
ar
X

iv
:1

60
1.

00
83

9v
1

 [
cs

.D
S]

 5
 J

an
 2

01
6

Approximate Distance Oracles for Planar Graphs with

Improved Query Time-Space Tradeoff

Christian Wulff-Nilsen ∗

Abstract

We consider approximate distance oracles for edge-weighted n-vertex undirected pla-
nar graphs. Given fixed ǫ > 0, we present a (1 + ǫ)-approximate distance oracle with
O(n(log logn)2) space and O((log logn)3) query time. This improves the previous best
product of query time and space of the oracles of Thorup (FOCS 2001, J. ACM 2004)
and Klein (SODA 2002) from O(n log n) to O(n(log log n)5).

1 Introduction

Given an n-vertex edge-weighted undirected planar graph G, a distance oracle for G is a data
structure that can efficiently answer distance queries dG(u, v) between pairs of vertices (u, v)
in G. One way of achieving this is to simply store an n × n-distance matrix where n is the
number of vertices. Each query can be answered in constant time but the space requirement
is large.

If one is willing to settle for approximate distances, much more compact oracles exist. It
has been shown that for any ǫ > 0, there is a (1+ ǫ)-approximate distance oracle for G of size
O(1ǫn log n) which for any query pair (u, v) outputs in time O(1/ǫ) an estimate d̃G(u, v) such

that dG(u, v) ≤ d̃G(u, v) ≤ (1 + ǫ)dG(u, v) (Thorup [13] and Klein [7]).
The oracles of Thorup and of Klein both rely on a recursive decomposition of G using

shortest path separators from a shortest path tree T : firstG is decomposed into two subgraphs
with such a separator and then the two subgraphs are recursively decomposed. An important
observation is that for any vertex u and any shortest path separator S, there is a size O(1/ǫ)
set P of so called portals on S which are vertices such that for any w ∈ S, there exists a p ∈ P
such that dG(u, p)+ dS(p,w) ≤ (1+ ǫ)dG(u,w). Thus, to get an approximate distance from u
to any w ∈ S only O(1/ǫ) distances dG(u, p) need to be stored in addition to distances in T .
The oracle stores distances from u to portals on each of the O(log n) separators above u in
the recursive decomposition tree, giving a total space of O(1ǫn log n). To answer a uv-query,
the oracle identifies the nearest common ancestor separator Suv of u and v in the recursive
decomposition. As Suv separates u and v, distances from u and from v to their respective
portal sets on Suv can be combined to obtain a (1 + ǫ)-approximate distance estimate in
O(1/ǫ) time.

Additional oracles for planar graphs have since been presented. Kawarabayashi, Klein, and
Sommer [5] showed how to improve space to O(n) at the cost of an increase in query time to

∗Department of Computer Science, University of Copenhagen, koolooz@di.ku.dk,

http://www.diku.dk/˜ koolooz/

1

http://arxiv.org/abs/1601.00839v1

O(1
ǫ2 log

2 n) and gave generalizations to bounded-genus and minor-free graphs. Kawarabayashi,
Sommer, and Thorup [6] focused on improving the space-query time tradeoff and gave an or-
acle with O(n log n) space and O(1/ǫ) query time, where O(·) hides log log n and log(1/ǫ)
factors, thereby essentially improving the query time-space product from O(1

ǫ2
n log n) to

O(1ǫn log n). They also showed that if the average edge weight is poly-logarithmic, O(n)
space and O(1/ǫ) query time can be obtained.

Except for planar graphs with poly-logarithmic average edge weights, every oracle pre-
sented so far has a query time-space product of order Θ(n log n) (ignoring the dependency
on ǫ). We finally break this barrier by giving an oracle with O(n(log log n)2) space and
O((log log n)3) query time. The exact bounds are given in the following theorem.

Theorem 1. Let G be an n-vertex undirected edge-weighted planar graph. For any 0 < ǫ <
1, there is a (1 + ǫ)-approximate distance oracle of G with query time O((log log n)3/ǫ2 +
log log n

√

log log((log log n)/ǫ2)/ǫ2) and space O(n((log log n)2/ǫ+ (log log n)/ǫ2)).

Our dependency on ǫ in the query time-space product is worse than in [7, 13] but still only
a low-degree polynomial in 1/ǫ; it is roughly 1/ǫ3 when 1/ǫ = O(log log n) and roughly 1/ǫ4

otherwise, compared to 1/ǫ2 in [7, 13]. Focus in this paper is on improving the dependency
on n and not ǫ which we regard as fixed. Our data structure uses randomization due to
hashing and fast integer sorting. Space and query time for hashing can be made worst-case
with expected construction time. For sorting, we use the algorithm of Han and Thorup [4]
to get the bound in Theorem 1. To make our data structure deterministic, we can use a
standard optimal comparison sort or the slightly faster deterministic integer sorting algorithm
of Fredman and Willard [3]. With the latter, we get a deterministic query time of our data
structure of O((log log n)3/ǫ2 + (log log n log((log log n)/ǫ2))/(ǫ2 log log((log log n)/ǫ))).

A main difference between our oracle and those of Thorup and of Klein is that we do
not store distances from each vertex u to portals on all O(log n) separators above u. Instead
we save space by introducing a shortcutting system to the recursive decomposition tree so
that we can get from u to any separator above it using O(log log n) shortcuts. Each shortcut
corresponds to a pair of separators on a root-to-leaf path in the tree and we essentially store
approximate distances from vertices on one separator to portals on the other separator closer
to the root of the recursive decomposition tree. This complicates the query algorithm and its
analysis since approximate distances are found in O(log log n) steps instead of just one.

1.1 Related work

Thorup [13] also gave an oracle for planar digraphs which for polynomially bounded edge
weights achieves O(1ǫn log2 n) space and close to O(1/ǫ) query time. Exact oracles for planar
digraphs with tradeoff between space and query time have been studied but require near-
quadratic space for constant or near-constant query time [10, 16].

For a general undirected n-vertex graph G, Thorup and Zwick showed that for any pa-
rameter k ∈ N, there is a (2k − 1)-approximate distance oracle for G with O(kn1+1/k)
space and O(1/k) query time which is believed to be essentially optimal due to a girth
conjecture of Erdős [2]. Variations and slight improvements have since been presented; see,
e.g., [1, 9, 11, 17, 18].

2

1.2 Organization of the paper

In Section 2, we give some basic definitions, notation, and a variant of a standard recur-
sive decomposition of planar graphs with shortest path separators. We then present our
oracle in Sections 3 and 4. Section 3 presents the first phase of the query algorithm. This
phase computes approximate distances from query vertices u and v to certain portals on the
nearest common ancestor separator Suv of u and v in the recursive decomposition tree but
where approximate shortest paths are restricted to the child regions of Suv in the recursive
decomposition. The second phase in Section 4 uses the output of the first phase to then
find approximate distances from u and v to portals on Suv in the entire graph G. A main
challenge is that the vertices of Suv are not represented explicitly on all recursion levels but
on various levels on the path from Suv to the root of the recursive decomposition; the second
phase traverses this path to find the desired approximate distances and portals. From the
output of Phase II, obtaining an approximate uv-distance can then be done efficiently, as we
show in Section 5. Finally, we make some concluding remarks in Section 6.

2 Preliminaries

For a graph G, denote by V (G) and E(G) its vertex set and edge set, respectively. When
convenient, an edge (u, v) with weight w is denoted (u, v, w). For a rooted tree T and two
nodes u, v ∈ T , denote by ncaT (u, v) the nearest common ancestor of u and v in T . For
a path P and for two vertices u, v ∈ P , P [u, v] denotes the subpath of P between u and
v. As in previous papers on approximate distance oracles for planar graphs, we assume the
Word-RAM model with standard instructions.

2.1 Recursive Decomposition

In the following, G = (V,E) denotes an n-vertex, undirected, edge-weighted planar embedded
graph and T is a shortest path tree in G rooted at a source vertex s. By performing vertex-
splitting, we may assume that G has degree three.

The oracle of Thorup keeps a recursive decomposition of G consisting of shortest path
separators. Our oracle obtains a similar decomposition but we need it to have some additional
properties which we focus on in the following.

