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Abstract—Video object segmentation can be considered as one of the
most challenging computer vision problems. Indeed, so far, no existing
solution is able to effectively deal with the peculiarities of real-world
videos, especially in cases of articulated motion and object occlusions;
limitations that appear more evident when we compare their perfor-
mance with the human one. However, manually segmenting objects
in videos is largely impractical as it requires a lot of human time and
concentration. To address this problem, in this paper we propose an
interactive video object segmentation method, which exploits, on one
hand, the capability of humans to identify correctly objects in visual
scenes, and on the other hand, the collective human brainpower to
solve challenging tasks. In particular, our method relies on a web game
to collect human inputs on object locations, followed by an accurate
segmentation phase achieved by optimizing an energy function encod-
ing spatial and temporal constraints between object regions as well as
human-provided input. Performance analysis carried out on challenging
video datasets with some users playing the game demonstrated that
our method shows a better trade-off between annotation times and
segmentation accuracy than interactive video annotation and automated
video object segmentation approaches.

Index Terms—Interactive video annotation, Games with a purpose,
Human in the Loop, Spatio-temporal superpixel segmentation

1 INTRODUCTION

THE generation and collection of massive amount of
videos has become an easy task due to the progress in
low-cost digital imaging systems as well as storage services.
Indeed, every day several petabytes of videos are routinely
generated for disparate applications ranging from video-
surveillance to news broadcasting to entertainment. This
is also highlighted in the recent “Forecast and Methodol-
ogy 2014-2019” reporﬂ by CISCO that has estimated that
consumer internet video traffic will be 80 percent of all
consumer Internet traffic in 2019. Nevertheless, this video
data deluge needs automated methods able to extract mean-
ingful information for data indexing, preservation and un-
derstanding, since it is unrealistic and unfeasible (as stated
in the same CISCO report, it would take an individual over 5
million years to watch the amount of video that will cross global
IP networks each month in 2019) to assume people can do
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this work manually. This is the main reason why all the
existing video datasets have only a few frames annotated.
One of the upstream modules for video understanding is ob-
ject segmentation, which aims at discriminating accurately
foreground objects from the background. There is a large
(past and present) bulk of literature of methods for video
object segmentation. Background modeling /subtraction [1],
[2], motion analysis [3], [4], object ranking [5], [6] and
clustering point tracks [7], [8] and, recently, combination of
CNN-based moving object detectors [9] are among the most
common methods. However, the accuracy and performance
of these techniques are still not satisfactory, especially in
cases of articulated motion, cluttered scenes and object
occlusions. Therefore, so far, there exist no valid alternatives
to the classic automated video segmentation methods and
the only possible solution might be to include effectively
and efficiently humans in the analysis and learning process.
“Human in the loop” is a recent trend in machine learning
which tries to learn discriminative patterns by proactively
involving people in the annotation process. This is the case
of “games with a purpose” that channel collective human
brainpower through computer games [10]. The underlying
idea is to engage people in solving unconsciously complex
tasks while playing computer games. The combination of
these games to crowdsourcing strategies may be an ex-
tremely powerful tool to solve tasks at large scale. While
there exist several games with purpose to support auto-
mated image analysis [11], [12], [13], [14], [15] and some
for video tagging [16], [17] (which, however, share the same
philosophy of the image annotation ones), to the best of
our knowledge, none have been adopted for video object
segmentation, which would particularly benefit from this
approach as annotating videos, in terms of object segmen-
tation, requires much more human time and concentration
than identifying image classes. Under this scenario, in this
paper we propose a human-guided video object segmenta-
tion method, built upon a web game and able to effectively
and accurately extract moving objects from videostreams by
greatly reducing human intervention. The contribution of
the paper is threefold:

o First, we present and release a web game to collect
human input (in the form of clicks) that can be used
with any kind of videos, thus representing a power-
ful tool for computer vision scientists (and not only)
to get their own videos automatically annotated;

e We propose an interactive video object segmen-
tation approach based on the optimization of an


http://perceive.dieei.unict.it

energy function which is able to encode spatio-
temporal constraints between object regions as well
as human-provided priors. The method can be com-
bined with other sources of human input (e.g., eye-
gaze data [18]) to annotate automatically videos.

o We demonstrate that the collective action of players,
despite providing noisy and inaccurate data, results
in better segmentation accuracy — with much less
human effort — than state-of-the-art automated video
object solutions as well as interactive video annota-
tion methods.

2 RELATED WORK

Our work shares the same end goal of automated video
object segmentation [1], [2], [19], [20], [21], [22], [23], [24],
but our approach is more inline with research that places
humans in the loop (including games with purpose) [11],
(12], [13], [14], [15], [16], [17], [25], [26], [27], [28], [29], [30],
[31], [32] and interactive video segmentation [7], [33], [34],
[35], [36l, (371, [38], [39].

Unsupervised video segmentation has gained a lot of
attention in the last decades [2], [19], [20], [21], [22] and
recently it has been thought mainly in terms of spatio-
temporal superpixel modeling [1]], [23]], [24]. The key idea
behind these methods is the one of grouping pixels which
are appearance- and motion-wise—consistent. Despite the
performance increase due to superpixel segmentation, all
these methods suffer from oversegmentation, especially in
cases of camera motion and object occlusions. Therefore,
manual or semi-manual video annotation can be considered
the only reliable way for obtaining precise object segmenta-
tion, but as argued earlier, this tedious and labor-intensive
process is extremely costly and unfeasible at large scale.
Semi-supervised video segmentation approaches [7], [33],
[34], [35], [36], [37], that differently from the semi-supervised
image segmentation ones (e.g., the popular Grabcut [40])
have not received much attention, usually require a short
intervention by humans in terms of object annotations that
are then propagated automatically over time. Most of these
methods rely either on optical flow [34] or on temporal
connections [35], [37] between frames usually modeled by
Markov chains, but they work well only in simple cases
failing mainly in precisely representing object boundaries.
In [39], the authors propose an interactive video object
segmentation method using a 3D graph- cut-based seg-
mentation followed by a tracking-based local refinement.
In [36] video object segmentation is formulated as a spatio-
temporal MRF optimization problem, with a cost function
including user input, motion and appearance cues, spatio-
temporal consistency similarly to the one proposed in this
work. In addition, superpixel segmentation is also largely
employed as it allows us to reduce processing time ensuring
at the same time spatio-temporal coherency among pixels.
In some work [41], temporal linking between superpixels
is done manually. Despite these methods are able to al-
leviate human effort for video annotation, at large scale
they are ineffective and still time-consuming for human
operators. Another option to support low-level computer
vision tasks is to understand how human perform them and
to seek how human inference/reasoning can be integrated

