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ABSTRACT

Human laugh is able to convey various kinds of meanings in
human communications. There exists various kinds of hu-
man laugh signal, for example: vocalized laugh and non vo-
calized laugh. Following the theories of psychology, among
all the vocalized laugh type, rhythmic staccato-vocalization
significantly evokes the positive responses in the interactions.
In this paper we attempt to exploit this observation to de-
tect human laugh occurrences, i.e., the laughter, in multiparty
conversations from the AMI meeting corpus. First, we sep-
arate the high energy frames from speech, leaving out the
low energy frames through power spectral density estima-
tion. We borrow the algorithm of rhythm detection from the
area of music analysis to use that on the high energy frames.
Finally, we detect rhythmic laugh frames, analyzing the can-
didate rhythmic frames using statistics. This novel approach
for detection of ‘positive’ rhythmic human laughter performs
better than the standard laughter classification baseline.

Index Terms— laugh signal detection, paralinguistic
analysis

1 Introduction
Human laugh is a crucial social signal due to the range of

inner meanings it carries. This social signaling event [1] may
denote the topical changes, communication synchrony and
positive affect; on the other hand, it may also show disagree-
ment or satirist views. Therefore, automatic human laugh
occurrence or laughter detection in speech may have many
applications in spoken dialog and discourse analysis. In ad-
dition, the detection of this speech event may lead to increase
in the word accuracies in the spontaneous automatic speech
recognition.

Human laugh is developed as an inarticulate utterance to
serve as an expressive-communicative social signal. The en-
tire laugh period generally persists from 2 seconds to 8 sec-
onds [2]. There exists many types of laugh. From the acous-
tical point of view, the sound of laugh can be voiced, as well
as it can be unvoiced, resulting into the vocalized and non-
vocalized laughter. The whole laugh episode is constituted
with a mixture of vocalized and non-vocalized laugh. It was
found that the voiced and rhythmic laughs were significantly
and more likely to elicit positive responses than the variants
such as unvoiced grunts and snort like sounds [3].

The laugh sound or laugh bout can be segmented into
three parts, viz.(1) onset: explosive laugh, short and steep,
(2) apex: vocalized part of laugh and (3) offset: post-
vocalized fading part of laugh. The vocalized apex part
is composed of laugh cycles (for example, the laugh sound
“ha ha”), each cycle is composed of laugh pulses. The num-
ber of pulses depends on the power of the lungs, it can be

4 to 12 for one cycle. These laugh pulses have a rhythmic
pattern.

Although it is found that in sustained laughter the apex
might be interrupted by inhalations [2], human laughter is
easily recognized through the detection of apex part [4].
Therefore, it is clear that the sound of laugh may also be
based on the rhythmic breathing resulting in a staccato vo-
calization, i.e., the vocalization with each sound or note
sharply detached or separated from the others. Detection of
the apex part plays dominant role to recognize the human
laughter.

The majority of the previous works on laugh detection
(cf. Section 2) follow the supervised classification paradigm
that may face a long extent of a training phase with consider-
able amount of costly annotated data. We hypothesize that a
rhythmic nature of the vocalized laugh can allow us to use ex-
isting rhythm-detection signal processing based techniques,
e.g., detection the rhythm in music [5], also for the laugh
detection. This would lead to an unsupervised and less data-
dependent laugh detection, as an alternative to conventional
machine learning approaches.

In this work, we propose a three stage procedural method
to detect human laugh using rhythm, through the laugh apex,
which is the most prominent laugh part. This procedural
method works in three basic procedural sequences: first we
filter out low Power Spectral Density (PSD) frames using
an automatic PSD threshold computation based on well-
established Otsu’s threshold technique [6]. Then we analyze
all high-energy PSD frames to detect the rhythmic frames
(such as rhythmic speech and/or rhythmic laugh) with a
music rhythm detector algorithm [5] based on frequency de-
modulation. We select higher energy frames because human
laugh is predominantly conceptualized as vowel-like high
energy bursts [3]. Finally, we compute a statistical threshold
to detect only the rhythmic laugh frames. We demonstrate
the proposed detection method on naturally occurring con-
versations, that usually contain plenty of instances of happy
and natural human laugh. Therefore, we choose multiparty
meeting conversations AMI [7] as a database for evaluation.
The recordings of the AMI meeting corpus show a huge
variety of spontaneous expressions.

