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Abstract. Within the study of parametric geometry of numbers W. Schmidt and L.
Summerer introduced so-called regular graphs. Roughly speaking the successive min-
ima functions for the classical simultaneous Diophantine approximation problem have
a very special pattern if the vector ζ induces a regular graph. The regular graph is in
particular of interest due to a conjecture by Schmidt and Summer concerning classic ap-
proximation constants. This paper aims to provide several new results on the behavior
of the successive minima functions for the regular graph. Moreover, we improve the best
known upper bounds for the classic approximation constants ŵn(ζ), valid uniformly for
all transcendental ζ, provided that the Schmidt-Summerer conjecture is true.
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1. Introduction

1.1. Outline. This paper aims on the one hand to give a better understanding of the
regular graph defined by Schmidt and Summerer, and on the other hand to give a con-
nection to the uniform approximation constants ŵn. Theorem 2.6 and Theorem 2.8 can
be considered the main results concerning the first, Theorem 3.3 the main result for the
latter topic. The paper is structured in a way that the main new results appear rather
late in the paper since a lot of (notational) preparation will be needed for their formu-
lation. We provide the preparatory results, based on the work [22],[24] of Schmidt and
Summerer, in Section 1 and Section 2.1. We recommend the reader to look at the illus-
trations of combined graphs and in particular the regular graph in [24]. See also [20] for
Matlab plots of the combined graph for special choices of real vectors.

1.2. Parametric geometry of numbers. We first recall the notion and results concern-
ing parametric geometry of numbers following Schmidt and Summerer [22]. Our notation
will partially deviate from that in [22] for technical reasons. Let n ≥ 1 be an integer, Λ
be a lattice and K be a convex body in Rn+1. Then for 1 ≤ j ≤ n+ 1 the j-th successive
minimum τn,j of K with respect to Λ is defined as the minimum real number ν such that
νK contains j linearly independent lattice points of Λ. Minkowski’s first lattice point
theorem asserts that if det(Λ) ≤ vol(K) then the first successive minimum is at most 1,
that is K contains a non-trivial lattice point. Moreover, Minkowski’s second lattice point
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theorem asserts

2n+1

(n+ 1)!

det(Λ)

vol(K)
≤ τn,1τn,2 · · · τn,n+1 ≤ 2n+1det(Λ)

vol(K)
.

Consider ζ = (ζ1, . . . , ζn) in Rn. Schmidt and Summerer apply Minkowski’s theorems to
a particular lattice and convex bodies parametrized by Q > 1 connected to simultaneous
approximation. Concretely they consider the lattice of points (x, ζ1x− y1, . . . , ζnx− yn)
with (x, y1, . . . , yn) ∈ Zn+1 and the convex body K = K(Q) defined by |x| ≤ Q and
|yj| ≤ Q−1/n for 1 ≤ j ≤ n, where Q > 1 is a parameter. Let τn,j(Q) be the j-th
successive minimum for the parameter Q and put ψn,j(Q) = log τn,j(Q)/ logQ. Further
let

ψ
n,j

= lim inf
Q→∞

ψj(Q), ψn,j = lim sup
Q→∞

ψj(Q).

In this situation Minkowki’s theorems give ψ1(Q) < 0 for all Q > 1 and∣∣∣∣∣
n+1∑
j=1

ψn,j(Q)

∣∣∣∣∣ ≤ c

logQ

for a constant c. Moreover it is not hard to see that

−1 ≤ ψn,j(Q) ≤ ψn,2(Q) ≤ · · · ≤ ψn,n+1(Q) ≤ 1

n
, Q > 1,

and in particular

−1 ≤ ψ
n,j
≤ ψn,j ≤

1

n
, 1 ≤ j ≤ n+ 1.

We also want to introduce the inferred successive minima functions Ln,j(q), where q =
logQ, derived from the functions ψn,j basically by taking logarithms

(1) Ln,j(q) = log(τn,j(Q)) = qψn,j(Q), 1 ≤ j ≤ n+ 1.

The functions Ln,j(q) are piecewise linear with slopes among {−1, 1/n}. It follows that
the j-th successive minimum τn,j of the above defined lattice point problem tends to
infinity if and only if Ln,j(q) tends to infinity, and to 0 if and only if Ln,j(q) tends to −∞.

The new results in this paper will mostly be formulated and proved in terms of closely
connected classical approximation constants we define now. For given ζ = (ζ1, . . . , ζn) in
Rn let λn,j = λn,j(ζ) be the supremum ν such that there are arbitrarily large X for which

(2) |x| ≤ X, max
1≤j≤k

|ζjx− yj| ≤ X−ν

has j linearly independent solutions (x, y1, . . . , yn) in Zn+1. Moreover let λ̂n,j = λ̂n,j(ζ)
be the supremum of ν such that the system (2) has j linearly independent integer vector
solutions (x, y1, . . . , yn) for all large X. For λn,1 we will also simply write λn and similarly

λ̂n for λ̂n,1. Observe that Minkowski’s first lattice point theorem (or Dirichlet’s Theorem)
implies for all ζ ∈ Rn the estimates

(3) λn ≥ λ̂n ≥
1

n
.
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Minkowski’s second Theorem more generally yields

1

n
≤ λn ≤ ∞,(4)

1

n
≤ λn,2 ≤ 1,(5)

0 ≤ λn,j ≤
1

j − 1
, 3 ≤ j ≤ n+ 1.(6)

and similarly

1

n
≤ λ̂n ≤ 1,(7)

0 ≤ λ̂n,j ≤
1

j
, 2 ≤ j ≤ n,(8)

0 ≤ λ̂n,n+1 ≤
1

n
.(9)

This is [20, (14)-(18)]. Moreover λn,j ≥ λ̂n,j−1 holds for 2 ≤ j ≤ n + 1 as pointed out
in [22]. Furthermore by [20, (13)], which generalizes [22, Theorem 1.4], we have

(1 + λn,j)(1 + ψ
n,j

) = (1 + λ̂n,j)(1 + ψn,j) =
n+ 1

n
, 1 ≤ j ≤ n+ 1.

In particular for 1 ≤ j ≤ n+ 1 we have the equivalence

(10) ψ
n,j
< 0 ⇐⇒ λn,j >

1

n
, ψn,j < 0 ⇐⇒ λ̂n,j >

1

n
.

This is of interest since ψn,j < 0 implies that the j-th successive minimum function τn,j
related to the above lattice point problem tends to 0, whereas ψ

n,j
> 0 implies it tends to

infinity. For ψ
n,j

= 0 and ψn,j = 0 respectively, it is not possible to decide whether this

is true and one has to look closer at the functions Ln,j(q). This will be of importance in
Section 2.3.

We now introduce the dual problem studied in [22] as well. Let Λ∗ be the dual lattice
of λ above, defined as the set of points (x− ζ1y1− · · ·− ζnyn) with (x, y1, . . . , yn) ∈ Zn+1.
Further consider the convex body K∗ = K∗(Q) defined by the convex body of points
that arises from the body

∑
1≤i≤n+1 |xi| ≤ 1 by the transformation TQ : (p1, . . . , pn+1)→

(p−11 , p
1/n
2 , . . . , p

1/n
n+1). Let τ ∗n,j(Q) denote the j-th successive minimum in the above con-

text. Again put q = logQ and ψ∗n,j(q) = log τ ∗n,j(Q)/q for 1 ≤ j ≤ n + 1. Similarly as
above we will rather use classic approximation constants for our results in this paper.
Define the classic approximation constant wn,j and ŵn,j respectively as the supremum of
ν such that

|x| ≤ X, |x+ ζ1y1 + · · ·+ ζnyn| ≤ X−ν

has j linearly independent integer vector solutions for arbitrarily large X and all large
X respectively. Again we also write wn instead of wn,1 and ŵn instead of ŵn,1. Observe
that again Minkoski’s first lattice point theorem (or Dirichlet’s Theorem) implies

(11) wn ≥ ŵn ≥ n.
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Then again we have

(12) (1 + wn,j)

(
1

n
+ ψ∗

n,j

)
= (1 + ŵn,j)

(
1

n
+ ψ

∗
n,j

)
=
n+ 1

n
, 1 ≤ j ≤ n+ 1.

