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Sub-Riemannian Geometry and Geodesics in Banach

Manifolds

Sylvain Arguillère

Abstract

In this paper, we define and study sub-Riemannian structures on Banach manifolds. We

obtain extensions of the Chow-Rashevski theorem for exact controllability, and give conditions

for the existence of a Hamiltonian geodesic flow despite the lack of a Pontryagin Maximum

Principle in the infinite dimensional setting.

Introduction

A sub-Riemannian manifold is a smooth manifold M of finite dimension, endowed with a distribu-
tion of subspaces ∆ ⊂ TM , together with a smooth Riemannian metric g on ∆ [9, 17]. This allows
the definition of horizontal vector fields (resp. horizontal curves) which are those that are almost
everywhere tangent to the distribution. We can then define the length and action of a horizontal
curve thanks to g and, just like in Riemannian manifolds, the sub-Riemannian distance between
two points, and the notion of sub-Riemannian geodesic.

There are two foundational results in sub-Riemannian geometry:

• The Chow-Rashevksi theorem (generalized by Sussmann to the orbit theorem [21]). It states
that if the iterated Lie brackets of horizontal vector fields span the whole tanget bundle, then
any two points can be connected by a horizontal curve. This is the problem of controllability.

• The Pontryagin Maximum Principle (PMP) [19] from optimal control theory. It states that
there are two kinds of sub-Riemannian geodesics.

– The normal geodesics, which are the projection to M of the Hamiltonian flow
{

q̇(t) = ∂ph(q(t), p(t)),

ṗ(t) = −∂qh(q(t), p(t)),

where the Hamiltonian h of the system is defined on T ∗M by

h(q, p) = max
v∈∆q

(p(v)− 1

2
gq(v, v)), q ∈M, p ∈ T ∗

qM.

The converse is true: any such projection q(·) of the Hamiltonian flow is indeed a
geodesic.

– The abnormal geodesics, which are among the singular curves of the structure. Singular
curves only depend on the distribution ∆, and are the projection to M of curves t 7→
(q(t), p(t)) on T ∗M that satisfy the so-called abnormal Hamiltonian equations







q̇(t) = ∂pH
0(q(t), p(t), v(t)),

ṗ(t) = −∂qH0(q(t), p(t), v(t)),

0 = ∂vH
0(q(t), p(t), v(t)),
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with v(t) = q̇(t) and H(q, p, v) = p(v), q ∈ M , v ∈ ∆q, p ∈ T ∗
qM . The converse is not

true in this case: there are some singular curves that are not geodesics.

The purpose of this paper is to lay the foundation to infinite dimensional sub-Riemannian ge-
ometry with a wide range of distributions ∆ (for example, ∆ might be dense in infinite dimensions,
as in [8, 6]), and generalize those two results. Many difficulties appear, since none of the methods
used in finite dimensions work. For example, it is well-known that there is no PMP in infinite
dimensions [15], though some work has been done in this direction in [13] for certain special cases.
We will also see that the controllability problem (and more generally, the problem of finding the
set of points to which a fixed q can be connected) is much harder to solve.

Another problem is the possibility that g be a weak metric, that is, that the norm it induces on
each horizontal subspace is not complete. This makes the problem of existence of geodesics much
more complicated even for Riemannian manifolds [14, 16].

In the first section of this paper, we give the various definitions for a sub-Riemannian structure
on a Banach manifold M . We consider horizontal distributions given by ∆ = ξ(H), where H is
a vector bundle over M and ξ : H → TM a smooth vector bundle morphism. The metric g is
directly defined on H instead of ∆. A curve q(·) is then horizontal if it satisfies an equation of the
form

q̇(t) = ξq(t)u(t)

for some control u(t) ∈ Hq(t) for almost every t. This definition allows to consider dense distribu-
tions, and the infinite-dimensional equivalent to rank-varying distributions.

In the Section 2, we study the case of approximate and exact controllability. In particular, we
see that the natural extension of the Chow-Rashevski theorem gives approximate controllability,
and that it is in general impossible to expect exact controllability. However, we do introduce
so-called strong Chow-Rashevski conditions, which let us prove the following result.

Theorem. Assume that around any point of M , there are r horizontal vector fields X1, . . . , Xr

and k ∈ N \ {0} such that any tangent vector can be written as a span of iterated Lie brackets of
at most k horizontal vector fields among the Xi, and one other horizontal vector field.

Then any two points can be joined by a horizontal curve. Moreover, the sub-Riemannian dis-
tance induces on M a topology that is coarser than the intrinsic manifold topology.

Then, in Section 3, we investigate the sub-Riemannian geodesics. We discuss the appearance of
elusive geodesics, which cannot be characterized by a Hamiltonian equation, and therefore prevent
the proof of a PMP. This is due to the fact that the differential of the endpoint map (which is the
smooth map that to a control u(·) associates the final point of the corresponding horizontal curve)
may have dense image.

We do however obtain the following partial converse to a PMP.

Proposition. Fix t 7→ q(t) a horizontal curve with control u(·). Assume that there exists t 7→
p(t) ∈ T ∗

q(t)M \ {0} such that (q(·), p(·)) satisfies

{

q̇(t) = ∂ph(q(t), p(t)),

ṗ(t) = −∂qh(q(t), p(t)),
(1)

with h(q, p) = maxu∈Hq (p(ξqu) − 1
2gq(u, u)). Then q(·) is a critical point of the sub-Riemannian

action with fixed endpoint.
If (q(·), p(·)) satisfies







q̇(t) = ∂pH
0(q(t), p(t), u(t)),

ṗ(t) = −∂qH0(q(t), p(t), u(t)),

0 = ∂uH
0(q(t), p(t), u(t)),
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with H0(q, p, u) = p(ξqu), then q(·) is a singular curve, that is, a critical point of the endpoint
map.

The next step is to prove that integral curves of the Hamiltonian flow associated to h are indeed
geodesics. However, if g is a weak metric, h may only be defined on a dense sub-bundle of T ∗M ,
on which a Hamiltonian flow may not even be defined. This is already a well-known problem in
Riemannian geometry, where weak metric may not have Levi-Civita connections. However, under
the assumption that h defines a Hamiltonian flow on a smooth dense sub-bundle τM ⊂ T ∗M , we
prove curves that follow this flow do project to geodesics.

Theorem. Let τM be a smooth dense sub-bundle of T ∗M on which h is well-defined and admits
a C2 symplectic gradient with respect to the restriction to τM of the canonical symplectic form on
T ∗M . These assumptions are always true for strong structures.

Then integral curves of this symplectic gradient, which are curves that locally satisfy
{

q̇(t) = ∂ph(q(t), p(t)),

ṗ(t) = −∂qh(q(t), p(t)),

are local geodesics of the sub-Riemannian structures.

From there, many questions are still unanswered, the most important of which would be to find
a good way to characterize the so-called elusive geodesics.

1 Banach sub-Riemannian geometry

The most common sub-Riemannian structure on a manifold M is given by the restriction of a
Riemannian metric to a certain smooth distribution of subspaces ∆ ⊂ TM of the tangent bundle,
the so-called horizontal distribution. However, it can be useful to allow the rank of this distribution
to change, which is why we will use the point of view of rank-varying distributions of subspaces
[9, 1]. In this section, we introduce relative tangent spaces and use them to define sub-Riemannian
geometry on infinite dimensional manifolds.

1.1 Notations

For the rest of this section, fix M be a connected smooth Banach manifold of class C∞, modelled
on a Banach space B. For any vector bundle E →M over M with typical fiber E, we denote Γ(E)
the space of smooth sections of E . Finally, for I = [a, b] an interval of R, we define

H1 × L2(I, E) = {(q(·), e(·)) : I → E | q(·) ∈ H1(I,M), e(·) ∈ L2(I,E) in a trivialization}. (2)

Here H1(I,M) denotes the space of curves that are of Sobolev class H1 in local coordinates. Any
such curve is continuous [14], which lets us define a smooth trivialization of E above it.

1.2 Definitions

Let us start by defining relative tangent spaces.

Definition 1. A relative tangent space onM , is a couple (H, ξ), with H a smooth Banach vector
bundle πH : H →M , with fibers isomorphic to a fixed Banach vector space H, and ξ : H → TM is
a smooth vector bundle morphism. Such a couple (H, ξ) is also called an anchored vector bundle
in the litterature.

The corresponding horizontal distribution is given by the image ∆ = ξ(H) ⊂ TM .

3



Now let us fix (H, ξ) a relative tangent bundle on M , and ∆ = ξ(H) the corresponding distri-
bution of horizontal subspaces.

Definition 2. A horizontal vector field is a vector field X ∈ Γ(TM) that is everywhere tangent
to ∆. Equivalently, X is a horizontal vector field when there exists a section u ∈ Γ(H) such that

∀q ∈M, X(q) = ξqu(q).

A curve q(·) of class of Sobolev class H1 on M defined on an interval I is said to be a horizontal

curve if we can find a lift t 7→ u(t) ∈ Hq(t) of q(·) to H such that (q(·), u(·)) ∈ H1 ×L2(I,H) and

q̇(t) = ξq(t)u(t), a.e. t ∈ I.

The couple (q(·), u(·)) is a horizontal system, with u the control and q the trajectory of the
system.

EndowingH with a Riemannian metric, we obtain a sub-Riemannian structure which will allow
the definition of sub-Riemannian length, action and distance in the next section. Much like in the
Riemannian case, one distinguishes two types of metrics: weak and strong metrics.

