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Macroscopic systems subjected to injection and dissipation of energy can exhibit complex spa-
tiotemporal behaviors as result of dissipative self-organization. Despite the substantive theoretical
and numerical progress to characterize these behaviors, its experimental implementation has been
almost sterile. Here, we report a two-dimensional pattern forming set up, which exhibits a transi-
tion from stationary patterns to spatiotemporal chaotic textures, based on a nematic liquid crystal
layer with spatially modulated input beam and optical feedback. Using an adequate projection of
spatiotemporal diagrams, we determine the largest Lyapunov exponent. This exponent and Fourier
transform lead to a reconciliation of experimental observations and theoretical developments. In
particular, we can distinguish between spatiotemporal chaos and amplitude turbulence concepts;
which are usually merged.

Optical systems maintained far from equilibrium,
through the injection and dissipation of energy, can
present spatiotemporal structures, patterns [1–8]. These
structures appear as a way to optimize energy transport
and momenta [9]. Patterns are the result of the inter-
play between the linear gain and the nonlinear saturation
mechanisms. In many physical systems, these structures
are stationary and emerge as a spatial instability of a
uniform state when a control parameter is changed and
surpasses a critical value, which usually corresponds to
imbalances of forces. As the parameters of the system
are changed, stationary patterns can become unstable
and bifurcate to more complex patterns, even into ape-
riodic dynamics states [10–12]. This behavior is char-
acterized by complex spatiotemporal dynamics exhibited
by the pattern and a continuous coupling between spa-
tial modes in time. Complex spatiotemporal dynamics
of patterns have been observed, for example, in fluids
[13–15], chemical reaction-diffusion systems [16], cardiac
fibrillation [17], electroconvection [18], fluidized granu-
lar matter [19], nonlinear optical cavities [1–4] and in a
liquid crystal light valve [20]. In most of these studies,
complex behaviors are characterized by spatial and tem-
poral Fourier transforms, wave vector distribution, filter-
ing spatiotemporal diagrams, power spectrum of spatial
mode, length distributions, Poincaré maps and number
of defects as a function of the parameters. However,
in these experimental studies, spatiotemporal complex-
ity has not been characterized using rigorous tools of
dynamical systems theory as Lyapunov exponents [21].
These exponents characterize the exponential sensitivity
of the dynamical behaviors under study and in turn gives
a characteristic time scale on which one has the ability
to predict the time evolution of the system. When the
largest Lyapunov exponent (LLE) is positive (negative)
the system under study is chaotic (stationary). Indeed,
from experimental data in spatial extended systems, it is
a difficult task to infer the value of Lyapunov exponents.

Experimental details.– A flexible optical experimen-
tal setup that exhibits pattern formation is the liquid
crystal light valve (LCLV) with an optical feedback (see
Fig. 1) [6]. The LCLV is illuminated by an expanded and
collimated He-Ne laser beam, λ = 633 nm, with 3 cm
transverse diameter and power Iin = 6.5 mW/cm2, lin-
early polarized along the vertical axis. Once shone into
the LCLV, the beam is reflected by the dielectric mirror
deposed on the rear part of the cell and, thus, sent to
the polarizing cube. Due to the phase-change the light
suffers in the reflection, the polarizing cube will send the
reflected light into the feedback loop. To close the feed-
back loop, a mirror and an optical fiber bundle are used,
these elements assure the light to reach the photoconduc-
tor placed in the back part of the LCLV. In the feedback
loop, a 4-f array is placed in order to obtain a self-imaging
configuration and access to the Fourier plane, this array
is constructed with 2 identical lenses with focal length
f = 25 cm placed in such a way that both sides of the
LCLV are conjugated planes. We filter the Fourier plane
in order to force the system to exhibit roll-patterns in
a given direction. Thanks to this configuration the free
propagation length in the feedback loop can be easily ad-
justed. For the performed experiments an optical equiv-
alent length of d = −4 cm was used. A spatial light
modulator (SLM) was placed in the input beam optical
path with a 1 : 1 imaging between the SLM and the
frontal part of the LCLV. With the aid of a specialized
software, a square mask was produced and sent to the
SLM. The SLM and the polarizing cube combination al-
low to impose an arbitrary shape to the input beam. For
a uniform mask of 160 gray-value, the typical input inten-
sity would be Iw = 0.83 mW/cm2. To obtain the shape
used in the experiments, one and two-dimensional masks,
I(x, y), were created and, by means of these masks, one
and two dimensional patterns can be obtained as can be
seen in the bottom left part of Fig. 1. The system dy-
namics is controlled by adjusting the external voltage V0
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FIG. 1. Schematic representation of the experimental setup. LCLV stands for the liquid crystal light valve, L represents the
achromatic lenses with a focal distance f = 25 cm, M are the mirrors, FB is an optical fiber bundle, BS stands for the beam
splitters, PC represents a polarizing cube, SLM is a spatial light modulator and FP represents the Fourier plane. F and B
stand for the forward (incoming) and backward (reflected) beam respectively. d is the equivalent optical length. In the bottom
left part of the image, two examples of obtained patterns and textures.