Denote by G∆ an arbitrary triangulation of G where edges of E(G∆)\E are called pseudo-
edges and are given infinite weight. A shortest path separator of G∆ w.r.t. an assignment of
weights to triangles of G∆ consists of a (possibly non-simple) cycle C defined by two shortest
paths s u and s v in T and a non-tree edge (u, v); the total weight of triangles on each
side of C is at most 2

3 of the total weight of all triangles of G∆. See [8, 13] for details.
First, we decompose G∆ into two subgraphs enclosed by C; both subgraphs inherit the

edges and vertices of C, for a suitable weight function on triangles. Degree two vertices u are
removed from each subgraph by replacing their incident edges (v, u) and (u,w) with a single
edge (v,w) whose weight is the sum of weights of (v, u) and (u,w). Then the two subgraphs
are recursively decomposed until constant-size subgraphs are obtained.

For each subgraph R obtained in the above recursive procedure, we form a region R′ as
follows. Subgraph R contains O(log n) separators of the form s u → v s, namely those
formed from the root of the recursion down to R. These are separators formed from the root
of the recursion down to R. Region R′ is obtained from R by removing pseudo-edges, except

3

those contained in the separators that formed R, and then removing degree two vertices as
above. Let H1, . . . ,Hk be the faces of R containing vertices/edges of G not belonging to R.
Each Hi is a separator s u → v s (possibly with some degree two vertices removed)
and we call Hi a hole (of R′). Ancestor/descendant relations between regions are defined
according to their nesting in the recursive decomposition tree which we denote by T . In
Section 2.2, we show how to pick shortest path separators such that

1. there are O(n) regions in total each having O(1) holes,

2. for each child R′ of each region R, every hole of R (regarded as the closed set of the
plane inside the hole) is fully-contained in a hole of R′,

3. the height of T is O(log n).

When we refer to a recursive decomposition in the following, we assume it has these properties.
Observe that for all regions R and R′ where R is a descendant of R′, V (R) ⊆ V (R′). This
follows since R is obtained from R′ by eliminating subgraphs of R′ and degree two vertices.

2.2 Constructing a recursive decomposition

In the following, refer to the triangulated subgraphs obtained when recursively decomposing
G∆ as ∆-regions; holes of ∆-regions are defined to be the holes of the corresponding regions
with pseudo-edges added to form the triangulation. We now show how to pick the separators
so that the following region conditions are satisfied:

1. each ∆-region of even resp. odd depth in T has at most three resp. four holes,

2. for each ∆-region of even depth in T , if it contains exactly f faces of ∆G, each of its
grandchildren contain at most 2f/3 faces of ∆G,

3. for each child R′ of each ∆-region R, every hole of R (regarded as the closed set of the
plane inside the hole) is fully-contained in a hole of R′.

Furthermore, we show that the number of regions is O(n) and that the height of T is O(log n).
This gives the desired properties for a recursive decomposition, as stated above.

All separators are formed from shortest path tree T . The recursion stops once ∆-regions
with at most two faces of ∆G are obtained. For a ∆-region R of even depth in T , assume
it has at most three holes (this trivially holds for G∆ at the root of T). We assign a unit
of weight to each face of R that is also a face of G∆. All other faces of R are given weight
0. Using the subtree of T in R, we find a balanced shortest path separator w.r.t. this weight
function. If f is the number of faces of ∆G in R then each of the subgraphs formed contain
at most 2f/3 of these faces. Furthermore, each of these subgraphs have at most four holes
since at most one new hole is formed when removing one side of the separator.

Now consider a ∆-region R of odd depth in T and assume it has at most four holes. If
R has at most two holes, we decompose it as described above for even-depth ∆-regions; the
sub-∆-regions formed will have at most three holes. Otherwise, we define a different weight
function than that above: for each hole H of R, exactly one of the triangles of R contained
in H is given unit weight. All other triangles of R are given weight 0. The shortest path
separator w.r.t. this weight function ensures that each of the two sub-∆-regions of R formed

4

s

Copy of s

(a) (b)

R

H4

H3

H2

H1

H5

Figure 1: (a): A region R with δR bounding holes H1, . . . ,H5. Corners are shown as white
vertices. (b): Representation of δR obtained by “cutting open” each hole.

will have at most three holes, namely at most ⌊23 · 4⌋ = 2 holes inherited from R and one hole
formed by removing one side of the separator.

It is now clear that the first region condition holds. The second region condition holds
as well from the above and from the fact that each child of an odd-depth ∆-region R cannot
contain more faces of ∆G than R.

Assume for the sake of contradiction that the third region condition does not hold for
some ∆-region R and one of its children. Then the separator that was used to decompose R
must have used one of the pseudo-edges in the triangulated hole H of R. Since the boundary
of H consists of two shortest paths from T and a single pseudo-edge, one of the children of
R must be fully contained in H, which for both choices of weight function above gives an
unbalanced separator, a contradiction. We conclude that the third region condition holds.

The number of ∆-regions is asymptotically bounded by the number of leaves of the re-
cursive decomposition tree. Each leaf ∆-region has a parent with at least three faces of ∆G.
For any two distinct ∆-regions R and R′ that are parents of leaf ∆-regions, no face of ∆G
belongs to both R and R′. It follows that there are only O(n) parents of leaf ∆-regions. Since
the decomposition tree T is binary, the total number of leaf ∆-regions is O(n). This implies
that the total number of ∆-regions, and hence regions, is O(n).

It follows from the second region condition and the termination condition for the recursion
that T has height O(log n).

2.3 Region boundary structure

Let Q be a path in T from s to some vertex. For any subpath Q[u, v] of Q, let v1, . . . , vk be
those interior vertices of Q having an incident edge of E emanating to the left of Q[u, v] when
looking in the direction from u to v. We order the vertices such that Q[u, v] = u v1 · · ·
vk v. The left side of Q[u, v] is the uv-path with edges (u, v1), (v1, v2), . . . , (vk−1, vk), (vk, u)
where each edge has weight equal to the weight of the corresponding subpath of Q. We define
the right side of Q[u, v] similarly.

For a region R, denote by δR the boundary of R which is the subgraph of R contained in
the O(1) holes of R. For each hole H, it will be convenient to regard the two shortest paths
in T bounding H as disjoint in δR by replacing one path with its left side and the other with
its right side; vertices shared by the original two paths are regarded as distinct in the two new
paths, see Figure 1. Note that δR represented in this way is now a single face of R. Cutting
open each hole like this ensures that paths in R do not cross its boundary.

A vertex (edge) of R that is not contained in δR is called interior. Denote by PR the O(1)
shortest paths from the shortest path tree T that bound δR. A vertex which is an endpoint of

5

a path in PR is called a corner of R; see Figure 1. We let C(R) denote the set of O(1) corners
of R. In some places, we will instead consider the face δGR obtained from δR by replacing
each edge with its corresponding path in G. The following lemma gives the structure of δR.

Lemma 1. For any region R, δR consists of O(1) subpaths each of which is either a single
(possibly pseudo-)edge between two corners, an edge corresponding to a path in T from s to
some corner of R, or the left or right side of a path in T .

Proof. Consider partitioning δR into subpaths each starting and ending in a corner and with
no interior corner vertices. There are only O(1) such subpaths and each of them is either an
edge or pseudo-edge ending in corners or the subpath corresponds to a path in T incident to
one or two holes. If it is incident to one hole, it is the left or right side of a path in T and if
it is incident to two holes, it is a single edge corresponding to a path ending in s.

When convenient, we identify regions with their corresponding nodes in T . For two regions
R and R′, denote by R R′ the simple path from R to R′ in T .

2.4 Portals

Let G = (V,E) be an undirected edge-weighted (not necessarily planar) graph, let u ∈ V ,
and let Q be a shortest path in G. Thorup [13] showed that for any given ǫ > 0, V (Q)
contains a set P of O(1/ǫ) portals such that for any v ∈ V (Q), there is a p ∈ P such that
dG(u, p) + dP (p, v) ≤ (1 + ǫ)dG(u, v).

