
NUMERICAL PROOF OF STABILITY OF VISCOUS SHOCK PROFILES
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Abstract. We carry out the first rigorous numerical proof based on Evans function computations of
stability of viscous shock profiles, for the system of isentropic gas dynamics with monatomic equation of
state. We treat a selection of shock strengths ranging from the lower stability boundary of Mach number
≈ 1.86, below which profiles are known by energy estimates to be stable, to the upper stability boundary
of ≈ 1669, above which profiles are expected to be provable by rigorous asymptotic analysis to be stable.
These results open the possibilities of: (i) automatic rigorous verification of stability or instability of
individual shocks of general systems, and (ii) rigorous proof of stability of all shocks of particular systems.
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1. Introduction

In this paper, we carry out the first complete, rigorous numerical proof of stability of viscous shock
profiles of a physically interesting system, demonstrating feasibility of a program proposed in [9, 28] for
the treatment of shock waves of large amplitude and or nonclassical type. Such shock profiles, being both
highly nonlinear and far from any convenient asymptotic regime, are typically described only through
numerical approximation. Thus, the study of their stability by purely analytical means would appear to
be a practical impossibility. What was suggested in [9, 28] instead was a divide-and-conquer approach,
wherein spectral stability or instability would be determined by rigorous numerical ODE estimates, and
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the link between spectral and linearized and nonliner stability determined by separate, purely analytical
techniques based on pointwise estimates obtained by inverse Laplace transform techniques.

The second, analytical part of this program has proceeded more quickly than the first, comprising by
now a mature and complete theory reducing the question of stability to a numerically well-conditioned
Evans function condition based on Wronskians of the linearized eigenvalue ODE. However, the rigorous
evaluation of this condition has lagged behind, in part due to absence of rigorous computational infras-
tructure in general and in part to numerical difficulties of the shock wave systems in particular. Here, we
treat individual shock profiles of the equations of isentropic gas dynamics, the simplest physically inter-
esting system. Our hope is that the techniques introduced here will generalize to continuous families of
shock profiles and more complicated systems, fulfilling the vision outlined in [9,28] of rigorous automatic
treatment of the difficult problem of shock stability

In Lagrangian coordinates, the isentropic compressible Navier-Stokes equations in 1-D are given by

vt − ux = 0,
ut + p(v)x = (ux/v)x,

(1.1)

where u corresponds to velocity, v to specific volume, and p(v) is the pressure law, which we take to
be adiabatic, p(v) = a0v

−γ [5, 24]. In physical modeling, generally 1 ≤ γ ≤ 3 is used [13, 22–24], where
γ = 5/3 corresponds to a monatomic gas and γ = 7/5 to a diatomic gas.

As is well known, these equations have viscous shock wave solutions

(v, u)(x, t) = (v̄, ū)(x− st), lim
x→±∞

(v̄, ū) = (v±, u±).

The question of stability of these solutions has by now received considerable attention. In 1985, Mat-
sumura and Nishihara [17] showed that small-amplitude waves of (1.1) are stable when perturbed by
zero-mass perturbations. Part of their work is equivalent to showing spectral stability. In [15,16,27–29],
the second author and collaborators showed that spectral stability implies asymptotic-orbital stability for
a wide class of systems, including (1.1), hence small-amplitude waves of (1.1) are asymptotically-orbitally
stable. In 2007, addressing stability of large-amplitude waves of (1.1), a bound on the potentially un-
stable point spectra of the linearized eigenvalue problem was derived via energy estimates in [4], and an
extensive numerical Evans function study supplemented with evolution studies was carried out indicating
that traveling waves of (1.1) are spectrally, hence nonlinearly, stable. Then in 2009, Humpherys, Lafitte,
and the second author [13] showed by ODE estimates for all γ ≥ 1, that in the limit the Mach number
goes to infinity, traveling waves of (1.1) are spectrally, hence nonlinearly, stable, and they numerically
demonstrated a lower bound on the Mach number for which the result holds when 1 ≤ γ ≤ 3.

The last piece in establishing stability of intermediate amplitude viscous shock wave solutions is to
rigorously verify the numerical Evans function computations in [4]. In general, automating rigorous
verification of Evans function computations is the only fundamental open problem remaining in the
program (pointwise semigroup stability and dynamics of waves) introduced by the second author and
Howard in 1998. In this paper, we make a significant push in that direction. Indeed, we rigorously verify
spectral stability, hence nonlinear stability, of representative viscous wave solutions of (1.1).

The Evans function D(λ) is a Wronskian for the eigenvalue ODE W ′ = A(x, λ)W , whose zeros corre-
spond with eigenvalues of the linearized operator about the profile. It is constructed so as to be analytic
with respect to the spectral parameter λ. To rigorously verify spectral stability, therefore, we obtain
an interval enclosure of the image of the Evans function under a contour that encloses any potentially
unstable eigenvalues. We use interval arithmetic to account for machine truncation error, and analytic
and computer assisted error bounds to track errors introduced by approximations and the numerical
methods used. Provided the relative error in the Evans approximation is strictly less than one every-
where along the contour, we may then conclude by Rouche’s Theorem that the winding number of the
numerically computed Evans function has winding number equal to that of the exact Evans function,
deciding existence or nonexistence of unstable eigenvalues- hence spectral stability- by the Argument
Principle.
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We use analytic interpolation of the stable/unstable eigenvalue of the limiting coefficient matrices
A(±∞, λ) to obtain a λ-varying analytic initializing basis at x = ±∞ for the ODE involved in the
computation of the Evans function. A contraction mapping argument with error bounds then provides
the initialization error. To bound the error of the numerical solution to the ODE, we obtain a posteriori
error bounds on a numerically approximated fundamental solution. This strategy greatly reduces the
challenging “wrapping” effect (cf. [21]) involved in interval computations in the complex plane.