2

into computer programs. Examples are the ones that ask
people to provide explicitly annotation rationales [42] or to
elicit the visual features employed to discriminate between
image/object classes [25], [43]. Nevertheless, unlike com-
puters, humans need incentives, either monetary or for en-
tertainment, to carry out specific tasks. Under this scenario,
on-line games represent an effective mechanism to involve
people in solving challenging problems. Two of the most
common approaches exploiting web-games for collecting
human feedback for machine learning methods are the ESP
Game [13] and Peekaboom [15]. Both approaches use the
collective intelligence of human brains for gathering key in-
formation for image classification. Since their release, many
thousands of people have played them, generating millions
of labels. However, these games are devised only for image
analysis and, moreover, cannot be played by everyone: for
instance, children, who usually are very passionate with
games, would have difficulty in getting engaged by them. In
addition, to the best of our knowledge, there exist no games
employed for supporting video object segmentation, except
the one used in this work.

The approach proposed in this paper draws inspiration
from both interactive video object segmentation approaches
and human-computation using web-games combining both
strategies in a smart way for accurate object segmentation
in videos at large scale. More specifically, we propose an
interactive video segmentation approach formulated as a
spatio-temporal superpixel labeling by taking into account
user input and spatio-temporal consistency of motion and
appearance features. In addition, user feedback is gathered
through a web game in the form of clicks, instead of strokes
(as in most of the interactive video object segmentation
methods), leveraging on multiple users to obtain more
consistent and structured feedback for automated segmen-
tation. Also, the web-game is designed to being playable by
any person of any age, thus increasing its possible audience
(and with it the amount of gathered data) and improving
the accuracy of the generated object segmentations.

3 METHOD

The proposed interactive video object segmentation ap-
proach can be seen as a two-step spatio-temporal MRF opti-
mization problem: the first one with a cost function exploit-
ing spatial information at the frame level and encoding user
input and appearance cues in order to extract homogeneous
object regions in video frames; and the second one enforcing
spatio-temporal consistency between the segmented object
regions in consecutive frames, thus refining the preliminary
segmentation. Three are the main modules of the whole
approach:

o The game: The starting point of the whole process,
our game is thought to gather user clicks in corre-
spondence of objects of interest in videos. The game
is designed to be challenging and competitive, so that
users are encouraged to play: while this helps keep-
ing the competition between users, game difficulty
often reflects on the noisiness of the generated data.

o Superclick extraction: The initial stage of our algorithm
converts the noisy set of clicks into a set of more accu-
rate “clicked superpixels”, or superclicks. Posing the



problem in terms of superpixels rather than pixels
1) reduces the numerical complexity of the task and,
2) enforces spatial coherency between clicked object
regions. On top of this viewpoint, we identify and
group together superclicks through MRF optimiza-
tion.

o Temporal smoothing: Single-frame superclick extrac-
tion produces a fairly accurate segmentation of the
objects in the scene, however it ignores temporal
consistency between frames which can be exploited
to further improve the segmentation. Based on the
superclicks extracted from a span of consecutive
frames, a three-dimensional (across time) MRF is de-
signed in order to transfer information on the labels
assigned to corresponding superpixels at different
frames.

3.1 The Game

We reused the game presented in (where users had
to perform a similar task but for a different objective, i.e.,
ground-truth generation) by adapting and modifying it
according to our objectives: players are instructed to click
on moving objects in a set of videos (one for each game
level). Each correct click awards points, and each level is
successfully completed if the user sums up a certain amount
of points (increasing by level).

User interface. Fig. [1| shows an example of a typical
in-game screenshot. The video for the current level is, of
course, the most important element of the interface and
takes up most of the space; the current score obtained by
the user is shown at the top; the remaining time before the
level’s end is shown on the top-left corner (indicated by
the OXYGEN icon—a legacy from the original underwater-
oriented application of the game), and the number of points
needed to pass the current level is at the bottom of the
screen. The mouse cursor is shaped like a camera reticle,
and at each click the taken “photo” is shown at the bottom-
left corner of the screen (this is done for future object
classification purposes, which are beyond the scope of this
paper). When the user clicks correctly on a target, points are
awarded, shown as upward-floating bubbles (“+81” in the
example image). Finally, further option buttons are shown
at the top-right corner of the screen.

Levels. Each level in the game is associated to an input
video, which is supposed to be at least 30 seconds long at
10 frames per second (if longer, only the first 30 seconds
will be shown). In order to pass a level, a certain amount
of points must be scored, starting from 4000 at the first
level, and increasing by 2000 at each successive level. As the
game is actually relatively simple, this increase represents
the main challenge, since it makes it more and more difficult
to achieve the required points.

Level-video association is done randomly, i.e., in differ-
ent game sessions, the video ordering is never the same in
order to avoid players to know in advance where objects
might be located. This is necessary since in games, players
often tend to maximize their scores also using tricks.

One related issue was the saliency bias of some objects
with respect to others, which caused users to click always
on the same objects (the most salient ones) in a scene even if
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Fig. 1. In-game screenshot of the user interface.

several others were present. To reduce this phenomenon, we
applied an inhibition of return mechanism by blurring videos
in areas where clicks (by all users) accumulate: this reduced
the saliency of underlying objects and led users to click on
other objects in the scene. Video blurring was performed
using all gathered clicks, and not just the current user’s, al-
though saliency is partly a subjective process: we found this
also helped to avoid gathering too many clicks on objects for
which we already had enough data (see paragraph [{.4.2).
Fig. 2| shows an example of the click distribution in a frame
and the corresponding blurred version.