Moreover ψ∗
n,j

= −ψ
n,n+2−j and ψ

∗
n,j = −ψn,n+2−j for 1 ≤ j ≤ n + 1 by Mahler’s

relations [12], which was in fact used to infer (12). From the above, as already mentioned
in [19, (1.24)], for the special case of successive powers, it can be deduced that

(13) wn,j =
1

λ̂n,n+2−j
, 1 ≤ j ≤ n+ 1,

such as

(14) λn,j =
1

ŵn,n+2−j
. 1 ≤ j ≤ n+ 1,

Together with the bounds in (4)-(9) we obtain

n ≤ wn ≤ ∞,(15)

n+ 2− j ≤ wn,j ≤ ∞, 2 ≤ j ≤ n,(16)

1 ≤ wn,n+1 ≤ n.(17)

and

n+ 1− j ≤ ŵn,j ≤ ∞, 1 ≤ j ≤ n− 1,(18)

1 ≤ ŵn,n ≤ n, 2 ≤ j ≤ n,(19)

0 ≤ ŵn,n+1 ≤ n.(20)

In Section 3 we will deal with the heavily studied case ζ = (ζ, ζ2, . . . , ζn) for ζ some

real number. In this case we will write wn,j(ζ) for wn,j(ζ, ζ
2, . . . , ζn) and similarly for

ŵn,j(ζ), λn,j(ζ), λ̂n,j(ζ). On the other hand if no variable appears in wn,j, ŵn,j, λn,j, λ̂n,j
we will assume arbitrary ζ ∈ Rn. Observe wn(ζ) = wn,1(ζ) and ŵn(ζ) = ŵn,1(ζ) are the
supremum of ν such that

(21) H(P ) ≤ X, 0 < |P (ζ)| ≤ X−ν

has a solution P ∈ Z[X] of degree at most n for arbitrarily large X and all large values
X respectively, where H(P ) is the height of P , that is the maximum modulus among the
coefficients of P .

1.3. The regular graph and the Schmidt-Summerer Conjecture. For fixed n ≥ 1
and a parameter ρ ∈ [1,∞] in [24] Schmidt and Summerer define what the call the
regular graph. This geometrically describes a special pattern of the combined graph of
the successive minima functions Ln,j(q) = Ln,j(logQ) from Section 1.2. Roughly speaking
the integers (xk)k≥1 that induce a longer falling period of all Ln,j simultaneously have
the property that the logarithmic quotients log xk+1/ log xk tend to some constant which

coincides with λn/λ̂n. We refer to [24, page 90] and [20, page 72] for idealized illustrations
of the functions Ln,j(q) for the regular graph connected to approximation of three and
two numbers respectively, i.e. n = 3 and n = 2 in our notation. The parameter ρ ∈ [1,∞]

in Schmidt-Summerer notation coincides with the value λn/λ̂n. In particular all λn,j, λ̂n,j
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are determined by one real parameter λ ≥ 1/n and by (13) also all wn,j and ŵn,j. We will
use a different parametrization. We consider the equivalent situation that the constant
λn is prescribed in the interval [1/n,∞]. Any such choice again uniquely determines a
regular graph in dimension n and vice versa. Thus we have the assignment

(22) (n, λ)→ (λn, λn,2, . . . , λn,n+1, λn,n+2), λ ∈ [1/n,∞],

where λn = λ and we let λn,n+2 := λ̂n,n+1 here and everywhere it occurs in the sequel. It
will follow from (27) in Section 2.1 that the right hand side depends continuously on λ.
Moreover the regular graph satisfies

(23) λn,j = λ̂n,j−1, 2 ≤ j ≤ n+ 2,

such that any pair (n, λ) in (22) determines all classical approximation constants λn,j, λ̂n,j,

and by (13) and (14) also all wn,j, ŵn,j. We will also write λn,j(λ) and λ̂n,j(λ) for the
quantity λn,j in the regular graph in dimension n and parameter λ, and call the graph
with the above assignment the regular graph in dimension n with parameter λ. For n = 2
the graphs of the functions λ2,j are illustrated below.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

Figure 1. The functions λ2,1(λ), λ2,2(λ), λ2,3(λ), λ2,4(λ) in the interval λ ∈ [1/2, 4]

For n = 2 Jarńık’s equality λ̂2 = (ŵ2 − 1)/ŵ2 from [10] can be seen with (14) to be

equivalent to λ̂2 + λ2,3 = 1. Consequently λ2,2(λ) + λ2,3(λ) = 1 for the regular graph in
dimension two and all parameters λ ∈ [1/2,∞], which can be observed in Figure 1.

It is worth noting that for λ = 1/n all constants in (22) take the value 1/n, which is an
elementary fact due to Minkoski’s second theorem and does not require the regular graph.
Moreover, in the other degenerate case of the regular graph λ =∞, it is not hard to see
that we have λn,2(∞) = 1 and λn,j(∞) = 0 for 3 ≤ j ≤ n + 2, see also Proposition 2.5
below.

It was proved by Roy [17] that for any pair (n, λ) as in (22) there exist Q-linearly
independent vectors ζ that induce the corresponding regular graph. For n = 2 and the

special choice λ2,1(ζ) = λ = 1, vectors (ζ, ζ2) with ζ a so-called extremal number, see
Roy [16], provide explicit examples of the regular graph. The existence of the regular
graph for the special ”degenerate” case λn = ∞ had already been constructively proved
before by the author [20, Theorem 4].
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The importance of the regular graph comes in particular from the conjecture by Schmidt

and Summerer [24] that the value λ̂n is maximized among all ζ that are Q linearly
independent with 1 and have a prescribed value of λn in case of the regular graph. The
conjecture also states that ŵn is maximized for given value of wn. Recall λn or wn already
determine all approximation constants in the regular graph. For convenience we introduce
some notation.

Definition 1. Let φn be the function that expresses ŵn in terms of wn ∈ [n,∞] in the
regular graph, which is the unique solution to (33) in the interval [n,wn) unless wn = n.

Further denote by ϑn the value λ̂n in terms of λn in the regular graph.

Note that ϑn(λ) coincides with λ̂n(λ) = λn,2(λ) defined above. Then the Schmidt
Summerer Conjecture can be stated in the following way.

Conjecture 1.1 (Schmidt, Summerer). For any positive integer n and every ζ ∈ Rn

which is Q-linearly independent together with {1}, we have ŵn(ζ) ≤ φn(wn(ζ)) and

λ̂n(ζ) ≤ ϑn(λn(ζ)). In particular for any real transcendental ζ and all n ≥ 1 we have

ŵn(ζ) ≤ φn(wn(ζ)) and λ̂n(ζ) ≤ ϑn(λn(ζ)).

For n ∈ {2, 3} Schmidt and Summerer settled the conjecture in [23] and [24], see also [9].
For n ≥ 4 it is open. The conjectured bounds are best possible since as mentioned above
Roy [17] proved that equality holds for suitable ζ.

2. Structural study of the regular graph

2.1. Preliminary results. In this section we start to investigate how the coordinate
functions in (22) behave in dependence of the dimension n and the parameter λ. We
will apply the results we gather below in Sections 2.2, 2.3 and 3. The results are based
predominately on the fact that for the regular graph the identity

(24)
(λn + 1)n+1

λn
=

(λ̂n,n+1 + 1)n+1

λ̂n,n+1

holds. This is just [20, (95) in Section 3] in our notation. In view of (24) define the
auxiliary functions

(25) fn(x) :=
(1 + x)n+1

x
.

It is easily verified that fn decays on (0, 1/n) and increases on (1/n,∞). By these facts,

more precisely for given λn ∈ [1/n,∞] the constant λ̂n,n+1 is the unique solution of (24)
in the interval [0, 1/n].

Moreover as also mentioned already in [20, Section 3] for the regular graph all quotients

λn,j/λn,j+1 = λn,j/λ̂n,j coincide for 1 ≤ j ≤ n+ 1. That is

(26)
λn
λn,2

=
λn,2
λn,3

= · · · = λn,n+1

λn,n+2

=
λ̂n

λ̂n,2
= · · · = λ̂n,n

λ̂n,n+1

.