1.1. Main result. We now describe our main results. Making use of the (Galillean and other) invariances
of (1.1), we may by the change of coordinates (2.2) reduce to the case (v−, u−) = (1, 0), u+ = 1, s = −1,
leaving a one-parameter family of shock profiles indexed by 1 > v+ > 0. Here, v+ → 1, converging to
a constant solution, is the weak-shock, or small-amplitude limit corresponding to Mach number 1, while
v+ → 0 is the strong-shock, or large-amplitude limit corresponding to Mach number ∞.

We recall further [27] that spectral stability (specified in Definition 2.1) has been shown to imply linear
and nonlinear L1 ∩ H3 → Lp ∩ H3 asymptotic-orbital stability, p > 1, in the sense that solutions with
initial data sufficiently close in L1 ∩H3 to the set S of translates of profile (v̄, ū) remains close to S for
all time in L1 ∩H3 and converges time-asymptotically to S in Lp ∩H3 for any p > 1.

Theorem 1.1. For γ = 5/3 and v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, the viscous traveling wave
solutions of (1.1) are spectrally stable, hence linearly and nonlinearly L1∩H3 → Lp∩H3 asymptotically-
orbitally stable for any p > 1.

Remark 1.2. By spectral continuity- as follows for example by construction of the (complex-analytic)
Evans function, together with the fundamental property that zeros of the Evans function correspond
to eigenvalues of the linearized operator- stability of profiles with the specific v+ values of the theorem
implies also stability of sufficiently nearby profiles. However, a naive estimate by simply carrying along
intervals in v+ in the interval-arithmetic computations used to establish the theorem does not yield a
computationally useful result. To establish stability for a reasonably sized family of v+ appears rather to
require a further layer of interpolation, as for example in [1]. We leave this issue for the future.

1.2. Discussion and open problems. Rigorous numerical proof of stability has been carried out on
bounded domains for Bunsen flame profiles of the Kuramoto–Sivashinsky equation in the pioneering work
of Michelson in 1996 [18], by related, “shooting-type” techniques. Indeed, this was one of the motivations
cited in [9]. However, as discussed in [9,10], the extension to the whole line brings new challenges, as do
specific features of the shock wave/system case, and up until now numerical proof of stability had not
been carried out for any shock wave in the system case.

In this paper, we rigorously verify stability for several representative viscous shock profiles of (1.1).
However, it is still an open question whether stability holds for all parameter sets in the physically relevant
regime. This would be an interesting direction to pursue as it would settle the question of stability of
Isentropic Navier-Stokes shocks once and for all. Extending numerical proof techniques to larger systems
such as nonisentropic gas dynamics, MHD, elasticity, or combustion is another important next step:

More generally, as computations become more complex and delicate, it becomes less certain that
numerical results are correct if not accompanied by rigorous error bounds. Simple convergence studies
become less convincing and practical for large systems. Thus, we expect that rigorous error control
will play an increasingly important role in numerical analysis. In the context of stability, we plan on
continuing the development of numerical proof techniques for larger systems with the goal of incorporating
automated rigorous verification of spectral stability in STABLAB [2], a general package for numerical
stability analysis of traveling waves of all types; see [1] for initial steps in that direction.

2. Background

We look for traveling wave solutions of (1.1) of the form u(x−st) where s is wave speed, or alternatively
we rescale x→ x− st and look for stationary solutions of

vt − svx − ux = 0
ut − sux + p(v)x = (ux/v)x.

(2.1)
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As in [4, 13], we rescale

(x, t, v, u)→ (−εsx, εs2t, v/ε,−uεs)(2.2)

with ε chosen so that 0 < v+ < v− = 1. This yields
vt + vx − ux = 0

vt + ux + (av−γ)x = (ux/v)x.
(2.3)

Stationary solutions of (2.3) satisfy
v′ − u′ = 0

u′ + (av−γ)′ = (u′/v)′,
(2.4)

or upon substitution,

v′ + (av−γ)′ = (u′/v)′.(2.5)

Integrating equation 2.5 from −∞ to x returns the profile equation

v′ = v(v − 1 + a(v−γ − 1)),(2.6)

where a = vγ+(1 − v+)/(1 − vγ+) is determined from applying the Rankine-Hugoniot conditions to (2.3).
Because (2.6) is scalar monotone decreasing (v+ < v− = 1), there exists, as is commonly known, a
solution v̄ connecting v+ to v− = 1, with an associated u-profile ū = v̄ − 1 obtained from (2.4)(i).

2.1. The Evans function. Linearizing equation (2.3) about the profile solution (v̄(x), ū(x)) and looking
for a solution via separation of variables leads to the eigenvalue problem,

λ+ v′ − u′ = 0

λv + u′ −
(
h(v̄)
v̄γ+1 v

)′
=
(
u′

v̄

)′
,

(2.7)

where ′ = d
dx and h(v̄) = −v̄γ+1+a(γ−1)+(a+1)v̄γ . Making the change of coordinates ũ(x) =

∫ x
−∞ u(z)dz,

ṽ(x) =
∫ x
−∞ v(z)dz in (2.7), dropping the tilde notation, and integrating, we arrive at the integrated

coordinate system
λv + v′ − u′ = 0

λu+ u′ − h(v̄)
v̄γ+1 v

′ = u′′

v̄
.

