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Thread-like structures are pervasive across scales, from polymeric proteins to root systems to
galaxy filaments, and their characteristics can be readily investigated in the network formalism.
Yet, network links usually represent only parts of filaments, which, when neglected, may lead to
erroneous conclusions from network-based analyses. The existing alternatives to detect filaments
in network representations require tuning of parameters over a large range of values and treat all
filaments equally, thus, precluding automated analysis of diverse filamentous systems. Here, we
propose a fully automated and robust optimisation-based approach to detect filaments of consistent
intensities and angles in a given network. We test and demonstrate the accuracy of our solution with
contrived, biological, and cosmic filamentous structures. In particular, we show that the proposed
approach provides powerful automated means to study properties of individual actin filaments in
their network context. Our solution is made publicly available as an open-source tool, “DeFiNe”,
facilitating decomposition of any given network into individual filaments.
Keywords: polymers, cytoskeleton, networks, path cover, computational complexity

INTRODUCTION

Many network-like structures in nature are com-
posed of filaments forming intricate interconnected ar-
rays across different scales of organisation. For instance,
filamentous structures can be observed in networks of
cellulose polymers in the primary cell wall of plants
and algae [59, 103], cytoskeletal networks of actin fil-
aments or microtubules in cells across all domains of
life [71, 96, 116], networks of neurons [19, 66], root sys-
tems [38, 72, 124], as well as solar prominences [42, 74]
and galaxy clusters [16, 17, 104, 110]. Network-based
studies of these structures have already elucidated im-
portant aspects such as the mechanics of cellulose net-
works [81, 103], transport on cytoskeletal actin networks
[2, 9], and connectivity patterns in the brain [55, 66, 101].
However, the network links usually correspond to seg-
ments of the filaments; therefore, the classical network-
based analysis neglects the identities of individual fila-
ments. A few powerful exceptions have recently started
to emerge [120, 121] which may identify multiple seg-
ments that belong to the same filament; yet, since these
studies do not capture filament overlaps, filaments are
still broken into potentially multiple fragments. Char-
acterisation of the mechanical- [12, 61, 73], transport-
[9, 85], and information-transmission related properties
[13, 32] in such network representations may hence lead
to erroneous conclusions due to their differences within
and between filaments. Thus, analysis of filamentous
structures rests upon accurate identification of individual
filaments.

Since most of the filamentous structures in natural and
man-made systems are studied by using imaging tech-
nologies, filaments are identified either directly from the
imaging data or from networks extracted from these data
(see Tab. 1 for succinct review). In the first class of
approaches, a texture-based method is employed to in-

fer the overall orientation of objects in an image section
[18]. However, this method cannot be employed to pin-
point individual filaments. Another method decomposes
entire images of filamentous structures into linear seg-
ments based on a linear programming formulation [118].
While this method utilises few parameters (e.g., number
of filaments), it only models and extracts a representat-
ive set of linear filaments. Moreover, filaments have been
modelled as linear segments, detected by co-localisation
with a parallel grid at different orientations and by us-
ing manually chosen intensity thresholds along a filament
[54]. While this method is fast and useful for extract-
ing linear filaments (e.g., microtubules), it does not cap-
ture bent or tangled filaments and necessitates manual
parameter selection. Alternatively, tracing- and tracking-
based methods which start from one or multiple image
points and predict neighbouring points on a putative fil-
ament through optimisation of an energy function are
powerful methods for filament identification. Although
these algorithms have led to great insights, especially into
the connectome, they typically require user input and do
not capture overlapping filaments [27, 76, 77, 88]. Using
a similar approach, open contour-based methods employ
deformable curve models that elongate and align accord-
ing to an energy functional to match the target filaments.
Recent advances in open contour-based approaches en-
able fully automated filament detection [120, 121], but
can account for the overlap of only few filaments at the
expense of parameter tuning [97].

The second class of approaches for disentangling fila-
mentous structures employs a two-step procedure: First,
weighted networks are extracted from image data from
different systems and imaging sources. There is a large
variety of algorithms for this task [11, 27, 83, 89] which
vary, in particular, in the number of parameters. Some
of the methods from the first class, presented above,
may also be used to obtain such network representations
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Input Method Features References
curved
filaments

f ilament
-specific

intensity
-based

automated parsi-
monious

image

texture filter − − + + + [18]
linear programming − − + + + [118]
rotating grid − + + + + [54]
filament tracing + + + # # [27, 77, 88]
filament tracking + + + + # [76]
open contours + + + + # [97, 121]

network rule-based decomp. + + − # #/− [65, 89]
filament cover + + + + #/+ current work

Table 1. Overview of different approaches for disentangling filamentous networks. Two main classes of approaches to
analyse the filamentous structure of networks can be distinguished, based on whether they operate on image data or on extracted
networks. Irrespective of the class, the existing approaches vary in their capacity (+) or inability (−) to detect curved filaments,
identify individual filaments, and to include information about the intensity/thickness of filaments. Further, the amount of
manual user input as well as the number of parameters required by the algorithms can be feasible (+), laborious (−), or depends
on the specific variant of the algorithm (#). For the network-based approaches, the number of required parameters may be
different for the extraction of the network from image data and the consequent decomposition of the network into filaments
(separated here by /).

(e.g. [76, 121]). Second, the given, weighted networks are
decomposed into filaments. The two existing methods
for this task [65, 89] define specific junctions for bifurc-
ations and crossings of filaments, depending on the dis-
tances between nodes, and assign filament identities ac-
cording to manually chosen angle thresholds between in-
coming and outgoing edges. In particular, they strongly
restrict the potential overlap of filaments and, due to
the angle constraints, allow only crossing but no touch-
ing filaments. Most importantly, these methods require
manual parameter selection and do not take into account
filament intensity/thickness. We note that the step of de-
composing a given network may also be beneficially ap-
plied to networks obtained, e.g., by open contour-based
approaches in which filaments have been fragmented due
to omission of filament overlaps [120, 121].

Here, we propose a robust approach to decompose a
weighted network into an optimal set of individual fil-
aments. Therefore, our approach addresses the second
step in the second class of approaches, presented above.
The decomposition is based on a computationally dif-
ficult problem, referred to as filament cover problem
(FCP), for which we propose suitable approximation al-
gorithms. We test and demonstrate the accuracy of
the findings from the approximation algorithms on ar-
tificial as well as biological and cosmic filamentous net-
works by comparison to manually obtained filament cov-
ers. In addition, we demonstrate that the proposed, fully
automated solution allows facile characterisation of well-
studied properties of individual filaments, for which al-
ternative approaches require parameter tuning or time-
consuming manual tracing. The proposed approach is
implemented in a publicly available open-source tool,
“DeFiNe” (Decomposing Filamentous Networks), which
can be used to decompose any given weighted network
into a set of individual filaments for further analyses
(http://mathbiol.mpimp-golm.mpg.de/DeFiNe/).

METHODS

In this section we introduce the mathematical for-
mulation of our optimisation-based approach to decom-
pose filamentous networks, demonstrate its computa-
tional intractability, and formulate a suitable approx-
imation scheme. Moreover, we introduce new quality
measures which take into account the underlying net-
work structures for the comparison of the obtained fila-
ment decompositions with manual assignments used as
a gold standard. Finally, we provide a brief overview of
the studied data from different biological and physical
systems. While we believe that these more technical ex-
planations may promote a deeper understanding of our
and related approaches, we encourage readers familiar
with the aforementioned topics to proceed directly to the
Results.

Mathematical formulation of the filament cover
problem

Any filamentous structure may be represented as
weighted geometric graph G = (N , E) with N = |N |
nodes and E = |E| undirected, weighted edges. Edges
represent filament segments and their intensities or thick-
nesses are reflected by their weights we, e := (n0, n1) ∈ E
and n0, n1 ∈ N . Nodes represent endpoints of filament
segments and their positions are denoted by vn, n ∈ N ,
whereby, typically, vn ∈ R2 or vn ∈ R3 for networks ex-
tracted from image data.

We naturally represent a filament by an edge-path, p =
(ep,1, . . . , ep,P ), e ∈ E , i.e., by an ordered sequence of
P = |p| adjacent edges, where ep,i denotes the i-th edge
of filament p. The quality of a given filament p is assessed
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by the pairwise filament roughness

rp,pair =

{
(P − 1)

−1∑P−1
i=1

∣∣wep,i+1
− wep,i

∣∣ , P > 1

wep,1 , P = 1
,(1)

where wep,i denotes the weight of the i-th edge in filament
p. The pairwise filament roughness is small if the edge
weights along a filament vary smoothly, as expected for
natural filaments (but cf. Discussion). For filaments that
consist of one edge only, their roughness is given by their
edge weight to increase the flexibility of our approach
(cf. Supplemental Material S1). Other roughness meas-
ures may be readily introduced that take into account
filament thicknesses or alignments. As an additional ex-
ample, we study the all-to-all filament roughness

rp,all =

{
(P − 1)

−1
max

i,j∈{1,...,P}

∣∣wep,i − wep,j

∣∣ , P > 1

wep,1 , P = 1
, (2)

which is the average maximal difference between any two
edge weights in a filament p, and again the original weight
of the edge is used for a filament of length one. Tak-
ing into account that most filaments are only moderately
bent, we further consider the maximal filament deflection
angle between adjacent edges of a path p,

rp,angle = max
i∈{1,...,P−1}

(3)

angle

(
vep,i+1,1

− vep,i+1,0
, vep,i,1 − vep,i,0

)
where vep,i,0 and vep,i,1 denote the positions of the start
and end nodes of the i-th edge of filament p, respectively.

Moreover, angle
(
v, v

′
)

:= arccos

(
v·v

′

√
v·v
√

v′ ·v′

)
is the

Euclidean angle of two vectors v and v
′
and rp,angle = 0◦

corresponds to perfectly straight alignment.
The optimal decomposition of a network into indi-

vidual, smooth filaments then corresponds to solving our
filament cover problem (FCP; cf. Supplemental Material
S1 for an overview of related cover problems):

Given a graph G = (N , E) and the set P of all
edge-paths in G with roughnesses rp, p ∈ P:
Find a subset Pfil ⊆ P with minimal total (or
average) roughness R such that each element
in E is covered (at least) once.

Here, edges that are covered by more than one path nat-
urally correspond to filament overlaps. Minimising the
average instead of the total roughness yields shorter fil-
aments, as appropriate for some networks (cf. Supple-
mental Material S1).

Computational intractability of the filament cover
problem and approximation algorithm

The FCP is computationally intractable on general
and even planar graphs (cf. Supplemental Material S2

for motivation and proof). Graphs generated from
two-dimensional image data are planar by construction
[11, 83]. The proof is by reduction from the well-studied
Hamiltonian path problem which asks, for a given net-
work, whether there is a sequence of adjacent nodes that
includes each node exactly once, and which is known to
be intractable on planar graphs [41]. Moreover, we out-
line an algorithm for solving the FCP in polynomial time
on trees (cf. Supplemental Material S3).