Points. As in any gamification process, it is necessary
to pose the task as a competitive one, providing the users
with a feedback on how good they are with respect to their
previous results or their friends. We employ a point-based
system to reflect users” performance on the game, and keep
an all-time ranking of the best scores. Points are awarded by
clicking correctly on an object of interest, depending on the
size of the object and on previous clicks: bigger objects are
awarded more points, but successive clicks in the same area
earn the user less and less points, according to the formula:

A t
:?o(l‘ro) @)

where P is number of points earned for a correct click, A is
the area in pixels of the clicked object, and ¢ is the number of
consecutive clicks within a 30x30 pixels region. In practice,
2% is the maximum score awarded for a click on a certain
object, but this score is progressively reduced if the user
keeps clicking on the same spot: when salient objects are in
the scene, this reduction forces users to vary their clicking
pattern to get more points, while at the same time helps
to provide data on as many objects as possible. Conversely,
users are subtracted points if they click too far from the
objects in the visualized frame; the penalty is computed as:

P~ =20t @)
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where P~ is the amount of points subtracted to the cur-
rent score due to a wrong click, and ¢ is the number of
consecutive clicks falling further than 200 pixels from the



Fig. 2. Left: user clicks (blue dots) in a frame; Right: saliency inhibition
by blurring clicked regions.

closest correct object. Penalties prevent users from clicking
randomly across the frame and force them to be as more
accurate as possible.

However, to award points to players we need object
segmentation (not necessarily highly accurate) on the input
videos to tell whether clicks hit or miss objects. In order to
have a reference signal — score video segmentation— accord-
ing to which we assign points to players, we use the output
of the system itself. When the system is first set up and no
data is available yet, the initial video object segmentation is
obtained by running a classic background modeling method
( in our case); although in the beginning this may not
be enough to cover all and only objects in the scene, it still
provides an adequate base for setting the game up. After
users have started to play, the object segmentation is simply
updated based on users’ clicks by running the algorithm
presented in this paper. It is not strictly necessary for score
video segmentation to be extremely accurate: scores are only
provided for the benefit of users, in order to keep them
interested by means of competition.

Click quality. We also estimate the “quality” (in the
sense of “accuracy of clicks with respect to objects”) of the
data provided by users while playing the game. Quality
scores are computed on a per-level and per-user basis as
the fraction of user clicks hitting the objects in the level.
We assume that all clicked pixels in a game level by a user
gets the same quality score computed as above. We could
have computed a global quality score for a single game
(i.e., the sequence of levels a user plays before completing
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the game) or for the user, however different levels may
return completely different quality scores even within the
same game session, due to each video’s scene and object
characteristics, so a global score would become too generic
to describe individual click quality in a level’s context.

3.2 Superclick Extraction

The clicks collected through the web game are used to
extract information on the location of objects in the scene
for each video frame and to carry out a preliminary object
segmentation. We pose the problem as a binary segmen-
tation task (background and foreground) by means of the
minimization of an energy function defining the cost of a
segmentation. Like some of the most recent methods for
video object segmentation [1], [23], [24], we use superpixels
(computed by SLIC [45]) as basic image parts instead of
pixels as they provide two main advantages: 1) reducing
the number of variables greatly speeds up the minimization
algorithm (the number of variables is scaled down by a fac-
tor of 30-50, depending on superpixel settings); 2) the initial
segmentation provided by superpixels is usually effective in
detecting edges, which allows to simply focus on finding the
optimal aggregation, taking boundary detection for granted.

The first processing step, given our target frame F,
consists of superclick extraction, where a superclick is the
intuitive extension of the concept of clicks to superpixels.
This step is necessary to be able to pose the problem in
terms of superpixels only, by “converting” point data (e.g.,
clicks) to superpixel-oriented ones. Of course, the principle
behind this operation is that superpixels containing clicked
pixels should be more likely to be marked as superclicks,
which are then converted into constraints for MRF optimiza-
tion. However, clicks are generally noisy, thus other factors,
such as click density, click quality (as defined previously),
closeness to other clicked superpixels need to be taken into
account for superclick identification.

Before explaining how superclicks are computed, a more
basic question is: what clicks should we use to analyze a
certain frame? Depending on video frame rate and target
speed, users’ reaction times may introduce a delay which
results in a shift between the frame at which the user clicks
on an object and the frame at which the user intended to
click. Fig. [3] shows a few examples: it is possible to notice
that the delay effect is more visible on some videos than
others according to mainly objects” speed. Since this issue
involves complex biological phenomena [46], which are out
of the scope of the paper, we adopt a simple but effective
empirical approach: we assume that all clicks are delayed
by a constant number of frames for all videos. In detail,
the results in Sect. ] shows that shifting all clicks back by
2 frames (although the optimal delay may vary from 1 to
4 frames which depends on several factors, one above all
the video frame rate) represents a good trade-off between
accuracy and complexity.

Let C = {c1,¢2, ... Cne} =
{(x1,31), (z2,¥2),-- - (Tno,Yne)} be  the  players’
clicks for frame F, with corresponding quality scores
Q= {qcl,qC27 .. ,chc} (each click gets the quality score
assigned to the user who did it on a per-level basis). We
define a graph-representable energy function over



Fig. 3. Due to users’ reaction times, clicks may be delayed with respect
to the “intended” frame. It is possible to notice that this phenomenon
may be more or less evident even within the same image, depending
not only on the user but also on the objects in the scene.

the set of F’s superpixels S = {s1,82,...,8n5}, with
a cost function able to model the “clickedness” of each
superpixel independently, and at the same time, to enforce
constraints on visual smoothness and click continuity. Our
main assumptions are:

1) Superpixels containing a large number of clicks
should be marked as superclicks (and vice versa),
i.e., they can be seen as hard constraints for seg-
mentation.

2) Clicked pixels should be weighted by the relative
quality when evaluating their contribution to a su-
perclick.

3) Unclicked superpixels which are close to clicked
and visually-similar superclicks should be marked
as superclicks as well, since they are likely to belong
to the same object.

4) Isolated clicked superpixels (even if in small groups)
should be ignored as being likely noise.

Translating these assumptions into energy potentials, we
obtain the following cost function for energy optimization:

‘/2(517 523 1813132)

®)

} is the superclick label assign-
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where £ = {lsl,lsw Y P
ment (Is; is the binary superclick label for superpixel s;),
N(S) is the set of pairs of neighbor superpixels (that is,
having part of boundary in common; we will also use the
notation N(s) to denote the set of neighbors of the single

superpixel s), and o is a weighing factor.