(2.8)

In these new coordinates, the eigenvalue at zero corresponding to translational invariance has been re-
moved, but otherwise the set of unstable eigenvalues of (2.7) and (2.8) agree [15,16,28].

Definition 2.1. If (2.8) has no eigenvalues with non-negative real part, the underlying wave is said to
be spectrally stable.

We formulate (2.8) as a first order ODE system

W ′(x) = A(x, λ)W (x), A(x, λ) =

 0 λ 1
0 0 1
λv̄ λv̄ f(v̄)− λ

 , W =

uv
v′

 , ′ = d

dx
,(2.9)

where f(v̄) = v̄ − v̄−γh(v̄), and define A±(λ) = limx→±∞A(x, λ). There is one eigenvalue of A− with
positive real part and two eigenvalues of A+ with negative real part. Asymptotically, the solutions of
(2.9) converge to the solutions of the ODEs y′±(x) = A±(x, λ)y±(x). In order for λ to be an eigenvalue
of (2.8), the solution W−(x) of (2.9) that decays as x→ −∞ must have nontrivial intersection with the
two solutions, W+

1 (x) and W+
2 (x), of (2.9) that decay as x→ +∞. Thus, the Evans function is defined

as D(λ) := det([W−(0),W+
1 (0),W+

2 (0)]).
Approximating W+

1 (x) and W+
2 (x) using (2.9) leads to numerical error because competing growth

modes degrade the linear independence of the solutions. As in [4, 6, 19], this numerical challenge is
4



overcome by using the adjoint formulation for x ≥ 0, W ′(x) = −A(x, λ)∗W (x), where ∗ indicates the
complex transpose. Under this formulation, we solve for a single trajectory W̃+ which decays exponentially
as x → +∞. The Evans function may then be computed simply as W̃+(0)∗W−(0), where ∗ denotes
adjoint, or conjugate transpose.

Following [4], we use the standard procedure of scaling out expected growth or decay of the ODE
solution to improve numerical accuracy via the substitution W (x) =: eµxV (x), where µ is the eigenvalue
of A− with positive real part, which leads to the ODE

V ′(x) = (A(x, λ)− µI)V (x), lim
x→−∞

V (x, λ) = r−(λ),(2.10)

for x ≤ 0, where r− denotes the right eigenvector of A− associated with µ, and similarly for the adjoint
formulation when x ≥ 0. The Evans function may then be defined equivalently as D(λ) := Ṽ ∗+(0)V−(0).

Here and above, we have for compactness of notation supressed the dependence of solutions on λ;
however, it is an important property of the Evans function is that this dependence may be taken to be
analytic. Likewise, we have not specified the choice of eigenvector r−(λ). To make the Evans function
analytic, the initial condition r−(λ) at x = −∞ is chosen by either obtaining an analytically varying
eigenbasis by hand [9], or by using the method of Kato [10,14], which solves an analytic ODE to obtain a
λ analytically varying initializing basis of the appropriate unstable or stable subspace of A±. The zeros
of the Evans function correspond in location and multiplicity to the eigenvalues of (2.8); see [10].

Because the Evans function is constructed to be analytic, winding number computations may be used
to determine whether or not eigenvalues of (2.8) exist within the interior of a simple, positively oriented
contour. In particular, using a bound R on the modulus of any unstable eigenvalues of (2.8), if they exist,
derived in [4], one may establish that no unstable eigenvalues of (2.8) exist by showing the Evans function
has winding number zero when computed on λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, R := (√γ + 1/2)2)).

The goal of this paper is to rigorously verify for representative values of v+ that the Evans function
has winding number zero when computed on S(λ), thus proving the underlying wave is spectrally stable.
In [15,16,27], it is shown that spectral stability implies asymptotic nonlinearly stability.

2.2. Interval arithmetic. To make our computations completely rigorous, we must account for machine
truncation error. To accomplish this, we use interval arithmetic via the MATLAB package INTLAB [21],
developed by Siegfried M. Rump, head of the Institute for Scientific Computing at the Hamburg University
of Technology, Germany. With interval arithmetic, numbers are enclosed in an interval with machine
representable boundaries, such as a rectangle or ellipse. We refer to an interval with machine epsilon
width as a point interval. When an operation is performed on intervals, such as addition, the resulting
interval contains all numbers that can be realized from performing the operation on elements of the
intervals on which the operation is performed. The rounding mode of the computer is changed as needed
to accomplish this. Because changing the rounding mode is relatively time intensive, vectorization results
in significant speedup of code; hence, we seek to vectorize whenever possible.

2.3. The wrapping effect. One challenge of computing with complex valued interval arithmetic is the
wrapping effect. Rectangle or ellipse enclosures of complex valued intervals grow unnecessarily large
in size under repeated operations because of the underlying two dimensional geometry in the complex
plane. To keep an arbitrarily tight enclosure of the computed quantity, the interval shape must change
dynamically. Figure 1 demonstrates this phenomena.

There are a number of strategies we use to overcome the wrapping effect, such as track error separately
as described in Section 2.4, evaluate Chebyshev interpolants using a Taylor expansion as explained in
Section 2.5.2, and most notably, solve the Evans function ODE in a way that greatly reduces the wrapping
effect as shown in Section 3.2.