Since the FCP is computationally intractable on gen-
eral and even planar graphs, we devise an approximation
scheme by formulating the FCP as a fractional integer
linear program (cf. Supplemental Material S4 for motiv-
ation and details). For a given set P ′ ⊆ P of input paths
with pairwise filament roughnesses rp, p ∈ P

′
, we solve:

minimize

∑
p∈P′ rpxp(∑
p∈P′ xp

)A (4)

subject to
∑
p:e∈p

xp ≥ 1 for all e ∈ E

xp ∈ {0, 1} for all p ∈ P
′
,

where we use rp ∈ {rp,pair, rp,all} (Eqs. 1 or 2; referred to
as pair and all). In the first line, A ∈ {0, 1} determines
whether the total or the average roughness is minimised
(total/avg). The inequality in the second line allows over-
lapping filaments and equality holds for an exact cover
(over/exact). For A = 0, Eq. 4 is a binary linear pro-
gram and for A = 1, the fractional problem Eq. 4 may
be rewritten as a binary linear program (cf. Supplemental
Material S4). Binary linear programs may be solved us-
ing well-established and efficient algorithms [70, 94].

To solve the FCP for a given network, we further need
to collect a set of input paths P ′ ⊆ P. Since for a general
graph it is not feasible to collect all paths P (cf. Sup-
plemental Material S2), we propose two approaches (re-
ferred to as RMST and BFS ): (1) We create T = 100
random minimal spanning trees (RMST) of G whose
N (N − 1) /2 non-trivial, undirected paths are added to
our set P ′

. To obtain a RMST, each edge is assigned
a randomly and uniformly distributed weight and the
minimum spanning tree with respect to these weights
is computed. (2) We perform a modified breadth-first
search (BFS) on the nodes, stop the search for a path p
when it violates the straightness criterion rp,angle < 60◦

(cf. Eq. 3), and add all permitted paths to P ′
. We note

that for real-world filamentous graphs, the number of
nodes and their degrees are constrained by the filament
thickness, while the number of considered loops is fur-
ther restricted by the straightness criterion, so that our
heuristically modified BFS yields a representative set P ′

of paths in reasonable time. Moreover, we note that the
60◦-criterion is introduced for computational reasons and
provides a tolerant estimate for maximal bending of the
studied real-world filaments which are typically less bent.
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Quality assessment of filament covers via
structure-aware partition similarity measures

The accuracy of the filaments covers obtained by solv-
ing the FCP is assessed by comparison to manual fila-
ment assignments (cf. Fig. 1b). We quantify the similar-
ity of the two partitions of the set of edges into (po-
tentially overlapping) filaments using the variation of
information,VI, the Jaccard index, JI, and the Rand in-
dex, RI,

VI
(
C, C

′
)

= 1 + (U logU)
−1 · (5)

·
∑
i,j

gi,j

(
log

(
gi,j
g·,j

)
+ log

(
gi,j
gi,·

))
,

RI
(
C, C

′
)

=
h=,= + h6=,6=

h=,= + h=, 6= + h6=,= + h6=,6=
, (6)

JI
(
C, C

′
)

=
h=,=

h=,= + h=, 6= + h6=,=
, (7)

where U =
∑C

i=1 |Ci| =
∑C

′

j=1

∣∣∣C′

j

∣∣∣, gi,j =
∣∣∣Ci ∩ C′

j

∣∣∣,
g·,j =

∑C
i=1 gi,j , and gi,· =

∑C
′

j=1 gi,j [31, 79, 93]. The
contingency tables h×,×′ , ×,×′ ∈ {=, 6=}, provide the
numbers of edge pairs which are in the same or dif-
ferent sets in the two partitions, respectively. While
these classical measures are widely used [63, 79], they
may generally yield opposing results and VI is not well-
defined for overlapping partitions (cf. Supplemental Ma-
terial S6). More severely, these measures do not take
into account the structure of the graph underlying the
partitions. To remedy this shortcoming, we introduce a
suite of measures, the structure-aware Rand and Jaccard
indices (cf. Eqs. 6 and 7),

RId
(
C, C

′
)

=
hd=,= + hd6=,6=

hd=,= + hd=,6= + hd6=,= + hd6=,6=
, (8)

JId
(
C, C

′
)

=
hd=,=

hd=,= + hd=,6= + hd6=,=

. (9)

Here hd×,×′ , ×,×
′ ∈ {=, 6=}, d ∈ N>0, count the num-

ber of edge pairs which are in the same or different
sets in the two partitions and which are separated by at
most d nodes in G (cf. Supplemental Material S6 for de-
tails). Thus, RI1 and JI1 yield structure-aware measures
of partition similarity that consider only the partition
memberships of adjacent edges (local perspective), while
RI∞ ≡ RI and JI∞ ≡ JI do no not take into account the
positions of edges in the graph and reproduce the original
measures (global perspective; cf. Supplemental Material
S6 for an extensive comparison of similarity measures and
intermediates between local and global perspective).

Extraction of weighted networks from image data

We test our method to disentangle filamentous net-
works on various weighted, geometric networks extrac-
ted from image data. The network extraction procedure
is similar to those proposed in [11, 83] (cf. Supplemental
Material S5 for details). We analyse (1) two artificial
networks extracted from drawn filamentous patterns, (2)
two cytoskeletal networks from confocal microscope im-
ages of Arabidopsis thaliana hypocotyl actin cytoskelet-
ons [22], (3) 100 additional cytoskeletal networks from a
movie over 200 s from the same experimental setup, (4)
two neural networks from a fluorescence microscopy im-
age of a branching rat hippocampal neuron in vitro [20]
and a schematic of a cat retinal ganglion cell [75], re-
spectively, and (5) two cosmic networks obtained from
images of simulated galaxy clusters [104] (see Tab. 2 for
an overview).

RESULTS

Decomposing filamentous networks is a hard
optimisation problem

A filamentous network is naturally represented as a
weighted graph, whereby the links (i.e., edges) denote
segments of filaments and the nodes represent the ends
of the segments. The edge weights typically capture
the intensity or thickness of the filament segments. In
this network representation, a filament corresponds to
a path given by an ordered sequence of adjacent edges.
To identify individual filaments, we seek a decomposi-
tion of the set of edges into paths so that each edge is
covered (i.e., belongs to at least one path). Edges be-
longing to more than one path naturally model filament
overlaps. We will refer to such a decomposition as a fil-
ament cover. Since a filament cover is non-unique, we
introduce a quality measure, called roughness, to assess
the quality of each path and the cover itself. Here we
mainly consider the pairwise filament roughness given by
the average absolute value of weight differences between
adjacent edges. This roughness measure quantifies how
strongly the thickness varies along a filament and is typ-
ically small for biological filaments. Disentangling the fil-
amentous network amounts to solving the filament cover
problem (FCP): Find a set of paths of minimum sum of
roughness values that covers the network (cf. Methods
and Supplemental Material S1 for the mathematical for-
mulation). The FCP formulation is quite versatile: For
instance, instead of minimising the total roughness of
the filament cover, we may minimise the average rough-
ness. This optimisation objective favours shorter fila-
ments and may be more appropriate for specific types
of networks. Other roughness measures (e.g., consider-
ing the spatial alignment of edges to penalise filaments
with strong curvature) are readily introduced and can
be considered in a multi-objective optimisation approach
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(cf. Methods and Supplemental Material S1 for different
measures).

While providing a well-defined approach towards dis-
entangling filamentous networks, solving the FCP is com-
putationally prohibitive. Indeed, we show that the FCP
is intractable even on planar graphs (cf. Methods and
Supplemental Material S2) which are used to repres-
ent filamentous structures extracted from 2D image data
[11, 83]. While the FCP is solvable in polynomial time
on trees (cf. Supplemental Material S3), most biological
filamentous structures are not tree-like as they contain
loops [22, 58, 83]. Therefore, we propose suitable approx-
imation schemes to the FCP for the considered networks
(cf. Methods and Supplemental Material S4 for details
and the mathematical formulation). The approximation
schemes rely on collecting a large sample of paths in a
given graph, followed by the computation of the rough-
ness of each path. The paths are collected by perform-
ing a modified breadth-first search (BFS) or by sampling
from random minimum spanning trees (RMST). Next, we
write the FCP as classical set cover problem [56] which
aims at covering the set of edges with a subset of the
collected paths of minimum total or average roughness.
The set cover approximation of FCP can be formulated
and solved as a (fractional) binary linear program for
which well-established algorithms exist [94]. The out-
put of the program is a set of paths which correspond
to the individual filaments of the studied network. Sum-
marising, the FCP may be solved with different options:
The initial set of paths is obtained from a modified BFS
(denoted by BFS ) or sampling of RMSTs (RMST ), the
filaments may overlap (over) or not (exact), a pairwise
(pair) or all-to-all filament roughness measure (all) is
used, and the total (total) or average (avg) roughness is
minimised. Since all these options are categorical, all pos-
sible 24 = 16 combinations may be readily checked and
no data-specific and computationally demanding gauging
of continuous parameters is necessary, as is the case
for related approaches [65, 89]. We provide an open-
source implementation of our approach, termed “DeFiNe”
(Decomposing Filamentous Networks), with a simple
and user-friendly graphical user interface available at
http://mathbiol.mpimp-golm.mpg.de/DeFiNe/. DeFiNe
takes as input a weighted graph in the standard .gml
file format [50] and outputs a .gml graph with filament
identities stored as edge colours as well as a standard,
human-readable .csv-table of various individual filament
measures for custom analyses.

Disentangling artificial filamentous structures

To test the accuracy of our approach, we investigate
an artificial network (Fig. 1a) of pre-specified filament-
ous structure (Fig. 1b; cf. Methods and Supplemental
Material S4 for the extraction of the network; cf. Sup-
plemental Material S9 for an overview of the different
stages of our approach, from an images to a network to fil-

aments). The network contains crossing and overlapping
filaments as well as a loop (Fig. 1b, ⊗, =©, and }, respect-
ively). First, we automatically decompose the weighted
filamentous network by solving the FCP for a set of input
paths from a modified BFS, allowing for overlaps, using
the pairwise roughness measure, and minimising the total
roughness of the cover (Fig. 1c, cf. Eq. 4). The filament
identities and colours are matched by solving an assign-
ment problem (cf. [60, 117]) such that the total number
of edges shared by two filaments, from the manual as-
signment and the automated cover, is maximised. The
agreement between the automated cover and the manual
assignment may be measured by classical partition simil-
arity measures such as the Jaccard index JI which counts
the fraction of edge pairs which are part of same fila-
ment [31, 79]. However, JI does not take into account
the structure of the underlying network. Hence, we in-
troduced a new similarity measure, JI1, that considers
only pairs of adjacent edges in each filament and thus
incorporates the network structure (cf. Methods and and
Supplemental Material S6 for details, a generalisation to
JId that considers only pairs of edges which are separ-
ated by at most d nodes, and a comparison of various
similarity measures). For our artificial network, solving
the above FCP yields a decomposition which agrees ex-
cellently with the manual assignment (JI = JI1 = 1) as
all filaments are correctly detected. Second, we choose
a different set of input paths obtained from sampling
RMSTs for solving th FCP (Fig. 1d). While most fil-
aments are correctly detected, the loop (cf. Fig. 1b) is
over-segmented (⊕) because it is not contained in the
set of input paths in its entirety (due to looplessness of
trees). Third, we solve the exact FCP which does not
allow overlapping filaments (Fig. 1e). Expectedly, the
agreement with the manual assignments is lower because
filaments are over-segmented into disjoint segments and
the supposedly overlapping parts are under-segmented
(	), i.e., the respective edges are assigned to a single fil-
ament instead of multiple filaments. Finally, we employ
the all-to-all roughness measure to assess the quality of
the filaments (Fig. 1f, cf. Eq. 2). Filament crossings,
overlaps, and the loop are again correctly detected but
parts of two filaments are interchanged (cf. ⊕). This
is due to the intensity/thickness of the underlying fila-
ments which is consistently higher for the new detected
filaments which are therefore favoured by the all-to-all
roughness measure. These test cases demonstrate the
versatility and the accuracy of the proposed approach to
decompose a given network into filaments.