Definition 3. A weak sub-Riemannian structure onM is a triple (H, ξ, g) where (H, ξ) is a relative
tangent space on M , and g : H×H → R is a smooth positive definite symmetric bilinear form on
each fiber Hq.

The structure is said to be a strong when both topologies coincide. In this case, g defines a
Hilbert product on each fiber, making H into a Hilbert bundle.

Example 1. Let H be a distribution of closed subspaces on a Banach manifold M , and g be a
weak Riemannian metric onM . Let i be the inclusion map H → TM . Then (H, i, g|H) is a regular
sub-Riemannian metric.

A curve t 7→ q(t) of Sobolev class H1 is horizontal when

q̇(t) ∈ Hq(t), a.e. t.

The case where H admits a smooth and closed complement was partially studied in [13], in the
more general setting of convenient spaces.

Example 2. Take M = H × A(H), with (H, 〈·, ·〉) a Hilbert space and A(H) the set of Hilbert-
Schmidt skew-symmetric linear operators on H . Then let H =M ×H and, for (q, A) ∈M , define
ξq,A : H → TqM ≃ H ×A(H) by

ξq,A(u) = (u,
1

2
q ∧ u) ∈ H ×A(H),

where the operator q ∧ u satisfies q ∧ u(w) = 〈q, w〉 u − 〈u,w〉 q. The bilinear form g can be
defined simply by g(u, v) = 〈u, v〉. This is a strong sub-Riemannian structure. Horizontal curves
t 7→ (q(t), A(t)) satisfy

q̇(t) = u(t), Ȧ(t) =
1

2
q(t) ∧ u(t), a.e. t, u ∈ L2(0, 1;H).

Horizontal vector fields are of the form

X(q, A) = (u(q, A),
1

2
q ∧ u(q, A)), u :M → H.
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Example 3. Let M = Ds(N) the topological group of diffeomorphisms of Sobolev class Hs,
s > d/2 + 1, of a d-dimensional compact manifold N . Endow N with a smooth relative tangent
space (HN , ξN ). This group is a smooth Hilbert manifold, with tangent space at ϕ given by
Γs(TN) ◦ ϕ [11, 18, 20], with Γs(TN) the space of Hs-vector fields on N .

Consider the relative tangent space (Ds(N)× Γs(HN , ξ), with

ξϕ(u)(x) = ξN,ϕ(x)(u(ϕ(x)).

In other words, a vector v ∈ TϕDs(N) is horizontal if and only if v ◦ ϕ−1, which is a horizontal
vector field of N of class Hs.

In this case, a horizontal curve t 7→ ϕ(t) is just the flow of a time-dependent horizontal vector
field of Sobolev class Hs.

It is important to note that this relative tangent space is not smooth, as it is simply continuous
with respect to ϕ. However, it is possible to find an equivalent relative tangent space (i.e., such
that horizontal curves are the same) that is smooth. See [6] and the last section of this paper for
more details, and [8, 7, 5] for applications of such structures to shape analysis.

Definition 4. The orbit Oq0 of a point q0 in manifold M endowed with a relative tangent space
is the set of all points q of M that can be connected to q0 by a horizontal curve.

The structure is said to be approximately controllable from q0 if Oq0 is dense in M . It is
said to be controllable (or to have the exact controllability property) if Oq0 =M for some q0.

Note that q0 ∈ Oq0 , and that if q ∈ Oq0 , then Oq0 = Oq. In finite dimensions, the well-known
Chow-Rashevski theorem provides easily checkable sufficient condition for controllability.

Theorem 1 (Chow-Rashevski, [17]). Let M be a connected finite dimensional manifold with a
smooth relative tangent space. Also assume that for any (q, v) ∈ TM , there exists horizontal vector
fields X1, . . . , Xr such that v = [. . . [X1, X2], X3], . . . , Xr](q), with [·, ·] the usual Lie bracket on
smooth vector fields of M . Then any two points of M can be connected by a horizontal curve.

This theorem was improved by Sussmann’s orbit theorem, see [21]. We will give more details
in Section 2.

1.3 Length, energy and distance

Let I ⊂ R be an interval and (H, ξ, g) be a weak sub-riemannian structure on a Banach manifold
M .

Definition 5. The action and length of a horizontal system (q, u) : I → H is respectively defined
by

A(q, u) =
1

2

∫

I

gq(t)(u(t), u(t))dt and

∫

I

√

gq(t)(u(t), u(t))dt.

Remark 1. Another possibility is to directly define the sub-Riemannian (semi-)norm of a hor-
izontal vector X = ξq(u) ∈ TqM : the linear map ξq defines on its image ξq(Hq) a seminorm
n : ξq(Hq) → R+ by

nq(w)
2 = inf

u∈Hq, ξqu=w
gq(u, u).

If q : I → M is a horizontal curve, its normal length and action can be respectively defined by

L(q) =

∫

I

nq(t)(q̇(t))dt, and A(q) =
1

2

∫

I

nq(t)(q̇(t))
2dt.

However, the normal action and length may not be smooth when ξ, so the action of horizontal
systems as given in Definition 5 is better suited to the study of geodesics.
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Definition 6. The sub-Riemannian distance d(q0, q1) between two points q0, q1 ∈M is defined by

d(q0, q1) = inf
(q,u)∈L2(0,1;H),
(q,u) horizontal,
q(0)=q0, q(1)=q1

L(q, u).

Just like in the Riemannian case, this is a semi-distance, though it may have infinite values
when there is no horizontal curve between q0 and q1. Note that this definition implies the following
characterization of the orbit of a point q0 in M :

Oq0 = {q ∈M | d(q0, q) < +∞}.

Lemma 1. The map d :M ×M → R ∪ {+∞} is a semidistance, possibly with infinite values.
When the sub-Riemannian structure is strong, d is always a true distance, that is, d(q0, q1) = 0 if
and only if q0 = q1. Moreover, the topology it induces on M is finer than the intrinsic manifold
topology.

Proof. That d is a semi-distance comes from the basic properties of horizontal systems. Indeed,
reversals and concatenation of horizontal systems are also horizontal systems, so the symmetric
property and triangular inequality are trivial.

Now assume the metric g is strong and let q0 ∈M . We work in a coordinate neighbourhood U
centered at q such that H|U ≃ U × H, that can be identified with a small open ball B0 of radius
ε > 0 of the Banach space B on which M is modeled. In this chart, since ξ is a smooth vector
bundle morphism and q 7→ gq is a smooth family of Hilbert norms on H, there exists c > 0 such
that

∀(q, u) ∈ B0 ×H, ‖ξq(u)‖B 6 c
√

gq(u, u).

Now, for a horizontal system (q, u) : I = [a, b] → H starting at q(a) = q0, let

te = inf{t ∈ [a, b] | ‖q(t)− q0‖B ∈M \B0}.

Then te > a and

ε 6 ‖q(te)− q0‖B = ‖q(te)− q(a)‖B 6

∫ te

a

‖ξq(t)(u(t))‖Bdt 6 c

∫ te

a

√

gq(t)(u(t), u(t))dt.

In particular, the sub-Riemannian distance between q0 and the sphere {‖q − q0‖B = ε} is no less
than cε > 0. Therefore, the triangle inequality shows that if q1 in M does not belong to the ball
B0, then d(q0, q1) > cε > 0. On the other hand, if q1 6= q0 does belong to B0, then any horizontal
curve with endpoints q0 and q1 has length greater than c‖q − q0‖B, so

d(q0, q1) > c‖q − q0‖B > 0.

In the end, q1 6= q0 implies that the sub-Riemannian distance between q0 and q1 is positive,
hence the sub-Riemannian distance is a true distance for strong sub-Riemannian manifolds.

1.4 Definitions

Fix a sub-Riemannian Banach manifold (M,H, ξ, g) modelled on a Banach space B.

Definition 7. A local geodesic is a horizontal system (q, u) : I →M such that, for every t0 ∈ I,
and for every t1 > t0 with t1− t0 small enough, there is an open neighbourhood U of q([t0, t1]) such
that any horizontal system (q′, u′) : I ′ → U with endpoints q(t0) and q(t1) satisfies

L((q, u)|[t0,t1]) 6 L(q′, u′).

6



It is a geodesic if we simply have, for t0 and t1 close enough,

L((q, u)|[t0,t1]) = d(q(t0), q(t1)),

and a minimizing geodesic if its total length is equal to the distance between its endpoints.
We will also use the same term to describe the trajectory q(·) of such control system.

This distinction between local geodesic and plain geodesics is necessary for weak structures even
in infinite dimensional Riemannian manifolds (see [14] for example). However, when the metric
is strong, all local geodesics are actually geodesics. This is a trivial consequence of the proof of
Lemma 1.

Remark 2. If a horizontal system (q, u) minimizes the action A(q, u) among controls whose
trajectories have the same endpoints, then the trajectory q is a minimizing geodesic. This is a
trivial consequence of the Cauchy-Schwartz inequality.

The existence of minimizing geodesics between two points is a difficult question in infinite
dimensions. For example, even for strong Riemannian Hilbert manifolds, metric completeness
does not imply geodesic completeness.

Example 4. Consider X = l2(N) the space of square-summable sequences, and let M be the
ellipsoid given by

{

(xn) ∈ l2,

∞∑

n=0

x2n
(1 + 1

n+1 )
2
= 1

}

equipped M with the Riemannian metric inherited from the ambient space. M will be complete
for the Riemannian distance but there will be no minimizing geodesic between (

√
2, 0, . . . ) and

(−
√
2, 0, . . . ).