2.4. Error tracking. To reduce the wrapping effect, it is often advantageous to track error estimates
separately and compute the overall error bound at the end. For example, if A, B, and C are matrices
with point interval entries and Ae, Be, and Ce are matrices with small width intervals representing error
bounds, then rather than compute an enclosure of D := (A+Ae)(B+Be)(C +Ce) following the order of
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Figure 1. Rectangular interval multiplied by itself 3, 7, and 10 times. Black dots provide
a sample of a point in the original interval being raised to the appropriate power. Red
boxes indicate a minimal interval enclosure when rectangular intervals are used.

operations indicated by the parenthesis, we compute D ⊂ ABC + (AeBC + ABeC + ABCe + ABeCe +
AeBCe +AeBeC +AeBeCe).

2.5. Chebyshev interpolation. Analytic Chebyshev interpolation plays an important role in our strat-
egy for computing an enclosure of the solution of an ordinary differential equation.

The Chebyshev polynomials of the first kind are defined recursively by

T0(x) = 1, T1(x) = x, and Tn(x) = 2xTn−1(x) + Tn−2(x) for n > 2,

and have roots at xj = cos((j + 1/2)π/N), j = 0, ..., N − 1. The Chebyshev polynomials satisfy the
numerically advantageous condition Tn(x) = cos(nθ) where x = cos(θ).

2.5.1. Interpolating with Chebyshev polynomials. The coefficients ak of a Chebyshev interpolant, pN (x) =∑N−1
j=0 ajTj(x), that satisfies yj at the interpolation nodes xj , the roots of TN (x), can be solved for using

the property

N−1∑
k=0

cos(nθk) cos(mθk) =


N if n = m = 0

N/2 if n = m > 0
0 otherwise

(2.11)

where θk = (k + 1/2)π/N . In particular, if f(x) is the function to be interpolated, one notes that∑N−1
n=0 an cos(nθk) = f(xk), so that am can easily be solved for from

∑N−1
n=0 an

∑N−1
k=0 cos(mθk) cos(nθk) =∑N−1

k=0 cos(mθk)f(xk). That is, am = 2−sgn (m)
N

∑N−1
k=0 cos(mθk)f(xk). Similarly, coefficients of two dimen-

sional interpolation can be solved.

2.5.2. Chebyshev interpolation error bounds. If f(z) is an analytic function inside and on the stadium
Eρ :=

{
z ∈ C|z = 1

2

(
ρeiθ + e−iθ/ρ

)
, θ ∈ [0, 2π]

}
, where ρ > 1, and if pN (z) is a polynomial of degree

N−1 that satisfies f(xj) = pN (xj) for xj = cos((j+1/2)π/N), then the interpolation error for x ∈ [−1, 1]
is given by Hermite’s formula

f(x)− pN (x) = (2πi)−1
∫
Eρ

(WN+1(x)f(z))/(WN+1(z)(z − x))dz,

where WN+1(z) := (z − x0)(z − x1)...(z − xn). Error bounds are then given by

|f(x)− pN (x)| ≤MρLρ(πDρ sinh(η(N + 1)))−1(2.12)

where

(2.13) η := log(ρ), Dρ := 1
2(ρ+ ρ−1)− 1, Lp := π

√
ρ2 + ρ−2, Mρ := max

z∈Eρ
(|f(z)|),
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where |f(z)| ≤ Mρ for z ∈ Eρ, Lρ is an upper bound on the length of Eρ, and Dρ is a lower bound on
the distance between [−1, 1] and Eρ. The bound sinh(η(N + 1)) ≤ |WN+1| ≤ cosh(η(N + 1)) also holds.
See [7, 20, 25] for details. Note that a crude bound Mρ suffices due to the exponential decay of error as
the number of interpolation nodes N increases.

Now suppose that L is the interpolant operator in two dimensions and Lx and Ly are the interpolant
operators in one dimension in the variables x and y. That is, if f(x, y) is the function to be interpolated,
Lf returns a two dimensional polynomial with degree Nx − 1 and Ny − 1 in the variables x and y
respectively such that L(f(xj , yk)) = f(xj , yk) where xj and yk are the Chebyshev interpolation nodes
described above. An upper bound on the operator norm of L is given by the Lebesgue constant Λ, which,
for the Chebyshev polynomials of the first kind, is given by ΛN−1 = 2

π log(N)+ 2
π (γ+log(8/π))+αN where

0 < αN < π
72N2 , where γ = 0.5772... is Euler’s constant; see [7], [12]. Then a bound on the interpolation

error of the two dimensional Chebyshev interpolant can be given in terms of the 1d interpolation error
of each component on any slice of the two dimensional domain as given by

||f − Lf || = ||f − Lx(Lyf)|| = ||f − Lxf + Lxf − Lx(Lyf)||
≤ ||f − Lxf ||+ ||Lxf − Lx(Lyf)|| = ||f − Lxf ||+ ||Lx(f − Lyf)||
≤ ||f − Lxf ||+ ΛNx−1||f − Lyf ||.

(2.14)

2.5.3. Evaluation of a Chebyshev interpolant. Clenshaw’s algorithm is often used to evaluate a Chebyshev
interpolant because of its numerical accuracy and fast computation time. However, Clenshaw’s algorithm
is not suitable for interval arithmetic because typically each coefficient in the interpolant expansion will
have at least machine epsilon width, which can result in an interval enclosure of the interpolant evaluation
that grows like 2N in width in Clenshaw’s algorithm as the number of interpolation nodes N increases.