Let R be a region and let P ⊆ V (δR). Given a value ε > 0, a vertex u ∈ V , and an
undirected (possibly non-planar) graphH with P∪{u} ⊆ V (H) ⊆ V where every edge (v1, v2)
in H corresponds to a path v1 v2 in G of the same weight. Then P is a (u,H, 1 + ε)-portal
set of δR if for any v ∈ V (δR), there exists a vertex p ∈ P such that dH(u, p) + dδR(p, v) ≤
(1+ε)dH∪δR(u, v). We call p a portal (of P). Applying the portal construction of Thorup [13]
(see also the proof of Lemma 2) to each path in PR gives a (u,H, 1 + ε)-portal set of δR of
size O(|PR|/ε) = O(1/ε). Define (u,H, 1 + ε)-portal set of δGR similarly; its size is O(1/ε)
as well.

We need a slightly more general result regarding portals than that of Thorup which we
state in the following somewhat technical lemma. It roughly says that if we have a graph H
representing some subgraph of G such that distances in G from a vertex u to a shortest path
Q in G are approximated well in H, then we can pick a small number of portals from H along
Q such that these distances are also approximated well with shortest paths in H from u to
Q through these portals.

Lemma 2. Let Q be a shortest path in an edge-weighted undirected graph G = (V,E) and let
u ∈ V and ǫ′, ǫ′′ > 0 be given. Let H be an undirected graph with u ∈ V (H) ⊆ V such that
for any v1, v2 ∈ V (H), dH(v1, v2) ≥ dG(v1, v2). Assume that for any v ∈ V (Q), there is a
v′ ∈ V (H) ∩ V (Q) such that dH(u, v′) + dQ(v

′, v) ≤ (1 + ǫ′)dG(u, v). Then there is a subset
PH of V (H) ∩ V (Q) of size O(1/ǫ′′) such that for any v ∈ V (Q) there is a p ∈ PH such that
dH(u, p) + dQ(p, v) ≤ (1 + ǫ′)(1 + ǫ′′)dG(u, v).

Proof. The construction is similar to that of Thorup. The first portal p0 added to PH is the
vertex v ∈ V (H) ∩ V (Q) minimizing dH(u, v). Let t be an endpoint of Q. We show how to
construct PH ∩Q[p0, t]; the same construction is done for the other subpath of Q.

6

Let pj be the latest portal added to PH and traverse Q[pj , t] towards t until encountering
a vertex pj+1 ∈ V (H) such that dH(u, pj)+ dQ(pj , pj+1) > (1+ ǫ′′)dH(u, pj+1). Portal pj+1 is
then the next portal added to PH . The process stops when reaching the vertex of V (H)∩V (Q)
closest to t; this vertex is added as the final portal pk to PH .

Let v ∈ V (Q) be given. By assumption, there is a v′ ∈ V (H)∩V (Q) such that dH(u, v′)+
dQ(v

′, v) ≤ (1 + ǫ′)dG(u, v). The above construction ensures that there is a p ∈ PH such that

dH(u, p) + dQ(p, v
′) + dQ(v

′, v) ≤ (1 + ǫ′′)(dH (u, v′) + dQ(v
′, v)) ≤ (1 + ǫ′)(1 + ǫ′′)dG(u, v).

It remains to prove that |PH | = O(1/ǫ′′). By symmetry, it suffices to show |PH ∩
Q[p0, pk]| = O(1/ǫ′′). For any v ∈ V (H) ∩ V (Q[p0, pk]), define potential Φ(v) = dH(u, v) +
dQ(v, pk). For j = 1, 2, . . . , k − 1,

Φ(pj+1) = dH(u, pj+1) + dQ(pj+1, pk),

Φ(pj) = dH(u, pj) + dQ(pj , pj+1) + dQ(pj+1, pk) > (1 + ǫ′′)dH(u, pj+1) + dQ(pj+1, pk),

so the potential is reduced by

Φ(pj)− Φ(pj+1) > ǫ′′dH(u, pj+1) ≥ ǫ′′dH(u, p0).

Since Φ(p0) = dH(u, p0)+dQ(p0, pk) and Φ(pk) = dH(u, pk) ≥ dQ(p0, pk)−dH(u, p0) (because
dH(u, pk) + dH(u, p0) ≥ dH(p0, pk) ≥ dG(p0, pk) = dQ(p0, pk)), we have Φ(p0) − Φ(pk) ≤
2dH(u, p0), implying that k = O(1/ǫ′′).

3 The First Phase

Our data structure answers a query for vertex pair (u, v) in two phases, Phase I and Phase II.
In this section, we describe the preprocessing for Phase I and then the query part. The output
and performance of Phase I applied to u is stated in the following lemma (v is symmetric).
Phase I starts with R1(u) which is an arbitrary region R (among at most two choices) such
that u ∈ δR and u /∈ δR′ where R′ is the parent of R in T . Region R1(v) is defined similarly.

Lemma 3. Phase I for vertex u can be implemented to run in O((log log n)3/ǫ2) time using
O(n(log log n)2/ǫ) space. For the output (Pu, {d̃(u, p)|p ∈ Pu}), we have that for all w ∈
V (δCu), there is a p ∈ Pu such that dCu(u,w) ≤ d̃(u, p)+dδCu

(p,w) ≤ (1+ǫ/2)dCu(u,w) where
Cu is the child of Ruv = ncaT (R1(u), R1(v)) on the path in T from Ruv to Ru. Furthermore,
|Pu| = O(1/ǫ).

Note that any uv-path of G must intersect δCu. Phase I computes approximate distances
to this separator but with the restriction that paths must be contained in Cu. Phase II is
considered in Section 4 and it extends the output of Phase I to approximate distances to
δGCu in the entire graph G.

3.1 Preprocessing

We start by constructing a recursive decomposition of G and the associated decomposition
tree T . In order to traverse leaf-to-root paths of T efficiently, we set up a shortcutting system
for T . For any region R ∈ T , let i be the largest integer such that the depth of R in T is
divisible by 2i. For any integer j between 0 and i, we add a pointer from R to the ancestor

7

u Ri

∈ δRi−1 ∩ δRi

Ri−1

w

∈ δ(Ri−1, Ri)

∈ δ(Ri−1, Ri) ∈ δRi−1 \ δRi

s

∈ P (w,Ri−1 → Ri)

w′

Figure 2: Regions, Ri−1 and Ri for shortcut Ri−1 → Ri. To simplify the figure, each region has
only one hole and it is embedded on the infinite face. For every w ∈ δ(Ri−1, Ri)∪(δRi−1\δRi)
(circle vertices), a (w,Ri, 1 + ǫ1)-portal set P (w,Ri−1 → Ri) is stored during preprocessing.
In the ith iteration of the query algorithm, Hi contains edges from u to Pi−1 ⊆ V (δRi−1) and
edges (w,w′) (one shown in figure) with w′ ∈ P (w,Ri−1 → Ri)} for w ∈ Pi−1.

R′ 2j levels above R. We refer to this pointer as a shortcut and denote it by R → R′. We
can get from any region R1 to any proper ancestor R2 of R1 by traversing only O(log log n)
shortcuts: first traverse the shortcut R1 → R′ where R′ is the closest region to R2 which is
either R2 or one of its descendants. Then recurse on pair (R′, R2) until reaching R2.

Before describing the preprocessing for Phase I, we need the following lemma. For any
vertex u ∈ V , define Ru as the set of regions R where u ∈ δR \ C(R).

Lemma 4. For all u ∈ V , regions of Ru form a subpath of a leaf-to-root path in T .

Proof. Let R be a region in Ru. Non-corner vertices of shortest paths in PR have degree three
in G (otherwise, their incident edges would have been merged into one in the construction of
R) so u must be incident to an interior edge e of R. This edge cannot be a pseudo-edge since
u /∈ C(R) but must be an edge of G. The same cannot be true for both child regions of R in
T since G has degree three so at most one of these regions belongs to Ru.

We sometimes regard Ru as the subpath from the lemma.
For any shortcut R1 → R2, define δ(R1, R2) as the set of O(1) vertices u ∈ δR1 such that

u is the last vertex from s on a path of PR1
satisfying u ∈ δR2; see Figure 2.