2 Exact and approximate controllability

The first problem when considering sub-Riemannian geometry is that of controllability: can we
get from any starting point q0 to any target point q1 of M through horizontal curves. In finite
dimensions, the Chow-Rashevsky theorem [17] (and its more general version, Sussmann’s orbit
theorem [21, 3]) gives a nice sufficient condition for the controllability of the structure: it is
controllable when the iterated Lie brackets of horizontal vector fields span the entire tangent space.
Moreover, the ball-box theorem also gives precise estimates on the sub-Riemannian distance in this
case, showing that it is topologically equivalent to the intrinsic manifold topology of M .

We will see that these conditions are unreasonnable to expect in the case of infinite dimensional
manifolds. All we can usually expect to have dense orbits, that is, approximate controllability. We
will however give some natural, stronger conditions that do ensure exact controllability.

For the rest of this section, unless stated otherwise, M is a sub-Riemannian Banach manifold
endowed with a sub-RIemannian structure (H, ξ, g).

2.1 Finite dimensions: the Chow-Rashevski Theorem

We identify the horizontal distribution ∆ with Γ(TM), the C∞(M)-module of all horizontal vector
fields on M of class C∞. By induction, we define the nondecreasing sequence of C∞(M)-modules
(∆i)i∈N by

∆0 = {0}, ∆1 = ∆, ∆i+1 = ∆i + [∆,∆i],

where [·, ·] denotes the Lie bracket for smooth vector fields on M . Then L = ∪i∈N∆
i is the Lie

algebra of vector fields generated by ∆.

7



Remark 3. Note that any C∞(M)-module E of vector fields can be identified to a subset E ′ of
TM given by

E ′ =
⋃

q∈M

Eq ⊂ TM, Eq = {X(q) | X ∈ E} ⊂ TqM.

Remark 4. This definition is valid for both finite and infinite dimensional manifolds.

Definition 8. We say that the sub-Riemannian structure satisfies the Chow-Rashevski property at
q ∈M when Lq = TqM .

For the rest of the section, we assume that M is finite dimensional. We can now re-state the
Theorem 1 as follows.

Theorem 2 (Chow-Rashevski theorem in finite dimensions [3, 9, 17]). Assume that the
finite dimensional sub-Riemannian manifold M satisfies the Chow-Rasevski property at every point
q ∈M . Then that structure is exact controllable.

Remark 5. A more precise result is given by Sussmann’s Orbit Theorem [21]. It states that each
orbit Oq is an immersed submanifold such that Lq ⊂ TqOq. Sussmann also proved that, if the
structure is analytic, we actually have Lq = TqOq.

The proof of Chow-Rashevski’s theorem can be refined to give local estimates on the sub-
Riemannian distance. Indeed, fix q0 ∈ M , assume Tq0M = Lq0 = ∆k

q0 6= ∆k−1
q0 , and let ri =

dim(∆i
q0)− dim(∆i−1

q0 ) for i = 1, . . . , k so that r1 + · · ·+ rk = dim(M).

Theorem 3 (Ball-box theorem in finite dimensions [9, 17]). Around such a q0 ∈ M , there
are coordinates q = (x1, . . . , xk), with xk ∈ Rri around q0 such that for some C > 0 such that

1

C

k∑

i=1

|xi|2/i 6 d(q0, q)
2
6 C

k∑

i=1

|xi|2/i.

In particular, the topology induced by the sub-Riemannian distance coincides with the intrinsic
manifold topology of M .

The exact statement of the Chow-Rashevski and ball-box theorems are both open problems in
infinite dimensional manifolds. Moreover, even if such a result existed, it would not be as useful: it
is very rare to have Lq = TqM , simply because Lq is usually dense, but almost never closed. This
is expected, intuitively, because the Lie algebra generated by ∆ is constructed in an algebraic way
as an indefinitely increasing union of brackets of horizontal vector fields. Let us give an in-depth
example, which will also be useful for seeing what happens when studying geodesics, in the next
section.

2.2 An Example: the ℓ
2-product of Heisenberg Groups

We take an in-depth look at the problem of controllability in a very simple example of infinite
dimensional sub-Riemannian manifold, the ℓ2-product of Heisenberg groups.

2.2.1 The 3-Dimensional Heisenberg Group

The Heisenberg group is the simplest case of finite dimensional sub-Riemannian manifold. The
manifold itself is H = R3, and the horizontal space at q = (x, y, z) is spanned by

X(q) = (1, 0,−x
2
) =

∂

∂x
− y

2

∂

∂z
, Y (q) = (0, 1,

x

2
) =

∂

∂y
+
x

2

∂

∂z
,

8



which are orthonormal for the metric. Horizontal curves q(·) = (x(·), y(·), z(·)) therefore satisfy

ẋ(t) = u(t), ẏ(t) = v(t), ż(t) =
1

2
(v(t)x(t) − u(t)y(t)), u, v ∈ L2(I;R),

with action

AH(q(·)) = 1

2

∫

I

(u(t)2 + v(t)2)dt.

Since [X,Y ](q) = ∂
∂z , so that X,Y, [X,Y ] span the tangent bundle, any two points can be connected

by a horizontal curve, and the sub-Riemannian distance satisfies the ball-box estimates of Theorem
3

1

C
(x2 + y2 + |z|) 6 dH(0, (x, y, z)) 6 C(x2 + y2 + |z|)

for some fixed C > 0.

2.2.2 The ℓ2-product of Heisenberg groups

We now consider the Hilbert manifold M = ℓ2(N,R3) the space of square-summable sequences
q = (qn)n∈N = (xn, yn, zn)n∈N of R3. We define on it the sub-Riemannian structure generated as
q by the Hilbert frame

Xn(q) =
∂

∂xn
− yn

2

∂

∂zn
, Yn(q) =

∂

∂yn
+
xn
2

∂

∂zn
.

Lie Algebra. We denote by L the Lie algebra of smooth vector fields generated by horizontal
vector fields. Now, we have Zn := [Xn, Yn] =

∂
∂zn

, so that the horizontal vector fields give a
Hilbert-spanning frame of TM . In other words, any tangent vector can be written as an infinite
linear combination with ℓ2 coefficients of brackets of horizontal vector fields. However, they do not
span it as a vector field.

For example take the two horizontal vector fields

X =
∑

n∈N

anXn, Y =
∑

n∈N

bnYn,
∑

n∈N

a2n + b2n < +∞.

Then

[X1, X2] =
1

2

∑

n∈N

anbn
∂

∂zn
.

But, as a product of ℓ2-sequences, (anbn)n∈N actually belongs to the dense subspace of absolutely
summable sequences ℓ1(N,R) ⊂ ℓ2(N,R).

More generally, one easily checks that any tangent vector v ∈ TqM at 0 belongs to the L if and
only if it can be written

v =
∑

n∈N

anXn(q) + bnYn(q) + cnZn(q),
∑

n∈N

a2n + b2n < +∞,
∑

n∈N

|cn| 6 +∞.

Therefore, L is only dense in M .
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Orbit of 0. Let us describe the orbit of 0 in M . A curve t 7→ q(t) = (qn(t))n∈N is horizontal if
and only if each curve t 7→ qn(t) = (xn(t), yn(t), zn(t)) ∈ R3 ≃ H is horizontal for the 3-dimensional
Heisenberg group. Moereover, its action is given by

A(q(·)) =
∑

n∈N

A(qn(·)).

Consequently, the sub-Riemannian distance between 0 and q = (xn, yn, zn)n∈N is given by

d(q, q′)2 =

+∞∑

n=0

dH
(
(xn, yn, zn), (x

′
n, y

′
n, z

′
n)
)2
,

with dH denoting the sub-Riemannian distance on the Heisenberg group H as described in the
previous section. But we know from Theorem 2 that

∃C > 0, ∀(x, y, z) ∈ H, 1

C
(x2 + y2 + |z|) 6 dH(0H, (x, y, z))

2
6 C(x2 + y2 + |z|).

In particular d(0, q) is finite if and only if (xn, yn)n ∈ l2(N,R2) while (zn)n ∈ l1(N,R). In other
words,

O0 = l2(N,R2)× l1(N,R) ⊂ l2(N,R3).

Moreover, the topology on O0 induced by the sub-Riemannian distance actually coincides with the
usual Banach space topology of l2(N,R2)× l1(N,R), and we get a dense orbit in M . We also lost
the Hilbert topology.

We can actually get even worse, even in the simple case of ℓ2 products of Carnot groups.

2.2.3 A Non-Locally Convex Topology

Slightly complicating our example slightly, if we take M = l2(N,R4) as an infinite product of the
Engel group E [17] (or any step-3 or higher Carnot group), we start getting even less satisfactory
topologies. Indeed, we will once more get O0 = l2(N,E). But on the Engel group,

1

C
(x2 + y2 + |z|+ |w|2/3) 6 dH(0H, (x, y, z, w))

2
6 C(x2 + y2 + |z|+ |w|2/3).

In other words, the sub-Riemannian distance on O0 is equivalent to the usual quasi-distance on
l2(N,R2)× l1(N,R)× l2/3(N,R), whose topology is not locally convex.

2.3 Approximate Controllability

As we just saw, the conditions for Chow-Rashevski’s theorem are very rarely satisfied. However,
it is much more common for Lq to be dense in TqM . In this case, as was proved in [10, ?, ?], we
do have approximate controllability.