The organisation of this paper is structured as follows: in
the next Section 2, we clarify the laugh as a signal and its
types as established by the studies, and also describe in de-
tails the related works on laughter detection and recognition.
In the following Section 3 we illustrate the proposed method.
In the next consequent Section 4 we describe used data and
experimental set-ups; this is followed by the discussion about
the results in the subsection 4.4. Finally, we conclude the
findings and possible future works in the Section 5.
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2 Background
2.1 The laugh apex

The vocalized laugh can be spontaneous or voluntary.
With clinical observation there is a clear distinction between
spontaneous and voluntary laugh [8]. It is seen that during
spontaneous laugh human self-awareness and self-attention
is diminished. On the other hand, in voluntary laugh human
produce a laugh sound pattern similar to the spontaneous
laugh but still it differs in many aspects like vowel used (viz.
the derivative of schwa), pitch, frequencies and amplitudes,
voice quality etc. All these differences have effects on the
rhythm of spontaneous and voluntary laugh.

Bachorowski et al (2001) found that the vocalized laugh
is rhythmic compared to the snort-like laugh or grunts; and
also the vocalized laugh elicits positive emotion than the
other kinds of laugh [3]. Devillers et al (2007) found that the
unvoiced laughs express more negative emotion, whereas the
voiced laugh segments are perceived as positive ones [9].

2.2 Laughter Detection
A sizable number of previous works in laugh occurrence

detection are already proved to be impressive in terms of
techniques, results and large set of intricate features [10].
The majority of the previous works follow the supervised
classification paradigm that may face a long extent of train-
ing phase with considerable amount of costly annotated data.
Many of these works consider the task as a binary (i.e. laugh
vs. non-laugh) classification [11, 12, 13] or segmentation
problem [14, 15].

The label-type of laughter in the laughter detection tasks
may vary from the coarse-grained label to the fine-grained
one. The coarse-grained laugh detection generally implies to
the binary classification (i.e. laugh vs. non-laugh). There
exists some instances of coarse-level multi-class detection
viz. the laughter classification along with the other non-laugh
classes like silences, fillers etc. [13]. In other works, it de-
tects many kinds of laugh such as polite, mirthful, derisive
vs. non-laugh [16].

There also exists a few works on unsupervised classifica-
tion of the laugh. Some unsupervised techniques depend on
the burst detection and classification of the burst as laughter
[17]. The affect bursts are defined as short, emotional and
non-speech expressions that interrupt speech such as respira-
tion, laughter or unintelligible vocal sound [18]. Therefore it
is hard to tag the right meaning of (single or n-tuple) affective
bursts without any reference. The non-parametric statistical
methods also have been exploited in real-time, training-free
framework to detect laughter; still one needs to extract fea-
tures for this technique [19]. Majority of unsupervised meth-
ods are primarily tested on their own collected data.

In this work we attempt to propose a real-time, rhythm-
based approach for laughter detection. We attempt to exploit
the rhythmic pattern of laughter, following the work of Ba-
chorowski et al (2001) [3], we aim to detect the vocalized
laughter through detection of the laugh apex occurrence. We
do not aim to detect the unvocalized laughter in this work.

2.3 Rhythm Analysis
Rhythm is defined as the systematic temporal and accen-

tual patterning of sound. In music, rhythm perception is usu-
ally studied by using metrical tasks. Metrical structure also
plays an organizational function in the phonology of lan-

guage, via speech prosody or laughter [20]. We attempt to
use this metrical structure of the human laugh without ana-
lyzing speech prosody. From the earlier studies [21, 5], we
see that prosody and musical structure (such as rhythm) bor-
row or share concepts since long back. This studies with
rhythmic patterns lead to the birth of the linguistic theories
of stress-timed and syllable-timed languages. Here we do not
consider the rhythm in the speech prosody.