Fortunately, a Chebyshev interpolant can be evaluated using the property that Tn(x) = cos(nθ) where
x = cos(θ), in which case the width of the enclosure of the interpolant evaluation grows linearly instead
of exponentially as N increases. We further improve the enclosure of the interpolant evaluation by Taylor
expanding the interpolant up to 5 terms in the variable θ.

3. Numerical Proof

3.1. Solving the profile ODE.

3.1.1. Taylor’s method. We compute the profile solution, v̄(x) satisfying (2.6), on intervals [−L, 0] and
[0, L] using a Taylor expansion with error bounds. We use interval arithmetic to compute the truncated
Taylor expansion and the Taylor Remainder. We take care to reduce the wrapping effect. In particular, if
v̄(x) ⊂ Ux, we determine an interval enclosing v̄(x+h) by computing an interval enclosure U1 containing
v̄(x + h) when v̄(x) is initialized as the point interval of inf Ux and an interval enclosure U2 containing
v̄(x + h) when v̄(x) is initialized as the point interval of supUx. By the comparison principle for one
dimensional ODE, v̄(x) initialized at v0 ⊂ Ux is contained in the interval Ux+h := [inf U1, supU2].

The Taylor expansion of v̄(x) is v̄(x + h) =
∑n−1
k=0

hk v̄(k)(x)
k! with remainder RT = hnv̄(n)(x∗)/n! for

some x∗ ∈ [x, x + h]. The nth derivative, v̄(n)(x), of v̄(x) is a function of v̄(x), v̄(n)(x) = hn(v(x)),
and v̄(x) ⊂ [v+, 1], so we obtain an interval enclosure Un of v̄(n)(x) by evaluating hn(v) with interval
arithmetic on subintervals Uj of [v+, 1] and then taking their union, Un =

⋃
Uj . Then RT ⊂ UR where

UR := {hnu/n! : u ∈ Un}. In our computations, we took h = 1/8, n = 18, and L = 10.

3.1.2. Interpolation error. Our algorithm for obtaining an interval enclosure of the Evans function re-
quires a bound on the Chebyshev interpolant of the profile solution v̄(x) on intervals of the form [a, b] ⊂ R.
The standard interpolation error bound is given by ((b − a)/2)N sup(Un)/(2N−1N !) where Un is as de-
scribed above. We similarly obtain an interpolation error bound on f(v) := v − v−γ(−vγ+1 + a(γ − 1) +
(a + 1)vγ), which is needed as well. Vectorization of the derivatives of v̄(x) and f(v̄(x)) is important
in order to compute these bounds in reasonable time because the wrapping effect requires that these
derivatives be computed on small subintervals of [v+, 1] in order to obtain a useful bound.
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3.2. Solving the Evans function ODE. In this section we describe our method for obtaining an
interval enclosure of the solution of the ODE used to construct the Evans function. Consider the ODE

W ′(x;λ) = Ã(x;λ)W (x;λ), W (±L;λ) = W±,λ, x ∈ [±L, 0].(3.1)

Take [a, b] ⊂ [±L, 0] and let T (x, λ) be invertible and satisfy T (a, λ) = I. Define V by W = TV . Then

V ′ = T−1(ÃT − T ′)V =: DV, Ã = A− µI.(3.2)

Suppose |D| ≤ ε. Then by Proposition 4.1, |V (x)| ≤ |V (a)|eεx = |W (a)|eεx, and so

|V (x, λ)− V (a, λ)| ≤
∣∣∣∣∫ x

a
D(y)V (y)dy

∣∣∣∣
≤ sgn (x− a)

∫ x

a
ε|W (a)|eεydy

≤ eεa|W (a)||eε(b−a) − 1|.

(3.3)

To choose T (x, λ), x ∈ [a, b], we take the entries of T to be Chebyshev polynomials of degree N. We
then form a sparse matrix M with block entries of the form T ′c(xj , λk)− Ã(xj , λk)Tc(xj , λk) where ′ = ∂

∂x
and Tc are matrices whose entries are the Chebyshev polynomials evaluated at the nodes xj . The three
eigenvectors of MHM corresponding to the three smallest modulus eigenvalues provides the Chebyshev
coefficients of an approximate basis for the solution space of the ODE, which polynomial approximate
basis B(x, λ) is used to form the transformation matrix T (x, λ) = B(x, λ)B−1(a, λ) in our scheme.

To find the bound ε on D := T−1(ÃT − T ′), we approximate with error bounds A(x, λ(θ)) with
Chebyshev interpolation on [a, b] × [−1, 1]. On the imaginary axis, λ(θ) takes the form λ(θ) = i[(λ1 +
λ2)/2 + (λ1 − λ2)θ/20 for λ1 > λ2 ≥ 0. The contour along the imaginary axis must be broken up into
several pieces in order to obtain good interpolation bounds because of the small modulus eigenvalue for
the adjoint problem which requires a small stadium when interpolating the decay eigenvalue at x = +∞.
On the half circle, λ(θ) = Rei(π/4+πθ/4). We use Chebyshev interpolation to interpolate T ′. Because the
polynomials that form the entries of T are of degree N , and we interpolate the entries of T ′ with degree
N , there is no interpolation error. Finally, we must approximate T−1. To do this, we interpolate the
determinant of T and the Adjugate of T with Chebyshev polynomials of degree 3N , so that there is no
interpolation error. Finally, we obtain a single matrix D̃ approximating adjugate(T )(ÃT − T ′) whose
entries are Chebyshev polynomials of degree 4N1 + M1 by 4N2 + M2 where M1 and M2 are the degree
of the polynomials that approximate Ã(x, λ), so that once again there is no interpolation error. We can
sum the absolute value of the coefficients of the entries of D̃ to obtain an upper bound on D̃. We then
use small interval steps in λ to compute a lower bound on the modulus of det(T ). Combining these yields
ε such that |D| ≤ ε.