Theorem 4 ([10, ?, ?]). Assume that M is a Banach manifold, and that Lq is dense in TqM for
every q in M . Then each orbit Oq is dense in M , so that the structure is approximate controllable.

Remark 6. This is actually true even for so-called convenient manifolds (i.e., manifolds modelled
on convenient vector spaces, see [14]), as shown in [?].

The proof uses the fact that for a proper closed subset F of a Banach space B, there is a
cone C = {q0 + tq, q ∈ K, 0 6 t 6 1} with nonempty interior, vertex q0 ∈ F and such that
C ∩ F = {q0}. This in turn implies that there are no C1-curves in F starting at q0 with initial
velocity in the interior of C. But taking F to be the closure of an orbit, one can easily build a
curve from q0 with initial velocity given by any v ∈ Lq0 . Hence, if F 6= M , we get that Lq0 is not
dense in B.
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2.4 Exact controllability and strong Chow-Rashevski property

The question of exact controllability is much more complex, even in simple casesas we saw in
Section 2.2, and we do not often have exact controllability.

However, under a stronger hypothesis, and by working a little harder, we can still obtain it.

2.4.1 The Strong Chow-Rashevski Property

Definition 9. The sub-Riemannian structure is said to satisfy the strong Chow-Rashevski

property at q ∈M if there exists fixed horizontal vector fields X1, . . . , Xr ∈ ∆ and a fixed positive
integer k such that

TqM = ∆q +
∑

i∈{1,...,r}

[∆, Xi]q + · · ·+
∑

I∈{1,...,r}k

[∆, XI ]q, (3)

where, for simplicity, we denoted

XI = [Xij , [. . . , [Xi2 , Xi1 ] . . . ], I = (i1, . . . , ij) ∈ {1, . . . , r}j , j ∈ {1, . . . , k}.

In this case, we can adapt the proof of the finite dimentional Chow-Rashevski theorem to the
infinite dimensional context.

Examples. Before we state our result, let us give a few examples of infinite dimensional sub-
Riemannian manifolds that satisfy this property.

Example 5. If the horizontal distribution has finite condimension everywhere, then the Chow-
Rashevski condition and the strong Chow-Rashevski condition are equivalent. This is the case
for an infinite dimensional Heisenberg group H∞ = ℓ2(N,R2) × R, with horizontal vector fields
spanned by

Xn(q) = Xn(xn, yn, z) =
∂

∂xn
− 1

2
yn

∂

∂z
, Yn(q) = Yn(xn, yn, z) =

∂

∂yn
+

1

2
xn

∂

∂z
, n ∈ N.

Here TqM = ∆q + [∆q, Xn] = ∆q + [∆q, Yn] for any integer n.

Example 6. Consider M = R× ℓ2(N,R2), with Hilbert basis of horizontal vector fields given by

X(q) = X(x, yn, zn) =
∂

∂x
, Yn(q) =

∂

∂yn
+ x

∂

∂zn
.

We have TqM = ∆q + [∆q, X ]. Indeed, at q = 0 for example, any tangent vector can be written

v = a
∂

∂x
(0) +

∑

n∈N

bn
∂

∂yn
(0) +

∑

n∈N

cn
∂

∂zn
(0),

for some a ∈ R, b, c ∈ ℓ2(N,R). Then, letting Y = aX +
∑

n∈N
bnYn and Y ′ =

∑

n∈N
cnYn, we

have
v = Y (0) + [Y ′, X ](0).

Example 7. It was proved in [2] that the sub-Riemannian structure on the group of diffeomor-
phisms Ds(N) of a compact d-dimensional sub-Riemannian manifold N defined in Example 3 has
exact controllability. It was proved in [6] that, after some work, this structure also satisfies the
strong Chow-Rashevski condition, and estimates on the corresponding sub-Riemannian distance
were given.

11



2.4.2 Statement and Proof of the Theorem

Theorem 5. Assume the strong Chow-Rashevski property is satisfied at q0 ∈ M for some fixed
vector fields X1, . . . , Xr ∈ ∆, and k the smallest integer such that (3) is satisfied. Then Oq0

contains a neighbourhood of q0, and the topology induced by the sub-Riemmanian distance is coarser
than its intrinsic manifold topology.

As a consequence, if the metric is strong, the two topologies coincide.

Remark 7. SinceM is connected, an immediate consequence is that if the strong Chow-Rashevski
property is satisfied at every point of M , then Oq0 =M and we have exact controllability.

Proof. We work on a small neighbourhood V0 of q0, that we identify to an open subset of a Banach
space B, and on which we have a trivialization V0×H≃H|V0

. In this trivialization, for any u ∈ H ,
we define the smooth vector field q 7→ Xu(q) = ξq(u). We can assume that each Xi is of the form
Xi = Xu0,i (changing the trivialization if necessary. We also denote t 7→ ϕt(u) : V0 → V0 the
corresponding flow on V0.

Fix a positive integer N , that we will assume to be as big as needed. The Cauchy-Lipshitz
theorem with parameters shows that there exists a smaller neighbourhood V1 ⊂ V0 of q0, and a
neighbourhood U0 of 0 in H, such that for any u1, . . . , uN in U0, q in V1 and t1, . . . , tN in [−1, 1],

ϕt1(u1) ◦ · · · ◦ ϕtN (uN )(q) ∈ V0.

Note that this mapping is smooth in all variables t, u and q, as composition of flows of smooth
vector fields that depend smoothly on a parameter.

Multiplying each Xi by an appropriate constant if necessary, we can assume that Xi = X(u0,i),
with u0,i ∈ U0. To simplify notations, for the rest of the proof, we will denote ϕi = ϕ(ui,0), i ∈
{1, . . . , r}, and, for j ∈ {1, . . . , k} and I = (i1, . . . , ij) ∈ {1, . . . , r}j , we denote the iterated Lie
bracket

XI = [Xij , [. . . , [Xi2 , Xi1 ] . . . ].

We then define for each such I and t ∈ [0, 1] the smooth mapping ϕt
I : V1 → V0 by

ϕt
I(q) = ϕt

ij ◦ · · · ◦ ϕ
t
i1 .

We can now define, for u ∈ U0 and t ∈ [0, 1],

φtI(u, q) := ϕ1(u) ◦ ϕ−t
I ◦ ϕ1(u) ◦ ϕt

I(q).

Note that (t, u) 7→ φtI(u) is smooth, and that its range is included in Oq0 as a concatenation of
2k + 2 horizontal curves. Moreover, the usual formulas for commutators of flows yields

φtI(u, q) = q + ti[X(u), XI ](q) + o(tiu)

as u, t→ 0, for fixed q. Therefore, for fixed q, the mapping U0 7→ V0

ΦI(u, q) = φ
‖u‖

1/i+1

H

I




u

‖u‖
i

i+1

H

, q



 (4)

is smooth outside of 0. Moreover, since u 7→ X(u) is linear, ΦI is also C1 around 0 with first order
limited development

ΦI(u, q) = q + [X(u), XI ](q) + o(u).
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From there, we easily see that the mapping

Φ : U0 × U r
0 × · · · × Ukr

0 → V0

u = (uIi)i=0,...,k,
Ii∈{1,...,r}i

7→




 ©

i=0,...,k,

Ii∈{1,...,r}i

ΦI(uIi)




 (q0)

is of class C1 near 0, with

Φ(u) = q0 +
∑

i=0,...,k,
Ii∈{1,...,r}i

[X(uIi), XI ](q0) + o(u).

Then dΦ(0) : H1+···+rk → Tq0M is onto as a consequence of the strong Chow-Rashevski condi-
tion. Hence, its range contains a neighbourhood of q0. But since Φ(u) is obtained by taking the
endpoint of a concatenation of horizontal curves, we see that its range is included in the orbit of
q0. Consequently, the orbit of q0 does contain a neighbourhhod of q0.

Moreover, let C1 = maxi=1,...r(gq0(ui,0, ui,0), where we recall that Xi = X(ui,0), and C2 such
that gq(u, u) 6 C‖u‖2H on V0×H (reducing V0 if necessary). Finally, let C = max(1, C1, C2)

2. Then
we see that any ΦI(u, q), I ∈ {1, . . . , r}i, i = 0, . . . , k, is obtained by taking the endpoint of 2i+2

curves of energy less than C‖u‖2/i+1
H . Consequently, we get one side of the ball-box estimates:

d(q0,Φ(u))
2
6 C′

∑

i=0,...,k,

Ii∈{1,...,r}i

‖uIi‖
2/i+1
H .

In particular, any sub-Riemannian ball around q0 includes a neighbourhood of q0, so that the
topology induced by the distance is coarser than the intrinsic manifold topology.

Remark 8. It would be much preferable to obtain estimates on the distance of the form

d(q0,Φ(u))
2
6 C′

∑

i=0,...,k,
Ii∈{1,...,r}i

gq0(uIi , uIi)
1/i+1.

This is obviously true in the strong case. However, in the weak case, we would need to replace
each instance of ‖u‖H by

√
gq0(u, u) in the formula (4) for ΦI . But then the term

u
(√

gq0(u, u)
)i/i+1

may not go to 0 as u goes to zero, which prevents the rest of the proof from working. This version
of the ball-box estimates is therefore an open conjecture.

Remark 9. The converse inequality (for the strong case) is still open. The proof in finite di-
mensions uses the concept of privileged coordinates, which are much harder to find in infinite
dimensions.