In the analysis of many real-world filamentous struc-
tures, the knowledge of the underlying network structure
is incomplete or the image data impede filament detec-
tion due to low signal-to-noise ratios. To investigate the
effect of these obstacles on robust filament detection, we
study two scenarios (Supplemental Material S7): In the
first scenario, we remove a single edge from the network,
recompute the optimal filament cover, and calculate its
agreement with the manual filament assignment as meas-

http://mathbiol.mpimp-golm.mpg.de/DeFiNe/
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Figure 1. Filament covers of artificial network with crossings, overlaps, and a loop. (a) Weighted, artificial network
extracted from the underlying drawing, with colour-coded edge weights representing the local image intensity. (b) Manual
decomposition of the network into filaments with colour-coded indices. The filaments display crossings (⊗), overlaps (=©), and
a loop (}). (c) Filament cover obtained by solving the FCP using the set of input paths generated by a modified breadth-first-
search (BFS), allowing overlapping filaments (over), employing the pairwise roughness measure (pair), and by minimising the
total roughness of the cover (total). The automatically obtained filament cover correctly captures crossings, overlaps, and loops,
and agrees excellently with the manual assignment (similarity of the two filament covers is measured by the global Jaccard index,
JI, and our modified, structure-aware Jaccard index, JI1, which reflect the fraction of pairs of all or only adjacent edges that are
assigned to the same filament, respectively; here JI = JI1 = 1). The filament identities and colours are matched by solving an
assignment problem whereby the total number of edges shared by two filaments, from the manual and automated partitioning,
is maximised; the same assignment procedure is used for the remaining panels. (d) When using paths obtained from sampling
random minimum spanning trees (RMST ) for the FCP, the closed filament loop is not correctly detected and is over-segmented
(⊕). (e) When solving the exact FCP (exact), the loop is correctly detected. However, overlaps are neglected so that no two
filaments share an edge, leading to over- and under-segmentation (	). (f) When minimising the all-to-all filament roughness
(all), two half-filaments are interchanged because the maximum weight difference is smaller along the altered filaments.

ured by the structure-aware Jaccard index JI1. We repeat
the procedure for all E edges and then proceed with the
removal of E randomly chosen doubles of edges, triplets,
up to subsets of 50 edges. As expected, the accuracy of
the filament cover typically decreases with the number of
removed edges, although removal of some specific edges
even leads to an increase in accuracy. However, JI1 de-
creases very moderately by less than 0.001 per removed
edge on average (cf. Supplemental Material S7). In the
second scenario, we assess the robustness of our filament

detection approach against noise by adding centred Gaus-
sian noise of increasing standard deviation to the edge
weights of the original network. For a given standard
deviation, we obtain the optimal filament covers for 100
noisy network instances and compute their similarity, JI1,
to the manual assignment. Again, as expected, the accur-
acy of the filament cover decreases with increasing noise,
but only slightly. On average, increasing the noise by
1% of the original edge weights only decreases JI1 by less
than 0.001. Moreover, we note that with increasing edge
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noise the accuracy of the filament cover approaches a con-
stant, non-zero JI1 which reflects that some information
about the filament structure maybe obtained from the
topology of the network alone, irrespective of the edge
weights (cf. Supplemental Material S7).

Disentangling biological and cosmic filamentous
structures

Since we demonstrated the power of the FCP-based
approach on contrived filamentous structures, we next
proceed with investigating real biological and cosmic fil-
amentous structures (cf. Methods and Supplemental Ma-
terial S5 for the extraction of the networks; cf. Supple-
mental Material S9 for an overview of the different stages
of our approach). As a first illustrative example of a bio-
logical filamentous structure, we extract a weighted net-
work from an image of a hippocampal neuron (Fig. 2a)
and manually obtain a filament assignment with several
crossings and loops (Fig. 2b, ⊗ and }, respectively).
Solving the FCP (same options as in Fig. 1e) yields
an automated decomposition which captures well the
manual assignment, in particular the two loops (Fig. 2c,
JI1 = 0.937). This is further supported by the distribu-
tions of filament lengths (measured by the numbers of
edges) as well as the distributions of maximal filament
angles (measured between adjacent edges), which are
statistically indistinguishable between the manual assign-
ment and the automated decomposition (Fig. 2d, black
and red; Kolmogorov-Smirnov test p-value pKS ≥ 0.05).
A detailed analysis of the similarity of manual and auto-
mated decompositions shows that the classical Rand in-
dex RI [52] overestimates the similarity, while the vari-
ation of information VI [78] and the Jaccard index JI
severely underestimate the similarity between the manual
and automated decomposition when compared to the val-
ues of the here-proposed RI1 and JI1(Fig. 2e, dotted blue,
green, and yellow). The latter measures take into consid-
eration the network structure when comparing two net-
work decompositions (Fig. 2e, solid blue and yellow). We
would like to emphasise that the disparities in the estima-
tions of RI and JI result from the consideration of distant,
non-adjacent edges which are excluded in RI1 and JI1. In
addition, we observe that RId and JId show a non-trivial
dependence on the distance, d, between the considered
edges, and coincide with the classical similarity measure
for large enough distances, i.e., RI∞ ≡ RI and JI∞ ≡ JI
(cf. Supplemental Material S6 for a detailed discussion).

Finally, different flavours of the FCP may be solved ,
as mentioned above, to obtain decompositions of vary-
ing similarity in comparison to the manual assignment
(Fig. 2f). Solving the FCP with paths from the modi-
fied BFS, instead of RMSTs, yields consistently higher
RI1- and JI1-values for the agreement with the manual
assignment. This is due to the higher flexibility with
respect to the treatment of loops. For the studied net-
works, a decomposition based on the minimisation of the

total roughness yields higher RI1- and JI1-values in com-
parison to the minimisation of the average roughness. In
addition, in terms of RI1 and JI1, covers allowing for over-
laps yield better agreement with the manual assignment,
in comparison to those in which each edge is covered by
a single path. However, these expected trends are absent
or even reversed for the classical similarity measures VI,
RI, and JI (cf. Supplemental Material S6), which further
justifies the usage of the here-proposed RI1 and JI1 for
comparing decompositions of networks arising in other
network-based analyses (cf. e.g. [82]).

As a second biological example, we investigate the fila-
mentous structure of a plant actin cytoskeleton (Fig. 3a).
We create seven manual assignments (one of which is
shown in Fig. 3b) for a quantitative comparison with the
automated decomposition (Fig. 3c, JI1 = 0.655; same op-
tions of the FCP as in Fig. 1e). The agreement of the
automated decomposition with the manual assignment is
good, despite several over- or under-segmented filaments
(Fig. 3c, cf. ⊕ and 	). For a comprehensive assessment
of this agreement, we compute the pairwise similarities
between the automated and all seven manual filament
decompositions (Fig. 3d, upper panel). By comparing
the similarities between automated and manual decom-
positions to the similarities among the different manual
decompositions, we find reassuringly that our automated
solution is as good as any manual decomposition (Fig. 3d,
lower panel, red and black, respectively; cf. independ-
ent two-sample Student’s t-test p-value pt ≥ 0.05). The
agreement between the automated decomposition and
the reference manual assignment (cf. Fig. 3b) is further
confirmed by statistical tests which demonstrate that the
two distributions of filament lengths from manual assign-
ment and automated decomposition do not statistically
differ (Fig. 3e, upper panel, black and red histograms;
cf. pKS ≥ 0.05). In addition, our results indicate that
the filament lengths may be described by a gamma dis-
tribution (Fig. 3e, upper panel, dashed lines; maximal
likelihood fits of normal, Weibull, and Rayleigh distri-
butions yield higher values for the Akaike information
criterion [1]), in agreement with theoretical and exper-
imental studies [24, 33]. Moreover, the distributions
of average pairwise filament roughnesses do not differ
between manual assignment and automated decompos-
ition (Fig. 3e, lower panel; cf. pKS ≥ 0.05). We note
that the sum of filament roughnesses, R, is larger for the
manual assignment of filaments than in the automated
decomposition, as expected, as R is the objective func-
tion of the minimisation in the FCP-based formulation.

By investigating the relationship between filament
length and pairwise roughness, we can distinguish three
regions (Fig. 3f): Long filaments typically correspond to
actin bundles and exhibit small roughnesses (Fig. 3f1),
the majority of filaments is shorter with comparable
roughnesses (Fig. 3f2), and some typically short filaments
consist of only one edge with roughness given by the edge
weight itself (Fig. 3f3; cf. Eq. 1). The angular distri-
bution of filaments indicates that the majority of fila-
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Figure 2. Filament covers and analyses of neuronal network. The weighted hippocampal neuronal network is automat-
ically decomposed into filaments by solving the exact FCP (exact) for paths from a modified breadth-first search (BFS) and
by minimising the total (total) pairwise filament roughness (pair). (a) Overlay of fluorescence microscopy image of hippocam-
pal neurons and extracted network with colour-coded edge weights. (b) Manual decomposition of the neuronal network into
filaments with colour-coded indices and crossings (⊗) and loops (}). (c) Automated partitioning of the network obtained by
solving the FCP displays good agreement with the manually obtained partitioning (JI1 close to 1, see panel (e) for details)
with marked illustrative sites of over- (⊕) and under-segmentation (	). (d) Distributions of numbers of edges per filament
(upper panel) as well as distributions of maximum filament angles (lower panel) are similar for manual (black) and automated
decomposition (red; Kolmogorov-Smirnov test pKS ≥ 0.05). (e) Different measures of similarity of manual and automated de-
compositions. The variation of information VI (dashed green) indicates moderate similarity but is not well-defined for general,
overlapping decompositions. While the classical Jaccard index JI (dashed yellow) is of small value, the proposed structure-aware
extension JId increases with decreasing d, i.e., when only edges are considered that are separated by at most d nodes (solid
yellow). Moreover, while the classical Rand index RI (dashed blue) is of large value, the proposed structure-aware extension RId

displays a non-monotonic dependence on d (solid blue). (f) Heat map of partition similarities for different similarity measures
and options of the FCP, cf. Fig. 1 for a demonstration of the different options. The FCP options which yield the partition
shown in (c) are marked by a black rectangle.

ments is aligned parallel to the cell axis (Fig. 3f, dashed
grey line) which has been suggested to support longit-
udinal cell growth [92, 115]. While these reports of lon-
gitudinal alignment of the actin cytoskeleton were based
on manual or qualitative measurements, our approach
facilitates fully automated quantification of the align-
ment of individual filaments. Our findings show that the
length of a filament correlates with its average weight
(Fig. 3g; Pearson correlation coefficient cP > 0 and p-
value pP < 0.05), i.e., thicker actin bundles stretch across
the cell while individual thinner actin filaments are more
locally confined, as expected [2, 102].