When we interpolate Ã(x, λ) = (A(x, λ) − µ(λ)I), we actually just use a Chebyshev polynomial µ̌(λ)
to represent µ(λ). We must correct for the difference in µ(λ) and µ̌(λ). This would not be necessary
if we were computing on a single contour, as it would only change the Evans function by a small, λ-
varying analytic non-zero factor. However, because we must compute the contour in parts, we correct by
interpolating µ(λ) with error bounds, call the interpolant µ̃(λ), and then multiplying the solution basis
at x = 0 by e(µ̃(λ)−µ̌(λ))L± ≈ 1. We note that it is important for the coefficients of µ̌(λ) to be point
intervals in order for the algorithm to provide small error intervals. Otherwise, we would use the interval
Chebyshev interpolant of µ(λ).

3.3. ODE initialization error. In this section we bound the initialization error that comes from ap-
proximating the ODE solution W (x) of (2.9) at x = M±.

Lemma 3.1. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, |·| the Euclidean (l2) operator norm,
and λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, (√γ + 1/2)2)), the following bounds hold,∣∣∣e(A−−µ−I)x

∣∣∣ ≤ C−1 eη̂−x, x ≥ 0, and
∣∣∣e(−A∗

+−µ+I)x
∣∣∣ ≤ C+

1 e
η̂+x, x ≤ 0,(3.4)
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where µ− = µ−(λ) is the eigenvalue of A− with positive real part, µ+ = µ+(λ) is the eigenvalue of −A∗+
with negative real part, η̃− = 0.1, η̃+ = 0.25, C−1 = 5.41, and C+

1 = 8.76.

Computer assisted proof. Following [4], we represent the matrix exponential using the Laplace transform

e(A−−µ−I)x = 1
2πi

∮
Γ
exz(z − (A− − µ−I))−1dz.(3.5)

We take Γ to be the rectangular contour with vertices at (−R,R), (−R,−R), (η̂−, R), (η̂−,−R) where
R is a bound on the modulus of the eigenvalues of (A− − µ−I) given by Rouche’s theorem, R :=
1 + max(|c2/c3|, |c1/c3|, |c0/c3|), where the characteristic polynomial of A− is given by p(z) = c3z

3 +
c2z

2 + c1z + c0. We note that∣∣∣e(A−−µ−I)x
∣∣∣ ≤ exη̂−

2π

4∑
k=1

∫ 1

0

∣∣∣(γk(t)− (A− − µ−I))−1
∣∣∣ |γ′k(t)|dt,(3.6)

where each γk(t) : [0, 1] → C parameterizes a different side of the rectangle Γ. Using the adjugate and
determinant of A− to compute A−1

− , we obtain an interval enclosure of the RHS of (3.6) by computing
each integral with a Reimann sum with interval arithmetic using 1000 evenly spaced subintervals of
[0,1]. To obtain µ− on each subinterval, we first interpolate µ−(λ) with a Chebyshev interpolant with
error bounds and then evaluate the resulting polynomial on the subintervals, all the while using interval
arithmetic. The rigorous computation indicates that

|e(A−−µ−I)x| ≤ C−eη̂−x,

where C− ∈ [0, 5.407325642691972], hence the statement of the lemma holds for the stated value of C−1 .
Similarly, we establish that C+

1 := 8.76 satisfies the statement of the lemma.
�

Remark 3.2. In [4], analytic bounds on the matrix exponential are given, but to improve the error
estimates, we use rigorous computation here.

Lemma 3.3. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, |·| the Euclidean (l2) operator norm,
and λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, (√γ + 1/2)2)), the following bounds hold,

(3.7) ||A(x, λ)−A−(λ)||2 ≤ C−(v+)eη−(v+)x, x ≤ −10, ||A(x, λ)−A+(λ)||2 ≤ C+(v+)eη+(v+)x, x ≥ 10,
where C±(v+) and η±(v+) are given in Table 1.

Computer assisted proof. Taylor expanding f(v) about v± to first order and computing the Frobenius
norm yields ||A(x, λ) − A±||2 ≤ |v̄(x) − v±|

√
2R2 + (f ′(ṽ))2, where ṽ ∈ [v+, v̄(10)] or ṽ ∈ [v̄(−10), 1]

respectively and R := (√γ + 1/2)2 is the radius of the semi-circle on which we compute the Evans
function. Using interval arithmetic, we compute an upper bound on

√
2R2 + (f ′(ṽ))2. We use interval

arithmetic to compute an enclosure, for v ∈ [v+, v̄(10)] or v ∈ [v̄(−10), 1], of the following quantities
derived in [4],

(3.8) H(v, v+)
v − 1 = v

(
1−

(
v+
v

)γ (1− vγ

1− v

))
, H(v, v+) = (v − v+)