Corollary 1. If the strong Chow-Rashevski condition is satisied at some point q0 of M , then the
Banach space B on which M is modelled is a quotient of products of H. In particular, if the metric
is strong, then the norm of B is equivalent to a Hilbert norm.

The ℓ2-product of Heisenberg group restricted to ℓ2(N,R2) × ℓ1(N,R) does not satisfy the
strong Chow-Rashevski condition, although it satisfies the plain Chow-Rashevski condition. This
indicates that the strong version of the condition may still hold in infinite dimensions. The proof
would most likely be very different, a require completely new mathematical tools.

13



3 Geodesics and the Hamiltonian Geodesic Flow

The purpose of this section is to study geodesics on infinite dimensional sub-Riemannian manifolds.
We first recall the various possible definitions of geodesics in infinite dimensions. Then, we define
a manifold structure on certain subsets of horizontal systems in order to investigate first order
conditions for a such a system to prject onto a geodesic, and recall some properties of the canonical
weak symplectic form on the cotangent bundle of a manifold.

We then finally investigate first order conditions for a horizontal curve to be a geodesic. We
will in particular see that no first order necessary condition can be given in general. However, we
will give sufficient conditions for a curve to be a critical point of the action with fixed endpoints,
and sufficient conditions for a curve to be abnormal. We will also see that in spite of this, there is
still a Hamiltonian flow of geodesics in the strong case, and we will give conditions for the existence
of such a flow for weak sub-Riemannian structures that specialize to the well-known corresponding
conditions on Riemannian manifolds. After that, we go back to the case of ℓ2-product of Heisenberg
groups, in order to highlight the problems and differences that appear in infinite dimensions.

But first, let us establish a few notations and definitions of symplectic geometry that will be
necessary to define the Hamiltonian flow.

3.1 Symplectic Gradient and Partial Symplectic Gradient

Recall that a 2-form ω on a Banach manifold N is said to be weak symplectic if it is closed, and if
the linear mapping v ∈ TxN 7→ ωx(v, ·) ∈ T ∗

xN is one-to-one for each x in N .
We now fix a Banach manifold M , modelled on a Banach space B. Let ω be the canonical

weak symplectic form on T ∗M . Recall that ω is a closed 2-form on T ∗M defined in canonical
coordinates by

ωq,p(δq, δp; δq
′, δp′) = δp(δq′)− δp′(δq).

Remark 10. For us, “in canonical coordinates” will mean in a chart Ψ : T ∗M|U → ψ(U)×B∗ of
the form Ψ(q, p) = (ψ(q), dψ(q)∗p), with ψ : U 7→ ψ(U) ⊂ B a diffeomorphism. We then identify
T ∗M|U ≃ ψ(U)× B∗ so that (q, p) ≃ (ψ(q), dψ(q)∗p) for readability.

Symplectic gradient of a function. Take a smooth function f : T ∗M → R, and let (q, p) ∈
T ∗M. We say that f admits a symplectic gradient at (q, p) if there exists a vector ∇ωf(q, p) ∈
TT ∗M such that

df(q, p) = ω(∇ωf(q, p), ·).
In infinite dimensions, it is well-known that not every smooth function admits a symplectic (unless
B is reflexive), see [14] for example.

Now the partial derivative of f along the fiber ∂pf(q, p) is defined intrinsically. It belongs to
(T ∗

qM)∗ = T ∗∗
q M . Denote by j the canonical dense inclusion TqM →֒ T ∗∗

q M . If ∂pf(q, p) belongs
to the image of j, it can then be identified to the vector j−1(∂pf(q, p)) ∈ TqM , which we also
denote ∂pf(q, p). In this case, f does admit a symplectic gradient ∇ωf(q, p) at (q, p), as this
gradient is given in canonical coordinates by the formula

∇ωf(q, p) = (∂pf(q, p),−∂qf(q, p)) ∈ TqM × T ∗
qM ≃ T(q,p)T

∗M.

Symplectic Partial Gradient of a Function. We now consider a vector bundle E on M ,
and denote by T ∗M ⊕M E the vector bundle with fiber (T ∗M ⊕M Eh)q = T ∗

qM × Eq. Let f :
T ∗M ⊕M E → R be a smooth function, and fix (q, p, e) ∈ T ∗M ⊕M E . Assume that ∂pf(q0, p0, e0)
belongs to j(TqM), with j : TM → T ∗∗M the canonical inclusion.

14



Then, if ∂ef(q0, p0, e0) = 0, f admits a unique symplectic partial gradient ∇ωf(q0, p0, e0) ∈
T ∗
(q,p)TM at (q0, p0, e0), in the following sense: for any smooth mapping e : (q, p) 7→ e(q, p) ∈ Eq

with e(q0, p0) = e0, we have

d(f(q, p, e(q, p)))q=q0,p=p0
= ω(∇ωf(q0, p0, e0), ·).

Indeed, in a local trivialisation of E and canonical coordinates on T ∗M near (q0, p0), we have

d(f(q, p, e(q, p)))q=q0,p=p0
= ∂qf(q0, p0, e0) + ∂pf(q0, p0, e0) + ∂ef(q0, p0, e0)

︸ ︷︷ ︸

=0

.de(q0, p0)

= ∂qf(q0, p0, e0) + ∂pf(q0, p0, e0).

This gradient is therefore given in canonical coordinates by

∇ωf(q0, p0, e0) = (∂pf(q0, p0, e0),−∂qf(q0, p0, e0)).

Restriction of ω to a dense sub-bundle. Let τM →֒ T ∗M be a smooth, dense sub-bundle of
T ∗M . We have the following trivial (but crucial) lemma.

Remark 11. We use a ∗ in τM to emphasize that we are in a sub-bundle of a dual space. We do
not require τM to be the dual bundle of some vector bundle τM .

Lemma 2. The restriction of ω to τM , i.e., its pull-back through the inclusion map τM → T ∗M ,
is a weak symplectic form on τM . We still denote it ω.

Proof. The 2-form ω on τM is closed as the pull-back of a closed 2-form. It is not degenerate
because of the density of τM in T ∗M .

A smooth map f : τM → R then admits a symplectic gradient at (q, p) ∈ τM if and only if, in
canonical coordinates, the following conditions are satisfied:

1. f admits a symplectic gradient at (q, p) in T ∗M , i.e., the partial derivative of f along the
fiber ∂pf(q, p) ∈ T ∗∗

q M belongs to the image of the canonical embedding j : TqM →֒ T ∗∗
q M ,

through which it can be identified to a vector ∇pf(q, p) ∈ TqM , and

2. the symplectic gradient of f belongs to Tτ∗(q,p)M ⊂ TT ∗
(q,p)M . In other words, in a canonical

chart, ∂qf(q, p) (which, in the chart, is an element of T ∗
qM) actually belongs to the dense

subspace τqM .

In this case, in those coordinates, we can indeed write

∇ωf(q, p) = (∇pf,−∂qf) ∈ T(q,p)τM ⊂ T(q,p)T
∗M,

which is a stable property under a change of canonical coordinates.

We can now investigate the geodesics of a sub-Riemannian structure.

3.2 Manifold Structure on the Set of Horizontal Systems

Let M be a Banach manifold endowed with a smooth sub-Riemannian structure (H, ξ, g). Let us
fix I = [0, 1] to simplify notations. We denote

ΩH = {(q, u) ∈ H1 × L2(I,H) | (q, u) horizontal}
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the set of all horizontal systems. We also define, for q0, q1 in M ,

ΩH
q0 = {(q, u) ∈ ΩH | q(0) = q0}, ΩH

q0,q1 = {(q, u) ∈ ΩH | q(0) = q0, q(1) = q1}.

To give conditions for a curve to be a geodesic, it is natural to study critical points of the action
among horizontal systems with fixed endpoints (that is, critical points of A on ΩH

q0,q1). For this,
we need to put a manifold structure on the space of horizontal systems.

When M is a d-dimensional manifold, the space H1 × L2(I,H) as defined in (2) is a smooth
Banach manifold (see for example the appendix of [17]), as an L2(I,H)-fiber bundle overH1(I,M),
which is a Hilbert manifold, see [11, 12].

This is no longer the case in general whenM is a Banach manifold. Indeed, to build the atlas for
H1(I,M) one needs a smooth local addition: a smooth diffeomorphism F1 ⊂ TM → F2 ⊂M ×M ,
from F1 neighbourhood of the zero section onto F2 neighbourhood of the diagonal, such that any
(q, 0) ∈ U is mapped to (q, q) [14].

However, since the concept of geodesic is a local one (or, in the case of minimizing geodesics,
only concerns curves without self-intersections), we can study a horizontal system on small enough
time intervals that the trajectory stays on a domain on which we can trivialize both H and TM .
For our purpose in this section, we can therefore assume that M is an open subset of B, and that
H ≃M ×H. In this case, H1 ×L2(I,H) is just an open subset of H1(I,M)×L2(I,H). Then, we
have the following result, first proved in [8][Lemma 3] but whose proof we include for the sake of
completeness.

Proposition 1. We keep the notations and assumptions of the previous discussion. Fix q0 in M .
Then the space ΩH

q0 of horizontal systems whose trajectories start at q0 is a smooth submanifold of
H1 × L2(I,H|U ), diffeomorphic to an open subset of L2(I,H) through

u ∈ U ⊂ L2(I,H) 7→ (q(u), u) ∈ H1 × L2(I,H|U )

The trajectory map u 7→ q(u) is obtained by solving the Cauchy problem

q(0) = q0, q̇(t) = ξq(t)u(t).