Finally, we study filament convolutedness, given by
the ratio of the length of a filament and the largest
side of a bounding box enclosing the filament, used as

a measure for the curvedness of a filament [102]. We find
that the convolutedness is slightly negatively correlated
with the filament length (Fig. 3i, red; cP,conv < 0 and
pP,conv ≥ 0.05), in agreement with previous findings in
Arabidopsis thaliana pollen grain [102] and other plant
species [49]. In contrast to the automated approach used
here, the existing studies of filament convolutedness re-
quired manual segmentation which may be biased by the
user. Generally, and more severely, using a bounding
rectangle to compute the convolutedness of a filament is
biased by the orientation of the filament with respect to
the x- and y-axis of the image. Therefore, we use the
maximal filament angle as a non-biased measure for the
maximal, local curvedness of a filament. By investigat-
ing the relation between the maximal filament angle and
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Figure 3. Filament covers and analyses of cytoskeletal network. The weighted cytoskeletal network is decomposed
automatically by solving the exact FCP (exact) for paths from a modified breadth-first search (BFS) and by minimising the
total (total) pairwise filament roughness (pair). (a) Overlay of confocal microscopy image of an actin cytoskeleton and extracted
network with colour-coded edge weights. (b) Manual decomposition of the actin cytoskeleton into filaments with colour-coded
indices. (c) The automated decomposition according to the FCP correctly assigns many of the filaments (JI1 = 0.655). Some
occurrences of over- (⊕) and under-segmentation (	) are marked. (d) Heat map of similarity between automated (cf. (c))
and seven manual decompositions (cf. e.g. (b); upper panel). The similarities between automated and manual decompositions
(red, denoted by a-m) do not differ from similarities among the different manual decompositions (black, m-m; lower panel;
cf. independent two-sample Student’s t-test p-value pt ≥ 0.05). (e) Distribution of filament lengths for the manual (black) and
automated solution (red) are similar (upper panel; cf. Kolmogorov-Smirnov test p-value pKS ≥ 0.05). Maximum likelihood fits
of gamma functions are shown as dashed lines. The distributions of pairwise filament roughnesses are similar (lower panel;
cf. pKS ≥ 0.05), while the total roughness is smaller (cf. summed R-values) for the automated decomposition since it is minimised
by the FCP. (f) Scatter plot of pairwise filament roughness versus filament length displays three regions, with representative
examples f1−f3 (solid dots): (f1) For long filaments (≥ 15µm), the roughness is moderate (< 0.2), as expected for actin bundles;
(f2) The majority of filaments is short (< 15µm) and of moderate roughness; (f3) Some typically short filaments show a high
roughness (≥ 0.2), namely those which are composed of one network edge only so that their roughness is given by the edge
weight itself (cf. Eq. 1). (g) The distribution of median filament angles shows that the majority of filaments is aligned parallel
to the cell axis (grey dashed line). (h) The filament length correlates with the filament weight (cf. linear regression and Pearson
correlation coefficient cP > 0 and p-value pP < 0.05) (i) Scatter plot of filament convolutedness versus filament length shows
a negative but non-significant correlation (cf. red squares, cP,conv < 0, and pP,conv ≥ 0.05) with an average convolutedness of
E [C] = 1.16 ± 0.13. The maximum filament angle correlates negatively and significantly with the filament length (cf. grey
circles, cP,angle < 0, and pP,angle < 0.05), indicating that longer (and thicker, cf. (g)) filaments are less curved.
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filament length, we find a significant negative correlation
(Fig. 3i, grey; cP,angle < 0 and pP,angle < 0.05). This neg-
ative correlation reflects the known increase in stiffness
of actin bundles with increasing bundledness and length
[25, 39]. Thus, our approach provides a fast means to
investigate this property for individual filaments in a cel-
lular context without laborious manual filament identi-
fication.

To further extend these findings, we extract the cyto-
skeletal networks from 100 frames of a movie of a plant
actin cytoskeleton (cf. Methods). For each frame, we
compute the optimal filament covers and analyse the fil-
aments. The additional data support our reported find-
ings (Supplemental Material S8).

Moreover, we repeat our analyses of the robustness of
our approach against incomplete knowledge of the un-
derlying network structure or noisy edge weights for the
cytoskeletal network (cf. discussion of Fig. 1; Supple-
mental Material S7). In our first scenario, the removal
of increasing numbers of edges typically moderately de-
creases the accuracy of the obtained filament covers, i.e.,
their agreement with the manual assignment as measured
by JI1. While the removal of some critical edges leads to a
more severe decrease in accuracy, there exist edges whose
removal leads to an increase in accuracy. On average, the
removal of one additional edge decreases JI1 by around
0.002. Consequently, a loss of 10% of the cytoskeletal
network’s E = 179 edges still yields JI1 ≈ 0.6 which is
comparable to similarity values between different manual
assignments (cf. Fig. 3d; cf. Supplemental Material S7).
In our second scenario, the adding of Gaussian noise of
increasing standard deviation to the edge weights simil-
arly, as expected, decreases the accuracy of the obtained
filament covers. However, this effect is moderate, i.e,
increasing the standard deviation by 1% of the original
edge weight decreases JI1 by less than 0.001. Adding
noise with a standard deviation of 20% of the original
edges weights still yields JI1 ≈ 0.6. As for the robustness
analyses of the contrived network, for strong noise, JI1

tends to a constant, non-zero value which suggests that
some information about the filament structure may be
obtained solely from the network topology, irrespective
of the edge weights (cf. discussion of Fig. 1; cf. Supple-
mental Material S7).

As a final example, we decompose the network of a sim-
ulated galaxy cluster (Fig. 4a) into individual galaxy fil-
aments (Fig. 4b). The quantification of galaxy filaments
may help to elucidate the acceleration of the universe [99]
and improve our understanding of large-scale structure
formation [98]. Moreover, studies have revealed grav-
itational motion of galaxies along individual filaments
[6, 35]. Yet, previous studies focused on connected com-
ponents of the cosmic web, and sought robust methods
to identify individual filaments [98, 104]. Our approach
confirms the expected discrepancy between the lengths
of the components (i.e., the sum of their edge lengths;
Fig. 4c, upper panel, grey) and the length of individual
filaments (Fig. 4c, upper panel, red; cf. average L-values).

Moreover, the decomposition of the cosmic structures
enables analyses of individual filament shapes. For ex-
ample, the convolutedness which measures the curved-
ness of a filament shows small values (Fig. 4, lower panel),
which are interestingly comparable to those found in the
actin cytoskeleton (cf. Fig. 3i; cf. average C-values), in-
dicating the prevalence of straight galaxy filaments.

In Tab. 2, we summarise the quality of the investigated
decompositions of different filamentous networks and the
options of the underlying FCP (cf. Supplemental Ma-
terial S8 and S9 for analyses of additional filamentous
networks that are not shown in the main text).

DISCUSSION

The decomposition of complex networks into mean-
ingful substructures has facilitated network-based ana-
lyses of systems found in nature or designed by humans
[80, 95, 100]. These natural and technical networks of-
ten embed filaments as basic building units. To enable
deeper understanding of network systems with filament-
ous structure, it is therefore paramount to develop meth-
ods for accurate and feasible identification of the under-
lying filaments. In particular, the distinction between
intra- and inter-filament connections enables a more de-
tailed analysis of filamentous structures, including length
statistics, spatial alignment, and bending of individual
filaments. Such statistics may offer new insights, e.g.,
into the role of single actin or galaxy filaments in their cel-
lular or cosmic network context, respectively (cf. Figs. 3e-
i and 4c).

Here, we proposed a robust optimisation approach to
decompose any given weighted network into a set of
smooth filaments comprising a filament cover. Since we
demonstrated that the filament cover problem is intract-
able on general networks, we proposed, tested, and val-
idated several alternative approximation schemes. The
proposed approximation schemes are gauged at applica-
tions from different scientific fields in which filamentous
structures naturally arise. We applied our optimisation-
based approach on contrived test cases as well as bio-
logical and cosmic networks, and showed that it reli-
ably identifies crossing, (non-) overlapping, and looped
filaments in agreement with expert-based manual assign-
ments.

Our approach offers a number of advantages over the
existing alternatives: (1) The proposed optimisation ap-
proach can be applied to any weighted network. In par-
ticular, the approach can be readily applied to any net-
work generated from two- or three-dimensional experi-
mental image data typically gathered in biological studies
and analyses of man-made systems (e.g. [75, 87, 91, 107]),
irrespective of the image source (e.g., light microscopy-
or MRI-based). Thus, it may be used to study a variety
of natural and technical filamentous structures in search
for universal properties which go beyond the character-
isation of geometric networks [10].
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Figure 4. Filament covers and analyses of cosmic web. Image data from: Stoica et al., A&A, 434, 423-432, 2005,
reproduced with permission c© ESO [104]. The cosmic web is decomposed automatically by solving the exact FCP (exact)
for paths from a modified breadth-first search (BFS) and by minimising the total (total) pairwise filament roughness (pair).
Distances are given in h−1Mpc, where currently h ≈ 0.7 is the dimensionless Hubble parameter [29]. (a) Overlay of simulated
galaxy clusters and extracted network with colour-coded edge weights. (b) Automated decomposition of the cosmic web into
galaxy filaments with colour-coded indices. (c) The length distribution of galaxy filaments exhibits a peak around 20 h−1Mpc
and levels off for larger lengths (upper panel, red). As a comparison, the distribution of the total lengths of the connected
components levels off more slowly and overestimates the average filament length by a factor of 1.45 (upper panel, grey; cf. average
L-values). The distribution of the convolutedness of galaxy filaments suggests a prevalence of straight filaments and its average
is comparable to that of the actin network (cf. 3i; cf. E [C] = 1.20± 0.13).

Figure Options Similarity
VI RI (≡ RI∞) JI (≡ JI∞) RI1 JI1

artificial overlaps + loop 1 BFS over pair tot 0.792 1.000 1.000 1.000 1.000
grid-like S5b BFS exact pair tot 0.889 0.962 0.742 0.941 0.872

neural hippocampus 2 BFS exact pair tot 0.848 0.906 0.427 0.954 0.937
retina S5d BFS exact pair tot 0.792 0.963 0.397 0.905 0.883

cytoskeletal actin (FABD-labelled) 3 BFS exact pair tot 0.829 0.976 0.366 0.854 0.655
actin (Lifeact-labelled) S5f BFS exact pair tot 0.530 0.929 0.193 0.838 0.701

cosmic galaxy cluster (sparse) 4 BFS exact pair tot no manual assignment
galaxy cluster (dense) S5h BFS exact pair tot for comparison

Table 2. Quality of filament covers of artificial, biological, and cosmic networks in comparison to manual
decompositions. A given network is decomposed into filaments by solving the FCP with different options: The initial set of
paths is obtained from a modified breadth-first search (BFS) or sampling of random minimum spanning trees (RMST ), the
filaments may overlap (over) or not (exact), a pairwise (pair) or all-to-all filament roughness measure (all) is used, and the
total (total) or average (avg) roughness is minimised. The table displays the investigated filament covers with high similarity
to the manual assignments.