For each shortcut R1 → R2 and each w ∈ δ(R1, R2) ∪ (δR1 \ δR2), we construct and
store a size O(1/ǫ1) (w,R2, 1 + ǫ1)-portal set P (w,R1 → R2) of δR2 together with distances
dR2

(w, p) for each p ∈ P (w,R1 → R2) (Figure 2); ǫ1 = Θ(ǫ/ log log n) will be specified
precisely in Section 3.3 below. This completes the description of the preprocessing.

Lemma 5. The total space required for Phase I is O(n log log n/ǫ1).

Proof. It suffices to give an O(n log log n/ǫ1) bound on the total size of portal sets defined
above. Let w ∈ V be given. By Lemma 4, there can only be O(log log n) shortcuts R1 → R2

where R1 ∈ Rw and R2 /∈ Rw. Hence there are only O(log log n) shortcuts R1 → R2 where
w ∈ δR1 \ (δR2 ∪C(R1)). The total number of sets δ(R1, R2) and the total number of corners
of R1 over all shortcuts R1 → R2 is O(n log log n) and |δ(R1, R2)| = O(1). As each set
P (w,R1 → R2) has size O(1/ǫ1), total size of portal sets is O(n log log n/ǫ1).

8

3.2 Query

In this subsection, we present Phase I for query vertices u and v. Figure 2 is useful to consult
in the following. We assume that starting regions R1(u) and R1(v) are not on the same
leaf-to-root path in T . As we will see later, the other case is easily handled. Pseudocode for
vertex u can be found in Figure 3; the same call is made with u replaced by v.

Phase I for u:

1. let R1 → R2 → · · · → Rk be the shortcuts from R1 = R1(u) to Rk = Cu

2. let P2 = P (u,R1 → R2)

3. for each p ∈ P2, let d̃2(u, p) = dR2
(u, p)

4. for i = 3 to k

5. let Ei = {(u,w, d̃i−1(u,w))|w ∈ Pi−1}
6. let E′

i = {(w,w′, dRi
(w,w′))|w ∈ δ(Ri−1, Ri) ∪ (Pi−1 \ δRi), w

′ ∈ P (w,Ri−1 → Ri)}
7. let Ci be face δRi restricted to vertices that are either in δ(Ri−1, Ri) ∪ C(Ri) or

are incident to edges in Ei ∪E′
i

8. construct the graph Hi consisting of the edges Ei ∪ E′
i ∪ E(Ci)

9. for each p ∈ V (Hi), let d̃i(u, p) = dHi
(u, p)

10. if i < k, construct (u,Hi, 1 + ǫ1)-portal set Pi ⊆ V (Hi) of δRi of size O(1/ǫ1)
11. construct (u,Hk, 1 + ǫ2)-portal set Pu ⊆ V (Hk) of δRk of size O(1/ǫ2)

12. output (Pu, {d̃(u, p)|p ∈ Pu}), where d̃(u, p) = d̃k(u, p)

Figure 3: Pseudocode for Phase I applied to u. Region Cu is defined as in Lemma 3.

Let Cu be defined as in Lemma 3 (Cv is defined similarly for v). Let R1 → R2 → · · · → Rk

denote the sequence of shortcuts from R1 = Ru to Rk = Cu. To simplify the code, we assume
k ≥ 3; the other case is straightforward. Note that k = O(log log n).

In lines 2 and 3, we obtain the precomputed portal set P2 = P (u,R1 → R2) as well as
distances dR2

(u, p) for each portal p ∈ P2. Note that P2 is well-defined by definition of R1(u).
In the ith iteration of the for-loop, we are given Pi−1 constituting portals for δRi−1 and

we form a graph Hi containing u and a subset of V (δRi) such that all distances from u to
δRi in Ri can be approximated by going through Hi and then along δRi. An illustration of
Hi can be seen in Figure 4.

Edges of Ei in line 5 are added toHi and these represent the approximate distances to Pi−1

in Ri−1 found in the previous iteration. To have Hi approximate distances from u in Ri, we
add another edge set E′

i, defined in line 6; for every vertex in w ∈ δ(Ri−1, Ri) ∪ (Pi−1 \ δRi),
we add to Hi the edge (w,w′, dRi

(w,w′)) for every w′ ∈ P (w,Ri−1 → Ri), representing a
shortest ww′-path in Ri. To allow Hi to traverse δRi, we add Ci in line 7. This is a compact
representation of face δRi restricted to a subset of its vertices; each subpath of δRi between
two consecutive vertices in this subset is a single edge of the same weight in Ci.

We show below that distances in Hi from u to V (Hi) ∩ δRi approximate distances from
u to δRi in Ri. In order to avoid an explosion in the size of future portal sets, we form a
(u,Hi, 1 + ǫ1)-portal set Pi ⊆ V (Hi) of δRi of size only O(1/ǫ1) in line 10 which is then used
in the next iteration.

9

u Ri

Ri−1

∈ δ(Ri−1, Ri)

s

∈ δ(Ri−1, Ri)

∈ Ei

∈ E ′
i

∈ Ci−1

Figure 4: Illustration of graph Hi from Figure 3. Edges of Hi are solid and boundaries
δRi−1 and δRi are dotted. Black circles are starting points of edges of E′

i, squares are their
endpoints, and all other vertices of Hi are white circles.

Line 11 is identical to line 10 except that we use a value ǫ2 > 0 instead of ǫ1. We shall
pick ǫ2 ≫ ǫ1 which gives a much smaller portal set Pu output in line 12; this will help speed
up Phase II. We do not use ǫ2 inside the for-loop in line 10 since the approximation error
builds up over each iteration so we need the smaller value ǫ1 there.

Lemma 3 follows from the following invariant for the for-loop in lines 4–10:

Invariant: At the start of the ith iteration of the for-loop in lines 4–10 of Figure 3, for all
w ∈ V (δRi−1), there is a p ∈ Pi−1 such that dRi−1

(u,w) ≤ d̃i−1(u, p) + dδRi−1
(p,w) ≤

(1 + ǫ1)
2(i−1)dRi−1

(u,w), and |Pi−1| = O(1/ǫ1).

Note that the invariant holds initially when i = 3 since P2 is a (u,R2, 1+ ǫ1)-portal set of
δR2 and its size is O(1/ǫ1).

Maintenance of invariant: Let 3 ≤ i < k be given and assume the invariant holds at the
beginning of the ith iteration of the for-loop. We show that it also holds at the beginning of
the (i+1)th iteration. Let Q be a shortest path in Ri from u to a vertex wi ∈ δRi. We show
that there is a pi ∈ V (Hi) ∩ δRi such that dHi

(u, pi) + dδRi
(pi, wi) approximates the weight

of Q up to a factor of (1 + ǫ1)
2i−1. The second inequality of the invariant will then follow

from Lemma 2. The first inequality follows since d̃i(u, p) is the weight of an actual path in
Ri from u to p for each p ∈ Pi.

Let wi−1 be the last vertex on Q such that the subpath of Q from u to wi−1 is con-
tained in Ri−1. In particular, wi−1 ∈ δRi−1. By the invariant at the beginning of the
ith iteration, there is a portal pi−1 ∈ Pi−1 such that d̃i−1(u, pi−1) + dδRi−1

(pi−1, wi−1) ≤
(1 + ǫ1)

2(i−1)dRi−1
(u,wi−1).

Assume first that wi−1 ∈ (δRi−1∩ δRi)\ δ(Ri−1, Ri). Then Q is contained in Ri−1 and Hi

approximates the distance from u to wi up to a factor of (1+ ǫ1)
2(i−1) with the path starting

with (u, pi−1) ∈ Ei and followed by edges of Ci.
Now assume that wi−1 ∈ (δRi−1 \ δRi) ∪ δ(Ri−1, Ri). Consider first the case where

pi−1 ∈ δRi−1\δRi (Figure 2 with w playing the role of pi−1). We have the precomputed portal
set P (pi−1, Ri−1 → Ri) and it contains a portal pi such that dRi

(pi−1, pi) + dδRi
(pi, wi) ≤

10

(1 + ǫ1)dRi
(pi−1, wi). Hence,

dHi
(u, pi) + dδRi

(pi, wi) ≤ d̃i−1(u, pi−1) + dRi
(pi−1, pi) + dδRi

(pi, wi)

≤ (1 + ǫ1)(d̃i−1(u, pi−1) + dRi
(pi−1, wi))

≤ (1 + ǫ1)(d̃i−1(u, pi−1) + dδRi−1
(pi−1, wi−1) + dRi

(wi−1, wi))

≤ (1 + ǫ1)((1 + ǫ1)
2(i−1)dRi−1

(u,wi−1) + dRi
(wi−1, wi))

≤ (1 + ǫ1)
2i−1dRi

(u,wi).