SOME NOTES ON THE REGULAR GRAPH DEFINED BY SCHMIDT AND SUMMERER AND UNIFORM APPROXIMATION7

Observe by (24) and the constant quotients (26), the constants λn = λ and λn,j(λ) satisfy
the implicit equation

(27)
(1 + λ)n+1

λ
=

(
1 + λ1−

n+1
j−1 λn,j(λ)

n+1
j−1

)n+1

λ1−
n+1
j−1 λn,j(λ)

n+1
j−1

.

Moreover from (24) and (26) we infer

(28) λ̂n = λ
n

n+1
n λ̂

1
n+1

n,n+1 = λn

(
λ̂n,n+1

λn

) 1
n+1

.

We point out that from (28) and λ̂n,n+1 ≤ 1/n which is (9) we get

λ̂n ≤ n−
1

n+1λ
n

n+1

n .

With the stronger Khintchine inequality λ̂n,n+1 = w−1n ≤ (nλn + n − 1)−1 we obtain the
stronger result

λ̂n ≤ (nλn + n− 1)−
1

n+1λ
n

n+1
n .

We derive an implicit equation involving λn and λ̂n by combining (24) with (28) of the
form

(29) λ̂n+1
n (λn + 1)n+1 − λn+1

n

(
1 +

λ̂n+1
n

λnn

)n+1

= 0.

Now we want to establish the dual results. One can either proceed similarly as in [20] for
(24), or immediately apply (13) and (14) to (24), to derive

(30)
(1 + wn)n+1

wnn
=

(1 + ŵn,n+1)
n+1

ŵnn,n+1

for the regular graph. Observe that ŵn,n+1 = 1/λn ∈ [0, n] by (13) and (3), whereas
wn ∈ [n,∞] by (11). In particular it is not hard to see that for given wn ∈ [n,∞] the
approximation constant ŵn,n+1 is the unique real solution of (30) in the interval [0, n].

Moreover again for the regular graph all quotients wn,j/wn,j+1 = wn,j/ŵn,j coincide for
1 ≤ j ≤ n+ 1, where we put wn,n+2 := ŵn,n+1. This yields

(31) ŵn = w
n

n+1
n ŵ

1
n+1

n,n+1 = wn

(
ŵn,n+1

wn

) 1
n+1

.

From (31) and (20) we obtain

(32) ŵn ≤ n
1

n+1w
n

n+1
n ,

where equality holds only in case of ŵn,n+1 = n which is equivalent to wn(ζ) = n. The
stronger inequality

ŵn ≤ ((n− 1)wnn + nwn−1n )
1

n+1

is obtained by combining (31) with Khintchine’s inequality

ŵn,n+1 =
1

λn
≤ (n− 1)wn + n

wn
.
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Alternatively, expressing ŵn in terms of wn, ŵn by rearranging (31) and inserting in (30)
some rearrangements lead to the nice implicit equation

(33) wn − ŵn + 1 =

(
wn
ŵn

)n
.

Thus we have (basically) established the following.

Proposition 2.1. The function φn coincides with the unique solution of ŵn in (33) in
terms of wn in the interval [n,wn), unless wn = φn(wn) = ŵn = n. The function ϑn
coincides with the unique solution of λ̂n in (29) in terms of λn in the interval [1/n, λn),

unless λn = ϑn(λn) = λ̂n = 1/n.

Proof. The asserted uniqueness can be easily proved. It has been established that (33)
and (29) are satisfied and the claim on the intervals follows from (3) and (11). �

We remark that similarly one can obtain an implicit equation involving wn(ζ) and
wn,j = ŵn,j−1 for 2 ≤ j ≤ n+ 2 (where wn,n+2 := ŵn,n+1) as

w
n+j−2
j−1

n (1 + wn)n+1 =

(
w

n+j−2
j−1

n + w
n+1
j−1

n,j

)n+1

w
n(n+1)

j

n,j

.

For j = 2 this results in (33), the choice j = n+ 2 again yields (30).
In the proof of Theorem 3.3 we will use that the functions φn are increasing. This

seems rather obvious from the definition of the regular graph and Conjecture 1.1, but it
is not trivial and we want to carry this out in Section 5.2.

Lemma 2.2. For every n ≥ 1, the function φn that expresses ŵn in terms of wn ∈ [n,∞]
for the regular graph defined as above is monotonic increasing on [n,∞].

Theorem 2.6 and Remark 2 below more generally suggest that precisely for 1 ≤ j ≤
dn/2e + 1 the functions wn,j(w) defined by the regular graph with parameter wn = w
(similar to λn,j(λ)) should increase on w ∈ [n,∞]. Indeed Theorem 2.6 shows the weaker
claim wn,j(w) > wn,j(n) = n for these values of j and w > n, and disproves it for
larger j. Observe wn,2(w) coincides with φn(w). Moreover, the analogue result should be
true for the functions ϑn = λn,2, but certainly for no function λ → λn,j(λ) if j ≥ 3 by
Proposition 2.5.

2.2. Fixed λ. In this section let λ > 0 be given. We investigate constants λn,j in the
regular graph for prescribed value λn = λ in dependence of n, for which obviously it is

necessary and sufficient to assume n ≥ dλ−1e. Recall the notation λn,j(λ) and λ̂n,j(λ) for

the constants λn,j, λ̂n,j obtained in the regular graph in dimension n and the parameter
λn,1 = λn = λ. Our first result shows roughly speaking that for fixed λn = λ the remaining
constants λn,j(λ) for fixed j ≥ 2 are decreasing as the dimension n increases.

Proposition 2.3. Let λ > 0 be fixed and n1 > n2 ≥ j − 1 ≥ 1 be integers such that
n2 ≥ dλ−1e. Then the constants λni,j(λ), i ∈ {1, 2} in the regular graphs in dimensions
n1 and n2 respectively and parameter λ satisfy λn1,j(λ) < λn2,j(λ).
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Remark 1. The proposition can be used to show that for every fixed n for the regular
graph in dimension n ≥ 2 we have

(34) lim
λ→∞

λ+ 1− λ

λ̂n(λ)
= 0,

with λn = λ and λ̂n(λ) as in Section 1.3. This was remarked but not proved in [20].

Indeed Proposition 2.3 and λn + 1− λn/λ̂n ≥ 0, which is [20, Proposition 5], reduces the
problem to the case n = 2. In this case (24) can be explicitly solved and (34) can be
verified with some elementary computations. Observe that (34) in particular yields

lim
λ→∞

λ̂n(λ) = 1.

This property can be roughly seen in Figure 1.

The following corollary from Proposition 2.3 will be proved in Section 5.1 as well.

Corollary 2.4. Let j ≥ 2 an integer and λ > 0 a parameter fixed. Consider the regular
graphs in all dimensions n ≥ dλ−1e with λn = λ as in (22), which are well-defined. Then
we have the asymptotic behavior

lim
n→∞

λ̂n,j−1(λ) = lim
n→∞

λn,j(λ) =
λ

(1 + λ)j−1
.

2.3. Fixed n and Schmidt’s conjecture. Now we investigate the regular graph in fixed
dimension n in dependence of the parameter λ ≥ 1/n. We are particularly interested in
parameters λ in some small interval (1/n, 1/n + ε). We ask what is the largest index j
such that λn,j is larger than 1/n in such intervals. Due to (10) this is closely connected to
a conjecture of W. Schmidt [21] where he conjectured that for any integers 1 ≤ T ≤ n−1
there exist vectors ζ that are Q linearly independent together with {1}, and for which
the T -th successive minimum τn,T of the lattice point problem from Section 1.2 tends to
0 whereas the (T + 2)-nd τn,T+2 tends to infinity. As mentioned in Section 1.2 this is
equivalent to the fact that the function Ln,T (q) tends to −∞ whereas Ln,T+2(q) tends to

+∞ as q →∞, and for this ψ
n,T

< 0 and ψn,T+2 > 0 is sufficient. Thus for convenience

we introduce the following notation.

Definition 2. Let n, T be integers with 1 ≤ T ≤ n−1. We say ζ ∈ Rn satisfies Schmidt’s
property for (n, T ) if ζ is Q-linearly independent together with {1} and the induced
functions Ln,j(q) from Section 1.2 satisfy limq→∞ Ln,T (q) = −∞ and limq→∞ Ln,T+2(q) =
∞.