Recent studies [22, 23] reveal that “rhythm” in speech
should not be equated with isochrony. The absence of
isochrony is not the same as the absence of rhythm. In
[22], isochrony is defined as the organization of sound into
portions perceived as being of equal or unequal duration.
Strict isochrony expects the different elements to be of ex-
actly equal duration, whereas weak one claims to have the
tendency for the different elements to have the same dura-
tion. So, the languages can have rhythmic differences which
have nothing to do with isochrony. But the rhythm in human
laugh is always isochronous like any music, so we exploit the
isochronous behavior of the human laugh in this work, and
do not consider the non-isochronous rhythm of languages.

We use an approach of frequency modulation to retrieve
this rhythm, following [5, 24]. To detect rhythmic laughter
first we segment the whole speech to select the probable
laughter segments, then we classify the candidate frames for
voiced laughter using a rhythm algorithm based on frequency
demodulation; finally we select the rhythmic laughter frames
through a statistical process. We do not consider shared
laughter captured on a single channel, rather our method is
engineered for a solo laughter by the single participant.

3 Proposed Method
3.1 Rhythm based laughter detection

We use an unsupervised algorithm to detect laughter us-
ing its rhythmic property. This entire process can be divided
into three basic sub-processes: first we filter out low power
spectral density frames using an automatic PSD threshold
computation. Then we use all high-energy PSD frames to de-
tect all rhythmic segments (such as rhythmic speech and/or
rhythmic laughter) with the rhythm detector algorithm. Fi-
nally, we compute a statistical threshold to detect only the
rhythmic laughter frames.

Based on the detected rhythmic laughter frames, we are
able to generate the time boundaries of the laugh segments.
Description the three aforementioned sub-processes is fol-
lowing.

3.1.1 PSD threshold computation
We compute the PSD threshold using nonparametric

power spectral density (PSD) estimation through Welch’s
overlapped segment averaging PSD estimator S(ejω)/F ,
where F = fs, i.e. the sampling frequency [25].

We compute the PSD threshold Dth following the Otsu
method [6]. In this method the computed PSD set (PS) is
sorted in ascending order, let us consider the index sets as
[1 · · ·L], then the sorted set is divided into two sets randomly,
say: {1 · · · k} and {k + 1 · · ·L}, where L = n(PS). Next,
for 1 < k < L, we iteratively compute σB(L) then finally
we compute Dth, given by,

Dth = maxσB(L) = max
[
max(

[µ(L) ∗ ω(k)− µk]2

ω(k) ∗ (1− ω(k))
)
]



where, ωk =
∑k

i=1 probi, µk =
∑k

i=1 i ∗ probi, and µL =∑L
i=1 i ∗ probi. Here probi denotes the i-th probability con-

sidering the elements of the corresponding set in the itera-
tion, further details is in the paper by Otsu (1975)[6].

We attempt to acquire the optimal value PSD threshold
through a brute-force optimization process of running our
laugh detection algorithm on the development data. In the
section 4.4, we experimentally compare the performance of
PSD threshold computation with the development data using
the unsupervised method by Otsu (1975) [6] and the brute-
force optimization method.

3.1.2 Rhythmic frame selection
First we select the high PSD frames using the threshold

computed in subsection 3.1.1. Then these high PSD frames
are passed through the rhythm calculation, thus we select the
rhythmic frames among all the high energy frames. More
specifically, we call these rhythmic frames as the candidate
laughter frames.

We basically exploit frequency modulation (FM) tech-
nique to capture isochronous behavior of rhythm [5]. In this
case we use an oscillator to modulate the frequency of a si-
nusoidal wave. Here the oscillator is the “carrier” and the
other one is the “modulator”. We attempt to use a sawtooth
carrier in this case. Since laugh signal has a periodic nature
it is traceable as a sawtooth (or triangular) waveform, there-
fore we choose the triangular hanning window as the basic
oscillator function, which is computed as follows:

s =
[
cos2(

2 ∗ i ∗ π
l

)
]
i=1···6

here l denotes the hanning window length.
The properties of the “modulator” FM components are

defined by the frequency band limit with a set of six harmon-
ics that starts with zero then it reaches the periodicity pitch
200 Hz then all the other four (2 × 200, 4 × 200, 8 × 200
and 16 × 200) harmonics of that pitch. Here we choose to
follow this filterbank implementation method described in
Scheirer(1998) [26]. Each harmonics has two band-ranges.
Therefore, this also initializes twelve band-range values.
These frequency band-limits are used to compute the band-
ranges. Since the beginning of the method we were comput-
ing data in the time domain. Now the signal is taken from
the time domain to the frequency domain with Fourier trans-
form, and we prepare the output using short time windows
. Finally, we convolve the inverse fast Fourier transformed
window data with a Fourier transformed half-hanning win-
dow.