(
v −

(
1− v+
1− vγ+

)(
1−

(v+
v

)γ
1−

(v+
v

) )) .
Note that in the above, we use the inequality 1 ≤ (1 − xγ)/(1 − x) ≤ γ proved in [4], valid for 0 ≤
x < 1, γ ≥ 1. As in [4], we then use the comparison principle for first order ODE to obtain the bound
|v̄(x)− v±| ≤ |v̄(±10)− v±|eη±x. Combining these rigorously computed bounds and enclosures yields the
stated bounds of the lemma. �

Lemma 3.4. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, |·| the Euclidean (l2) operator norm,
and λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩B(0, (√γ + 1/2)2)), there hold for |x| ≥ 10∣∣V ±(x)− V±

∣∣ ≤ θ±|V±|,(3.9)
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where θ± is given in Table 1, V ′−(x) = (A(x, λ)−µ−I)V−(x) for x ≤ 0, V ′+(x) = (−A∗(x, λ)−µ+I)V+(x)
for x ≥ 0, V (x) → V± as x → ±∞, and V− and V+ are respectively the eigenvectors of A− and −A∗+
corresponding to the eigenvalue µ− of A− with positive real part and to the eigenvalue µ+ of −A∗+ with
negative real part.

Computer assisted proof. Define the operator N on L2 by

N(U)(x) := V− +
∫ x

−∞
e(A−−µ−I)(x−y)(A(y)−A−)U(y)dy.(3.10)

Note that if V ′(x) = (A(x, λ) − µ−I)V (x), limx→−∞ V (x) = V−, then N(V (x)) = V (x) as can be seen
by applying Duhamel’s Principle to

V ′(x) = (A(x, λ)−A−)V (x) + (A− − µ−I)V (x).(3.11)

Note that for x ∈ (−∞,M−] and C−1 , η̂− as in Lemma 3.1 and C−2 and η− as in 3.3,

|N(U1)(x)−N(U2)(x)| ≤
∫ x

−∞
|e(A−−µ−I)(x−y)(A(y)−A−)||U1(y)− U2(y)|dy

≤ sup
y∈(−∞,M−]

|U1(y)− U2(y)|
∫ x

−∞
C−1 C

−
2 e
−η̂−(x−y)eη−ydy

≤ sup
y∈(−∞,M−]

|U1(y)− U2(y)|C−1 C
−
2

eη−x

η− − η̂−

≤ C−1 C
−
2
eη−M−

η− − η̂−
sup

y∈(−∞,M−]
|U1(y)− U2(y)|.

(3.12)

Define q− = C−1 C
−
2
eη−M−
η−−η̂−

and note that if U1 = V− and U2 = N(U1), then by the calculation in (3.12),
supy∈(−∞,M−] |U1(y)−U2(y)| ≤ q−|V−| where q− := C1C2e

ηM−/(η− η̂), so that if q− < 1, by the Banach
fixed point theorem, |U∗(x) − V−|supx∈(−∞,M−] ≤ q

1−q |V−| where U∗ = N(U∗) is the ODE solution of
interest. We define θ− = q−

1−q−
and use interval arithmetic to compute θ−, as reported in Table 1,

completing the computer assisted proof. Similarly, we establish the contraction constant θ+.
�

We are now ready to state the main lemma.

Lemma 3.5. For γ = 5/3, v+ ∈ {10−4, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4}, and for λ ∈ S(γ) := ∂({<(λ) ≥
0} ∩ ∂B(0, (√γ + 1/2)2)), we have that <(D(λ)) ≥ c(v+) where c(v+) is given in Table 2.

Computer assisted proof. We establish the lemma by rigorously verifying that the Evans function, D(λ),
when computed on S(λ) is enclosed in intervals whose union has real part no smaller than the values
reported in Table 2.

We use the error bounds described in Lemmas 3.1-3.4 to obtain an enclosure of the initializing vectors to
be used in solving (2.9). In particular, we use as initial conditions the λ analytically varying eigenvectors,

(3.13) V−(λ) = (λ+ µ−, µ−, µ
2
−)T , V+(λ) = v−1

+ λ−2(−λv+µ+,−λv+µ+ + λ2v+, µ
2
+)T ,

v+ 1e-4 1e-3 1e-2 0.1 0.2 0.3 0.4
η−(v+) 0.9995 0.9994 0.9987 0.9969 0.9020 0.8185 0.7221
C−2 (v+) 2.472e-3 2.445e-3 2.244e-3 2.676e-4 4.480e-4 9.016e-4 2.039e-3
θ−(v+) 6.783e-7 6.709e-7 6.206e-7 1.056e-7 3.655e-7 1.891e-6 1.296e-5
η+(v+) -0.9996 -0.9979 -0.9803 -0.8197 -0.6586 -0.5085 -0.3662
C+

2 (v+) 3.294e-3 7.356e-5 2.277e-6 1.759e-5 4.969e-5 1.867e-4 7.160e-4
θ+(v+) 1.051e-6 2.392e-8 8.946e-10 3.963e-8 6.599e-7 1.332e-5 2.611e-4

Table 1. Table showing the values of C±(v±) and η±(v±) in Lemma 3.3.
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where µ− is the eigenvalue of A− with positive real part and µ+ is the eigenvalue of −A+ with negative
real part. To find an enclosure of µ±(λ), we use Chebyshev interpolation of µ±(λ) where we determine
µ± at specific λ points using an interval Newton solver. We note that µ+ = O(λ) as λ→ 0, and so V+(λ)
can be smoothly continued to λ = 0. Because the Chebyshev interpolation nodes do not correspond to
λ = 0, we do not need to compute the Evans function at λ = 0.