By (1) and (10) a sufficient condition for ζ to satisfy Schmidt’s property for (n, T )
is given by λn,T+2 < 1/n < λn,T . The existence conjecture of Schmidt was proved by
Moshchevitin [14] in a complicated non-constructive way. Moreover in case of T not too
close to n, where the condition T < n/ log n is sufficient, it was reproved constructively
in [20]. We should remark that the modified Schmidt’s property for the pair T, T + 1
instead of T, T + 2 cannot be satisfied if ζ is Q linearly independent together with {1},
since then Ln,j(q) = Ln,j+1(q) has arbitrarily large solutions q for all 1 ≤ j ≤ n, see [22].
On the other hand if one drops the linear independence condition the conjecture would
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be true for T, T + 1 as well by a rather easy argument, as carried out in [14]. We want
to discuss how the regular graph relates to this problem. Our main result in this context
will be Theorem 2.8. First we state an easy but important observation.

Proposition 2.5. Let n ≥ 2 and 3 ≤ j ≤ n+ 2. Then the quantities λn,j(λ) = λ̂n,j−1(λ)
for the regular graph in dimension n with parameter λ tend to 0 as λ tends to infinity.

Proof. Observe λ̂n(λ) = λn,2(λ) ≤ 1 always holds by (7). Together with the constant

quotients property (26) we have λn,j(λ) = λ̂n(λ̂n/λ)j−2 ≤ λ2−j, which clearly tends to 0
for j ≥ 3 as λ→∞. �

The next theorem provides more detailed information on the functions λn,j(λ) in (22).

Theorem 2.6. Let j ≥ 3 and n ≥ j − 2 be integers. If n ≥ 2j − 2, then there exist λ̃ ∈
(1/n, n) with the following properties. The regular graph in dimension n with parameter λ

satisfies λn,j(λ) > 1/n for λ ∈ (1/n, λ̃), λn,j(λ) = 1/n for λ ∈ {1/n, λ̃} and λn,j(λ) < 1/n

for λ ∈ (λ̃,∞]. If on the other hand n ≤ 2j − 3, then for all λ ∈ (1/n,∞] the regular
graph in dimension n with parameter λ satisfies λn,j(λ) < 1/n.

It is easy to check the following consequence of Theorem 2.6.

Corollary 2.7. Precisely in case of n ≤ 3 none of the functions λn,j(λ) − 1/n changes
sign on λ ∈ (1/n,∞).

Remark 2. For j ∈ {1, 2} and n ≥ 2 clearly we have λn,j(λ) > 1/n for all λ ∈ (1/n,∞]
by (4) and (7), with equality in both inequalities only for λ = 1/n. See also Lemma 2.2
and Proposition 2.3. A similar dual argument shows λn,j(λ) < 1/n for j ∈ {n+ 1, n+ 2},
as we will carry out in the proof. In particular for n = 2 it is clear that λ2,1(λ) > λ2,2(λ) >
1/2 > λn,3(λ) > λn,4(λ) for all λ > 1/2, and it can be shown easily that all functions
λ2,i(λ) are monotonic on [1/n,∞], see also Figure 1. For n = 3 on the other hand the
above argument is already too weak to yield λ3,3(λ) < 1/3 for all λ > 1/3, as Theorem 2.6
does. A Mathematica plot howover shows that the graph of λ3,3(λ) decreases and has an
inflection point somewhere in the interval (1/2, 1).

Moreover it should be true that the derivative of λn,j(λ) with respect to the parameter
λ changes sign at most once, and precisely for 3 ≤ j < n+3

2
somewhere in the interval

(1/n, λ̃). However, a proof seems to demand some cumbersome estimates and we do not

study this further. For given n, j with the formula (27) the constants λ̃ can be (for large
n, j only numerically) computed with Mathematica. For example for n = 4, j = 3 we get

λ̃ = 3/4+
√

2/2 ≈ 1.4571, for n = 8, j = 3 we have λ̃ = 3+2
√

2 ≈ 5.8284 for n = 8, j = 5

we have λ̃ ≈ 0.2719. From Theorem 2.6 it is not hard to deduce explicit examples for
Schmidt’s property if j is not larger than roughly n/2.

Theorem 2.8. Let n ≥ 2 be an integer. Then for any 1 ≤ T ≤ bn/2c there exists a
non-empty subinterval I = I(T ) of (1/n, n) such that for all λ ∈ I the regular graph in
dimension n with parameter λ satisfies

λ̂n,T (λ) >
1

n
, λn,T+2(λ) <

1

n
.
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In other words for any pair (n, T ) with 1 ≤ T ≤ bn/2c there exist ζ that induce the regular
graph and satisfy Schmidt’s property for (n, T ).

Proof. Let j ≤ bn/2c+ 1. Then the first case of Theorem 2.6 applies and yields λn,j(λ̃) =

1/n and λn,j(t) > 1/n for some λ̃ > 1/n and t ∈ (1/n, λ̃). Since λn,j+1 < λn,j unless

both are equal to λ = 1/n, we have λn,j+1(λ̃) < 1/n. Hence by continuity of the function
λn,j+1(λ) in the parameter λ there exists some non-empty interval J = J(j) = (δ − ε, δ)
such that for t0 ∈ J the inequalities λn,j+1(t0) < 1/n < λn,j(t0) are satisfied. Since in the

regular graph λ̂n,j−1 = λn,j holds by (23), the claim follows with T = j − 1 and the fact
that ζ inducing the corresponding regular graphs exist as mentioned above. �

3. Implications of Conjecture 1.1 to uniform approximation

We restrict to the case of successive powers (ζ, ζ2, . . . , ζn) in the sequel. In this section
we conditionally improve the following Theorem 3.1, established in [6, Theorem 2.1] where
the last claim also incorporates [6, Theorem 2.3], under assumption of Conjecture 1.1.
Moreover we will treat a weaker assumption in Theorem 3.4.

Theorem 3.1 (Bugeaud, Schleischitz). Let n ≥ 2 be an integer and ζ a real transcen-
dental number. Then

(35) ŵn(ζ) ≤ n− 1

2
+

√
n2 − 2n+

5

4
.

For n = 3 we have the stronger estimate

(36) ŵ3(ζ) ≤ 3 +
√

2 ≈ 4.4142...

In case of wn−1(ζ) = wn(ζ) we have ŵn(ζ) ≤ 2n− 2 and in case of wn−2(ζ) = wn−1(ζ) =
wn(ζ) we have ŵn(ζ) ≤ 2n− 3.

For n → ∞ the right hand side is of order 2n − 3/2 + o(1) with positive remainder
term for any fixed n. This improved the earlier result ŵn(ζ) ≤ 2n− 1 by Davenport and
Schmidt [7]. For n = 2 Theorem 3.1 is best possible as proved by Roy, see [18]. We will
also need special cases of [6, Theorem 2.2, 2.3 and 2.4] comprised in Theorem 3.2 below.
Before we can state Theorem 3.2 we need the definition of the exponents of approximation
by algebraic numbers which is closely related to wn(ζ), ŵn(ζ).

Definition 3. The constant w∗n(ζ) is defined as the supremum of ν such that

(37) 0 < |ζ − α| ≤ H(α)−ν−1

has a real algebraic solution α of degree at most n, where H(α) is the maximum modulus
of the coefficients of the irreducible minimal polynomial P of α over Z[X]. The uniform
constant ŵ∗n(ζ) is defined as the supremum of ν such that the system

(38) H(α) ≤ X, 0 < |ζ − α| ≤ H(α)−1X−ν

has a solution for all large values of X.

For all n ≥ 1 and all real ζ, the estimates

(39) w∗n(ζ) ≤ wn(ζ) ≤ w∗n(ζ) + n− 1, ŵ∗n(ζ) ≤ ŵn(ζ) ≤ ŵ∗n(ζ) + n− 1,

are well-known, see [2, Lemma A8].
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Theorem 3.2 (Bugeaud, Schleischitz). Let n ≥ 2 and ζ be real transcendental. We have

ŵ∗n(ζ) ≤ nwn(ζ)

wn(ζ)− n+ 1
.

If wn(ζ) > wn−1(ζ) then we have the stronger estimate

ŵn(ζ) ≤ nwn(ζ)

wn(ζ)− n+ 1
.