Unary potential V; models whether superpixel s is likely
to be a superclick or not. This “likeliness” depends on the
number and quality of clicks inside the superpixel’s region
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and on the vicinity to clicked superpixelsﬂ Therefore, V; is
given by two contributions:

o Clickedness K,: the more (high-quality) clicks a su-
perpixel has received, the more it is likely to be a
good candidate superclick. The clickedness score K
for superpixel s is:

> q
K. — |CﬂS| 1 Z o = ceCns ¢
' max|CNt| |CNs| “ max|CNt|
tes ceCns tes
—_———
@ (22
4

where C' N s is the set of clicks hitting superpixel s
and || is set cardinality. The first (unreduced) version
explains more clearly what this formula is meant for:
Eq. term (@) indicates how many clicks, superpixel
s contains with respect to the superpixel containing
most clicks in the processed frame; Eq. term (@p) is,
instead, the average quality of clicks inside s, and
encodes quality information in the score. The way
this score is computed thus addresses items 1 and 2
of the above design principles.

o Proximity to clicked superpixels V;: if s has not re-
ceived many clicks but is close to superpixels which
did, we might want to take it into consideration
as a potential superclick. Of course, being close to
clicked superpixels by itself is not enough: any su-
perpixel just outside an object’s boundary satisfies
this requirement; this issue will be addressed by the
pairwise potential V5.

Our proximity score V, is computed as the frac-
tion of neighbor superpixels with clickedness score
K, > 0.5, with s, € N(s):

_ Hsn € N(s): K, > 0.5}
= NG ©

Analogously, if s gets enough clicks but is isolated,
Vs will be low and K, won't suffice to label it as a
superclick. Thus, V, balances items 3 and 4 of our
design principles.

e Unclicked regularizer: the point of introducing the
Vs score is to allow a superpixel with few or no clicks
to be labeled as superclick if its neighborhood hints
that it should; however, if an unclicked superpixel
is not adjacent to any clicked superpixels, its V;
potential is zero, which is something we want
to avoid. Consider, for example, the case of an
object consisting of a large uniform region with
a non-uniform users’ click distribution (which is
actually often the case, as users tend to click at the
center of objects): by setting unclicked superpixels
to a low (but not null) potential, we allow labels
to “spread” from superclicks (as per item 3 of our
design principles above)—as long as uniformity

Vs

2. The reader might think that “vicinity to clicked superpixels”
should be modeled as a pairwise potential, rather than unary. In fact,
it should be modeled as unary because it is not an indication of
whether two elements should be assigned the same label (which is
what pairwise potentials represent); instead, it uses local information
to indicate whether that item, individually, is more likely to be assigned
to a specific label (1 for “superclick” or 0 for “not superclick”)



requirements, defined by potential V5, apply.

For this reason, we add a constant U, term to
the Vi potential, which should be small enough
not to “push” too much toward the “superclick”
label (since clickedness and vicinity clues suggest it
should not be), but not so small that it cannot ever
be labeled as such.

The definitions of K, V, and U, have been chosen so
that the sum of those terms (clipped to 1 if necessary)
can be interpreted as the probability that superpixel s
belongs to class “superclick”, Ps; = P(l; = 1|C,5) =
min (K + Vi + Us, 1). Similarly, the complementary prob-
ability Ps o = P(l; = 0|C,S) = 1 — P, is the probability
that s is “not a superclick”. In the energy function, V; is
meant to represent the cost of assigning a certain label to
each superpixel: such costs can be computed as the negative
log-likelihood of the two probabilities above:

ifl, =1
Visls, ) = { i1, — 0

Pairwise potential V5 is the cost of assigning different
labels to two adjacent superpixels s; and sy: ideally, it
should be large for “similar” superpixels (so that they are
assigned the same label) and small for superpixels for which
no evidence exists that they should belong to the same
class. Although in general this function could depend on the
specific labels being assigned (so that, for example, the cost
of assigning labels (I, = 1,15, = 0) might be different than
the cost of assigning labels (I;, = 0,15, = 1)), in our case
we focus only on estimating the optimal separation point
between the “superclick” /“non-superclick” regions, based
on visual similarity.

Therefore, potential V5 is simply expressed as follows:

Vv2(317 52, 1sy lsz) = exp [_/BIX2(H51 ) Hsz)] I(ls1 e lsz)
@)
where x?(-,-) is the Chi-square distance, H;, is the RGB
color histogram of superpixel s;, 51 is a constant, and Z is
an indicator function which returns 1 if the arguments is
true, and 0 otherwise (this ensures that V5 is a submodular
function, thus making the whole energy function graph-
representable [47])). Using a simple similarity measure such
as the color histogram has a twofold justification: 1) by
construction, superpixels have very little internal structure,
so using more complex descriptors is unnecessary; 2) since
the function has to be evaluated for all pairs of adjacent
superpixels, it is important to perform as efficient operations
as possible, in order to keep computation times reasonable.
Once FE1(L) has been minimized by means of graph
cut, the extracted superclicks already provide a good ap-
proximated segmentation of the objects of interest in the
scene, as shown by the examples in Fig. [l Nevertheless,
output images at this stage can show segmentation errors,
e.g., holes, oversegmentations, etc, and further processing
by taking into account motion information is carried out to
refine the obtained segmentation masks.

—log Ps 1 ©)
—log Ps o

3.3 Temporal Smoothing

The superclick extraction step turns a set of noisy clicks into
a set of spatial coherent superclicks per frame, but ignores

ool

Fig. 4. Output examples for superclick identification: blue dots are users’
clicks while green regions show the yielded segmentation masks. Seg-
mentation refinement is carried out by including temporal constraints.

any temporal information which, instead, is necessary in
video streams. Therefore, the next step for segmentation
refinement consists in exploiting the temporal consistency
between consecutive frames to “transfer” labels across seg-
mentations. The idea is that if a set of consecutive (in time)
segmentations all mark a certain object as “interesting”, then
it is likely that they are correct; similarly, if no (or only
few) segmentations include that object, it is probably safer
to ignore it in the final output, especially if it is relatively
isolated from other potential foreground objects. Two issues
arise when trying to implement the above criterion: first,
superclick segmentations are defined in terms of superpixel
labels, and superpixel segmentation is not consistent in
presence of motion; second, objects in a video typically
move, thus the notion of “a certain object” across several
frames implies the employment of a object/point tracking
method.