(2) Our approach facilitates the establishment of a link
between the dynamics of individual filaments and the dy-
namics of the whole network. While the dynamics of in-
dividual filaments is guided by typically molecular, local
processes, the behaviour of the entire filamentous struc-
ture incorporates and responds to stimuli across different
scales. Therefore, the proposed approach provides the
starting point towards network-oriented analysis of fila-
ments. More specifically, the filament covers may even
be used to track mobile filaments, as has been proposed
for images of a few filaments using open contours [97],
providing a venue for fruitful applications of the method.

(3) The different options of our approach, e.g., differ-
ent measures of the filament roughness, enable flexible

and intuitive customisation for different types of net-
works. For example, the filament roughness measure
may include a penalty for filament bending in networks of
straight, stiff filaments (such as microtubules [43, 111]),
or a penalty for length deviations in networks of filaments
of mostly uniform length (such as synthetic polymers that
are used, e.g., in drug delivery systems [3, 48]).

(4) At the same time, our approach to disentangle a
given network is parsimonious, i.e., it has a strictly lim-
ited number of categorical options which allow testing of
all possible combinations (42 = 16 in total). In contrast,
approaches which rely on multiple continuous paramet-
ers require data-specific and computationally expensive
gauging of the parameters [65, 89]. When compared to
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approaches which detect filaments directly from image
data, however, the parsimony of our approach is counter-
balanced by the parameter requirements of the preceding
network extraction procedure.

(5) Nevertheless, approaches that detect filaments dir-
ectly from image data typically rely on local optimisa-
tion schemes and thus, e.g., on the order of filament
initialisations and definitions of local filament proper-
ties [76, 77, 88, 121]. In contrast, our approach offer
the advantage that the decomposition into filaments is
performed in a single optimisation step which holistic-
ally considers the global structure of both filaments and
network.

(6) Finally, since our approach replies on a general net-
work representation, it may be applied also to networks
obtained from other, e.g., open contour-based methods
which often do not capture filament overlaps and result
in fragmented filaments [120, 121]. In a post-processing
step, these fragments may be conveniently merged using
our network-based approach (cf. Supplemental Material
10).

Yet, some caution is warranted: (1) The available op-
tions of the FCP yield different decompositions. We
showed that paths sampled from a modified BFS enable
more flexible and more accurate decompositions in com-
parison to paths sampled from RMSTs (cf. Fig. 1); in
contrast to minimising the the average roughness, the
minimisation of the total roughness favours longer fila-
ments in better accordance with the manual assignments
(cf. Fig. 1); moreover, since filament overlaps in biolo-
gical systems may lead to an abrupt increase in apparent
filament thickness, the proposed all-to-all filament rough-
ness may be more suitable to study such situations than
the pairwise filament roughness which favours filaments
of slowly varying thickness. Therefore, the suitable choice
of feasible and suitable options has to be further invest-
igated. For example, for the actin cytoskeletal networks,
it is not obvious if overlapping filaments should be pre-
ferred over non-overlapping filaments and if the pairwise
roughness is a better measure of filament quality than the
all-to-all roughness. Yet, such decision problems are in-
nate not only to all automated decomposition algorithms,
but also to the manual assignment based on which the
performance is assessed. Thus, exploring different de-
composition options by an expert in the field may hint
at the right choice.

(2) The quality of the filament cover clearly depends
on the quality of the input network. To this end, sev-
eral algorithms have been proposed for the extraction
of various types of networks from image data with low
error rates [11, 27, 77, 83, 89, 121]. Moreover, we invest-
igated different scenarios to test the robustness of our

approach against incomplete knowledge of the underly-
ing network structure as well as low signal-to-noise ratios
and found that the accuracy of the filament cover is only
moderately affected by these obstacles (cf. Supplemental
Material S7).

(3) Another issue are the computational require-
ments of the FCP. Although our proposed approxima-
tion scheme employs a modified BFS and a binary linear
program which run fast on the tested networks, it may
become infeasible for larger networks comprising more
edges or nodes of larger degrees. Therefore, future efforts
may focus on devising algorithms which approximate the
FCP by employing local searches, i.e., without sampling
a large number of paths for the proposed set cover-based
approximation scheme.

(4) Finally, we note that many polymers are not simple
linear chains but branched tree-like structures [53, 108].
Also many neurons may be naturally described as tree-
like structures [5, 114]. Our approach can be extended
to account for these cases, thus, opening a new field of
research. To this end, covering networks with more com-
plex structures, such as stars [28, 67, 106] or, more gen-
erally, trees [34, 51] may be employed. Due to intract-
ability of these problems, investigation of approximation
schemes like our set cover formulation will be needed. A
central question will be the development of measures for
the quality of a given star or tree cover.

In conclusion, by decomposing technically and bio-
logically relevant filamentous structures into their con-
stitutive filaments, our approach allows to see both the
wood and the trees.
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SUPPLEMENTAL MATERIAL S1: MATHEMATICAL FORMULATION OF THE FILAMENT COVER
PROBLEM

The structure of a filamentous network is described by a weighted geometric graph G = (N , E) with N = |N | nodes
and E = |E| undirected, weighted edges. Edges represent filament segments and nodes represent their endpoints. The
positions of the nodes are vn, n ∈ N , whereby, typically, vn ∈ R2 or vn ∈ R3 for networks extracted from image data.
We focus on geometric networks because filaments are embedded in space, but our approach is readily applicable to
non-geometric graphs. The edge weights are we, e := (n0, n1) ∈ E and n0, n1 ∈ N .

To decompose the graph G into individual filaments it is natural to decompose it into paths, i.e., to solve a path
cover problem (PCP). The PCP has been intensively studied on different types of graphs and with various restrictions
(e.g. [4, 21, 68, 69, 86, 90]). There are several potential routes (cf. [4] for an overview of the PCP for testing printed
circuits): (1) We may either use node- or edge-paths, where a path p = (ap,1, . . . , ap,P ) is an ordered sequence of
P = |p| pairwise adjacent nodes (a ∈ N ) or edges (a ∈ E), respectively, and ap,i denotes the i-th node or edge of
filament p. (2) The paths may be either node-disjoint, edge-disjoint, or unrestricted. (3) The objective of the PCP
may be either to obtain a cover of minimum cardinality or minimum weight.

For our purpose, the decomposition of a filamentous network into individual smooth filaments, it seems reasonable
to look for an edge-path cover where each edge is covered by (at least) one path and the total (or average) roughness is
minimised. Edges that are covered by more than one path naturally correspond to filament overlaps. The minimisation
of the average instead of the total roughness favours shorter paths which may be appropriate for some networks.

To define our filament cover problem (FCP) more rigorously, we introduce the roughness rp of path p and the set
P of all paths in G:
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Given a set E of edges and a set P of paths with roughnesses rp, p ∈ P:
Find a subset Pfil ⊆ P with minimal total (or average) roughness R such that each element in E is covered
(at least) once.

The roughness measure rp of a path p can be chosen arbitrarily and may involve, e.g., the edge weights or the edge
alignments. An intuitive choice is the pairwise filament roughness of p (cf. Eq. 1),

rp,pair =

{
(P − 1)

−1∑P−1
i=1

∣∣wep,i+1
− wep,i

∣∣ , P > 1

wep,1 , P = 1
, (S1)

where wep,i denotes the weight of the i-th edge in filament p. The pairwise filament roughness is the average absolute
value of the difference between weights of adjacent edges. It reflects the consistency of the edge weights along a
filament which is typically smaller within than across filaments (but cf. Discussion). Moreover, if the path consists of
a single edge we take its weight as a roughness measure. This choice increases the flexibility of the obtainable filament
covers and is necessary to avoid a cover by only individual edges which contribute zero weight when weighted only
according the first line in Eq. S1. Another measures for the quality of a filament is the all-to-all filament roughness
(cf. Eq. 2)

rp,all =

{
(P − 1)

−1
max

i,j∈{1,...,P}

∣∣wep,i − wep,j

∣∣ , P > 1

wep,1 , P = 1
, (S2)

which is the average maximal difference between any edge weights in a path p, and again the original weight of the
edge is used for a path of length one. Taking into account that most filaments are only moderately bent, we may
further wish to minimise the maximal filament deflection angle between adjacent edges of a path p (cf. Eq. 3),

rp,angle = max
i∈{1,...,P−1}

(S3)

angle

(
vep,i+1,1 − vep,i+1,0 , vep,i,1 − vep,i,0

)
where vep,i,0 and vep,i,1 denote the positions of the start and end nodes of the i-th edge of filament p, respectively.

Moreover, angle
(
v, v

′
)

:= arccos

(
v·v

′

√
v·v
√

v′ ·v′

)
is the Euclidean angle of two vectors v and v

′
and rp,angle = 0◦

corresponds to perfectly straight alignment.

SUPPLEMENTAL MATERIAL S2: COMPUTATIONAL INTRACTABILITY OF THE FILAMENT
COVER PROBLEM

The FCP is difficult to solve. This is intuitively clear as the number of paths (let alone the number of path covers)
increases rapidly with the number of nodes N . Even in planar graphs, the number of closed paths visiting each node
once was shown to increase at least exponentially with N [15, 23]. We show now that the FCP is NP-hard, even for
planar, cubic graphs. Planar graphs can be drawn on a plane without crossing edges. They are of particular relevance
since graphs that are generated from two-dimensional image data are planar by construction [11, 83]. Cubic graphs
have only nodes of degree three. A proof of NP-hardness of a problem for planar, cubic graphs directly implies its
NP-hardness on general graphs. The basic idea of a typical proof of computational complexity is as follows [40]: A
problem of known complexity is selected. By providing a constructive transformation or reduction, a bijection between
the known problem and the problem in question is established, i.e., any yes-instance of the decision-version of the
known problem is mapped to a yes-instance of the decision-version of the problem of interest and analogously for
the no-instances. This reduction proves that the two problems fall into the same class of computational complexity.
Our proof is by reduction from the Hamiltonian path problem (HPP) on planar, cubic graphs which is known to be
NP-complete [41]. The HPP asks, for a given graph, whether there is a node-path which visits each node exactly
once.

First, we note that finding a filament cover on an edge-weighted graph G is equivalent to finding a node-path cover
on its node-weighted line graph L (G) (Fig. S1A and B). The line graph L (G) of a graph G has a node of weight we

for each edge e in G and edges connecting two nodes if the corresponding edges share a node in G.
Second, for a given line graph L (G), we construct a graph such that finding a node-path cover of weight 1 or less is

equivalent to solving the HPP. To that end, we add one edge with a terminal node to the line graph and set all original
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Figure S1. Proof of NP-hardness of the filament cover problem. (a) Optimal filament cover of an exemplary (edge-
weighted) graph. Table with cover roughnesses R for minimisation of total or average roughness and pairwise or all-to-all
filament roughness measure, respectively. (b) Corresponding (node-weighted) line graph with equivalent path cover and the
same roughness results as for the (edge-weighted) graph in (a). (c) Extension of an arbitrary graph with node weights 1 by a
node of weight E. Here, finding a (node-weighted) path cover of roughness R = (0 + 0 + · · ·+ (E − 1)) / (E − 1) = 1 or less is
equivalent to finding a Hamiltonian path. This equivalence holds for covers minimising the total or average roughness of the
cover and using the pairwise or all-to-all filament roughness measure (Eqs. S1 and S2), see table.

node-weights to 1 and the new node-weight to E (Fig. S1C). Then, only a Hamiltonian path ensures a minimal weight
of R = C−A

∑C
i=1 rpi = 1

1
(0+···+(E−1))

(E−1) = 1, for both pairwise and all-to-all filament roughness rp = {rp,pair, rp,all}
(cf. Eqs. S1 and S2) and both minimisation of total and average filament roughness, i.e., A ∈ {0, 1}.