Now consider the other case where wi−1 ∈ (δRi−1 \ δRi)∪ δ(Ri−1, Ri) and pi−1 ∈ δRi−1 ∩
δRi. Then a shortest path from pi−1 to wi−1 in δRi−1 contains a vertex p′i−1 ∈ δ(Ri−1, Ri)
and the subpath from pi−1 to p′i−1 is contained in Ci ⊆ Hi. We have a precomputed portal
set P (p′i−1, Ri−1 → Ri) containing a portal pi such that dRi

(p′i−1, pi) + dδRi
(pi, wi) ≤ (1 +

ǫ1)dRi
(p′i−1, wi). This gives

dHi
(u, pi) + dδRi

(pi, wi) ≤ dRi−1
(u, pi−1) + dδRi−1

(pi−1, p
′
i−1) + dRi

(p′i−1, pi) + dδRi
(pi, wi)

≤ (1 + ǫ1)(dRi−1
(u, pi−1) + dδRi−1

(pi−1, p
′
i−1) + dRi

(p′i−1, wi))

≤ (1 + ǫ1)(dRi−1
(u, pi−1) + dδRi−1

(pi−1, p
′
i−1) +

dδRi−1
(p′i−1, wi−1) + dRi

(wi−1, wi))

= (1 + ǫ1)(dRi−1
(u, pi−1) + dδRi−1

(pi−1, wi−1) + dRi
(wi−1, wi))

≤ (1 + ǫ1)((1 + ǫ1)
2(i−1)dRi−1

(u,wi−1) + dRi
(wi−1, wi))

≤ (1 + ǫ1)
2i−1dRi

(u,wi),

as desired.

Termination: The invariant shows that at the beginning of the kth iteration, for all w ∈
V (δRk−1), there is a p ∈ Pk−1 such that dRk−1

(u,w) ≤ d̃k−1(u, p) + dδRk−1
(p,w) ≤ (1 +

ǫ1)
2(k−1)dRk−1

(u,w). Line 11 is identical to line 10 for i = k except that ǫ1 is replaced by ǫ2
so line 11 increases the approximation by a factor of (1+ ǫ1)(1+ ǫ2). Below we choose ǫ1 and
ǫ2 such that (1 + ǫ1)

2k−1(1 + ǫ2) ≤ 1 + ǫ/2. This will imply Lemma 3.

3.3 Bounding query time and stretch

Obtaining shortcuts in line 1 can be done in O(k) = O(log log n) time. Lines 2 and 3 take
O(|P2|) = O(1/ǫ1) time as P (u,R1 → R2) and distances dR2

(u, p) for p ∈ P2 are precomputed.
We first show how a single iteration i of the for-loop in lines 4–10 can be implemented

to run in O((log(1/ǫ1))/ǫ
2
1) time. Then we show how to improve it to O(1/ǫ21). Finding

Ei takes O(|Pi−1|) = O(1/ǫ1) time. As |δ(Ri−1, Ri)| = O(1), E′
i can be found in time

O((1 + |Pi−1|)/ǫ1) = O(1/ǫ21). Face Ci is obtained in O((|δ(Ri−1, Ri) ∪ C(Ri)| + |Ei ∪
E′

i|) log(|δ(Ri−1, Ri) ∪ C(Ri)| + |Ei ∪ E′
i|)) = O(log(1/ǫ1)/ǫ

2
1) time by sorting the vertices

according to their cyclic ordering in an Euler tour of face δRi. Graph Hi and distances
d̃i(u, p) for p ∈ V (Hi) can then be obtained in O(|Ei| + |E′

i| + |Ci−1|) = O(1/ǫ21) time. To
obtain Pi, apply the portal construction algorithm in the proof of Lemma 2 to each shortest
path in Pi restricted to Hi. This takes O(|Pi||V (Hi)|) = O(|V (Hi)|) = O(1/ǫ21) time. Line
11 takes O(1/ǫ2) time.

11

We improve the time bound to O(1/ǫ21) by avoiding the sorting step above. Instead, we
omit adding edges of Ci to Hi and apply a variant of the portal construction algorithm in the
proof of Lemma 2 to each shortest path Qi ∈ Pi restricted to Hi. We describe this variant in
the following.

First observe that V (Hi) ∩ Qi can be partitioned into O(1/ǫ1) subsets Ai(1), . . . , Ai(ℓ)
where each subset Ai(j) is either a singleton set consisting of a vertex in δ(Ri−1, Ri)∪C(Ri),
a singleton set consisting of an endpoint of an edge in Ei, or a set P (w,Ri−1 → Ri) ∩ Qi

for each w ∈ δ(Ri−1, Ri) ∪ (Pi−1 \ δRi). Assume that each set Ai(j) is sorted along Qi in
non-decreasing distance from the source s in shortest path tree T ; this sorting can be done
in the preprocessing step.

The first portal p0 to be added to Pi is the vertex p ∈ V (Hi) ∩Qi minimizing dHi
(u, p).

We can identify p0 in O(|V (Hi)∩Qi|) = O(1/ǫ21) time. Let t be the vertex of Qi farthest from
s. As in the proof of Lemma 2, we only describe the algorithm for adding portals to Qi[p0, t];
adding portals along Qi[s, p0] is symmetric.

For each set Ai(j), we keep a pointer to the first vertex in its sorted order. We then
make a single pass over the sets Ai(j) and for each of them move its pointer forward to
the first vertex in Qi[p0, t] (if any) for which the distance to it cannot be approximated by
going through the previously added portal p0, i.e., the first vertex w ∈ Qi[p0, t] such that
dHi

(u, p0) + dQi
(p0, w) > (1 + ǫ1)dHi

(u,w). Among the vertices with pointers to them, the
one closest to p0 in Qi is then added to Pi as the next portal, and p0 is updated to this vertex.
Additional passes are made until the pointers have moved past all vertices of their respective
Ai(j) sets.

Correctness follows since the set of portals formed is the same as that obtained by the
portal-construction algorithm of Thorup. Running time is O(1/ǫ21). To see this, note that
each pass (except possibly the last) adds at least one portal to Pi so the number of passes
is O(1/ǫ1). Furthermore, each pass takes O(ℓ + x) = O(1/ǫ1 + x) time where x is the total
number of vertices visited in that pass over all sets Ai(j). Since the total number of vertices
visited over all passes is O(|∪ℓ

j=1Ai(j)|) = O(|V (Hi)∩Qi|) = O(1/ǫ21), the time bound follows.
We can obtain a stretch of 1 + ǫ/2 for the approximate distances obtained in the final

iteration of Phase I as follows. Since (1+ ǫ1)
2k ≤ e2kǫ1 < 1/(1−2kǫ1) when 2kǫ1 < 1, we pick

ǫ1 = ǫ/(8k) to obtain (1 + ǫ1)
2k < 1/(1 − ǫ/4) which is at most 1 + ǫ/3 when ǫ ≤ 1. Picking

ǫ2 = ǫ/8 gives (1 + ǫ1)
2k−1(1 + ǫ2) < 1 + ǫ/2 for ǫ smaller than some positive constant. This

shows Lemma 3.

4 The Second Phase

Phase II takes as input the sets Pu and Pv with associated approximate distances d̃(u, p) and
d̃(v, p) that were output by Phase I. The output of Phase II has the properties stated in the
following lemma. Denote by Suv the shortest path separator in G that separates Ruv into Cu

and Cv. In Section 5, we efficiently obtain from this output an approximate uv-distance.

Lemma 6. Phase II for u can be implemented to run in O((log log n)2/ǫ+(log log n)/ǫ2) time
using O(n log log n/ǫ2) space, given the output from Phase I. For the output (V (H), {dH (u, p)|p ∈
V (H)} from Phase II, we have |V (H)| = O(log log n/ǫ2) and for any w ∈ V (Suv), there is a
vertex p ∈ V (H) such that dG(u,w) ≤ dH(u, p) + dT (p,w) ≤ (1 + ǫ)dG(u,w).