Our approach addresses both issues: 1) we define a tem-
poral linking between superclicks by extending the energy
function, employed for superclick extraction, thus taking
into account visual similarity between spatio-temporal re-
gions; 2) we employ optical flow to estimate where
superpixels in frame ¢ may have moved in frame ¢ + 1:
in practice, we introduce pairwise potentials on all pairs of
superpixels {s;, s;+1} such that s, contains at least one pixel
p whose projection p, !, 41 = Pt +p, into frame ¢+ 1 under
the motion vector v,, (i.e., v, is the motion vector computed
between frame ¢ and frame ¢ + 1 for location p;) is part of
superpixel s,y in frame ¢ 4 1. Of course, it is unlikely that
each superpixel will appear in only one such link, which



allows to better “explore” the space around the estimated
motion area, thus reducing the amount of error due to the
optical flow and performing a more comprehensive analysis
on the surrounding superpixels.

In the definition of the cost function employed for the tem-
poral smoothing across frames ¢t — 1" and ¢t 41, where ¢ is the
current processed frame and 7T is a constant which affects
the number of frames involved in the temporal smoothing
(i.e., 2T 4 1), we assume to have identified superclicks for
all the involved frames. In particular, we will refer to the
same quantities as defined in Section [3.2| and add an apex
relative to the frame they refer to: for example, ! is the
superclick label for superpixel s in frame ¢, S+ is the set
of superpixels in frame ¢t + 1, and so on. The output label
set will be identified by £, and each label by [, without
the temporal apex and they refer to the segmentation of the
current processed frame. We can now introduce the energy
function used for the final segmentation:

t+T
By (L) =Y [az > Wils,1s,17) | +
T=t—T seST
t+T
+ Z Z ‘/2(815827l817l82) + ®)

T=t=T | (s1,82)EN(ST)
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(s1,82)ENT(ULET 57)
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The first two lines of the cost function includes single-
frame potentials, which consist of, respectively, unary po-
tentials for each identified superpixel (first line) and pair-
wise potentials (second line) for each pair of superpixels be-
longing to the same frame. The last term (third line) enforces
temporal smoothing, and consists of pairwise potentials
computed over the set NT(Uiif_TS ™), which represents all
pairs of superpixels (from all the frames in the considered
time interval) satisfying the “temporal linking” described
above, i.e., such that the two superpixels in each pair belong
to temporally consecutive frames, and that at least one pixel
belonging to one of them is projected onto the other by
means of optical flow.

Similarly to V; (defined in Sect.[3.2]), unary potential W;
models whether superpixel s is more likely to be assigned
to background or foreground per se. In this stage, we sim-
ply assign a constant value to the potential depending on
whether it had been identified, at the previous stage (see
Sect. 3.2), as a superclick or not (i.e., depending on []). In
detail, given superpixel s, we set corresponding foreground
cost and background cost; the value of each cost depends on
[7: if s was labeled as a superclick, we expect it to be more
likely that it is foreground, so the background cost should be
higher, and vice versa. W is therefore computed as follows:

Wa(s.1o.17) = {71 if (1, =1 AT =1)V (I, =0AI1T =0)
v2 otherwise
©)
with 1 < 9.

Pairwise potential V5 is defined as in Section but
in the last term (third line of Formula [8) of F'y we employ
it to evaluate the similarity not only between adjacent su-
perpixels in the same frame, but also “temporally-adjacent”
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(according to A7) superpixels in consecutive frames. In
order to deal with errors in optical flow computation, we
do not simply assign a constant based on the presence
or absence of a temporal link between two superpixels in
consecutive frames, but also verify that they are visually
similar and in fact refer to the same object/region in both
frames. Thus, we manage to enforce the criteria according
to which superpixels overlaying the same region across
different frames should all be assigned the same label.

Both I and E5 are binary pairwise energy functions
with submodular pairwise potentials, and as such we min-
imize exactly them by graph-cuts in order to get the final
segmentation for frame t. Some qualitative examples are
shown in Fig. [5| (compared to those obtained by using only
superclick extraction shown in Fig. [): it is easy to notice
the difference in terms of segmentation quality achieved by
analyzing a single frame only and by employing temporal
smoothing, which is able to extract much better objects’
shapes. It should also be noted that most of the processing
(e.g. superpixel extraction and optical flow) can be shared
when processing frames one after another, thus reducing
the main processing time to superpixel segmentation and
computation of optical flow for a single frame only.

4 EXPERIMENTAL RESULTS

In this section we present the experimental results obtained
by testing our gamification approach and link them to
the state of the art on interactive video annotation and
automated video object segmentation methods.

4.1 Datasets

For testing the accuracy of our method we created 7 game
levels (each 300 frames long) from the following four
datasets:

o Fish dataset [20]: we created two levels from the Com-
plexBkg1 and Standardl video sequences, by choosing
frame intervals with high density of ground truth
frames and with several visible objects.

e I2R [49]: we created two levels from the bootstrap
and shopping_mall videos, which are the most suitable
ones for being used as game levels, since most videos
in the dataset feature very few moving objects, in
favor of dynamic background. The levels have been
edited by selecting only parts with higher activity.

e ETH BIWI [50]: we created two levels from the
BAHNHOF and JELMOLI sequences created for ur-
ban multi-person tracking. These videos were par-
ticularly interesting because of the large number
of moving targets appearing at the same time; the
disadvantage was that annotations were provided
only at the bounding-box level, which we never-
theless treated as pixel-wise segmentations (which
causes the reported performance to be lower than
they actually are, as our method performs pixel-level
segmentation).

o SegTrack v2 [51]: we created only one level by in-
corporating a subset of videos from the SegTrack v2
dataset (namely, birdfall, bmx, cheetah, drift, humming-
bird, monkey and monkeydog) into a single sequence,



Fig. 5. Qualitative comparison between segmentations obtained when
excluding (first column, see Fig. [d) and including temporal smoothing
(second column).

since many of them were just few dozen frames long.
We favored sequences with multiple objects, and
excluded videos where the target, though moving,
appeared at the same frame location due to camera
motion (e.g. the girl sequence).