Finally, we show that finding a Hamiltonian path on a line graph of a planar, cubic graph is NP-complete. It was
shown that the HPP is NP-complete on general line graphs via a reduction from the HPP in cubic graphs [14]. This
reduction remains valid when planar, cubic graphs are used instead of cubic graphs, for which NP-completeness of
HPP is known [41]. Therefore, the decision version of the FCP is NP-complete and the FCP is NP-hard, as claimed.
Since the FCP is NP-hard on planar, cubic graphs, it is (at least) NP-hard on general graphs.

SUPPLEMENTAL MATERIAL S3: THE FILAMENT COVER PROBLEM ON TREES IS SOLVABLE IN
POLYNOMIAL TIME

While we showed that the FCP is NP-hard on general and even planar, cubic graphs, it is solvable in polynomial
time on trees. The polynomial algorithm outlined here is similar to those proposed to find an unrestricted node-path
cover where each vertex may be included in multiple paths of minimum cardinality or minimum weight [68].

The basic idea is to assume that a certain path covering a certain edge is in the cover (in a tree, there are at most
N (N − 1) /2 = O

(
N2
)
paths to choose from). Upon removal, the tree is split into potentially multiple forests (at

most O (N)), each tree of which is decomposed in the same way. The procedure is repeated for each edge (clearly
O (N) in a tree). Thus, this results in a dynamic programming algorithm which has an overall polynomial time
complexity of O

(
N4
)
.

The above procedure assumes non-overlapping paths and may be extended to limitedly overlapping paths. For the
completely unrestricted case, there would be O

(
2#paths

)
= O

(
2N

2
)
combinations for covering a given edge to chose

from in the first step, and the time complexity of the algorithm would be exponential. However, the problem remains
polynomial if we allow only k-fold overlaps, k = O (1), i.e., each edge may be covered by at most k paths. In the first

step of the above algorithm, a given edge may then be covered by at most O
((

N (N − 1) /2
k

))
= O

(
N2k

)
edges

and consequently the time complexity of the full algorithm is O
(
N2k+2

)
.
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SUPPLEMENTAL MATERIAL S4: APPROXIMATION ALGORITHM FOR THE FILAMENT COVER
PROBLEM

Since the FCP is NP-hard even on planar, cubic graphs, we need suitable approximation algorithms. In particular,
the approximation algorithms should allow overlapping filaments as well as looped filaments. A natural choice seems
to be the formulation of the FCP as a set cover problem (SCP) [56]:

Given an object set U , called universe, and a set S of sets with costs cs, s ∈ S:

Find a subset Sset ⊆ S with minimal total (or average) cost such that each element in U is covered (at
least) once.

In our case, the universe corresponds to the set of edges of the given graph (U=̂E), a set corresponds to a path (s=̂p),
the cost of a set corresponds to the roughness of a path (cs=̂rp), and the set cover corresponds to the desired filament
cover (Sset=̂Pfil). We note, that this formulation of the SCP allows overlapping sets, s ∩ s′ 6= ∅, s, s′ ∈ S, which
directly translates into overlapping filaments in our FCP. By requiring that each element in U is contained in Sset

exactly once, we may exclude filament overlaps.

An open task is then the generation of a suitable set of paths (S=̂P). Since for a general graph it is not feasible
to find all paths P (cf. the motivation of the NP-hardness proof of the FCP above), we need to find a representative
subset ,P ′

, of paths. We propose two approaches: (1) We sample paths from T = 100 random minimal spanning trees
(RMST) of G. To obtain a RMST, each edge is assigned a uniformly distributed random weight and the minimum
spanning tree with respect to these weights is computed. Each tree has N (N − 1) /2 non-trivial, undirected paths
that we add to our set P ′

. However, the paths in a tree cannot contain loops. (2) We perform a modified breadth-first
search (BFS) on the nodes, store the generated paths, and stop the search for a path p when it violates a straightness
criterion, e.g., rp,angle < 60◦ (cf. Eq. S3) which is used throughout the paper. We add all permitted paths to P ′

. We
note that for all real-world filamentous graphs, due to filament thickness, there are spatial constraints on the number
of nodes of a graph as well as on the node degrees. Moreover, for the filamentous networks considered here, the radius
of curvature of a filament is typically not much smaller than the region of interest. The number of loops is further
reduced by the straightness criterion which eliminates paths with a small radius of curvature. Hence, the number of
loops in the network is restricted and our heuristically modified BFS allows for loops and yields a representative set
P ′

in reasonable time.

The SCP may be expressed as a binary fractional linear program [113], and we analogously write the FCP as

minimize

∑
p∈P rp,pairxp(∑

p∈P xp

)A (S4)

subject to
∑
p:e∈p

xp ≥ 1 for all e ∈ E

xp ∈ {0, 1} for all p ∈ P
′
,

where in the first line A ∈ {0, 1} determines whether the total or the average roughness is minimised. In the second
line, equality holds for an exact cover. For A = 0, Eq. S4 is a binary linear program that may be solved using
well-established and efficient algorithms [70, 94].

For A = 1, the fractional problem may be rewritten as a binary linear program as well [119, 122]. To that end,

we introduce new variables y =
(∑

p∈P xp

)−1

and zp = xpy, p ∈ P
′
. The latter expression is non-linear but may be
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replaced by a set of binary linear equations, yielding

minimize
∑
p∈P

rpzp (S5)

subject to
∑
p:e∈p

zp ≥ y for all e ∈ E

∑
p∈P

zp = 1

y ≥ 0

y − zp ≤M −Mxp

zp ≤ y
zp ≤Mxp

zp ≥ 0

xp ∈ {0, 1} for all p ∈ P.

Here, M is a sufficiently large constant that needs to exceed any y (cf. the Big M method [45]). Since y =(∑
p∈P′ xp

)−1

≤ 1 for the cover of any non-empty graph, we choose M = 2.
Thus, there are a number of options in our FCP: The input set of paths may be obtained by using a modified BFS

or from sampling RMSTs or (denoted by either BFS or RMST ). The filaments may overlap or not (over/exact). The
objective of the FCP may be the minimisation of the total or the average roughness (total/avg). The roughness of a
filament may be measured by the pairwise or the all-to-all filament roughness (pair/all). Solutions of the FCP with
different options are compared in the Results.

An implementation of the presented approximation schemes to the FCP with the described options is supplied
as an open-source tool, “DeFiNe” (Decomposing Filamentous Networks), under GLP3 at http://mathbiol.mpimp-
golm.mpg.de/DeFiNe/. DeFiNe is programmed in Python [112] and employs the packages SciPy [84], NetworkX [46],
and cvxopt [30] and PyGTK [36] for a simple and user-friendly graphical user interface. DeFiNe takes as input a
weighted graph in the standard .gml file format [50] and outputs a standard .gml graph with filament identities stored
as edge colours. Node coordinates may be included in the input file to enable the modified BFS that takes into account
edge alignments. Furthermore, manual filament assignments may be included in the input file and the similarity with
the automatically obtained filament cover is assessed as described below. In addition, DeFiNe generates a standard,
human-readable .csv-table of various individual filament measures for custom analyses. The filamentous structure as
well as the manual filament assignments shown in Fig. 1 are available as a .gml file under the above internet address
for demonstration purposes.

SUPPLEMENTAL MATERIAL S5: EXTRACTION OF WEIGHTED NETWORKS FROM IMAGES

The procedure used to extract weighted networks from image data is similar to those proposed in [11, 83]: (1)
The original grey-scale image are pre-processed to enhance the filamentous structures. Here, a vesselness filter with
kernel width of 2 pixels was used for simplicity [37]. (2) In the filtered image, the filamentous structures are separated
from the background by applying an adaptive median threshold with a block size of 49 pixels, whereby moderate
variations of this size leave our findings largely unchanged. (3) The resultant binary image is skeletonised to obtain
the filament centre lines [47]. (4) Then, the nodes of the network under construction are extracted as terminal points,
branching points, or crossings of skeleton branches. (5) An edge is inserted between two nodes if they are directly
connected via the skeleton. (6) Finally, the edges are weighted by integrating the intensity of the underlying original
grey-scale image smoothed with a Gaussian filter with a standard deviation of 5 pixels along the filament and taking
its average per unit length of the filament. For the images of the simulated galaxy clusters, the structures obtained
by a model-based filter from [104], Figure 6 left middle and bottom rows, are directly employed as binary images and
the networks representations are obtained as described above.

SUPPLEMENTAL MATERIAL S6: QUALITY ASSESSMENT OF FILAMENT COVERS VIA
STRUCTURE-AWARE PARTITION SIMILARITY MEASURES

The extraction of the filamentous networks from image data enables comparison of the automated filament cover
with manual filament assignments. Both, automated cover and manual assignment may be regarded as partitions

http://mathbiol.mpimp-golm.mpg.de/DeFiNe/
http://mathbiol.mpimp-golm.mpg.de/DeFiNe/
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Figure S2. Comparison of classical and extended partition similarity measures. Analysis of 100×2 random partitions
of sets of 100 numbers plus 10 duplicate ones into 5 − 10 partitions (a-b). Analysis of a 100 × 2 path covers of Euclidean
minimum spanning trees with 100 nodes distributed uniformly in the unit square, where the paths are drawn randomly and
added if the overall overlap of paths is below 10 edges (c-f). Analysis of the similarities between the manual and automated
decompositions of the networks studied in the paper (g). (a) Colour-representation of two exemplary random partitions as
explained above. (b) The classical partition similarity measures VI, RI, and JI are not correlated (cf. Kendall rank correlation
coefficients τ < 0.9) and may lead to opposing conclusions for the similarity of different partitions. (c) Two exemplary random
tree path covers with overlaps (=©). (d) The classical partition similarity measures VI, RI, and JI show no correlation among
themselves (except for the pairing of RI and JI), nor with the structure-aware RI1 and JI1. In contrast, RI1 and JI1 are
very strongly correlated (cf. τ > 0.9) and yield consistent results for the similarity of different partitions. (e) Similarity of
the partitions shown in (c) in dependence on maximal distance d between considered pairs of edges (cf. Fig. 3 for a detailed
discussion). The RId shows a non-monotonous dependency on d (triangle). (f) This non-monotonicity of RId may be explained
by the entries of the contingency table h×,×′ , ×,×

′
∈ {=, 6=}. For small distances d, the fraction of true positives (solid black,

h=,=) drops slower than the fraction of true negatives (dotted black, h 6=,6=) and for larger d, this trend is reversed. Hence, their
sum (dashed blue) shows a minimum at intermediate distances d (triangle). In contrast, when summed up (solid yellow), the
fast drop in the fraction of true positives dominates over the slightly non-monotony of the false positives and negatives. (g)
For the investigated artificial and biological networks, the classical measures VI, RI, and JI yield partially opposing results on
the similarity of the manual assignment and the automated decomposition (cf. τ < 0). The structure-aware similarity measures
RI1 and JI1 are strongly correlated and yield consistent results (cf. τ = 0.952).