If otherwise m < n is such that wm(ζ) = wn(ζ) then

ŵn(ζ) ≤ m+ n− 1 ≤ 2n− 2.

In fact Theorem 3.2 was used to prove Theorem 3.1 in combination with bounds from
Summerer and Schmidt [23, page 48, last formula], and [24, (1.2)] for n = 3. Under the
stronger bounds implied by assumption of Conjecture 1.1, for n ≥ 4 Theorem 3.1 can be
slightly improved. The main result of this section is the following.

Theorem 3.3. Suppose Conjecture 1.1 holds for every n ≥ 2. Let τ ≈ 0.5693 be the
solution y ∈ (0, 1) of ye1/y = 2

√
e, where e is Euler’s number. Then for any D <

log(2/τ) + 1 ≈ 2.2564 there exists n0 = n0(D) such that for all real transcendental
numbers ζ we have

(40) ŵ∗n(ζ) ≤ 2n−D, n ≥ n0.

The same bound holds for ŵn(ζ) unless wn−2(ζ) < wn−1(ζ) = wn(ζ). In any case we have

(41) ŵn(ζ) ≤ 2n− 2, n ≥ 10.

In fact the bound log(2/τ) + 1 in Theorem 3.3 seems to be very close to best possible
from what we can get by combining the results of Theorem 3.2 with estimates for the
regular graph from Section 2.1. We want to present some numeric results indicating this
obtained with Mathematica. It follows from Theorem 3.1 and Theorem 3.2 that for the
solution w̃n(ζ) of

(42) φn(w̃n(ζ)) =
w̃n(ζ)

w̃n(ζ)− n+ 1

the corresponding value φn(w̃n(ζ)) is an upper bound for ŵ∗n(ζ) under the assumption of
Conjecture 1.1, and if φn(w̃n(ζ)) ≥ 2n − 2 also for ŵn(ζ). For n ∈ {2, 3} this procedure
leads precisely to the bounds (3 +

√
5)/2 and 3 +

√
2 in (35) and (36), respectively. For

n ≥ 4 Mathematica can numerically solve the problem if n is not too large. Examples
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are given by

w̃4(ζ) ≈ 8.2460, φ4(w̃4(ζ)) ≈ 6.2874

w̃5(ζ) ≈ 10.2481, φ5(w̃5(ζ)) ≈ 8.2096

w̃6(ζ) ≈ 12.2495, φ6(w̃6(ζ)) ≈ 10.1382

w̃7(ζ) ≈ 14.2505, φ7(w̃7(ζ)) ≈ 12.0906

w̃10(ζ) ≈ 20.2523, φ10(w̃10(ζ)) ≈ 17.9984

w̃20(ζ) ≈ 40.2544, φ20(w̃20(ζ)) ≈ 37.8786

w̃30(ζ) ≈ 60.2551, φ30(w̃30(ζ)) ≈ 57.8355

w̃50(ζ) ≈ 100.2556, φ50(w̃50(ζ)) ≈ 97.7996.

Hence for example under Conjecture 1.1 we get for all real transcendental numbers ζ

ŵ4(ζ) < 6.2875, ŵ5(ζ) < 8.2097, ŵ6(ζ) < 10.1383, ŵ7(ζ) < 12.0907

ŵ∗10(ζ) < 17.9985 ŵ∗20(ζ) < 37.8787 ŵ∗30(ζ) < 57.8356 ŵ∗50(ζ) < 97.7996.

Again unless ζ satisfies wn−2(ζ) < wn−1(ζ) = wn(ζ) the above bounds for n ∈ {10, 20, 30, 50}
are valid for ŵn(ζ) as well and we believe the additional condition is not necessary. The
data suggests that 2n − φn(w̃n(ζ)) converges to some constant not much larger than
log(2/τ) + 1 ≈ 2.2564 from Theorem 3.3, and even if this is not the case it seems unlikely
one can improve the asymptotic bound of the form 2n− C.

We want to close this section with a weaker result under a weaker assumption than
Conjecture 1.1, which still yields better bounds than the unconditioned Theorem 3.1.
The involved assumption will play a role later in Theorem 4.3.

Theorem 3.4. Assume (32) is satisfied for all n ≥ 1 and real transcendental ζ, which is
in particular true if Conjecture 1.1 holds. Then for every ε > 0 there exists n0 = n0(ε)
such that

ŵn(ζ) ≤ 2n− 1− log 2 + ε, n ≥ n0

is satisfied.

For n = 100 numerical calculations approximately yield the bound 198.3245, which is
slightly larger than 2n− 1− log 2 ≈ 198.3068.

4. Conditioned results under another conjecture

4.1. Uniform approximation. Let n ≥ 1 an integer and ζ be a real number. We call
P ∈ Z[X] of degree at most n a best approximation for (n, ζ) if there is no Q ∈ Z[X]
of degree at most n with H(Q) < H(P ) and |Q(ζ)| < |P (ζ)|. Every real transcendental
ζ induces a sequence of best approximation polynomials P1, P2, . . . that satisfy |P1(ζ)| >
|P2(ζ)| > · · · and H(P1) ≤ H(P2) ≤ · · · .

Conjecture 4.1. For any n ≥ 1 and any real transcendental ζ, there exist infinitely
many k such that n + 1 successive best approximations Pk, Pk+1, . . . , Pk+n for (n, ζ) are
linearly independent (i.e. their span equals the entire space Rn+1).
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Remark 3. The claim is known to hold for n = 2. Moshchevitin [13] proved that for
n > 2 there exist counterexamples for the analogue claim for vectors ζ ∈ Rn that are
together with {1} Q-linearly independent. The vector can even be chosen such that the
(n + 1) × (n + 1)-matrix with columns n + 1 successive best approximation vectors has
rank at most 3 for all large k. However, it seems plausible that such vectors cannot lie
on the Veronese curve.

Theorem 4.2. If (n, ζ) satisfies the assumption of Conjecture 4.1 then

(43) wn,n+1(ζ) ≥ ŵn(ζ)n

wn(ζ)n−1

and moreover

(44) wn(ζ) ≥ ŵn(ζ)

(
ŵn(ζ)− 1

n− 1

) 1
n−1

.

For n = 2 estimate (44) yields the inequality w2(ζ) ≥ ŵ2(ζ)(ŵ2(ζ)− 1) known by Lau-
rent [11]. Again this is sharp for extremal numbers. See [15, Section 3] for related results.
For us the main purpose of Theorem 4.2 is the connection to uniform approximation in
the following theorem.

Theorem 4.3. Assume Conjecture 4.1 is true for all (n, ζ) with n ≥ 1 and ζ a transcen-
dental number. Then the claim of Theorem 3.4 holds.

Proof. By assumption and Theorem 4.2 inequality (44) holds, which is stronger than (32).
Thus the claim follows from Theorem 3.4. �

There is numeric evidence that the bound cannot be improved much by using (44)
instead of (32). For example Mathematica calculates the bounds

ŵ4(ζ) ≤ 6.4575, ŵ10(ζ) ≤ 18.366, ŵ100(ζ) ≤ 198.313.

For n = 100 the value is still larger than 2n− 1− log 2 and only slightly better than the
bound 198.3245 derived directly from (32), or more precisely from (68) below.

4.2. Wirsing’s problem. Finally we want to briefly point out the implications of Con-
jecture 4.1 to Wirsing’s problem, which is to decide whether w∗n(ζ) ≥ n holds for all n ≥ 1
and real transcendental ζ. The conjecture has so far only been settled for n ∈ {1, 2}.

Theorem 4.4. Assume Conjecture 4.1 is true. Then there is an increasing sequence
of real numbers (γn)n≥1 with lim γn > 2.31 such that w∗n(ζ) > n/2 + γn for all real
transcendental ζ.

This is stronger than the bound w∗n(ζ) ≥ n/4 +
√
n2 + 16n− 8/4 by Bernik and

Tishchenko [1], which has the asymptotic behavior n/2 + 2− o(1). However, it is weaker
than the result in the very technical paper [25] where it was shown that the sequence
γn in context of Theorem 4.4 can be chosen with limit 3. Nevertheless the method of
Theorem 4.4 is of some interest and some new idea might lead to new insights.
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5. Proofs

5.1. Proofs of Section 2. First we prove Lemma 2.2.

Proof of Lemma 2.2. It follows from (32) and (33) by implicit function theorem that φn
is a C1-function in a neighborhood of every w with nwn 6= φn(w)n+1. Hence by (32) we
infer φn is a C1-function on (n,∞). Moreover (33) with w = wn(ζ) readily implies

(45) lim
w→∞

φn(w) =∞.