In order for the enclosure of the Evans function to be sufficiently tight to provide useful information,
we divide the contour S(λ) up into smaller pieces and compute an enclosure of the Evans function on
each of those pieces. We compute the Evans function on the half-circle in one step because we are able
to do so without the interval enclosure of the Evans function including the origin. We divide the part
of S(λ) on the imaginary axis up into 39-74 pieces. The particular challenge along the imaginary axis is
that the initializing basis loses analyticity at values of λ with small (10−3) negative real part because of
colliding eigenvalues of the limiting matrix, and so the stadium of the analytic interpolation must have
a small radius which results in a slowly decaying interpolation error bound. Consequently, smaller steps
must be taken to reduce the number of interpolation nodes needed in each computation.

Using the interval method described in Section 3.2 for solving ODE and the Chebyshev interpolation
method described in Section 2.5.1, we obtain an enclosure of the solution to the ODE evaluated at x = 0
for each of the subintervals of S(λ) on which we compute the Evans function.

Evaluating the Chebyshev interpolant of the ODE solutions with the method described in Section
2.5.1, we obtain an interval enclosure of the ODE solutions which we then use to compute the Evans
function. We take the infimum of the real part of all intervals enclosing D(λ) yielding the result stated
in the Lemma.

�

Figures demonstrating the interval enclosures of the Evans function are given in Figure 2. Note that
the enclosure of the Evans function computed on the semi-circular part of S(λ) results in a large interval,
which, nonetheless, lies to the right of λ = 0. One could break the circular part of the contour up into
smaller pieces ot obtain a tighter enclosure of the Evans function at the cost of computation time.

Theorem 1.1 is an immediate consequence of Lemma 3.5 and the nonlinear stability theorems of
[15,16,27–29].

Proof of Theorem 1.1. In [4], it is shown that any unstable eigenvalues of (2.8), if any exist, must have
modulus no larger than R = (√γ + 1/2)2. Lemma 3.5 shows that the winding number of the Evans
function computed on the contour given by λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ ∂B(0, (√γ + 1/2)2)) is zero for
the values of v+ mentioned in the Theorem. Thus, the corresponding viscous traveling wave solutions are
asymptotically stable, hence, orbitally nonlinearly stable by the Theorems in [15,16,27–29]. �

3.4. Stability for nearby parameters. We note that by continuity of the Evans function ODE in λ,
v+, and γ, that our verification of stability at a parameter point implies stability in some neighborhood
of that point in parameter space.

3.5. Summary of results. Using interval arithmetic and analytic and rigorously computed error bounds,
we have shown by numerical proof that for γ = 5/3 and v+ ⊂ {10−4, 10−3, 10−2, 10−1, 0.2, 0.3, 0.4}, viscous
shock solutions of (1.1) are spectrally stable, hence, nonlinear stable, since the Evans function evaluated
on a suitable contour has winding number zero.

4. Appendix

4.1. ODE bounds.

v+ 1e-4 1e-3 1e-2 0.1 0.2 0.3 0.4
- c(v+) 7.65e-3 1.01e-2 8.34e-3 1.72 2.12 2.46 2.75

Table 2. Table describing c(v+) given in Lemma 2.
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Figure 2. Solid black and red regions indicate an enclosure of the image of the Evans
function, D(λ), under the domain λ ∈ S(γ) := ∂({<(λ) ≥ 0} ∩ B(0, (√γ + 1/2)2)). A
blue, dotted line marks the computed value of the Evans function using double arithmetic.
In each figure, the winding number of the Evans function is zero. In all figures, we take
γ = 5/3 and (a) v+ = 0.4, (b) v+ = 0.3, (c) v+ = 0.2, (d) v+ = 0.1, (e) v+ = 0.01, (f)
v+ = 0.001, (g) v+ = 0.0001.

Proposition 4.1 ( [8, 11, 26]). Suppose that y′(t) = f(t, y(t)) and f(t, y) is continuous for 0 ≤ t < ∞,
|y| < ∞. In addition, suppose that w(t, r) ≥ 0 is continuous on 0 ≤ t < ∞, 0 ≤ r < ∞ and that
|f(t, y)| ≤ w(t, |y|). If in addition y′(t) = f(t, y(t)) and r′(t) = w(t, r), r(0) = |y(0)|, then y(t) can be
continued to the right as far as r(t) exists and |y(t)| ≤ r(t) for all such t.

4.2. Computational Environment. All computations were carried out in STABLAB [3] using MatLab
2008b and Intlab V6 [21]. At the time of this work, known errors occurred when using Intlab with current
versions of Matlab, and so the 2008 version was used for reliability. Computations were performed on a
System 76 Gazelle Professional laptop with a 64-bit, 2.50 GH Intel Core i7-4710MQ processor, running
Ubuntu 14.04 or 15.04.

4.3. Computational statistics. On average, it took 18.8 minutes to solve the profile for a single value
of v+, and it took 2.20 hours total for all of the values of v+. Obtaining initialization errors for (2.9)
for all values of v+ took 24.7 minutes. It took on average 4.61 hours to evaluate the Evans function
for a single value of v+ and a total of 32.3 hours for all seven values of v+. The value v+ = 0.01 was
particularly difficult, requiring 10.3 hours to compute the Evans function because the preimage contour
had to be broken up into 74 pieces instead of the typical 39.
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