When we compared our methods to existing interactive
video annotation methods and automated video object seg-
mentation approaches we used the whole SegTrack v2.

4.2 Collected data

Our experiments involved only five players (two of them
were children) outside of our research team, who were
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simply asked to compete with each other by achieving the
highest possible score. The following information describes
the amount of collected data and playing statistics:

e Level time: 30 seconds.

e Game time (7 levels): 3:30 minutes.

e 75 games played.

« Total play time: 9:18 hours. On average, each partic-
ipant played for 1:52 hours, which may seem a lot. In
fact, in a real public gaming scenario the amount of
collected data corresponds to having about 160 users
playing just one game, which is easily achievable by
publishing the game with very little advertising on a
social network.

o Total number of clicks: 235,799; the average number
of clicks per frame was 52.4.

4.3 Algorithm parameters

In Sect. 3, we introduced some parameters which control
the trade-off between clicks and visual regularity in the
segmentation process. We empirically set the values for
those parameters, as follows: ay = 1/4, as = 1/5, U, =
04,6 =5T=2v =017 =0.9 (W)

These parameter values were used to compute the re-
sults shown in the next section. It is important to note that
the same parameters were used for all videos, although they
have distinct differences in scenery, type of targets, motion
patterns, motion speed, frame rate, etc. It is foreseeable that
applying the same method to videos belonging to a more
homogeneous set of videos would yield higher accuracy.

4.4 Segmentation results

This paper describes a interactive video object segmentation
method based on spatio-temporal MRF optimization using
the collaborative effort of multiple users. Thus, we first
evaluated the role of temporal smoothing followed by the
analysis of segmentation accuracy w.r.t to game play time,
number of players, click delay and click quality. Then, we
compared our method in terms of interaction times and seg-
mentation accuracy with, respectively, recent state-of-the-art
interactive video annotation methods and automated video
object segmentation approaches. The metrics employed for
performance analysis were pixel-level precision (Pr), re-
call (Rec) and F-measure (F}) and average Pascal Overlap
Measure (POM: intersection over union between 7" ground
truth GT" masks and output segmentations S) defined as:

TP
Pr—— — 1
"T TP EP (10)

TP

Rec= ——— 11

T TP+EN D
Pr-R

Fp=2. o ¢ (12)
Pr 4+ Rec

These performance metrics were computed by summing
up the number of true positives, false positives and false
negatives of each video category (i.e., without averaging
across frames).

|GT; N S|

P — 1
|GT; U Sy (13)

1 T
POM(GT, 5) = = >
i=1



4.4.1 Role of spatio-temporal segmentation refinement
Fig. 5| shows a qualitative comparison in terms of segmen-
tation outputs when employing only superclick extraction
phase (see Sect. and when exploiting the temporal
consistency between consecutive frames of superclicks. Ta-
ble [1| reports quantitatively how including spatio-temporal
based refinement enhanced the segmentation accuracy. It
can be noted that in some cases the accuracy gain was lower
(ETH BIWI and I2R) than in others (Fish and SegTrack v2).
This depends on the dynamics of the video sequences, i.e.,
in ETH BIWI and I2R the objects move slowly so users
were able to click accurately on objects, while SegTrack
v2 and Fish are characterized by strong camera and object
motion resulting in much noisier input data, and the spatio-
temporal based refinement proved effective to recover users’
failures in identifying objects.

The lower performance achieved in ETH BIWI and I2R
than the ones in Fish and SegTrack v2, instead, can be
explained by the number of objects in the scene. Indeed,
some ETH BIWI and I2R videos depicted very crowded
scenes and given the limited number of users playing the
game, not all objects present in the scene were accurately
identified.

For all the following evaluations, we used the method
including the spatio-temporal segmentation refinement.

4.4.2 Accuracy w.r.t. users’ play time

Table 2] shows how segmentation results vary in relation
to the amount of users’ play time in terms of pixel-level
precision, recall and F-measure.

It is easy to notice that, at the moment we interrupted
the experiment, the accuracy had already started to slightly
decrease as the participants played more games (i.e., as
more clicks were being collected). Indeed, it is intuitive that
as soon as enough clicks have been collected which allow
to sufficiently highlight superclicks from the background,
additional clicks are more likely to be noisy than to actually
cover any missing foreground region. Of course, in a large-
scale application scenario with hundreds or thousands of
videos, the amount of play time needed to reach this “satu-
ration point” is much higher and would require a very large
user base and/or users’ time.

4.4.3 Accuracy w.r.t. number of users

Among the advantages of exploiting gamification to solve
a complex or large-scale task, one of the most important is
the variety of data patterns contributed by different users of
the system. This is especially important in multi-target tasks
such as segmentation with multiple objects, as single users
tend to be biased to select the same object across multiple
games. We evaluated this tendency by comparing the seg-
mentation accuracy obtained by taking into consideration
the clicks from a single user (single-player scenario) with the
accuracy obtained by the other four players (many-players
scenario). The chosen user for the single-player scenario is
the one who played most games (23); in order to compute
the accuracy for the many-players scenario, we randomly
sampled several sets of clicks such that each set had the
same number of clicks per video as the chosen single player
and averaged the results. Table 3| show the comparison
between the two scenarios.
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The comparison clearly shows that using clicks coming
from many users yielded markedly better performance than
having a single user gather the same amount of data. Of
course, the reported performance is lower than the best
accuracy in Table [2| because the click sets on which Table
was computed amount to less than 3 hours’ cumulative play
time.

To test the importance of integrating data from several
participants in multi-target tasks, we compared the accuracy
of the single-player and many-players with respect to the
number of objects in a frame, across all videos. The results
in Table {4 show that the difference in accuracy increases
with the number of objects in a frame, hinting that, indeed,
the variability introduced by a higher number of players
positively affects a multi-target task with respect to fewer
people working on it.