12

s

w

Rw∈ P (w)′

∈ P (w) Q

∈ P (w)

Figure 5: Step 1 of the preprocessing for Phase II. White vertices belong to δRw and black
and white vertices belong to δGRw. Edges of G incident to δGRw and edges of path Q are
solid. The predecessor and successor on Q of a vertex of P (w)′ belong to P (w).

4.1 Preprocessing

The preprocessing for Phase II consists of the following four steps:

Step 1: For each w ∈ V and each of the at most two regions Rw with w ∈ δRw and
w /∈ δR′

w where R′
w is the parent of Rw in T , we form a (w,G, 1 + ǫ2)-portal set P (w)′

of δGRw. From this we form and store a subset P (w) of V (δRw). This subset contains
P (w)′ ∩ V (δRw). In addition, for every p ∈ P (w)′ and every left or right side Q ∈ P(Rw)
(see Section 2.1) such that Q and p are contained in the same path of T , P (w) contains
the successor and predecessor (if any) of p on Q; Figure 5 gives an illustration. Note that
V (Q) ⊆ V (δRw) so P (w) ⊆ V (δRw). For any v ∈ V (δRw) ⊆ V (δGRw) there is a p′ ∈ P (w)′

with dG(w, p
′)+dδGRw

(p′, v) ≤ (1+ ǫ2)dG(w, v). Since v ∈ V (δRw) the shortest path in δGRw

from p′ to v intersects V (δRw). Hence there is a p ∈ P (w) ∪ C(Rw) which is either p′, the
successor or predecessor of p′ on Q, or a corner in C(Rw) such that dG(w, p) + dδRw

(p, v) ≤
(1 + ǫ2)dG(w, v). We also have |P (w)| = O(1/ǫ2).

Step 2: For each shortcut R1 → R2 and each u ∈ δR1 \ δR2, store a (u,G, 1+ ǫ2)-portal set
P1(u,R1 → R2) of δGR1 of size O(1/ǫ2); Call this a type 1 portal set.

Step 3: For any shortcut R1 → R2, dual portal set P ∗(R1, R2) is the set of vertices p∗ ∈
(δR1 ∩ δR2) \ C(R1) for which a vertex w exists with Rw ∈ R1 R2, Rw 6= R2, such that
p∗ ∈ P (w); see Figure 6. Define P

∗
(R1, R2) = P ∗(R1, R2) ∪ C(R1) ∪ δ(R1, R2). Note that

P
∗
(R1, R2) ⊆ V (δR1). For each p∗ ∈ P

∗
(R1, R2), store a (p∗, G, 1+ǫ2)-portal set P2(p

∗, R1 →
R2) of δGR1 of size O(1/ǫ2) together with distances dG(p

∗, p′) for each p′ ∈ V (δG(R1)). Refer
to it as a type 2 portal set.

The definition of type 2 portal sets is rather technical so let us give the high-level idea
for introducing them; see Figure 6 in the following. As in Phase I, we jump along shortcuts
Ri−1 → Ri in Phase II; a detailed description is given in the next subsection. In Phase II,
we need approximate distances in G from certain portals p in δRi−1 to δGRi−1. However, p
might also be present in δRi. In this case, we cannot afford to associate portal sets with p
and shortcut Ri−1 → Ri since p may occur in several regions of T (see Lemma 4). However,
vertices w for which Rw is sandwiched in between Ri−1 and Ri can pay for dual portal set
P ∗(Ri−1, Ri) and the associated type 2 portal sets. As we show below, we can obtain an

13

us Rw

∈ P (w)

w

Ri−1

∈ P ∗(Ri−1, Ri)

Ri

∈ (δRi−1 ∩ δRi) \ C(Ri−1)

Figure 6: Region Rw sandwiched in between Ri−1 and Ri for shortcut Ri−1 → Ri. Curves
from w ∈ δRw end in P (w). If a vertex is in (δRi−1 ∩ δRi) \C(Ri−1) (square vertices) and in
P (w) then it is in P ∗(Ri−1, Ri).

approximate distance from p to any w′ ∈ δGRi−1 by first going along T from p to a nearby
p∗ ∈ P ∗(Ri−1, Ri), then along a shortest path in G from p∗ to a portal p′ ∈ δGRi−1 in the
type 2 portal set of p∗, and finally from p′ to w′ along T .

Using hashing, we can access each type 1 and type 2 portal set in O(1) time from the
vertex and the shortcut defining it.

Step 4: For each shortcut R1 → R2 and for any shortest path Q ∈ PR1
, we keep a

vEB-tree, allowing us to find the successor/predecessor of any vertex of Q in the subset
V (Q) ∩ P

∗
(R1, R2) in O(log log n) time. With hashing, space required for the vEB-tree is

O(|P ∗
(R1, R2)|) [12, 15]. As mentioned in [12], both space and query bounds can be made

deterministic.

Lemma 7. The total space required for Phase II is O(n log log n/ǫ22).

Proof. The total size of portal sets P (u) over all u ∈ V is O(n/ǫ2). A proof similar to that
of Lemma 5 shows that the total size of all type 1 portal sets is O(n log log n/ǫ2).

To bound the size of type 2 portal sets, consider two shortcuts R1 → R2 and R′
1 → R′

2. By
Lemma 4, P ∗(R1, R2) and P ∗(R′

1, R
′
2) are disjoint if R1 R2 and R′

1 R′
2 are not contained

in the same leaf-to-root path P in T . For any w ∈ V , there are only O(log log n) shortcuts
R′′

1 → R′′
2 where Rw ∈ R′′

1 R′′
2 ⊆ P . Hence |P (w) ∩ P ∗(R1, R2)| summed over all shortcuts

R1 → R2 is O(|P (w)| log log n) = O(log log n/ǫ2). Hence, the total size of all dual portal sets
P ∗(R1, R2), and hence also the total size of all vEB trees, is O(n log log n/ǫ2). Recall that the
number of regions is O(n). Each region has O(1) corners and each set δ(R1, R2) has constant
size so the total size of all sets P

∗
(R1, R2) is O(n log log n/ǫ2). Each element of these sets has

a type 2 portal set of size O(1/ǫ2).

4.2 Query

Let Pu = Cu G be the path from Cu to the root G of T . In the following, for any vertex
w, denote by Rw the region (if any) such that Rw ∈ Pu, w ∈ δRw, and w /∈ δR′

w where
R′

w is the parent of Rw in T . Observe that V (Suv) ⊆ ∪R∈PuV (δR). Phase II for u takes
the output from Phase I and produces output satisfying Lemma 6. We give a high-level
description of Phase II before going into details. Pseudocode can be seen in Figure 7. The

14

Phase II for u:

1. let R1 → R2 → · · · → Rk be the shortcuts from R1 = Cu to Rk = G
2. let P1 = Pu (portal set output from Phase I)

3. let H be the graph initially consisting of edges (u, p, d̃(u, p)) for all p ∈ P1

4. for i = 2 to k
5. add to H edges (p, q, dG(p, q)) for all p ∈ Pi−1 \ V (δRi) and q ∈ P1(p,Ri−1 → Ri)

6. for each p ∈ Pi−1 and each p∗ ∈ {succ(p, P ∗
(Ri−1, Ri)),pred(p, P

∗
(Ri−1, Ri))}

7. add to H edge (p, q, dT (p, p
∗) + dG(p

∗, q)) for all q ∈ P2(p
∗, Ri−1 → Ri)

8. let Pi = Pi−1 ∩ V (δRi)
9. output (V (H), {dH (u, p)|p ∈ V (H)})

Figure 7: Pseudocode for Phase II applied to u. Here, Cu resp. Pu denotes the final region
resp. portal set reached in Phase I and Suv is the shortest path separator in G that separates
Ruv into Cu and Cv. In line 6, succ(p, P

∗
(Ri−1, Ri)) resp. pred(p, P

∗
(Ri−1, Ri)) refers to the

successor resp. predecessor of u in P
∗
(Ri−1, Ri).

algorithm traverses shortcuts R1 → R2 → · · · → Rk from R1 = Cu to the root Rk = G of
T and incrementally constructs a graph H which at termination will satisfy Lemma 6. In
line 3, edges of H represent approximate paths found in Phase I. These paths correspond
to subpaths of the final full paths in G (corresponding to the final H) and the subpaths are
prefixes of these full paths that are contained in Cu. Consider the ith iteration of the for-loop.
In line 5, we check if any subpath endpoint p ∈ Pi−1 disappears as a boundary vertex when
jumping from Ri−1 to Ri. If so, we can extend the subpath to full paths u p q for
each q ∈ P1(p,Ri−1 → Ri). The other interesting case is when p ∈ δRi−1 ∩ δRi. Then we
do not have a type 1 portal set associated with p and Ri−1 → Ri but it might be that some
separator vertices w of Suv that are present in δGRi−1 are no longer present in δRi and we
need to ensure that there is a good path in H ∪ Suv from p to w. This case is handled in
lines 6 and 7 where we ensure such a good path from p to w by using the type 2 portal sets
associated with vertices of P

∗
(Ri−1, Ri)) that are close to p.