We use a set of six band-limits at this moment: begin-
ning at 200 Hz, increasing this in multiple of two, as the
frequency results in a more and more complex multi phonic.
The resulting wave is the summation of many different sinu-
soidal waves; the carrier frequency lies in the middle while
the other tones lie above and below it at distances determined
by the modulation frequency. When the modulation ampli-
tude rises, the amplitudes of the additional frequencies also
rise. However, this increase is difficult to formulate mathe-
matically. The advantage of FM over additive one (the sim-
ple addition of sinusoidal waves) is that we need to use only
two oscillators to convolute a rich and complex rhythmic hu-
man laugh sound. Although currently we use the six mod-
ulation frequencies, this number can be changed if needed.
The output of this function is basically a six column matrix,
each row of the matrix is one frame. We use the median of
this output to use it further in the next subsection 3.1.3.

3.1.3 Rhythmic laughter frame(s) detection
We compute the basic statistic functions (namely mean

and standard deviation) for all the obtained rhythmic candi-
date laughter frame with negative gradient (i.e. basically the
negative difference between two consecutive points, and this
is done to compute all local maxima points). Next, we derive
the 95%-confidence bounds through the Student t-test of the
standard deviation. Then, we compute a statistical thresh-
old for rhythmic laughter frame selection as the difference
between the upper bound of the confidence interval and the
estimated population-standard deviation computed through
same Student t-test. We compute this threshold on the ba-
sis of the hypothesis that the power of laugh is significantly
higher than that of rhythmic speech/music. We select the
frames as the laughter frames whose standard deviation is
equal or higher than the threshold, and we finally compute
the time intervals from those selected frames.

Algorithm 1 outlines overall view of the steps involved
in the proposed laugh detection.

Algorithm 1 Overall View of Laugh Detection
Input: Wavfile W
read wavfile (xi, fs) = waveread(W )
xi =data sample; fs =sampling rate
Initialize: [frameSize, frameShift,T: noOfFrame, Dth=0]
/*PSD threshold Dth is calculated – procedure 1*/
Dth = threshold(W ) . Otsu threshold computation
for{t = 1 · · ·T}

pxx = welch periodogram(xt) . xt: all data samples in t-th frame.
/*rhythmic frame detection - procedure 2*/

if (pxx ≥ Dth)
c=median(FMrhythm(xt)) . FMrhythm() detects

rhythmic frame in six columns for six bands described in sec. 3.1.2. In c
the median of the six bands stored.

for (j = 2:length(c))
if (c(j)− c(j − 1) < 0) flg = 1; . local maxima check

endFor
σ=std(xt); . std: the standard deviation
if(flg) ~σ = [σ]; . ~σ stores all candidate laughter frame stds σ

endIf
endFor
/*laughter frame detection - procedure 3*/
if(length(~σ) > 0)

(ci[lb, ub], sd) = ttest(~σ)
. sd: the estimated population of standard deviation; ci: confidence

interval with lower lb and upper ub bounds; uses 1-sampled t-test
for(i =1:len(~σ))

if(~σ(i) >= (ci[ub]− sd))
Output: Print time interval of frame i.e. matching indices of t

endFor
endIf

4 Experiment
4.1 Experimental Setup

In this framework, the method takes a raw speech signal
as input and it outputs the time intervals of the laughter seg-
ments in the signal. We consistently apply a standard short-
time analysis using a frame window of 2.5 sec (following the
study of [2]) with 50% overlaps. We used part of AMI corpus
as our test (5 meetings) and development (2 meetings) data.