Proof. Define C : H1 × L2(I,H) → L2(I,B) by

C(q, u)(t) = q̇(t)− ξq(t)u(t).

Note that since M is an open subset of B in our case, we have TM ≃M × B.
Then Ωh

q0 = C−1({0}). Now fix (q, u) ∈ ΩH
q0 . The operator ∂qC(q, u) : H

1(I,B) → L2(I,B) is
given by

(∂qC(q, u).δq)(t) = δ̇q(t)− (∂qξq(t)u(t)).δq(t), δq ∈ H1(I,B).

This is obviously a Banach isomorphism: for any a ∈ L2(I,B),

δq(0) = 0, (∂qC(q, u).δq)(t) = a(t), a.e.t ∈ I

is just a linear Cauchy problem, and hence admits a unique global solution δq = ∂qC(q, u)
−1a.

The implicit function theorem then states that Ωh
q0 = C−1({0}) is the graph of a smooth mapping

u 7→ q(u) from an open subset of L2(I,H) onto H1(I,M).

Consequently, we will often identify L2(I,H) with ΩH
q0 , and a control u with the corresponding

horizontal system (q(u), u).
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3.3 Endpoint Mapping and Critical Points of the Action

The endpoint mapping is defined in the following trivial corollary of Proposition 1.

Corollary 2. The so-called Endpoint map E : (q, u) ∈ Ωq0 7→ q(u)(1) is smooth. Its derivative
at u in the direction δu ∈ L2(I,H) is equal to δq(1), where (q, δq) ∈ H1(I, TM) and δq is obtained
by solving the linear Cauchy problem

δq(0) = 0, δ̇q(t) = ∂q(ξq(t)u(t)).δq(t) + ξq(t)δu(t).

Note that ΩH
q0,q1 = E−1({q1}). Therefore, when looking for geodesics between q0 and q1, one

attempts to solve the smooth constrained optimal control problem of minimizing

A(u) = A(q, u) =
1

2

∫ 1

0

gq(t)(u(t), u(t))dt

among all (q, u) in ΩH
q0 such that E(q, u) = q1.

The three types of sub-Riemannian geodesics. Before we move on, we need to discuss the
apparition in infinite dimension of a new type of geodesics, called elusive geodesics. They were
introduced for the first time in [6].

Fix a minimizing geodesic (q, u) = (q(u), u), which we identify with the corresponding optimal
control u. We know that the smooth map F = (A,E) : ΩH

q0 → R×M must have a derivative that
is not onto. We have two possibilities:

1. The range of dF (u) has positive codimension in R × Tq1M , that is, its closure is a proper
subset of Tq1M .

2. The range of dF (u) is a proper dense subset of R× Tq1M . This can only happen when M is
infinite dimensional.

Using a cotangent viewpoint, these condition can be reformulated as:

1. There exists (λ, p1) ∈ {0, 1} × T ∗
q1M \ {(0, 0)} such that

λdA = dE(u)∗p1,

where dE(u)∗ : T ∗
q1M → L2(I,H)∗ is the adjoint map of dE(u). Depending on the value of

λ, this splits into two subcases:

(a) The normal case: λ = 1, which gives dA = dE(u)∗p1. This corresponds to a normal
geodesic, from which we will derive the Hamiltonian flow later in the section.

(b) The abnormal case: λ = 0, which gives 0 = dE(u)∗p1 and p1 6= 0. This implies that u
is a singular control (i.e., a critical point of the endpoint map), and we say that (q, u)
is an abnormal geodesic. While there is no characterization of abnormal geodesics, even
in finite dimensions, there is a nice Hamiltonian characterization yielding all singular
controls [17, Chapter 5]. We will give the infinite dimensional version of this result.

2. dF (u)∗ is one-to-one, which is no different from the case of non minimizing curves. This
gives no useful Hamiltonian characterization. We say that (q, u) is an elusive geodesic.

This problematic second is the reason why there is no Pontryagin principle in infinite dimensions
[15]. It is actually a very common occurence in infinite dimensional sub-Riemannian geometry. For
example, any curve in the ℓ2 product of Heisenberg groups with no constant component is elusive.
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Remark 12. As discussed in [4, 8, 6], an interpretation of this is that the topology induced
by the sub-Riemannian distance is much finer than the manifold topology. Hence, there are not
enough Lagrange multipliers p1. However, if the sub-Riemannian structure can be restricted to a
smooth dense embedded submanifold M ′ ⊂ M , that is, a manifold modelled on a Banach space
with dense and continuous inclusion in B, such thatM ′ contains Oq0 , then T

∗
q1M  T ∗

q1M
′, and we

obtain additional multipliers, which turns some elusive curves into additional normal and abnormal
extremums that are more easily characterized.

This is the case when M = ℓ2(N,R3) is the ℓ2-product of Heisenberg groups , where one can
restrict the structure to M ′ = ℓ2(N,R2) × ℓ1(N,R), whose cotangent space at 0 is ℓ2(N,R2) ×
ℓ∞(N,R) which is much bigger than T ∗

0M = ℓ2(N,R3).
The question of finding the “right” tangent bundle, that is, one for which there are no elusive

geodesics, is open an would probably require more powerful and innovative tools to solve. For
example, the structure described in Section 2.2.3 seems to indicate that the correct dense subman-
ifold to which we should restrict the structure would be ℓ2(N,R2)× ℓ1(N,R)× ℓ2/3(N,R), which is
not even locally convex and therefore has a dual space that is too small.

So there are no first order necessary conditions for a control to yield a geodesic in infinite
dimensions. However, there is a partial converse to this result which does remains true. First of
all, we say that a control u is a critical point of the action with fixed enpoint if, for any C1 family
of controls s ∈ (−ε, ε) ⊂ R 7→ us such that q(us)(1) = q1 for each s and u0 = u, we have

∂s(A(us))|s=0 = 0.

Note that any geodesic is such a critical point. Then the following result is immediate.

Lemma 3. Fix a control u ∈ U .

1. If there exists p1 ∈ T ∗
q1M such that dA(u) = dE(u)∗p1, then u is a critical point of the action

with fixed endpoints.

2. If there exists p1 ∈ T ∗
q1M \ {0} such that 0 = dE(u)∗p1, then u is a singular control.

To obtain a workable version of these conditions, we need to compute, for any control u and
p1 ∈ T ∗

q1M, a good expression for λdA(u) − dE(u)∗p1, with λ = 0, 1. This is given by the
Hamiltonian formulation.

3.4 Hamiltonian Formulation

We keep the same notations as in the previous section. We define the Hamiltonian Hλ : T ∗M ⊕M

H → R of the problem by the smooth expression

Hλ(q, p, u) = p(ξqu)−
λ

2
gq(u, u).

Here, T ∗M ⊕M H is the vector bundle above M with fiber at q given by T ∗
qM ×Hq.

Notice that the (intrinsically defined) partial derivative of Hλ in p satisfies

∂pH
λ(q, p, u).δp = δp(ξqu), δp ∈ T ∗qM,

so that ∂pH
λ(q, p, u) can be identified to ξqu through the canonical inclusion TqM → T ∗∗

q M .

Consequently, Hλ admits a symplectic gradient ∇ωHλ(q, p, u) (see Section 3.1 for the appropriate
definitions), given in canonical coordinates by

∇ωHλ(q, p, u) = (∂pH(q, p, u),−∂qH(q, p, u)).

18



Proposition 2. Fix a control u in a local space of controls U such that (q, u) = (q(u), u) ∈ ΩH
q0,q1 .

Then
λdA(u) = dE(u)∗p1, (λ, p1) ∈ {0, 1} × T ∗

q1M \ {(0, 0)}, (5)

if and only if there exists t ∈ I 7→ p(t) ∈ T ∗
q(t)M of class H1 such that p(1) = p1 and, for almost

every t in t,
∃t ∈ I 7→ p(t) ∈ T ∗

q(t)M of class H1, p(1) = p1, and, a.e. t ∈ I,
{

0 = ∂uH
λ(q(t), p(t), u(t)),

(q̇(t), ṗ(t)) = ∇ωHλ(q(t), p(t), u(t)).

(6)

In this case, (q, u) is automatically a critical point of the action with fixed endpoints when λ = 1,
and a critical point of the endpoint map (i.e., u is a singular control) when λ = 0.

As mentionned in the previous section, the converse to the last statement is not true. See
Section ?? for examples.

Remark 13. Note that (5), and even the definition of singular controls and critical points of the
action, requires the local viewpoint we adopted (i.e., that M is an open subset of B).

However, that is not the case for (6). Indeed, even though ∇ωHλ(q(t), p(t), u(t)) usually de-
pends on a trivialization of H, its value becomes intrisic when ∂uH

λ(q(t), p(t), u(t)) vanishes (see
Section 3.1 for a proof). We can then simply use condition (6) to identify geodesics and singular
curves even in the global viewpoint.

The proof was given in [6] for the special case of strong structures on groups of diffeomorphisms.
The general proof is almost the same.

Proof. The proof is the same as in finite dimensions. Fix u ∈ L2(0, 1;H) q the corresponding
trajectory, and (λ, p1) ∈ {0, 1}×T ∗

q1M \{(0, 0)}. Take δu ∈ L2(0, 1;H). We have dE(u).δu = δq(1),
with δq ∈ H1(I,B) solution of

δq(0) = 0, δ̇q(t) = ∂q(ξq(t)u(t)) + ξq(t)δu(t).