To show correctness, i.e., that the set output in line 9 satisfies Lemma 6, let w be any
vertex on Suv and let P be a shortest path in G from u to w. Let w′ be the last vertex
on P such that P [u,w′] is contained in Cu. Note that w′ ∈ V (δCu). By Lemma 3, there
is a p1 ∈ P1 such that dCu(u,w

′) ≤ d̃(u, p1) + dδCu
(p1, w

′) ≤ (1 + ǫ/2)dCu(u,w
′). Since

V (Suv) ⊆ ∪R∈PuV (δR), we have Rw ∈ Pu. Since p1 ∈ P1 ⊆ V (δCu), we also have Rp1 ∈ Pu.
Let Riw−1 → Riw and Rip1−1 → Rip1

be the shortcuts such that Rw ∈ Riw−1 Riw ,
Rw 6= Riw , and Rp1 ∈ Rip1−1 Rip1

, Rp1 6= Rip1
. We consider two cases in the following:

ip1 ≤ iw and ip1 > iw.

Case 1, ip1 ≤ iw (Figure 8): Consider iteration i = ip1 of the for-loop. Since p1 ∈
V (δCu)∩V (δRi−1), we have p1 ∈ Pi−1. Since Rp1 6= Rip1

, it follows that p1 /∈ V (δRi). Hence,
the final H contains an edge (p1, p, dG(p1, p)) for each portal p ∈ P1(p1, Ri−1 → Ri) (line 5).
Since w ∈ V (Suv) ⊆ V (δGCu) and since i ≤ iw, we must have w ∈ δGRi−1 so there is a portal

15

s R2 R3

w

w′
p1

p2
u R1 = Cu

Figure 8: Case 1 in the correctness proof for Phase II; here ip1 = 1 and iw = 3. The first and
last part of a shortest uv-path in G through w′ is shown. Curves from p1 end in vertices of
P1(p1, Ri−1 → Ri).

s R2 R3

p∗

u R1 = Cu

w

w′ p1

q

Figure 9: Case 2 in the correctness proof for Phase II; here ip1 = 2 and iw = 1. The first and
last part of a shortest uv-path in G through w′ is shown. Dashed curves from w end in vertices
of P (w) one of which is q∗ ∈ P

∗
(Ri−1, Ri). Solid curves from p∗ end in P2(p

∗, Ri−1 → Ri).

p2 ∈ P1(p1, Ri−1 → Ri) satisfying dG(p1, p2) + dδGRi−1
(p2, w) ≤ (1 + ǫ2)dG(p1, w). Note that

dδGRi−1
(p2, w) = dT (p2, w). The path in the final graph H consisting of edges (u, p1) and

(p1, p2) followed by the path in T from p2 to w has weight at most

d̃(u, p1) + dG(p1, p2) + dT (p2, w) ≤ (1 + ǫ2)(d̃(u, p1) + dG(p1, w))

≤ (1 + ǫ2)(d̃(u, p1) + dδCu
(p1, w

′) + dG(w
′, w))

≤ (1 + ǫ2)((1 + ǫ/2)dCu(u,w
′) + dG(w

′, w))

≤ (1 + ǫ2)(1 + ǫ/2)dG(u,w).

Case 2, ip1 > iw (Figure 9): Consider iteration i = iw of the for-loop. Since p1 ∈ V (δRw),
there is a portal p∗w ∈ P (w) ∪ C(Rw) such that dG(w, p

∗
w) + dT (p

∗
w, p1) ≤ (1 + ǫ2)dG(w, p1)

(see step 1 of the preprocessing). If p∗w ∈ δRi−1 ∩ δRi then p∗w ∈ P ∗(Ri−1, Ri) ∪ C(Ri−1).
Otherwise, there is a vertex p′ ∈ δ(Ri−1, Ri) such that the path in T from p1 to p∗w contains
p′. Hence,

dG(w, p
′) + dT (p

′, p1) ≤ dG(w, p
∗
w) + dT (p

∗
w, p

′) + dT (p
′, p1) = dG(w, p

∗
w) + dT (p

∗
w, p1)

≤ (1 + ǫ2)dG(w, p1).

16

It follows from the above that there is a vertex q∗ ∈ P
∗
(Ri−1, Ri) such that dG(w, q

∗) +
dT (q

∗, p1) ≤ (1 + ǫ2)dG(w, p1). Thus, for one of the two choices of p∗ in line 6, we have

dG(w, p
∗) + dT (p

∗, p1) ≤ dG(w, q
∗) + dT (q

∗, p1) ≤ (1 + ǫ2)dG(w, p1).

For that choice of p∗, let q be the portal in P2(p
∗, Ri−1 → Ri) such that dG(p

∗, q)+dT (q, w) ≤
(1+ǫ2)dG(p

∗, w). The path in H consisting of edges (u, p1) (added in line 3) and (p1, q) (added
in line 7) followed by the path in T from q to w has weight at most

d̃(u, p1) + dT (p1, p
∗) + dG(p

∗, q) + dT (q, w) ≤ (1 + ǫ2)(d̃(u, p1) + dT (p1, p
∗) + dG(p

∗, w))

≤ (1 + ǫ2)(d̃(u, p1) + (1 + ǫ2)dG(p1, w))

≤ (1 + ǫ2)
2(d̃(u, p1) + dδCu

(p1, w
′) + dG(w

′, w))

≤ (1 + ǫ2)
2((1 + ǫ/2)dCu(u,w

′) + dG(w
′, w))

≤ (1 + ǫ2)
2(1 + ǫ/2)dG(u,w).

To show Lemma 6, note that (1 + ǫ2)
2(1 + ǫ/2) = (1 + ǫ/8)2(1 + ǫ/2) is at most 1 + ǫ

for any ǫ less than some positive constant. As for query time, lines 1 and 2 can be executed
in O(k) = O(log log n) time. By Lemma 3, adding edges to H in line 3 can be done in
O(|P1|) = O(1/ǫ) time. The total time to find successors and predecessors over all iterations
of the for-loop is O(|P1|k log log n) = O((log log n)2/ǫ). The additional time spent in the
for-loop is bounded by the number of edges added to H. The total number of edges added in
line 7 is O(|P1|k/ǫ2) = O(log log n/ǫ2). Note that every p considered in line 5 is not included
in Pi in line 8. Hence, we add a total of O(|P1|/ǫ2) = O(1/ǫ2) edges in line 5.

5 Obtaining the approximate distance

In this section, we show how to obtain an approximate uv-distance within the time and space
stated in Theorem 1, given the output of Phase II.

We execute Phase II for both u and v, getting outputs (V (Hu), {dHu(u, p)|p ∈ V (Hu)}
and (V (Hv), {dHv (u, p)|p ∈ V (Hv)}, respectively. To find an approximate uv-distance, assume
first that V (Hu) ∪ V (Hv) ⊆ V (Suv). Let Q be one of the two shortest paths from s in T
bounding Suv and sort the vertices of V (Hu)∩Q along Q. To do the sorting efficiently, we make
a DFS traversal of T during preprocessing and label each vertex with an integer time stamp
denoting when it was first visited in the traversal. Now, sorting the vertices of V (Hu)∩Q along
Q corresponds to integer sorting their precomputed labels. With the algorithm of Han and
Thorup [4], this takes O(|V (Hu)|

√

log log(|V (Hu)|)) time. We then remove all w ∈ V (Hu)∩Q
for which there is another w′ ∈ V (Hu) ∩ Q such that dHu(u,w

′) + dQ(w
′, w) ≤ dHu(u,w).