4.2 Data
We used Augmented Multiparty Interaction (AMI) meet-

ing corpus in this work. AMI meeting corpus [27] consists
of 100 hours of meeting recordings. The recordings use a



Data Baseline Our Approach
AMI Data 81.1 84.5

Table 1. Percentage F1-measure comparison between base-
line & proposed approach for test dataset split of our corpus

range of signals synchronized to a common timeline. These
include close-talking and far-field microphones, individual
and room-view video cameras, and output from a slide pro-
jector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to
them that record what is written. The meetings were recorded
in English using three different rooms with different acous-
tic properties, and include mostly non-native speakers. Fol-
lowing Petridis and Pantic (2011) [15] we used only close-
talk headset audio (16kHz) recordings. We used the same
data, which is used by Petridis and Pantic (2011) [15] (i.e.
the seven meeting recordings recordings of eight participants
consisting 6 young males and 2 young females of around 210
mins of recordings). We split the whole data set into two
parts: the development data consists of two meeting record-
ings (i.e. IB4010 and IB4011 sets); we present the final re-
sult shown in the Table 1 using our test data of five meeting
recordings (i.e. IB4001 and IB4005 sets). The challenge of
AMI meeting corpus is that the data has a large amount of
overlapping speech.

4.3 Baseline
We follow the same baseline protocol using the same fea-

ture set like [13, 28]. We establish a baseline for the (general
laugh vs non-laugh) classification of human laugh using In-
terspeech 2013 Paralinguistic feature set. This feature set
consists of 141 features [10]. We use support vector machine
classifier with 5-fold cross-validation. We extract the fea-
tures using the OpenSmile tool [29]. We use LibSVM [30]
classifier for SVM training and prediction. This is a super-
vised binary sequential classification task. We use the data
segments of 20 msec window at the rate of 10 msec. The
baseline is achieved in a speaker dependent scenario. We se-
lect this baseline because it is the best performing supervised
method for laugh detection.

4.4 Result & Discussion
Table 1 compares the results of our proposed approach

with the supervised baseline approach. While the proposed
rhythm based algorithm can be used for the detection of pos-
itive vocalized laughter using rhythm, the baseline has been
designed to classify all kinds of laugh without distinction.
We evaluate the results in the percentage F1-measures [31].
The performance of our approach on AMI meeting database
shows better performance than the corresponding baseline.
We notice that it performs in a balanced way in terms of pre-
cision and recall.

Figure 1 presents the ROC (Receiver Operating Curve)
comparison of the PSD threshold computation over the de-
velopment data. We compare the performance of threshold
computation using the Otsu method [6] in against to that of
the threshold computation using the brute-force optimization
method. The ROC is computed using the true positive and
false positive percentages. We see from the Figure 1 that
the ROC computed with brute-force optimization threshold-
ing is performing marginally better than the ROC computed
by the method of Otsu (1975) [6] with the development data.
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Fig. 1. PSD thresholding: ROC curve for Otsu thresholding
and optimized thresholding with the development data

Therefore we use the optimized threshold with the develop-
ment data to present the result in the Table 1.

5 Conclusions & Future Works
In this work we have outlined a novel algorithm for pos-

itive vocalized laugh detection using rhythm. This is a real-
time, training-free approach in comparison to the existing su-
pervised approaches of the laugh detection. The algorithm is
based on the rhythmic transforms in laughter. The rhythm
is analysed through frequency modulations using a modu-
lator and a sawtooth carrier. All the six carriers are fixed,
beginning at 200 Hz and the other four multiples of 200Hz.
The strength of this technique also resides in that: we do
not need to extract pitch or other intricate feature set to an-
alyze rhythm; since it does not involve any complex process
of computation, or intermediate file or memory handling, the
time and space complexity of this method is low. We used
AMI-role based meeting dataset to evaluate the proposed al-
gorithm. The proposed laugh detection approach works well
in comparison to the supervised baseline.

In this work we do not detect all kinds of vocalized
laugh, we focus on the detection of rhythmic vocalized
human laughter. This method is capable to work incremen-
tally for further recognition of different laugh types or other
recognition for laugh and rhythmic speech or music.This
algorithm is sensitive to speech signal clipping; it may fail
to detect the human laugh recorded in a noisy environment,
specifically, it will fail to work with human speech data along
with a background score of rhythmic music.

The Matlab code of the algorithm is available as open-
source code at the following address: https://github.
com/sghoshidiap/LaughDet.
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