(where we allow overlapping subsets as well). As measures for the similarity of the automated and manual partitions
we use the variation of information,VI, the Jaccard index, JI, and the Rand index, RI, which are commonly used
and were shown to estimate similarity reliably for distant and close partitions alike [31, 79, 93]. For given partitions
C = {C1, . . . , CC} and C

′
=
{
C

′

1, . . . , C
′

C′

}
, they are computed via

VI
(
C, C

′
)

= 1 + (U logU)
−1 · (S6)

·
∑
i,j

gi,j

(
log

(
gi,j
g·,j

)
+ log

(
gi,j
gi,·

))
,

RI
(
C, C

′
)

=
h=,= + h6=,6=

h=,= + h=,6= + h6=,= + h6=,6=
, (S7)

JI
(
C, C

′
)

=
h=,=

h=,= + h=,6= + h6=,=
, (S8)
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where U =
∑C

i=1 |Ci| =
∑C

′

j=1

∣∣∣C′

j

∣∣∣, gi,j =
∣∣∣Ci ∩ C′

j

∣∣∣, g·,j =
∑C

i=1 gi,j , and gi,· =
∑C

′

j=1 gi,j . The contingency tables

h×,×′ , ×,×′ ∈ {=, 6=}, provide the numbers of edge pairs which are in the same or different sets in the two partitions,
respectively, and is related to gi,j as shown in [52]. All measures are restricted to the unit interval with larger values
reflecting higher similarity [78].

While these measures of partition similarity are widely used [63, 79], they pose some difficulties. The variation
of information, VI, is only well-defined for disjoint partitions, which occur for non-overlapping filaments. While the
Jaccard index, JI, and the Rand index, RI, cover intersecting partitions they may generally yield opposing results.
We demonstrate this inconsistency by investigating two types of random partitionings: First, for 100 repetitions, we
randomly partitioned 2 sets of 100 numbers and up to 10 duplicates (to simulate overlapping filaments) into 5 − 10
random partitions (Fig. S2a). While VI and JI were correlated (Fig. S2b; cf. Kendall rank correlation coefficient
τ > 0), the other two combinations showed a strong negative correlation (cf. τ < 0). Second, to study filament covers
that resemble the decomposition of real filamentous networks more closely, we constructed a relative neighbourhood
graph [105, 109] with 100 nodes uniformly distributed in the unit square and computed a random minimum spanning
tree (Fig. S2c). For 100 repetitions of this procedure, we partitioned the resultant tree into filaments by choosing a
path at random and adding it to the decomposition if the total overlap of any two paths already in the decomposition
is below 10 edges (cf. =© for overlaps). Again, the correlation among the classical similarity measures was poor or
negative (Fig. S2d; except for the correlation between RI and JI; |τ | < 0.6). Although other measure for the similarity
of intersecting partitions have been proposed [44, 62, 64], we adhere to RI and JI for simplicity.

More severely, however, the above similarity measures do not take into account the structure of the graph G
underlying the (edge-)partitions induced by the obtained filament covers. To date, we are only aware of structure-aware
similarity measures for the comparison of partitions whose items are distributed in Euclidean space [7, 26, 123]. Yet,
these approaches do not take into account the explicit graph structure of the partitions. To remedy this shortcoming,
we introduce a suite of measures, the structure-aware Rand and Jaccard index, RId and JId, respectively. To that
end, the contingency tables h×,×′ in Eqs. S7 and S8 are replace by distance dependent hd×,×′ ,

RId
(
C, C

′
)

=
hd=,= + hd6=,6=

hd=,= + hd=,6= + hd6=,= + hd6=, 6=
, (S9)

JId
(
C, C

′
)

=
hd=,=

hd=,= + hd=,6= + hd6=,=

(S10)

where hd×,×′ , ×,×
′ ∈ {=, 6=}, d ∈ N>0, count the number of edge pairs which are in the same or different sets in the

two partitions, respectively, and which are separated by at most d nodes in G. More precisely, we define

hd×,×′ =

{
# (e0, e1) | e0 ∈ Ci ∩ C

′

i′
, e1 ∈ Cj ∩ C

′

j′
, (S11)

with i× j and i
′
×

′
j
′
andDL(G) (e0, e1) ≤ d

}
,

where # (e0, e1) is the number of edges (e0, e1) and DL(G) (e0, e1) is the length of the shortest path between nodes
in the line graph L (G) of G corresponding to the edges e0 and e1. For example, h0

=,= counts the the number of
adjacent edges which are in the same set in both partitions (local perspective). In contrast, h∞×,×′ ≡ h×,×′ reproduce
the original measures which do not take into account the positions of edges in the graph (global perspective).

To investigate the performance of our extended, structure-aware partition similarity measures, RId and JId, we
apply them to the artificial graph-based random partitions described above (cf. Fig. S2c). Indeed, when considering
the partition membership of neighbouring edges only, i.e., RI1 and JI1, the similarity measures yield very consistent
results (Fig. S2d; cf. τ = 0.999) in contrast to the lower correlation with the classical similarity measures (cf. τ < 0.9).
Investigating the dependency of RId and JId on the distance d for the tree filament covers shown in Fig. S2d, we find
that RI and JI (Fig. S2e; dotted blue and yellow) over- and underestimate the partition similarity with respect to
RI1 and JI1 (Fig. S2e; solid blue and yellow). Furthermore, we find that RId is non-monotonic in d (Fig. S2e; cf. the
black triangle). These errors in estimation are explained by the large fraction of false negatives (h6=,6=) and the small
fraction of true positives (h=,=), respectively, which dominate for large distances d, i.e., the limit in which the graph
structure is ignored (Fig. S2f; dotted black and solid black). Due to the differential increase/decrease of h6=,6=/h=,=,
their combination and therefore RI1 is non-monotonic (Fig. S2f; dashed blue). Finally, we observe opposing results of
the classical partition similarity measures also for the filament covers of artificial and biological filamentous networks
investigated in the main text, while our extended, structure-aware measures RI1 and JI1 provide consistent similarity
results (Fig. S2g).
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Figure S3. Analyses of robustness of filament covers against incomplete knowledge of network and image noise.
A cytoskeletal and a contrived network are decomposed automatically by solving the FCP with options given in Fig. 3c and
Fig. 1c, respectively. (a) Overlay of extracted actin network structure and original image data (left panel). Sections of
cytoskeletal network with edge colours representing the manual assignment, the optimal filament cover obtained for the full,
non-disrupted network, and the optimal filament cover after removal of two edges which are shown in white (right panels).
(b) Similarity of manual filament assignment and automated filament covers after removal of increasing numbers of edges,
measured by structure-aware Jaccard index JI1. On average, JI1 decreases with the number of removed edges as shown by a
linear fit with slope s = −0.0021 (solid grey line). Occasionally, the removal of edges increases the accuracy of the filament
cover above the accuracy of the original solution (dotted grey line and triangle; cf. panel (a)). (c) Sections of cytoskeletal
network with edge colours representing the original edge weights and the edge weights after adding Gaussian noise (left panels).
Sections of cytoskeletal network with edge colours representing the manual assignment, the optimal filament cover obtained
for the full, non-disrupted network, and the optimal filament cover after adding Gaussian noise (right panels). (d) Similarity
JI1 of manual filament assignment and automated filament covers after adding Gaussian noise. On average, JI1 decreases with
increasing noise factor as shown by a linear fit with slope s = −0.0009 (solid grey line). Occasionally, the noisy edge weights
lead to an increase in accuracy of the filament cover above the accuracy of the original solution (dotted grey line and triangle;
cf. panel (c)). The decrease levels off for large noise factors and JI1 approaches a constant value (dashed grey line). (e) Overlay
of extracted contrived network structure and original image data. (f) Results for the contrived network analogue to those
presented for the cytoskeletal network in panel (b). The average change in JI1 per removed edge is captured by a linear fit with
slope s = −0.0009. (g) Results for the contrived network analogue to those presented for the cytoskeletal network in panel (f).
The average change in JI1 per unit increase in the noise factor is captured by a linear fit with slope s = −0.0005.

SUPPLEMENTAL MATERIAL S7: ROBUSTNESS OF FILAMENT COVERS AGAINST INCOMPLETE
KNOWLEDGE OF UNDERLYING NETWORK STRUCTURE AND IMAGE NOISE

Our approach enables accurate decomposition of a given filamentous network into its constitutive filaments (cf. Res-
ults). However, the preceding extraction of the network from image data is often non-trivial (cf. Methods). Therefore,
to assess the robustness of our approach, we test how the accuracy of our filament decomposition is affected (1) by
incomplete knowledge of the true underlying network structure and (2) by image noise which affects the edge weights
of the extracted network. We perform these analyses for the actin cytoskeleton shown in Fig. 3 (Fig. S3a, left panel)
and the contrived network shown in Fig. 1 (Fig. S3e).

(1) First, we start from the original, weighted network and randomly remove one of the E edges to model erroneous
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segmentation. For the disrupted network, we recompute the optimal filament cover (with the same options as in
Figs. 1c and 3c, respectively) and calculate its agreement with the original manual segmentation (measured by the
structure-aware Jaccard index JI1; the removed edge is assigned a dummy label). We repeat the procedure for E
networks from which a single, randomly chosen edge has been removed. Next, we repeat the procedure for E networks
from which a randomly chosen double of edges has been removed. We then proceed with triplets, quartets, and so on
up to subsets of 50 randomly chosen edges.

As expected, the removal of increasing numbers of edges typically decreases the agreement of the automated filament
cover with the manual assignment for the cytoskeletal as well as the contrived network (Fig. S3b and f). For both
networks, however, the decrease is slow and JI1 increases only by around 0.002 per removed edge (cf. Fig. S3b and
f, solid grey line indicates linear fit). Interestingly, for the actin cytoskeleton, the removal of certain edges may even
increase the accuracy of the filament cover (Fig. S3a, right panels show manual filament assignment and automated
filament cover the original network, and an exemplary filament cover obtained after the removal of two edges, coloured
white here, which improves the agreement with the manual assignment; cf. Fig. S3b, dotted grey line and triangle).

(2) Second, we simulate image noise by adding centred Gaussian noise ∆w to the edge weights of the original
network with

E [∆w] = 0, (S12)

Sd [∆w] =

(
1 +

f

100

)
w. (S13)

We normalise the standard deviation of the added noise by the original edge weights to avoid extreme fluctuations,
and f is referred to as noise factor. For each noise factor, we construct 100 networks, recompute the optimal filament
covers, and measure their agreement with the manual filament assignment, as in the first scenario above.

For both the contrived and the cytoskeletal network, the accuracy of the filament cover decreases with increasing
noise, as expected (Fig. S3d and g). However, this decrease in accuracy is slow and JI1 decreases by less than 0.001
when increasing the standard deviation of the noise by 1% of the original edge weights, i.e., when increasing the
noise factor by one (cf. Fig. S3d and g, solid grey lines indicate linear fits). We note that with increasing edge
noise the accuracy of the filament cover approaches a constant, non-zero JI1 which reflects that some information
about the filament structure maybe obtained from the topology of the network alone, irrespective of the edge weights
(cf. Fig. S3d and g, dashed grey lines).