applied to the LCLV.
The dynamics exhibited by the LCLV with optical

feedback is characterized by the changes that molecu-
lar orientation induces in the phase of the reflected light
which in its turn—optical feedback—produces a voltage
that reorients the liquid crystal molecules.
From stationary to disordered dynamics.– The presented
dynamics in the LCLV have been explored in two differ-
ent configurations, the first one using an intensity mask of
zero-level intensity everywhere except for a central square
part with length a0 = 2.5 mm (2-D mask), and the second
one with a zero-level intensity except on a narrow chan-
nel of 150 µm width and 2.5 mm length (1-D mask). The
injected intensity is spatially modulated as Iin = I0(x, y),
where I0 can be controlled by changing the mask created
in the SLM, and {x, y} are the transverse coordinates
of the sample. I0 is measured when imposing a given
gray-value to the illuminated area, that is, for the 2-D
mask

I0(x, y) =

{
I0 + b0 |x| ≤ a0, and |y| ≤ a0

b0 else

when b0 is constant throughout the sample and |x| > 0,
|y| > 0. The same applies to 1-D mask with the only dif-
ference that |y| = 150 µm, which is small enough, com-
pared with the pattern wavelength, to neglect its size
and consider it as a 1-D mask. In the presented config-
urations I0 = 0.9 mW/cm2 and b0 = 0.1 mW/cm2. The
alternating voltage V0 has been varied between 3 and 7

Vrms, at a constant frequency f0 = 5 kHz, starting with
the appearance of stationary roll-patterns. For different
V0 values, the dynamical behavior obtained in the system
was recorded with a CCD camera. Figure 2 shows the
spatiotemporal evolution of the observed patterns in one
and two dimensions, respectively. This evolution is char-
acterized by projected spatiotemporal diagrams, which
are constructed, in the 2-D experiments, by picking an ar-
bitrary line—transversal to the rolls direction—in the il-
luminated zone and superposing it as time evolves; in the
1-D experiments this construction is simpler, is enough
to superpose the pattern as the time evolves. The system
exhibits stationary stripe patterns (cf. Fig. 2a). These
patterns are induced by a spatial filtering in the Fourier
plane (cf. FP in Fig. 1). Actually, through a slit, we
can filter spatial modes and break the rotational symme-
try. In this way, we forced the system just to present
roll-patterns in a given direction.

Increasing V0, the pattern begins to oscillate in a com-
plex manner (see Fig. 2b). We observe in the projected
spatiotemporal diagram local waves, oscillations and spa-
tiotemporal dislocations. Similar dynamics has been re-
ported in one-dimensional inhomogeneous spatial sys-
tems [22–24]. In our experiments these inhomogeneities
can be caused by the inherent imperfections and inho-
mogeneities induced by the filter in the Fourier plane.
Hence, this kind of dynamical behavior could be ex-
pected. The complex dynamics exhibited by this pattern
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FIG. 2. Spatial textures in LCLV with optical feedback at dif-
ferent voltage V0. Top panels correspond to spatiotemporal
diagrams of observed dynamics working with one-dimensional
patterns. Middle panels panels stand for projected spa-
tiotemporal diagrams of two-dimensional textures. a) Peri-
odic regime, b) quasi-periodic dynamics, c) chaotic behavior,
and d) a 3-D spatiotemporal diagram of a complex texture at
V0 = 4.3V rms. All values were taken during 100 s and are
normalized.

is constantly repeated over time. Which leads us to infer
that this kind of behavior could be quasi-periodicity.