Assume φn is not monotonic increasing, that is for some n ≤ u < v we have φ(u) > φ(v).
Then there exists a local maximum of φn in [n, v). This maximum cannot be n since
φn(n) = n which is the global minimum for ŵn(ζ) = φn(wn(ζ)) on [n,∞) (recall the
regular graph can be attained for any dimension and parameter for some ζ ∈ Rn such
that indeed n is the lower bound by Dirichlet Theorem which is (18)). Without loss of
generality assume this local maximum is attained at u. Then since u 6= n we deduce
φ′n(u) = 0. On the other hand from (45) and our assumption we obtain some local
minimum z of φn strictly larger than u for which obviously φn(z) < φn(u) and φ′n(z) = 0
hold. Summing up our hypothesis would imply the existence of u < z in [n,∞) such
φn(z) < φn(u) and φ′n(u) = φ′n(z) = 0. We lead this to a contradiction. Implicit
differentiation of (33) for w = wn(ζ) with the replacement ŵn(ζ) = φ(wn(ζ)) = φ(w) and
rearranging shows that we have

1− φ′n(w) = nwn−1φ(w)n
1− wφn(w)φ′n(w)

φn(w)2n

such that in case of φ′n(w) = 0 we derive

φn(w) = n
1
nw

n−1
n

where the right hand side is obviously monotonic increasing in w. Since u < z and
φ(u) > φ(z) this leads to a contradiction and the proof is finished. �

For the next proof recall the functions fn from (25) and their properties.

Proof of Proposition 2.3. By the assumptions the regular graphs with parameter λ in
dimension n1, n2 are well-defined (and exist due to Roy [17]). Since in the regular graph

the quotients (26) coincide, it suffices to prove that λn,2(λ) = λ̂n(λ) decreases for fixed λ
as n increases.

Recall the functions fn defined in Section 2. We have fn+1(λ)/fn(λ) = 1 +λ and hence
in view of (24) also

(46)
fn+1(λ̂n+1,n+2(λ))

fn(λ̂n,n+1(λ))
= 1 + λ.

On the other hand we claim that

(47) λ̂n+1,n+2(λ) < λ̂n,n+1(λ).

In case of λ̂n,n+1(λ) > 1/(n+ 1) this is trivial since λ̂n+1,n+2(λ) ≤ 1/(n+ 1). If otherwise

λ̂n,n+1(λ) ≤ 1/(n+1) then (47) follows from the decay of the function fn+1 on (0, 1/(n+1))

and fn+1(λ̂n,n+1(λ))/fn(λ̂n,n+1(λ)) = 1 + λ̂n,n+1(λ) ≤ 1 + λ in combination with (46).
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From (47) we deduce

(1 + λ̂n+1,n+2(λ))n+2 ≤ (1 + λ̂n,n+1(λ))n+2 = (1 + λ̂n,n+1(λ))n+1fn+1(λ̂n,n+1(λ))

fn(λ̂n,n+1(λ))

Observe the involved quantities are the nominators of fn+1(λ̂.,.(λ)). Together with (46)
for the according denominators we infer

(48)
λ̂n,n+1(λ)

λ̂n+1,n+2(λ)
>

1 + λ

λ̂n,n+1(λ)
.

The identities (28) for n, n+ 1 yield

λ̂n(λ) = λn/(n+1)λ̂n,n+1(λ)1/(n+1)

λ̂n+1(λ) = λ(n+1)/(n+2)λ̂n+1,n+2(λ)1/(n+2).

Taking quotients with (n+1)/(n+2)−n/(n+1) = 1/(n+1)−1/(n+2) = (n+1)−1(n+2)−1

we get

λ̂n(λ)

λ̂n+1(λ)
≥ λ−

1
(n+1)(n+2) λ̂n,n+1(λ)

1
(n+1)(n+2)

(
λ̂n,n+1(λ)

λ̂n+1,n+2(λ)

) 1
n+2

.

Inserting the bound (48) for the last expression we obtain

(49)
λ̂n(λ)

λ̂n+1(λ)
≥ λ−

1
(n+1)(n+2) λ̂n,n+1(λ)

1
(n+1)(n+2)

(
1 + λ

λ̂n,n+1(λ)

) 1
n+2

.

One readily checks that the right hand side in (49) equals 1, since this is equivalent to

fk(λ) = fk(λ̂n,n+1(λ)), which is (24). This finishes the proof. �

Proof of Corollary 2.4. As mentioned in Remark 1 we have λ̂n(λ)/λ ≥ (λ + 1)−1 in the
regular graph with parameter λn = λ. On the other hand the quotients λn,j/λn,j+1 are

identical for all 1 ≤ j ≤ n+ 1 with λn,n+2 := λ̂n,n+1 by (26). Hence

λ̂n,j−1(λ) = λn,j(λ) = λ

(
λ̂n(λ)

λ

)j−1

≥ λ

(1 + λ)j−1
.

In Proposition we proved that the values λ̂n,j−1(λ) = λn,j(λ) decay as n increases, hence
the limit of λn,j(λ) as n→∞ exists and is at least the given quantity. We have to show
equality. Again for all the quotients λn,j/λn,j+1 are identical it obviously suffices to show

this for j = 2. For λ, λ̂n(λ) as above define α(n) implicitly by

(50) λ̂n(λ) = α(n)
λ

1 + λ
.

Then the sequence α(n) ≥ 1 decreases to some limit at least 1 and we have to show
limn→∞ α(n) = 1. Observe a rearrangement of (28) and (50) yields

λ̂n,n+1(λ) = λ

(
λ̂n(λ)

λ

)n+1

= λ

(
α(n)

1 + λ

)n+1

.
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Inserting the right hand side in the identity (24), elementary rearrangements yield

(51) α(n) = 1 + λ

(
α(n)

1 + λ

)n+1

.

If we had limn→∞ α(n) ≥ λ+1 then λ̂n(λ) ≥ λ = λn(λ), contradiction. Thus limn→∞ α(n) <
λ+ 1. Hence the right hand side of (51) converges to 1 as n→∞ and thus the left hand
side as well. This completes the proof. �

Proof of Theorem 2.6. Clearly λn,j = 1/n for all 1 ≤ j ≤ n + 2 if λ = 1/n. Further
observe that by (15), (18), (13) and (14) we have λn,n+1(λ) = ŵn(λ)−1 ≤ 1/n and
λn,n+2 = wn(λ)−1 ≤ 1/n with equality only if the quantities equal 1/n anyway, where we
put wn(λ) for the value wn induced for the regular graph with parameter λn,1 = λ. Thus
we can restrict to 2 ≤ j ≤ n.

So let n ≥ 1 and 2 ≤ j ≤ n arbitrary but fixed. Write λn = λ = α/n for α > 1, where
we consider only α slightly larger than 1. Then (27) becomes

(52)

(
1 + α

n

)n+1

α
n

=

(
1 +

(
α
n

)1−n+1
j−1 λn,j(

α
n
)
n+1
j−1

)n+1

(
α
n

)1−n+1
j−1 λn,j(

α
n
)
n+1
j−1

.

We ask for which values of j it is possible to have λn,j(
α
n
) = 1/n for some α > 1. Inserting

λn,j(
α
n
) = 1/n in (52), multiplying with α/n and dividing through the nominator of the

right hand side and taking the (n+1)-st root yields after simplification and rearrangements
the equivalent assertion

(53) n =
α− α

j−n−1
j−1

α
1

j−1 − 1
.

Let θ := α
1

j−1 . Clearly θ > 1 is equivalent to α > 1 and (53) is further equivalent to

(54) n = θj−1−n
θn − 1

θ − 1
= θj−2 + θj−3 + · · ·+ θj−1−n =: χn,j(θ).