SUPPLEMENTAL MATERIAL S8: FILAMENT ANALYSIS FOR NETWORKS EXTRACTED FROM
MOVIE OF PLANT ACTIN CYTOSKELETON

To further strengthen our statistical analyses of cytoskeletal actin filaments (cf. Fig. 3), we investigate a complete
movie of a plant cytoskeleton of 100 frames over 200 s (cf. Methods for details). For each frame, we extract a
weighted network representation of the cytoskeleton as described above (cf. Methods for details) and solve the FCP
with options described in Fig. 3, i.e., we solve the exact FCP (exact) for paths from a modified breadth-first search
(BFS ) and by minimising the total (total) pairwise filament roughness (pair). Analysis of various properties of the
automatically obtained filaments confirms our findings in Fig. 3: The filaments show a preferential alignment parallel
to the cell axis throughout the movie (Fig. S4a). The distribution of filament lengths, pooled across the duration
of the movie, confirms the reported gamma distribution (Fig. S4b; maximal likelihood fits of normal, Weibull, and
Rayleigh distributions yield higher values for the Akaike information criterion [1]). Filament length is correlated with
filament weight, i.e., longer filaments are typically thicker (Fig. S4c; Pearson correlation p-value pP < 0.05). Moreover,
the correlation between different measures of filament curvedness, i.e., the filament bending and the maximal filament
angle, are consistently negatively correlated with the filament length (Fig. S4d; pP < 0.05).

In addition to these previously analysed features of filamental organisation, we study the course of different filament
properties over time: The average filament weight shows large fluctuations and is non-stationary over the recording
period (Fig. S4e; cf. augmented Dickey-Fuller test p-value pADF ≥ 0.05). This non-stationarity suggests substantial
changes in the prevalence of fine actin filament and thick bundles, respectively, and prompts further investigations.
However, we found that the average filament length as well as the average filament bending remain stationary over
the course of 200 s (Fig. S4e; cf. pADF,length < 0.05 and pADF,conv < 0.05). Since the length distribution of filaments
tunes the mechanical properties of filamentous networks [8, 57], this stationarity of the average filament length may
be of immediate biological relevance. The stationarity of the average filament bending may be a direct consequence of
the roughly constant filament length distribution (cf. Fig. S4d) in combination with the resultant physical constraints
of actin filament length on filament bending.
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Figure S4. Filament analyses of 100 cytoskeletal networks. Results from filament decompositions of 100 cytoskeletal
networks extracted from a movie of a plant cytoskeleton over 200 s. The cytoskeletal networks are decomposed automatically
by solving the exact FCP (exact) for paths from a modified breadth-first search (BFS) and by minimising the total (total)
pairwise filament roughness (pair ; cf. Fig. 3). (a) The distribution of median filament angles shows that the majority of
filaments is aligned parallel to the cell axis (grey dashed line). (b) Filament lengths (bars) follows a gamma distribution
(line shows maximum likelihood fit). (c) Filament length correlates with filament weight (cf. linear regression and Pearson
correlation coefficient cP > 0 and p-value pP < 0.05) (d) Scatter plot of filament convolutedness versus filament length shows
a negative correlation (cf. red squares, cP,conv < 0, and pP,conv < 0.05) with an average convolutedness of E [C] = 1.23± 0.17.
The maximum filament angle correlates negatively with the filament length (cf. grey circles, cP,angle < 0, and pP,angle < 0.05),
indicating that longer (and thicker, cf. (c)) filaments are less curved. (e) Time series of average filament weight over 200 s shows
large fluctuations and is non-stationary (cf. augmented Dickey-Fuller test p-value pADF ≥ 0.05). (f) Time series of filament
length and convolutedness are stationary over the recording period (cf. pADF,length < 0.05 and pADF,conv < 0.05).

SUPPLEMENTAL MATERIAL S9: OVERVIEW OF DIFFERENT STAGES OF FILAMENT
DECOMPOSITION OF ARTIFICIAL, BIOLOGICAL, AND COSMIC NETWORKS

We test our method of decomposing a given weighted network into filaments by solving the FCP for different
filamentous networks. In addition to the four networks presented in the main text and the 100 frames analysed in
Supplemental Material S8, we investigate four more networks of different types and show the different stages of our
analysis. Starting from grey-scale image data of contrived, neural, cytoskeletal and cosmic network structures (Fig. S5,
1st column), we pre-process the images to obtain a binary representation of the filament centre lines (Fig. S5, 2nd
column), and extract a weighted network representation as described in the Methods (Fig. S5, 3rd column). For the
contrived and biological and the cosmic networks, we manually assign filament identities and compute the connected
components, respectively (Fig. S5, 4th column). Finally, we decompose the networks into filaments by solving the
FCP with different options (Fig. S5, 5th column). For the first contrived network, we allow overlapping filaments
(Fig. S5a) while for the second, grid-like contrived network (Fig. S5b), the neural networks (Fig. S5c and d), the
cytoskeletal networks (Fig. S5e and f), and the cosmic webs (Fig. S5g and h), we obtain exact filament covers with
options described in Fig. 1e. The agreement of manual assignments and automated filament decompositions of the
studied networks is measured by the classical and the structure-aware Jaccard indices JI and JI1 and shows good
agreement (JI1 close to 1, and cf. discussion of Fig. 3d) despite occasional over- (cf. ⊕) or under-segmentation (cf. 	)
of filaments.
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SUPPLEMENTAL MATERIAL S10: OPEN CONTOUR-BASED FILAMENT DECOMPOSITION AND
FILAMENT COVER-BASED POST-PROCESSING

Finally, we demonstrate how our filament cover-based approach may be used to post-process and improve filament
decompositions obtained from other, e.g., open contour-based approaches. For the demonstration, we select SOAX
[121], a fully automated, stretching open active contour-based approach which is available as an open-source software
tool to extract a network-like representation (i.e., coordinates of filament centre lines as well as junctions are provided)
from image data. As a test case, we study the contrived filamentous structure investigated in Fig. 1. For a fair
comparison of our and the open contour-based approach, we apply SOAX to the pre-processed and segmented image
data (cf. Methods and Fig. S6a, second panel) to which we further apply a Gaussian filter of unit standard deviation
to obtain smooth intensity gradients required by the algorithm. SOAX is run using the default parameters and the
resulting filament identities are manually assigned to match those of the manual solution (Fig. S6b). To quantify the
quality of the decomposition, we manually assign filament identities in our original network representation (cf. Fig. S6a,
third panel) according to the open contour-based result (cf. Fig. S6b) and compare the result to the manual assignment
(cf. Fig. S6a, fourth panel). The structure-aware Jaccard index JI1 = 0.938 is close to 1 and indicates good agreement
between open-contour based decomposition and manual filament assignment. We note that some junctions/nodes
obtained from SOAX are split in two in comparison to our extracted networks (cf. intersecting #).

Moreover severely, some filaments are over-segmented and thus fragmented (cf. ⊕), especially overlapping filaments
which are not captured in the open contour-based approach (cf. 	). To remedy this shortcoming, we apply our
filament cover-based approach to post-process the open contour-based decomposition and merge over-segmented fil-
ament fragments. To this end, we convert the open contour-based filament representation into a weighted network,
where edge weights represent average filament segment intensities as before (cf. Methods and Fig. S6c). As before, a
collection of paths P ′

is sampled using a breadth-first search (BFS ) and their pairwise roughness values rp, p ∈ P
′
, are

computed according to Eq. S1 (pair). Then, to take into account the initial open contour-based filament decomposi-
tion F as a starting point, in which certain edges have already been assigned to the a given filament, we modify the
roughness values of the sampled paths: For each initial filament or fragment that is fully contained within a sampled
path, the roughness of that path is decreased by a large value, Rfilament = 104, which is larger than any rp to favour
the inclusion of these filaments or fragments in the optimal filament cover. Since the subtraction of Rfilament yields
negative roughness values which would lead to the inclusion of all these paths, we add another, even larger constant
Roffset = 108 > Rfilament to all roughness values, i.e.,

r
′

p = rp −
∑
f ∈ F
f ⊂ p

Rfilament +Roffset. (S14)

For these modified roughness values r
′

p, we solve the FCP by minimising the total roughness (total) and allowing
for overlaps (over ; Fig. S6d). The resulting post-processed filament decomposition merges several filament fragments
which were over-segmented by the open-contour based approach and shows very good agreement of JI = 0.776 and
JI1 = 1.000 with the manual filament assignment. Interestingly, in this decomposition, parts of two filaments are
interchanged (cf. ⊕) as in Fig. 1f for different FCP options. In conclusion, for any approach that detects filaments
from image data and yields a weighted network representation, our filament cover-based approach may provide a
helpful means to further post-process and enhance the accuracy of the obtained filament decomposition.
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Figure S5. Overview of studied networks, manual assignments, and filament covers obtained from solving the
FCP. Original grey-scale image data (1st column), binary images of filament centre lines (2nd column), extracted networks
with colour-coded edge weights (3rd column), manual filament assignments of contrived and biological networks and connected
connected components of cosmic networks, respectively (4th column), and automatically obtained filament covers (5th column).
Agreement between manual decompositions and automated filament cover is quantified by a number of measures (cf., e.g.,
Methods and Fig. 2), here the classical and the structure-aware Jaccard indices JI and JI1 are shown. (a) Contrived network with
crossing and overlapping filaments and a loop (cf. Fig. 1). (b) For a contrived, grid-like network, the automated decomposition
correctly detects most of the filaments (JI1 close to 1). Only the filament in the bottom right corner with a kink is over-segmented
(⊕) because the curvature restriction of the initial paths does not allow such large angles (about 90◦ here, cf. Eq. S3). (c)
Neural network of hippocamal neuron (cf. Fig. 2). (d) The decomposition of the network of a retinal ganglion cell shows good
agreement with the manual results (JI1 close to 1). A few filaments are over-segmented (⊕), e.g., due to kinks in the filaments
that are not captured by the initial set of paths (cf. the centre ⊕). (e) Cytoskeletal network of actin filaments (cf. Fig. 3). (f)
For the actin network extracted from the confocal recording of a Lifeact-labelled cytoskeleton, the automated partitions agrees
well with the manual results (JI1 close to 1, and cf. discussion of Fig. 3d). A few examples of over- and under-segmentation
(	) are marked. (g) Cosmic web of galaxies (cf. Fig. 4). (h) The dense web of simulated galaxies consists of many connected
components that are further decomposed into filaments (cf. Fig. 4 for a discussion). Image data for panels (g) and (h) from:
Stoica et al., A&A, 434, 423-432, 2005, reproduced with permission c© ESO.

Figure S6. Open contour-based filament detection and filament cover-based post-processing. (a) Different stages of
our filament cover problem (FCP)-based analysis for a contrived filament structure, from original image to segmented filament
centre lines and weighted network representation, manual filament assignment and automated solution (cf. Fig. S5a for further
explanations). (b) Filaments and junctions (cf. circles) identified from the segmented filament centre line image using SOAX,
an stretching open active contour-based approach [121]. Colour-coded filament identities were manually assigned to match those
of the manual solution in (a) and excess filament fragments were coloured black. While the agreement with the manual solution
is good (JI1 close to 1), some filaments are over-segmented (cf. ⊕) and thus fragmented, especially at locations of filament
overlaps (cf. 	). (c) Weighted network representation of the contrived filamentous structure obtained from SOAX. (d) Using
the filament assignments from SOAX in (b) as a starting point, our filament cover-based approach is used to post-process
the filament decomposition, which merges broken filament fragments and improves the agreement with the manual solution
(JI1 = 1).