Further increasing V0, the dynamics shown by the pat-
tern becomes more and more complex (cf. Fig. 2c).
Clearly, in the projected spatiotemporal diagram, we de-
tected an intermittent behavior. That is, the pattern
exhibits aperiodic oscillations invaded by large fluctua-
tions, generating several spatial and temporal disloca-
tions. Likewise, the system exhibits a high spatiotempo-
ral complexity. This kind of disorder is usually associ-
ated to spatiotemporal chaotic textures [25–27]. Figure
2d shows a 3-D spatiotemporal diagram, from this dia-
gram it is clear that an arbitrarily chosen line represents
the dynamics.

A mathematical tool for analyze the spatial modes in-
teraction is the Fourier spectrum. Figure 3 shows the
Fourier spectra of different dynamical regimes. Show-
ing that the dynamics changes between stripe patterns,
quasi-periodicity and spatiotemporal chaotic textures.
The stationary pattern is characterized by a dominant
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FIG. 3. Fourier spectra for three different dynamical regimes.
In gray (blue) the Fourier spectrum of a stationary pattern,
in light-gray (red) a quasi-periodic regime, it can be observed
the emergence of incommensurable frequencies (f ′, f ′′ and
f ′′′). In black, a broadened spectrum that corresponds to a
chaotic texture, presenting an exponential decay of the modes
marked by the dashed line.

wavelength f . The width of this peak is due to tem-
perature fluctuations and dynamics of defects such as
dislocations and boundary grains. The quasi periodic
texture is characterized by the appearance of incommen-
surable wavelengths, {f ′, f ′′′}, with respect to the main
wavelength f ′′ and its harmonics. The spatiotemporal
chaotic texture is characterized by presenting an enlarged
spectrum as a result of the interaction between the main
incommensurable modes [28]. Note that in this regime,
the modes are coupled with exponential decay (see the
dashed line in Fig. 3). Therefore, the system does not
exhibit power spectrum behavior which is the hallmark
of turbulence dynamics [29].
Quantifying the chaos.– A characterization of complex

dynamics like chaos and spatiotemporal chaos can be
done by means of Lyapunov exponents. There are as
many exponents as the dimension of the system under
study. The analytical study of Lyapunov exponents is
a paramount endeavor and in practice inaccessible, then
the pragmatic strategy is a numerical derivation of the
exponents. From experimental data, in the case of low-
dimensional dynamical systems, by means of recognition
of initial conditions one can determine the LLE [30]. This
exponent accounts for the greatest exponential growth
and its defined by

λ0 = lim
t→∞

lim
∆0→0

1

t
ln

[
||u(x, t)− u′(x, t)||
||u(x, to)− u′(x, to)||

]
, (1)

where u(x, t) and u′(x, t) are given fields, ∆o ≡
||u(x, t0) − u′(x, t0)|| and ||f(x, t)||2 ≡

∫
|f(x, t)|2dx is

a norm. ∆(t) ≡ ||u(x, t)− u′(x, t)|| stands for the global
evolution of the difference between the fields.
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FIG. 4. LLE estimation for the LCLV with optical feedback
with V0 = 3.75Vrms. a) Projected spatiotemporal diagram,
line 1 and line 2 correspond to two close initial condition,
b) Intensity profiles of line 1 and 2, c) A 3-D graph that
shows evolution of differences ∆(t, V0) for different applied
voltages V0, it can be noted that not always the trajectories
are exponentially separated, and d) Temporal evolution of
global difference ∆(t), dots stand for experimental data and
the continuous curve is the exponential fitting ∆(t) ≈ aebt +
cedt with a = 0.1163, b = 0.6258, c = 7.598 and d = 0.01465.