By construction χn,j(1) = n. First consider n ≤ 2j − 3 or equivalently j ≥ n+3
2

. We
calculate

χ′n,j(t) = (j − 2)tj−3 + (j − 3)tj−4 + · · ·+ (j − n− 1)tj−n−2.

and

χ′′n,j(t) = (j − 2)(j − 3)tj−4 + (j − 3)(j − 4)tj−5 + · · ·+ (j − 1− n)(j − 2− n)tj−n−3.

It is easy to verify χ′′n,j(t) > 0 for all t > 0, since any expression in the sum is non-negative,
and for j ≥ 4 the first and for j = 3 the last is strictly positive. Hence it suffices to show
χ′n,j(1) > 0 to see that χn,j(t) > n for all t > 1. Indeed for j ≥ n+3

2
we verify

(55) χ′n,j(1) = (j − 2) + (j − 3) + · · ·+ (j − n− 1) = nj −
n+1∑
i=2

i = nj − n2 + 3n

2
≥ 0.
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We conclude λn,j(λ) 6= 1/n for all λ > 1/n. By the continuity of λn,j we must have either
λn,j(λ) < 1/n for all λ > 1/n or λn,j(λ) > 1/n for all λ > 1/n. However, since j ≥ 3 we
can exclude the latter since in Proposition 2.5 we showed

(56) lim
λ→∞

λn,j(λ) = 0, j ≥ 3.

We have proved all claims for j ≥ n+3
2

.

Now let j < n+3
2

, which is equivalent to n ≥ 2j − 2. Then

χ′n,j(1) = nj − n2 + 3n

2
< 0.

Hence since χ′′n,j(t) > 0 for all t > 0 there exists precisely one value µ0 > 1 for which

χn,j(µ0) = n, or equivalently precisely one λ̃ > 1/n with λn,j(λ̃) = 1/n. Again by (56) and

continuity we must have λn,j(λ) < 1/n for λ > λ̃. Moreover again by intermediate value

theorem either λn,j(λ) > 1/n for all λ ∈ (1/n, λ̃) or λn,j(λ) < 1/n for all λ ∈ (1/n, λ̃).
Suppose conversely to the claim of the theorem the latter is true. Recall the implicit
equation (27) involving λn = λ and λn,j(λ). Denote

F (x) =
(1 + x)n+1

x
, G(x, y) =

(1 + xy)n+1

xy
,

such that (27) becomes F (λ) = G(λ1−
n+1
j−1 , λn,j(λ)1−

n+1
j−1 ). Proceeding as above we show

next that for λ close to 1/n we have

(57) F (λ) = G(λ1−
n+1
j−1 , λn,j(λ)

n+1
j−1 ) < G(λ1−

n+1
j−1 , (1/n)

n+1
j−1 ).

Indeed, with λ = α/n inequality (57) is equivalent to

(58) n >
α− α

j−n−1
j−1

α
1

j−1 − 1
,

Proceeding as above subsequent to (53) we see that for (58) the condition χ′n,j(1) > 0

is sufficient, which is true for j < n+3
2

and α sufficiently close to 1 by a very similar
calculation as in (55). Thus we have showed (57). Hence if λn,j(λ) < 1/n for such λ then
by intermediate value theorem of differentiation we must have

(59)
dG

dy
(λ1−

n+1
j−1 , η) > 0

for some pair (λ, η) with λ ≥ 1/n and η ∈ (λn,j(λ)
n+1
j−1 , (1/n)

n+1
j−1 ). We disprove this. We

calculate
dG(x, y)

dy
= (nxy − 1)(1 + xy)n

1

xy2
.

Hence the sign of the partial derivative of G in (59) equals that of nxy−1. Our hypothesis
yields

nλη ≤ n
(α
n

)1−n+1
j−1

(
1

n

)n+1
j−1

= α1−n+1
j−1 < 1
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since α > 1 and the exponent is negative. Hence dG(λ1−
n+1
j−1 , η)/dy < 0 for all η ∈

(λn,j(λ)
n+1
j−1 , (1/n)

n+1
j−1 ). This contradicts (59). Hence the hypothesis was wrong and we

must have λn,j(λ) > 1/n for all λ ∈ (1/n, λ̃).

Finally the fact that λ̃ < n follows from combination of λn,j(λ̃) = 1/n and λn,j(λ̃) <

λ̃2−j ≤ λ̃−1 < n for λ̃ > 1/n and j ≥ 3, see the proof of Proposition 2.5. �

5.2. Proofs of Section 3. We turn towards the proof of Theorem 3.3. We will frequently
use the well-known fact that

(60) lim
n→∞

(1 + x/n)n = ex

for real x, where the sequence (1 + x/n)n is monotonic increasing. In particular for every
integer n ≥ 1 and real θ > 1 we have θ1/(n+1) > 1 + log(θ)/(n + 1) since the sequence
(1 + log(θ)/n)n converges monotonically increasing to θ. Thus for n ≥ 1, θ > 1 we have

(61) θ−1/(n+1) <
1

1 + log(θ)
n+1

= 1− log(θ)

log(θ) + n+ 1
.

Together with (30) and (31), this allows for establishing upper bounds for the evaluations
of φn(wn(ζ)) in terms of n,wn(ζ), which is in turn an upper bound for ŵn(ζ) by Conjec-
ture 1.1 and Proposition 2.1. Combination with the bounds from Theorem 3.2 yields the
estimate (40). The estimate (41) will follow similarly from (33) and Theorem 3.2.

Proof of Theorem 3.3. First we show (40). From the assumption of Conjecture 1.1 to-
gether with Proposition 2.1 and (39) we obtain

(62) ŵ∗n(ζ) ≤ ŵn(ζ) ≤ φn(wn(ζ)).

Together with Theorem 3.2 we derive

(63) ŵ∗n(ζ) ≤ min

{
nwn(ζ)

wn(ζ)− n+ 1
, φn(wn(ζ))

}
.

Let D > 1 be fixed number to be specified later and consider large n, in particular
n > 3D. Let

κn :=
(2n−D)(n− 1)

n−D
.

First assume wn(ζ) ≥ κn. Then nwn(ζ)/(wn(ζ)− n+ 1) ≤ 2n−D such that (40) follows
from (63). Since all φn are increasing by Lemma 2.2 it only remains to be shown that
φn(κn) ≤ 2n−D for large n to derive (63) also in case of n ≤ wn(ζ) < κn. Hence we may
assume wn(ζ) = κn. It is easy to check

(64) κn = 2n− 2 + (2− 2/n)D +O(1/n) = 2n+ 2D − 2 +O(1/n).

In particular κn = 2n+ o(n). Let

ϕn(x) =
(x+ 1)n+1

xn
= (1 + 1/x)n(1 + x).

With (60) we infer

ϕn(κn) =

(
1 +

1

κn

)n
(κn + 1) =

(
1 +

1

2n+ o(n)

)n
(2n+ o(n)) = (2

√
e+ o(1))n.
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From (30) we further deduce

ϕn(ŵn,n+1(ζ)) = ϕn(wn(ζ)) = ϕn(κn) = (2
√
e+ o(1))n.

We noticed preceding the theorem that ŵn,n+1(ζ) ≤ n. Thus if we write ŵn,n+1(ζ) = bn
then b = b(n) ∈ [0, 1] and again (60) yields that b satisfies be1/b = 2

√
e+ o(1) as n→∞.

This yields b(n) = τ + o(1) as n → ∞ where τ ≈ 0.5693 is the solution y ∈ (0, 1) to
ye1/y = 2

√
e. Together with (64) we infer

(65) φ(κn) = wn(ζ)

(
ŵn,n+1(ζ)

wn(ζ)

)1/(n+1)

= (2n+ 2D − 2 + o(1))
(τ

2
+ o(1)

)1/(n+1)

.

Inserting (61) with θ := 2/τ ≈ 3.5128 in (65) yields

(66) φ(κn) ≤ (2n+ 2D − 2 + o(1))

(
1− log(2/τ + o(1))

log(2/τ + o(1)) + n+ 1

)
.

One checks that if D < log(2/τ) + 1 and n is large then the right hand side of (66) is
smaller than 2n−D. This finishes the proof of (40).