4.4.4 Accuracy w.r.t. click delay

While most algorithm parameters have a strictly mathe-
matical meaning, click delay (i.e., the number of frames by
which we shift user clicks to take human reaction delay into
account) is particularly interesting to analyze, as it can be an
important design choice which should be made by taking
into consideration several factors such as user base, target
speed, frame rate, etc. We evaluated segmentation accuracy
for different click delay values, and the results are shown in
Table The specific value we used for our evaluations (2) is
the one yielding the best average F-measure score, although
the other values are quite close. It is interesting to see that
the chosen value is not the optimal one for all videos — for
example, it is not for the ETH BIWI and I2R videos: indeed,
those are the video categories with the lowest dynamics,
requiring fewer sudden reactions and thus making it easier
for users to follow the objects.

4.4.5 Accuracy w.r.t. click quality

In order to measure the effectiveness of our click quality
assessment approach, we evaluated segmentation accuracy
using subsets of clicks belonging to different quality ranges
(namely, [0-0.6[, [0.6-0.8[, [0.8-1]), as shown in Table [}
Unlike our tests concerning the variation of accuracy with
respect to the number of players, we did not normalize the
size of the click sets, as the three ranges were chosen so
that they would approximately contain the same number
of clicks. It can be seen that our measurement for click
quality reflects the accuracy of the resulting segmentations;
it should be noted that, as in Table [3] the reported results
are sensibly lower than the best results (see Table [2) due
to a lower number of used clicks. This demonstrates that
click quality is necessary to achieve accurate segmentantions
but the number of clicks is more important, i.e., it’s more
important to have many users than few high quality ones
playing the game.

4.4.6 Comparison with the state of the art interactive video
annotation methods

We also compared our method to existing interactive video
segmentation ones [36], [41]], [52] in terms of interaction
times and accuracy. It has to be noted that for a single
user the interaction time of our method depends only on
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TABLE 1

Average segmentation accuracy for the video categories employed in our game in terms of precision, recall and F-measure, when we employ only
superclick extraction (first row) and when we refine the output segmentation by means of spatio-temporal linking between superclicks in

consecutive frames (second row).

Fish ETH BIWI I2R SegTrack v2
Method Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1
Superclick extraction 0.639 0.726 0.680 0.597 0.629 0.613 0.602 0.661 0.6304 0.673 0.763 0.716
Spatio-temporal refinement  0.684 0.821 0.746 0.647 0.636 0.642 0.606 0.696 0.6484 0.739 0.835 0.784
TABLE 2

Average segmentation accuracy for the video categories employed in our game in terms of precision, recall and F-measure, for different values of

cumulative users’ play time.

Plavti Fish ETH BIWI I2R SegTrack v2
aytime (hours)
Pr Rec Fq Pr Rec Fq Pr Rec F Pr Rec Fy
9h 0.684 0.821 0.746 0.647 0.636 0.641 0.606 0.696 0.648 0.739 0.835 0.784
8h 0711 0814 0759 0.632 0.670 0.650 0.609 0.720 0.660 0.721 0.827 0.770
7h 0.735 0.787 0.760 0.672 0.612 0.640 0.663 0.670 0.666 0.770 0.819 0.794
6h 0.738 0.760 0.749 0.655 0.644 0.649 0.681 0.677 0.679 0758 0.796 0.776
5h 0.707 0592 0.644 0.689 0564 0.620 0.756 0.571 0.650 0.816 0.758 0.786
3h 0.780 0372 0504 0.716 0472 0569 0.812 0368 0.507 0.883 0.617 0.727
1h 0.869 0.149 0254 0816 0339 0479 0909 0.228 0365 0929 0450 0.607
TABLE 3

Average segmentation accuracy for the video categories employed in our game in terms of precision, recall and F-measure, for the single-player

and the many-players scenarios.

Fish ETH BIWI I2R SegTrack v2
Number of players
Pr Rec Fq Pr Rec Fq Pr Rec F1 Pr Rec Fq
Single player 0577 0203 0301 0562 0286 0379 0.781 0305 0438 0.797 0493 0.609
Multiple players 0917 0261 0407 0797 0415 0546 0902 0300 0451 0.870 0543 0.668
TABLE 4

Average segmentation accuracy in terms of precision, recall and F-measure, for the single-player and the many-players scenarios, with respect to

the number of objects in a frame.

Number of players 1-2 objects 3-5 objects 6+ objects
Pr Rec F1 Pr Rec Fq Pr Rec F1
Single player 0798 0458 0582 0.564 0219 0315 0.687 0.200 0.310
Multiple players 0.868 0.502 0.636 0.760 0.285 0415 0.852 0.290 0.432
TABLE 5
Average segmentation accuracy for the video categories employed in our game in terms of precision, recall and F-measure, for different click delay
values.
Click delay Fish ETH BIWI I2R SegTrack v2
Pr Rec F, Pr Rec F Pr Rec Fy Pr Rec F, \ Average F;
0 0.613 0743 0.672 0.611 0.692 0.649 0.613 0.692 0.650 0.664 0.789 0.721 0.673
1 0.667 0.794 0.725 0.613 0.678 0.644 0.600 0.711 0.650 0.688 0.815 0.746 0.692
2 0.684 0.821 0.746 0.647 0.636 0.641 0.606 0.696 0.648 0.739 0.835 0.784 0.705
3 0.667 0.791 0.724 0.613 0.675 0.643 0598 0.711 0.650 0.688 0.815 0.746 0.691
TABLE 6

Average segmentation accuracy for the video categories employed in our game in terms of precision, recall and F-measure, for different ranges of
click quality. Along with each quality range, we report the fraction of clicks included in that range with respect to the total number of clicks.