Hence

λdA(u)− dE(u)∗p1 =

∫ 1

0

(

λgq(t)(u(t), δu(t)) +
λ

2
∂q(gq(t)(u(t), u(t))).δq(t)

)

dt− p(1)(δq(1)), (7)

where t 7→ p(t) ∈ T ∗
q(t)M solves the linear Cauchy problem

p(1) = p1, ṗ(t) = −∂qHλ(q(t), p(t), u(t)) = −∂q(ξq(t)u(t))∗p(t) +
λ

2
∂qgq(t)(u(t), u(t)).

But we see that λ
2∂q(gq(t)(u(t), u(t))) = ṗ(t) + ∂q(ξq(t)u(t))

∗p(t) so that a term ṗ(t)δq(t) appears
in the right-hand side of (7). An integration by part on this term, and the fact that δq(0) = 0 will
yield

λdA(u)− dE(u)∗p1 =

∫ 1

0

(

λgq(t)(u(t), δu(t)) + p(t)(∂q(ξq(t)u(t)).δq(t)) − p(t)(δ̇q(t))
)

dt.

But replacing δ̇q(t) with ∂q(ξq(t)u(t)) + ξq(t)δu(t) finally gives us

λdA(u)− dE(u)∗p1 =

∫ 1

0

(
λgq(t)(u(t), δu(t))− p(t)(ξq(t)δu(t))

)
dt = −

∫ 1

0

∂uH
λ(q(t), p(t), u(t))dt.

In particular,

λdA(u) − dE(u)∗p1 ⇐⇒ ∂uH
λ(q(t), p(t), u(t)) = 0 a.e. t ∈ I.
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3.5 Hamiltonian Geodesic flow

We now investigate the existence of a Hamiltonian flow for the normal geodesics. We will find that,
much like in the Riemannian case, strong structures always admit such a flow, while additional
assumptions are required for weak sub-Riemannian manifold.

The strong case. We assume for now that the sub-Riemannian structure is strong. In this case,
because each gq is a Hilbert product, the equation

∂uH
1(q, p, u) = 0 = ξ∗q p− gq(u, ·)

has a unique solution u(q, p) = G−1
q ξ∗qp for any (q, p) ∈ T ∗M (Riesz representation theorem). Here

G−1
q is the smooth inverse of the smooth vector bundle isomorphism G : u ∈ Hq 7→ gq(u, ·) ∈ H∗,

also called the musical operator. This lets us define the normal Hamiltonian of the structure
h : T ∗M → R by

h(q, p) = H1(q, p, u(q, p)) =
1

2
gq(u(q, p), u(q, p)). (8)

Do note that, since H1 is strictly concave in u, we can also write h(q, p) = maxu∈Hq H
1(q, p, u).

Now thanks to the fact that ∂uH
1(q, p, u(q, p)) = 0, h admits a smooth symplectic gradient

given by
∇ωh(q, p) = ∇ωH1(q, p, u(q, p)), (q, p) ∈ T ∗M.

This gradient can be integrated into a well-defined smooth local flow that we call the Hamiltonian
geodesic flow.

Theorem 6 (Hamiltonian geodesic flow: strong case). On a strong sub-Riemannian manifold,
the normal Hamiltonian is well-defined, and for any (q0, p0) ∈ T ∗M , there is a unique maximal
solution to the normal Hamiltonian equation

(q̇(t), ṗ(t)) = ∇ωh(q(t), p(t)).

More importantly, any such solution t 7→ (q(t), p(t)) projects to a geodesic q(·) on M .

We will give the proof for this theorem at the same time as that for the weak case later in the
section.

Adapted cotangent sub-bundles. Some extra difficulties can appear when the metric is weak.
More precisely, the equation ∂uH = 0 may not have a solution for every (q, p) ∈ T ∗M , so that the
normal Hamiltonian may not be defined. Hence, we need to restrict ourselves to a subspace on
which it is well-defined. We will need the following definitions.

Definition 10. A relative cotangent bundle is a Banach vector bundle τM →M which admits
a smooth, dense immersion in T ∗M .

Such a bundle τM is said to be adapted to a sub-Riemannian structure (H, ξ, g) on M if, for
every q ∈M and every p ∈ τ∗qM , there exists u(q, p) ∈ Hq such that

ξ∗qp = gq(u(q, p), ·).

In other words, a sub-bundle τM is adapted to the structure if the normal Hamiltonian can
be define as in (8) on τMNote that such a u(q, p) is always uniquely determined by q and p (and
linear in p). Indeed, gq is positive definite, so u 7→ gq(u, ·) is injective.

Remark 14. If g is a strong metric, then T ∗M itself is of course adapted to the structure.
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Remark 15. In the case of a weak Riemannian structure (H, ξ) = (TM, IdTM ), one can take
τM = g(TM, ·), with the topology of TM itself. It is the only relative cotangent bundle adapted
to the structure.

Remark 16. More generally, if H is a closed subbundle of TM and g the restriction of a weak
Riemannian metric to H, one can still take τM = g(TM, ·). This is the relative cotangent bundle
used to find the geodesic equations in [13].

We now have the following trivial (but crucial) lemma.

Lemma 4. The restriction of ω to a dense sub-bundle τM →֒ T ∗M , i.e., its pull-back through the
inclusion map, is a weak symplectic form on τM . We still denote it ω.

Proof. The 2-form ω on τM is closed, since it is the pull-back of a closed 2-form. The fact that it
is not degenerate comes fromthe density of τM in T ∗M .

Let (H, ξ, g) be a weak sub-Riemannian structure on a Banach manifold M , with typical fiber
H . Let τM be an adapted relative cotangent bundle. The restriction of H1 to τM is given by

H1(q, p, u) = p(ξqu)−
1

2
gq(u, u) = gq

(

u(q, p)− 1

2
u, u

)

,

so that we can indeed define the normal Hamiltonian on τM by

h(q, p) = max
u∈Hq

(H1(q, p, u)) = h(q, p, u(q, p)) =
1

2
gq(u(q, p), u(q, p)).

The partial derivative of H along the fiber in τM is given by

∂ph(q, p)(δp) = ∂pH
1(q, p, u(q, p))(δp) + ∂uH

1(q, p, u(q, p))(u(q, δp)) = δp(ξqu(q, p)),

since ∂uh(q, p, u(q, p)) = 0. In particular, we can identify ∂ph(q, p) ∈ τ∗∗M with the tangent vector
∇ph(q, p) = ξqu(q, p) ∈ TqM .

From now on, we make the following important assumptions:

(A1): The mapping (q, p) 7→ u(q, p) is smooth on τM , so that h is also smooth.

(A2): For every (q, p) ∈ τM , ∂qH(q, p) belongs to τH , so that H admits a symplectic
gradient. Moreover, this gradient is at least of class C2 on τM .

The symplectic gradient ∇ωh(q, p) is given in local coordinates by

∇ωh(q, p) = (ξqu,
1

2
∂qg(u, u)− (∂qξqu)

∗p),

where u = u(q, p) is such that ξ∗q p = gq(u(q, p), ·). Moreover, as a vector field of class C2, it admits
a local flow. Curves induced by that flow are said to satisfy the Hamiltonian geodesic equation.
Note that the Hamiltonian is constant along such curves.

We can now state our main theorem.

Theorem 7. Let (H, ξ, g) be a weak sub-Riemannian structure on a Banach manifold M . Let
τM →֒ T ∗M be an adapted relative cotangent bundle such that (A1) and (A2) are satisfied. Let
(q̄(·), p̄(·)) : I → τM be a curve that satisfies the Hamiltonian geodesic equation

( ˙̄q(t), ˙̄p(t)) = ∇ωh(q̄(t), p̄(t)), t ∈ I,
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which, in local coordinates, gives






˙̄q(t) = ξq̄(t)ū(t),

˙̄p(t) =
1

2
∂qgq̄(t)(ū(t), ū(t))− (∂qξq̄(t)ū(t)

∗)p̄(t),

for every t in I, where ū(t) = ū(q̄(t), p̄(t)) is the unique element of Hq̄(t) such that ξ∗q̄(t)p̄(t) =

gq̄(t)(ū(t), ·).
Then the projection q̄(·) : I → M is a horizontal curve and a local geodesic for the sub-

Riemannian structure.

Remark 17. When the metric g is strong, τM = TM and hypotheses (A1) and (A2) are of
course automatically satisfied. In the weak Riemannian case on the other hand, it is equivalent to
the existence of a smooth Levi-Civita connection, see for exemple [16]. These are therefore very
natural hypotheses for this theorem.

Remark 18. The hypothesis that h has a symplectic gradient for the relative cotangent bundle
is equivalent to that made in [13, Theorem 1] on the existence of a transpose operator.

Proof. First of all, if ξ∗q̄0 p̄0 = ξq̄(0)p̄(0) = 0, then q̄ and p̄ are constant curves, and therefore
q̄ is a trivial geodesic, so we can assume ξ∗q̄0 p̄0 6= 0 and therefore ū0 = ū(0) 6= 0. Now since
˙̄q(t) = ξq̄(t)ū(t), q̄ is obviously horizontal, so we just need to prove that it is a local geodesic. We
can assume that I = [0, 1] without loss of generality. The proof uses an idea similar to that of the
minimizing property of geodesics in Riemannian geometry, with a few tweaks. We need to prove
that for ε > 0 small enough, and any horizontal system (q(·), u(·)) : [0, ε] → H such that q(0) = q̄0
and q(ε) = q̄(ε), we have

L((q̄, ū)|[0,ε] 6 L(q, u).