This can be done in O(|V (Hu)|) time with two linear scans over V (Hu) ∩ Q, one in sorted
order and the other in reverse sorted order; the first resp. second scan removes w if there is
a w′ before resp. after w in the order considered such that the inequality holds. Let Vu,Q be
the resulting subset and form a similar subset Vv,Q of V (Hv).

Let d̃Q(u, v) be the minimum of dHu(u, pu)+dQ(pu, pv)+dHv(pv, v) over all pairs (pu, pv) ∈
Vu,Q × Vv,Q where Q[pu, pv] has no interior vertices belonging to Vu,Q ∪ Vv,Q. This takes
O(|V (Hu)|) time. Compute a similar value d̃Q′(u, v) for the other shortest path Q′ of T
bounding Suv. The approximate distance output is d̃(u, v) = min{d̃Q(u, v), d̃Q′ (u, v)}.

We need to show d̃(u, v) ≤ (1 + ǫ)dG(u, v). Pick w ∈ V (Suv) such that dG(u,w) +
dG(w, v) = dG(u, v) and assume that w ∈ Q; the case where w ∈ Q′ is symmetric. By

17

Lemma 6, there are vertices pu ∈ Vu,Q and pv ∈ Vv,Q such that dHu(u, pu) + dQ(pu, w) ≤
(1+ǫ)dG(u,w) and dHv (v, pv)+dQ(pv, w) ≤ (1+ǫ)dG(v,w). Pick a pair (p′u, p

′
v) ∈ Vu,Q×Vv,Q

belonging to Q[pu, pv] such that they occur on this path in the order pu p′u p′v pv and
such that Q[p′u, p

′
v] has no interior vertices belonging to Vu,Q ∪ Vv,Q. Then

d̃Q(u, v) ≤ dHu(u, p
′
u) + dQ(p

′
u, p

′
v) + dHv (p

′
v, v)

≤ dHu(u, pu) + dQ(pu, p
′
u) + dQ(p

′
u, p

′
v) + dQ(p

′
v, pv) + dHv(pv, v)

= dHu(u, pu) + dQ(pu, pv) + dHv (pv, v)

≤ dHu(u, pu) + dQ(pu, w) + dQ(w, pv) + dHv(pv, v)

≤ (1 + ǫ)(dG(u,w) + dG(w, v))

= (1 + ǫ)dG(u, v),

showing the desired. Above, we assumed that V (Hu)∪V (Vv) ⊆ V (Suv). If this is not the case,
we modify V (Hu) as follows. Partition V (Hu)\V (Suv) into maximal-size groups where in each
group M , all vertices w have the same nearest neighbor w′ in T belonging to Suv. Replace
vertices of M by w′ in V (Hu) and instead of approximate distances dHu(u,w) for w ∈ M ,
use instead dHu(u,w

′) := minw∈M∪({w′}∩V (Hu)) dHu(u,w) + dT (w,w
′) for the approximate

distance for w′. A similar update is done to V (Hv), ensuring that V (Hu) ∪ V (Vv) ⊆ V (Suv).
It is easy to see that the above analysis still carries through.

We have shown Theorem 1 in the case where Ru and Rv are not on the same leaf-to-root
path in T . If instead, say, Rv = ncaT (Ru, Rv) then v ∈ Suv and Phase I and II for u gives a
portal set of Suv. Our algorithm above is modified to find the portal p nearest to v on Suv

and outputs dHu(u, p) + dT (p, v), giving the desired stretch. This shows Theorem 1 in the
remaining case where Ru and Rv are on the same leaf-to-root path.

6 Concluding Remarks

We gave a (1+ǫ)-approximate distance oracle for undirected n-vertex planar graphs and fixed
ǫ > 0 with O(n(log log n)2) space and O((log log n)3) query time which improves the previous
best query time-space product from O(n log n) to O(n(log log n)5).

We have not focused on preprocessing time. With a simple implementation, we should
get near-quadratic preprocessing time and it is possible that the exact space-efficient oracle
in [10] can speed this up further to Õ(n3/2) as the number of precomputed distances required
by our oracle is only Õ(n). With techniques from, e.g., [7, 13], we can likely get down to
Õ(n).

The dependency on ǫ in the query time-space product is slightly worse; it is roughly 1/ǫ4

(1/ǫ3 when 1/ǫ = O(log log n)) compared to 1/ǫ2 in [7, 13] and roughly 1/ǫ in [6] (where the
latter has a slightly worse dependency on n than [7, 13]). Using mainly Monge properties,
we believe it should be possible to replace at least one 1/ǫ factor by log(1/ǫ). Getting
o(log log n) query time and O(n(log log n)c) space for some constant c seems problematic with
our techniques due to the Θ(log log n) bottleneck from the use of vEB trees when answering
queries.

Extension to planar digraphs seems promising due to similarities between our structure
and that for digraphs in [13]. Extension to minor-free graphs would also be interesting.

18

References

[1] S. Chechik. Approximate distance oracle with constant query time. STOC’14, pp. 654–
663.

[2] P. Erdős. Extremal problems in graph theory. In Theory of Graphs and its Applications
(Proc. Sympos. Smolenice, 1963), Czechoslovak Acad. Sci., Prague, 1964, pp. 29–36.

[3] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with
fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

[4] Y. Han and M. Thorup. Integer sorting in O(n
√
log log n) expected time and linear space.

Proc. 43rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 135–
144, 2002.

[5] K. Kawarabayashi, P. N. Klein, and C. Sommer. Linear-space approximate distance ora-
cles for planar, bounded-genus, and minor-free graphs. In 38th International Colloquium
on Automata, Languages and Programming (ICALP), pp. 135–146, 2011.

[6] K. Kawarabayashi, C. Sommer, and M. Thorup. More Compact Oracles for Approximate
Distances in Undirected Planar Graphs. In 24th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 550–563, 2013.

[7] P. N. Klein. Preprocessing an undirected planar network to enable fast approximate dis-
tance queries. In 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 820–
827, 2002.

[8] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on
Applied Mathematics, 36(2):177–189, 1979.

[9] M. Mendel and A. Naor. Ramsey partitions and proximity data structures. Journal of
the European Mathematical Society, 9(2):253–275, 2007. Announced at FOCS’97.

[10] S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In 23rd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 209–222, 2012.

[11] M. Pătraşcu and L. Roditty. Distance oracles beyond the Thorup-Zwick bound. In 51st
IEEE Symposium on Foundations of Computer Science (FOCS), 2010.

[12] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. Proc. 38th
Annual ACM Symposium on Theory of Computing (STOC), pp. 232–240, 2006.

[13] M. Thorup. Compact oracles for reachability and approximate distances in planar di-
graphs. Journal of the ACM, 51(6):993–1024, 2004. Announced at FOCS 2001.

[14] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
2005. Announced at STOC’01.

[15] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(n). In-
formation Processing Letters, 17(2):81–84, 1983.

[16] C. Wulff-Nilsen. Algorithms for Planar Graphs and Graphs in Metric Spaces. PhD thesis,
University of Copenhagen, 2010.

19

[17] C. Wulff-Nilsen. Approximate Distance Oracles with Improved Preprocessing Time. In
23rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 202–208, 2012.

[18] C. Wulff-Nilsen. Approximate Distance Oracles with Improved Query Time. In 24th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 539–549, 2013.

20

	1 Introduction
	1.1 Related work
	1.2 Organization of the paper

	2 Preliminaries
	2.1 Recursive Decomposition
	2.2 Constructing a recursive decomposition
	2.3 Region boundary structure
	2.4 Portals

	3 The First Phase
	3.1 Preprocessing
	3.2 Query
	3.3 Bounding query time and stretch

	4 The Second Phase
	4.1 Preprocessing
	4.2 Query

	5 Obtaining the approximate distance
	6 Concluding Remarks