When λ0 is positive or negative, the perturbation of a
given trajectory is characterized by an exponential sepa-
ration or approach, respectively. Hence, attractors such
as stationary patterns or uniform equilibrium are char-
acterized by negative λ0. Conversely, complex behaviors
such as chaos and spatiotemporal chaos exhibit positive
λ0. Dynamical behaviors with zero LLEs correspond to
equilibrium with invariant directions, such as periodic or
quasi-periodic solutions and non-chaotic attractors [31].
Therefore, the LLE is an exceptional order parameter
for characterizing transitions from stationary to complex
spatiotemporal dynamics.

Experimentally, to estimate the LLE, it is manda-
tory to have two close initial conditions and observe if
their evolution diverge at large times. The implemented
method needs, as a first step, to find two close fields (see
lines 1 and 2 in Figs. 4a and 4b) along the projected spa-
tiotemporal diagrams and compute their difference ∆0.
The temporal evolution of the difference should be given
by ∆(t) ≈ ∆0e

λ0t for large t (cf Figs. 4c and 4d). Due
to the complexity of evolution of the difference between
fields—clearly the number of positive Lyapunov expo-
nents is huge—we will consider at least two unstable
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FIG. 5. Bifurcation diagram constructed with the estimated
LLE as a function of applied voltage V0 of the LCLV with
optical feedback. The diagram is clearly separated in four
dynamical regimes, stationary patters before V0 = 3.5Vrms,
chaos shadowed in gray (blue), intermittency between chaos
and quasi-periodicity in light-gray (yellow) area and a window
of quasi-periodicity shadowed at the end (orange). The stars
correspond to the calculated LLE while the circles show the
normalized mean intensity present in the LCLV. The insets
correspond to phase space reconstruction in the respective
parameters.

growth directions, that is ∆(t) ≈ aebt + cedt (cf. Fig. 4).

A bifurcation diagram was constructed with the ob-
tained LLEs as can be seen in Fig. 5. The system starts
with stationary stripe patterns at V0 = 3.0 Vrms and
the dynamics remains unchanged until the applied volt-
age reached V0 = 3.5 Vrms. At this voltage, the LLE
goes to zero, meaning that the system exhibits a bifurca-
tion. Experimentally, we observed that the steady pat-
tern changes to an aperiodic regime. The chaotic behav-
ior remains until the mean intensity in the LCLV destroys
the chaotic attractor due to destructive interference at
V0 = 3.9 Vrms (see Fig. 5), causing a crisis. Once the
light is recovered, the system enters in an intermittent
regime between chaos and quasi-periodicity. After this
window the system becomes chaotic until the attractor is
annihilated by destructive interference at V0 = 5.35Vrms.
Once the light is recovered the system remains in a quasi-
periodic regime until the next cycle of destructive inter-
ference arrives. This dynamic regime is characterized by
having an oscillatory pattern which LLE is zero.

Given a temporal signal, the attractor of the system
can be built by taking the signal at different periodic
times (arbitrary periodic separation τ) and constructing
the vector (I(x, t), I(x, t + τ, x), I(x, t + 2τ), · · · ) with x
as a fixed position, phase space reconstruction [32]. Bot-
tom panels of Fig. 5 show three different attractors pro-
jected in three dimensions using this embedding method.
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For low voltage a fixed point can be seen, this behav-
ior is observed when the stationary pattern is displayed
in the LCLV. The Points dispersion accounts for the in-
herent fluctuations of the system. Increasing the ten-
sion V0, the phase space reconstruction exhibits a torus,
which accounts for the quasi-periodic behavior observed
at V0 = 4.65 Vrms. For larger voltage, the phase space
reconstruction exhibits a strange attractor.

Our study provides clear evidence that the LCLV with
optical feedback is spatiotemporally chaotic in a certain
range of parameters. The LLEs are experimentally ac-
cessible and allow us to characterize the transitions from
stationary to complex spatiotemporal dynamics. Using
the LLEs, one can reconcile the theory with experimen-
tal observations. Certainly new concepts in the theory of
dynamical systems must be developed to achieve a bet-
ter experimental characterization of spatiotemporal com-
plex behaviors. Notwithstanding, the LLE and power
spectrum allow distinguishing well-established dynamical
behaviors such as turbulence and spatiotemporal chaos,
which are often merged and confuse.
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