Now we treat the case of ŵn(ζ). In case of wn−2(ζ) = wn(ζ) from Theorem 3.2 with
m = n − 2 we derive that ŵn(ζ) ≤ 2n − 3 < 2n − D which proves the claim. In case
of wn−1(ζ) < wn(ζ) we can again apply Theorem 3.2 and obtain the same bounds for
ŵn as in (63), and can proceed as in the proof of (40). Hence only possibly in case of
wn−2(ζ) < wn−1(ζ) = wn(ζ) the bounds may fail, as asserted. Finally concerning (41) we
need preciser error terms in dependence of n. First observe (62) and Theorem 3.2 imply

(67) ŵn(ζ) ≤ min

{
max

{
2n− 2,

nwn(ζ)

wn(ζ)− n+ 1

}
, φn(wn(ζ))

}
.

To derive (41) we use (33) directly. As above with D = 2 we see that wn(ζ) ≥ 2(n −
1)2/(n− 2) implies nwn(ζ)/(wn(ζ)− n+ 1) ≤ 2n− 2 and hence (67) implies (41). Hence
again since φn are monotonic increasing by Lemma 2.2 it remains to be checked that
φn(w) ≤ 2n− 2 for n ≥ 10 where w := 2(n− 1)2/(n− 2). Let

H(x, y) = x− y + 1−
(
x

y

)n
.

Observe (wn(ζ), φn(wn(ζ)) solves (33), in particular H(w, φ(w)) = 0 or φn(w) is the
solution y0 < w of

H(w, y0) =
2(n− 1)2

n− 2
− y0 + 1 +

(
2(n− 1)2

(n− 2)y0

)n
= 0.

Some elementary calculation shows

H(w, 2n− 2) =
2

n− 2
+ 3−

(
n− 1

n− 2

)n
=

2

n− 2
+ 3−

(
1 +

1

n− 2

)n−2(
1 +

1

n− 2

)2

which with (60) and some computation for small n can be easily checked to be positive
for n ≥ 10. On the other hand we have

dH

dy
(w, y) = −1 + nwny−n−1,
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which is positive for any y < φn(w) by (32). Thus indeed the root y0 = φn(w) of
H(w, y0) = 0 must be smaller than 2n− 2. This finishes the proof. �

Finally we sketch the proof of Theorem 3.4, where we omit technical calculations.

Proof of Theorem 3.4. From (32) and Theorem 3.1 we deduce

(68) ŵn(ζ) ≤ min

{
max

{
nwn(ζ)

wn(ζ)− n+ 1
, 2n− 2

}
, n

1
n+1wn(ζ)

n
n+1

}
.

First consider only the minimum without the expression 2n − 2. It is checked easily
that the equality condition nw̃n(ζ)/(w̃n(ζ)−n+1) = n1/(n+1)w̃n(ζ)n/(n+1) maximizes this
minimum and can be equivalently written w̃n(ζ)−n+1 = w̃n(ζ)1/(n+1)nn/(n+1). With (60)
it can be further shown that this solution w̃n(ζ) satisfies 2n − 1 < w̃n(ζ) < 2n for all n
and is of the form 2n−1+log 2−ρn as n→∞ with positive ρn decreasing monotonically
to 0. For this value w̃n(ζ) the evaluation in (68) lies in the interval (2n− 2, 2n− 1) and is
of the form 2n−1− log 2+εn ≈ 2n−1.6931+εn with positive εn decreasing monotonically
to 0. Since this is larger than 2n−2 we can drop 2n−2 in (68) and the claim follows. �

5.3. Proofs of Section 4. In the proof of Theorem 4.2 we will apply the transference
inequality

(69) λ̂n(ζ) ≥
ŵn(ζ)− 1

(n− 1)ŵn(ζ)

due to German [8], valid for all ζ that are Q-linearly independent together with {1}.

Proof of Theorem 4.2. Let ε > 0. By definition of ŵn(ζ) for any sufficiently large k we
have

(70) |Pk+1(ζ)| < |Pk(ζ)| < H(Pk+1)
−ŵn(ζ)+ε.

On the other hand, it follows from the definitions of wn(ζ) and ŵn(ζ) that for two succes-
sive best approximations Pl, Pl+1 when l is sufficiently large we have logH(Pl+1)/ logH(Pl) ≤
wn(ζ)/ŵn(ζ) + ε or equivalently logH(Pl)/ logH(Pl+1) ≥ ŵn(ζ)/wn(ζ)− ε̃ where ε̃ tends
to 0 as ε does. This same argument applied repeatedly for l from k+ 1 to k+n−1 shows
that

(71)
logH(Pk+1)

logH(Pk+n)
≥
(
ŵn(ζ)

wn(ζ)

)n−1
− ε̃1

for some ε̃1 which depends on ε and tends to 0 as ε tends to 0. Combination of (70) and
(71) yields

− log |Pk(ζ)|
logH(Pk+n)

= − log |Pk(ζ)|
logH(Pk+1)

· logH(Pk+1)

logH(Pk+n)
≥ (ŵn(ζ)− ε)

((
ŵn(ζ)

wn(ζ)

)n−1
− ε̃1

)
.

Since |Pk(ζ)| > |Pk+1(ζ)| > · · · > |Pk+n(ζ)| we infer that

− log |Pk+j(ζ)|
logH(Pk+n)

≥ ŵn(ζ)

(
ŵn(ζ)

wn(ζ)

)n−1
+ ε̃2, 0 ≤ j ≤ n,

for some ε̃2 which again depends on ε and tends to 0 as ε does. Thus by our assumption
that we can find arbitrarily large k such that the polynomials Pk, Pk+1, . . . , Pk+n are
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linearly independent and since H(Pn+k) ≥ H(Pn+j) for 0 ≤ j ≤ k, we obtain (43) as we
may take ε arbitrarily small.

Finally (44) follows from (43) combined with

wn,n+1(ζ) =
1

λ̂n(ζ)
≤ (n− 1)ŵn(ζ)

ŵn(ζ)− 1

by elementary rearrangements, where the right inequality is obtained from (69) by taking
reciprocals. �

Now we turn to Wirsing’s conjecture. It was shown by the author [19] that

(72) w∗n(ζ) ≥ wn,n+1(ζ)

for all n ≥ 1 and real transcendental ζ. On the other hand Bugeaud and Laurent [5]
proved

(73) w∗n(ζ) ≥ ŵn(ζ)

ŵn(ζ)− n+ 1
.

Moreover within the proof of [6, Theorem 2.7] it was shown that

w∗n(ξ) ≥ min
{
ŵn(ξ),

wn(ξ) + 1

2
+ ŵn(ξ)− n

}
.

The last result implies that either w∗n(ζ) ≥ ŵn(ζ) ≥ n anyway or

(74) w∗n(ξ) ≥ max
{ ŵn(ζ)

ŵn(ζ)− n+ 1
,
wn(ξ)

2
+ ŵn(ξ)− n+

1

2

}
.

The above observations will be combined to proof Theorem 4.4. We will again only sketch
the proof and skip the calculations that occur, which are technical but not difficult.

Proof of Theorem 4.4. Clearly the claim holds for w∗n(ζ) ≥ n. In case of w∗n(ζ) < n,
combination of (43), (72), (73) and (74) yields

(75) w∗n(ζ) ≥ max

{
ŵn(ζ)

ŵn(ζ)− n+ 1
,
wn(ζ)

2
+ ŵn(ζ)− n+

1

2
,
ŵn(ζ)n

wn(ζ)n−1

}
First consider only the last two expressions in (75). For given ŵn(ζ) one can consider
the function wn(ζ) = Φ(ŵn(ζ)) which minimizes the maximum of these. This is the
point where the expressions are equal since again the middle expression increases and the
most right expression decreases as wn(ζ) increases. Then determining the intersection
of the functions ŵn(ζ)/(ŵn(ζ) − n + 1) and ŵn(ζ)n+1/wn(ζ)n where wn(ζ) = Φ(ŵn(ζ)),
one checks that the minimum value of the maximum of all three expressions in (75) is
attained for some pair (ŵn(ζ), wn(ζ)) with wn(ζ) = n+ 1− εn for some positive sequence
εn which converges monotonically to 0. Moreover and more important, the evaluation of
ŵn(ζ)n+1/wn(ζ)n = ŵn(ζ)n+1/Φ(ŵn(ζ))n (or another expressions in (75)) is of the form
n/2 + γn for some increasing sequence γn which converges to some value, and numerical
calculations show γ300 is already larger than 2.31. �
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