 2, we have

J(p2) =




0 1
3 4 1

0 1
3 4


 = F .

(2.2) Realization of π−w2

Set

h = u2 ã2 =

(
4 s2 + 3

3

)
× 3 =

(
2 s2 + 4

4

)

and

g = v2 =

(
0

1

)
.

Then h = h0 + h1 p with

h0 =

(
3 s
4

)
, h1 =

(
2
0

)
.

Hence

H0 =

(
0 3
4 0

)
= H .

From

g0 =

(
0
1

)

and (4.9) we obtain

G0 =

(
0 0
0 1

)
= G .

The corresponding state space matrix is

J(p1) = C(p) =

(
0 1
3 4

)
= F .

(3.) Realization of Tp2
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The Smith-McMillan form of Tp2 is

Σ =

( 1

s3 + 3 s2 + s+ 1
0

0 0

)
.

The unimodular matrices U , V in the decomposition UΣV T = Tp2 are

U = (u1, u2) =

(
4 s2 + 4 s+ 1 s
2 s2 + s+ 2 3 s+ 1

)
, V = (v1, v2) =

(
1 0
2 1

)
.

Set
p = s3 + 3 s2 + s+ 1.

Then

Tp2 = u1
1

p
vT1 =

(
4 s2 + 4 s+ 1
2 s2 + s+ 2

)
1

s3 + 3s2 + s + 1

(
1
0

)T

.

It is easy to see that one can obtain the minimal realization of Tp2 directly
from Theorem 4.1. Note that Tp2 is of the form (4.10) with h = u1, g = v1,
and k = 1. Moreover, deg h < deg p and deg g < deg p imply H = H0 and
G = G0. Thus h = h0 yields

H0 =

(
1 4 4
2 1 2

)
= H .

From

M =




1 3 1
3 1 0
1 0 0


 (6.2)

and g = g0 follows

G0 =




0 0
0 0
1 2



 = G .

Finally, we have

J(p1) = C(p) =




0 1 0
0 0 1
4 4 2


 = F .

(4.) Realization of T
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Taking the direct sum of the realizations of π−w1, π−w2 and Tp2 we obtain

F =




0 1
3 4 1
0 0 0 1
0 0 3 4

0 1
3 4

0 1 0
0 0 1
4 4 2




,

H =

(
3 4 1 3 0 3 1 4 4
3 1 0 0 4 0 2 1 2

)
and G =




0 1
0 −1
0 0
1 2
0 0
0 1
0 0
0 0
1 2




.

Then the transfer matrix T in (6.1) has a minimal realizationH(sI−F )−1G =
T (s) where the matrices F,G,H are the ones displayed above, and F is in
Jacobson normal form.
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