For this, we will find a calibration of q̄: a closed 1-form θ on a neighbourhood of q̄|[0,ε] in M such
that

• for every t > 0 small enough,

θq̄(t)( ˙̄q(t)) = c
√

h(q̄(t), p̄(t)) 6 c
√

gq̄(t)(ū(t), ū(t)),

with c > 0 a fixed constant, and

• for every (q, u) ∈ H with q close enough to q̄0,

|θq(ξqu)| 6 c
√

gq(u, u).

Indeed, once θ is found, we know that in a small neighbourhood of q̄0, it is exact. Hence, for ε > 0
small enough, and for any horizontal system (q(·), u(·)) in this neighbourhood with q(0) = q̄0 and
q(ε) = q̄(ε),

L((q̄, ū)|[0,ε]) =
1

c

∫ ε

0

θq̄(t)( ˙̄q(t))dt =
1

c

∫ ε

0

θq(t)(q̇(t))dt 6

∫ ε

0

√

gq(t)(u(t), u(t))dt = L(q, u).

We now build this calibration.
We work in a coordinate neighbourhood U ⊂M of q̄0 in M that we identify with a coordinate

neighbourhood centered at q0 in the Banach space B on which M is modelled, so that we can
simply write q(0) = q̄0 = 0. We also consider a trivialization

(τM ⊕
M

H)|U ≃ U ×G×H.
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We denote the local C2-flow of ∇ωh on τM by

(t, q, p) 7→ Φ(t, q, p) = (ΦM (t, q, p),Φτ (t, q, p) (9)

Note that, in the coordinate neighbourhood U , Φ(t, 0, p̄0) = (q̄(t), p̄(t)) for t small enough and
p̄0 = p̄(0).

The bundle τM has smooth dense inclusion in T ∗M , so we can write that p̄0 belongs to B∗\{0},
and its kernel ker p̄0 is a closed hyperplane of B. Let

U0 = U ∩ ker p̄0.

Note that q̄0 = 0 belongs to U0, and that this U0 is a neighbourhood of 0 in ker p0.
Reducing U0 if needed, we can then define the map ϕ :]− ε, ε[×U0 → U of class C2 by

ϕ(t, q0) = ΦM

(

t, q0,

√

h(q0, p̄0)

h(q̄0, p̄0)
p̄0

)

,

with ΦM as in (9). Do note that h(q̄0, p̄0) = p̄0(ξq̄0 ū0) = gq̄0(ū0, ū0) > 0. The positive number

n(q0) =
√

h(q0,p0)
h(q̄0,p̄0)

is here so that

h(q0, n(q0)p̄0) = h(q̄0, p̄0), q ∈ U0.

For q0 ∈ U0, the curve t 7→ ϕ(t, q0) is the projection to M of the Hamiltonian flow starting at q0
with initial condition p(0) = n(q)p̄0.

Lemma 5. Reducing U0 and U if necessary, there exists ε > 0 such that the mapping ϕ is a local
diffeomorphism of ]− ε, ε[×U0 onto U .

Proof. We just need to prove that dφ(0, q̄0) is bijective. For any δq ∈ ker p0, we have

∂qϕ(q̄0, q̄0)δq = ∂qΦM (0, q̄0, p̄0)δq = δq,

so ∂qϕ(q̄0, q̄0) = Idker p̄0
. This is because Φ is the flow of a vector field. Now we just need to prove

that ∂tϕ(0, q̄0) does not belong to ker p0. But

∂tϕ(0, q̄0) = ∂tΦM (0, q̄0, p̄0) = ˙̄q(0) = ξq̄0 ū0.

Since p̄0(ξq̄0 ū0) = h(q̄0, p̄0) > 0, ∂tϕ(0, q̄0) does not belong to ker p̄0.

Now, for q in U , let (t(q), q0(q)) = ϕ−1(q). This mapping is of class at least C2, same as ϕ.
This lets us define on U the one-form

θ(q) = Φτ (t(q), q0(q), n(q0(q))p̄0) ∈ τqM ⊂ B∗,

with Φτ defined as in (9). In other words, θ is given by the propagation to U of q0 7→ n(q0)p0 on
U0, so that

θ(ϕ(t, q0)) = p(t),

where t 7→ (q(t), p(t)) follows the Hamiltonian flow with initial condition q(0) = q0 and p(0) =
n(q0)p̄0. Let us prove that θ is a calibration of q̄.

Fix q in U . We can write θ(q) = p(t(q)), where (q(t), p(t)) satisfies the Hamiltonian geodesic
equations with (q(0), p(0)) = (q0(q), n(q0(q))p̄0). Therefore,

|θ(q)ξqu| = |p(t(q))ξqu| = |gq(u(q, p(t(q)), u)| 6
√

gq(u(q, p(t(q)), u(q, p(t(q)))
︸ ︷︷ ︸

=
√

h(q,p(t(q)))

√

gq(u, u).
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Since the reduced Hamiltonian is constant along the Hamiltonian flow, we have

h(q, θ(q)) = h(q, p(t(q))) = h(q0(q), n(q0(q))p̄0) = h(q̄0, p̄0).

Letting c =
√

h(q̄0, p̄0) > 0, we get, for any (q, u) ∈ H|U ,

|θqξqu| 6 c
√

gq(u, u).

Therefore, if we can prove that θ is closed, we do have that θ calibrates q̄. Since ϕ is a diffeomor-
phism, it is enough to prove the following lemma.

Lemma 6. We have ϕ∗θ = c2dt on ]− ε, ε[×U0.

Proof. Fix (t0, q0) in ] − ε, ε[×U0, and let t 7→ (q(t), p(t)) follow the Hamiltonian flow with initial
condition q(0) = q0 and p(0) = n(q0)p̄0. In particular, θ(ϕ(t, q)) = p(t). We will alos denote
u(t) = u(q(t), p(t)) the corrsponding control.

Then for every (δt, δq) ∈ R× ker p̄0,

(ϕ∗θ)(t0,q0)(δt, δq0) = θ(ϕ(t0, q0))(∂tϕ(t0, q0)δt+ ∂q0ϕ(t0, q0)δq0)

= Φτ (t0, q0, n(q0)p0)(∂tϕ(t0, q0)δt+ ∂q0ϕ(t0, q0)δq0)

= p(t0)(∂tϕ(t0, q0)δt) + p(t0)(∂q0ϕ(t, q0)δq0).

(10)

Now recall that ∂tϕ(t, q) = q̇(t) = ξq(t)u(q(t), p(t)), so that for every time t,

p(t)(∂tϕ(t, q)) =
1

2
gq(t)(u(q(t), p(t)), u(q(t), p(t))) = h(q(t), p(t))

= h(q(0), p(0)) = h(q0, n(q0p̄0) = h(q̄0, p̄0) = c2.
(11)

Now let us check that p(t)(∂q0ϕ(t, q0)δq0) = 0 for every δq0 in ker p̄0 and t in ]− ε, ε[. For small
s > 0 and t ∈] − ε, ε[, denote q(s, t) = ϕ(t, q0 + sδq0). For each s, t 7→ q(s, t) is horizontal, with
associated control t 7→ u(s, t) that can be taken C2 in s and such that gq(s,t)(u(s, t), u(s, t)) = 2c
for every (s, t) 1. Let

δq(t) = ∂sq(0, t) = ∂q0ϕ(t, q0)δq0

and δu = ∂su(s, t)s=0. Since (t, s) 7→ q(s, t) is of class at least C2, we have

δ̇q(t) = ∂q(ξq(t)u(0, t))δq(t) + ξq(t)δu(t).

Remarking that p(0)(δq(0)) = n(q0)p̄0(δq0) = 0, we get

p(t0)(δq(t0)) =

∫ t0

0

d

dt
(p(t)(δq(t))) dt

=

∫ t0

0

(
−∂qh(q(t), p(t))δq(t) + p(t)∂q(ξq(t)u(t))δq(t) + p(t)ξq(t)δu(t)

)
dt.

1Each q(s, ·) is the projection to M of a curve (q(s, ·), p(s, ·)) that follows the Hamiltonian flow with initial
condition (q0 + sδq0, n(q0 + sδq0)p̄0). Then u(s, t) = u(q(s, t), p(s, t)), which is C2 in (t, s).
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But ∂qh(q(t), p(t)) = ∂qH
1(q(t), p(t), u(t)) = p(t)∂q(ξq(t)u(t))− 1

2 (∂qgq(t))(u(t), u(t)), and p(t)ξq(t)δu(t) =
gq(t)(u(t), δu(t)), so that

p(t0)(δq(t0)) =

∫ t0

0

d

dt
(p(t)(δq(t))) dt

=

∫ t0

0

(
1

2
∂qgq(t)(u(t), u(t))δq(t) + gq(t)(u(t), δu(t))

)

dt

=

∫ t0

0

∂s







1

2
gq(s,t)(u(s, t), u(s, t))
︸ ︷︷ ︸

=h(q0,n(q0)p̄0)=c







s=0

dt

= 0.

We get
ϕ∗θ = c2dt.

Since ϕ is a diffeomorphism, θ is indeed closed, which concludes the proof.
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