. Fish ETH BIWI I2R SegTrack v2
Quality range
Pr Rec F Pr Rec Fy Pr Rec F, Pr Rec F
0.8 -1 (32.7%) 0.817 0423 0558 0.777 0477 0.591 0872 0391 0.540 0.896 0.633 0.742
0.6-0.8(329%) 0771 0415 0.540 0762 0482 0590 0.841 0.389 0532 0.872 0.640 0.738
0-0.6 (34.4%) 0392 0223 0284 0370 0267 0310 0407 0319 0358 0493 0335 0.399
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TABLE 7
Comparison in terms of segmentation accuracy - measured as average POM in percentage, respectively, achieved within the first 50 secs of
annotation (first row) and maximun value (with the related interaction times)- between our approach and other interactive video annotation
methods on a subset of 10 frames extracted from SegTrack v2 video sequences

[52]

[41]

136] Our method

POM within 50 secs
Maximum POM

39.8
56.6 (~1,200 secs)

42.2
65.2 (~500 secs)

61.5
84.3 (~1,400 secs)

724
72.4 (~50 sec)

the video length, i.e., there is a linear dependency between
number of annotated frames and annotation times, while
existing interactive methods [36], [41], [52] show a non-
linear (exponential-like) dependency. Nevertheless, using
data generated by a single user in a single played game
would result in poor accuracy performance (as discussed
in the previous section), thus we consider, for comparison
with the state of the art, the cumulative time spent by a
single user in multiple game sessions (generally one frame
is shown for 0.2 seconds in our game, thus if we select the
clicks of one user in five game sessions, the interaction time
would be of 1 second.). We selected randomly 10 frames
from SegTrack V2 and we assessed how the segmentation
accuracy changed w.rt. to the interaction times. For our
method, we considered the clicks of the user who played
most games in several game sessions. Fig. [p| shows the
interaction times of users against the achieved segmentation
quality for our method and [36], [41], [52]. Our approach
yielded a reasonably accuracy over the 10 considered frames
after approximately 50 seconds of playtime (i.e., about 20
game sessions) while the other approaches needed much
more time. Quantitatively, Table [7| reports the achieved
segmentation accuracy (expressed by POM in percentage)
over the 10 considered frames by all the comparing methods
in two cases: a) within 50 seconds of annotation and b)
the maximum achieved accuracy. Let us recall that the
interaction time (50 seconds corresponding to about 20 game
sessions) for our method is given by the playtime of a single
user, and that the same value can be achieved by involving
20 users, in parallel, playing only one game session, i.e.,
with a very little human annotation effort as opposed to the
existing other solutions [36], [41], [52].

4.4.7 Comparison with the state of the art automated video
segmentation methods

Despite the proposed method is more inline with the re-
search on interactive video annotation, it can be seen as a
video object segmentation approach (with very little human
intervention) and as such it is useful to link its performance
with the state of the art on the automated methods. The
comparison was again performed on the SegTrack v2 dataset
(largely employed as a benchmarking dataset for video ob-
ject segmentation), and we selected as comparing methods
those ones posing the video object segmentation task as
a superpixel labeling problem using spatio-temporal MRF
optimization, namely, [1]], [23]], [24]. The results, in terms of
average POM in percentage, are reported in Table

Tables [7]and [§] indicate that our method performs better
than automated video object segmentation methods and
slightly worse than interactive video annotation approaches.
This is not surprising since interactive video annotation

TABLE 8
Comparison in terms of segmentation accuracy - measured as average
POM in percentage- between our approach and automated video
object segmentation methods on SegTrack v2

[23]
53.5

24] (]
59.3  64.4

Our method

Average POM 71.7

tools require users to spend more time in providing accurate
annotation but are barely usable in case of large video
datasets. This makes our method a very good trade-off
between accuracy and annotation times. However, when
we used only points (uniformly taken from ground truth
masks) within objects of interest (this is might be a typical
interactive video annotation scenario where users might be
asked to accurately select foreground pixels) we obtain a
much higher accuracy with an average POM of about 0.85
as shown in Fig.

Fig.|8|shows some failure cases of the proposed method:
user clicks diverged substantially from objects’ position
hitting also background regions that were then classified
as foreground. Our spatio-temporal refinement module was
not able to recover such failures since in the previous phase
(i.e., superclick extraction) several wrong superpixels were
marked as superclicks.

4.4.8 Running times

Using T' = 2, processing a single frame requires solving
five MRFs for superclick extraction and one temporal MRF
for accurate segmentation. Our Matlab implementation, run
on a PC with a quad-core i7 CPU and 8 GB RAM, takes
3 seconds for superclick extraction in a single frame and
30 seconds for the temporal MRF (actually, for the four
optical flow computations which link superpixels in time;
MREF solving time is negligible), which would amount to 45
seconds in total. However, after the initial bootstrap phase,
segmenting a new frame can benefit from already-extracted
superpixels and computed the optical flow for previous
frames, so processing is reduced to a single superpixel
extraction and a single optical flow computation, resulting
in a frame processing time of 10.5 seconds.

4.4.9 Available Resources

In the authors” webpage, the source code for object segmen-
tation taking user clicks as input together with the videos
used as game levels are available. We do not release the
source code for the game, instead, we provide a web service
where interested people can set up their game using their
own videos and get the output segmentations as well as
raw data (e.g., user clicks).
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Interaction Times vs POM
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Fig. 6. Interaction times vs segmentation accuracy. The figure shows that with the proposed approach we get a fairly good segmentation quality
just after 30 seconds. When we allowed users to spend more time on the annotation task, the method in achieved the best performance with a

POM of about 0.85 with an interaction time of about 1,400 seconds.

Fig. 7. Output segmentations when using only points within objects (i.e., taken from ground truth segmentation masks) of interest: blue dots are
ground truth points while green regions show the yielded segmentation masks.

5 CONCLUDING REMARKS

In this paper we have described an interactive video object
segmentation method which combines effectively games
with a purpose strategy with collaborative human efforts.
The performance analysis showed that our method out-
performs in terms of segmentation accuracy state-of-the-art
automated video object segmentation methods and is more
suitable for large scale video annotation than classic inter-
active video annotation tools. We also demonstrated how
including spatio-temporal regularization enhances greatly
performance than using only spatial information and user-

provided hard constraints. We also release the source code
for human-guided video object segmentation as well as a
web service that enables interested people to set up their
game (with their own videos) and download user generated
data. As future work, we plan to carry out experiments
at a larger scale involving more users (as in [44]) and
videos. In addition as inhibition of return and click delay
are two important aspects of the approach, we plan to make
them adaptive according to, respectively, play time (thus to
enforce users to identify as many objects as possible) and
video motion characteristics.
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Fig. 8. Failure cases: User clicks were extremely inaccurate resulting in wrong object segmentations.
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