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The emergent dynamics in phase-separated mixtures of isometric active and passive Brownian
particles is studied numerically in two dimensions. A novel steady-state of well-defined traveling
fronts is observed, where the interface between the dense and the dilute phase propagates and
the bulk of both phases is (nearly) at rest. Two kind of interfaces, advancing and receding, are
formed by spontaneous symmtry breaking, induced by an instability of a planar interface due to
the formation of localized vortices. The propagation arises due to flux imbalance at the interface,
strongly resembling travelling fronts in reaction-diffusion systems. Above a threshold, the interface
velocity decreases linearly with increasing fraction of active particles.

PACS numbers: 82.70.Dd,64.75.Xc

Introduction – Generic models of active fluids divide
into two main classes, systems of active Brownian par-
ticles (discs or spheres) [1, 2], which emphasize volume
exclusion, and systems of anisotropic (or elongated) self-
propelled particles, which emphasize alignment interac-
tions, like the Vicsek model [3, 4]. The most striking
phenomenon of active Brownian particles (ABPs), ob-
served in various experiments [5–8] and simulations [9–
11], is motility-induced phase separation [12]. The phase
behavior and kinetics, like domain coarsening [10, 13]
or interface fluctuations [14], of ABPs resemble a passive
fluid with attractive interaction. Moreover, ABPs exhibit
an intriguing collective dynamics with jets and swirls,
which has been speculated to arise from interfacial sort-
ing of ABPs with different orientations [11]. In contrast,
the kinetics of models with alignment interaction exhibits
various modes of collective motion, for example large po-
lar swarms, i.e., high-density polar bands travelling co-
herently through an isotropic background gas [3, 4].

A natural extension of single-component ABP flu-
ids are mixtures of particles with, e.g., different activ-
ities [15–18], temperatures [19, 20], or diameters [21].
These models also exhibit activity-induced phase sepa-
ration. We focus here on the dynamics of mixtures of
isometric active and passive Brownian particles. Surpris-
ingly, we find that these systems exhibit a novel and so
far unexplored type of collective motion in the phase-
separated state in the form of well-defined propagating
fronts, which can be either enriched or depleted of active
particles, and are advancing toward or receding from the
dense phase, respectively. The propagation arises due to
flux imbalance at the interface between the dense and di-
lute phases with a strong resemblance to travelling fronts
in reaction-diffusion systems [22]. The selection of the
interface type (advancing or receding) happens by spon-
taneous symmetry breaking, induced by an instability of
a planar interface due to the formation of localized vor-
tices. In contrast to the polar bands of the Vicsek model
[3, 4], which travel as a whole, here only the interface

between the two phases propagates.

The recent finding of a stable interface in pure, phase-
separated ABP fluids, together with a negative surface
tension [14], questions the mapping of an ABP fluid onto
an equilibrium fluid with attraction. The emergence of
travelling fronts in active-passive mixtures clearly contra-
dicts the existence of an equivalent equilibrium system
in this case. Instead, we propose an explanation of the
interface dynamics on the basis of well-studied models
describing the growth of rough surfaces under far-from-
equilibrium conditions [23, 24].

Model – We simulate a mixture of NA active and NP
passive Brownian disks (in total N = NA+NP particles)
in a 2D simulation box of size Lx × Ly with periodic
boundary conditions. Their dynamics is overdamped,
i.e., ṙi = V0ei + fi/γt + ξi, where V0 is the propulsion
velocity along the polar axis ei (V0 = 0 for passive parti-
cles), fi =

∑
i 6=j fij is the force due to steric interactions,

and ξi is a random velocity. The particles interact via
the soft repulsive force fij = k(ai + aj − |rij |)rij/|rij |,
with rij = ri − ri if ai + aj < |rij | and fij = 0 otherwise
[9]. The discs are polydisperse in order to avoid crystal-
lization and their radii ai are uniformly distributed in the
interval [0.8a, 1.2a] [9]. The zero-mean Gaussian white-
noise velocity ξi obeys 〈ξi(t)ξi(t′)〉 = 2Dtδij1δ(t − t′),
where Dt = kBT/γt is the translational diffusion coeffi-
cient with thermal energy kBT and friction coefficient
γt. The propulsion direction ei undergoes a free ro-
tational diffusion with a diffusion constant Dr, where
Dt/Dr = 4a2/3 holds for a no-slip sphere. The persis-
tence of swimming is characterised by the Péclet number
Pe = V0/(2aDr). The typical particle overlap due to ac-
tivity, γtV0/(2ak), is fixed to 0.01 [13]. Unless otherwise
noted, we consider systems with Pe = 100 and an pack-
ing fraction φ =

∑N
i=1 πa

2
i /(LxLy) = 0.67, below random

closed packing [9], and vary the fraction xA = NA/N of
ABPs. Moreover, lengths are expressed in units of 2a
and time in units of 1/Dr.

Phase behavior – A mixture of active and passive discs
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FIG. 1. (color online) (a) Snapshot of the segregation order
parameter field Φ(r) of a system of size Lx = Ly = 400 with
N = 160000 particles (φ = 0.78) in the steady state at xA =
0.5. Φ = 1 (Φ = −1) corresponds to a pure active (passive)
phase and Φ = 0 corresponds to a uniform mixture. The black
line indicates the interface position. (b) Time evolution of the
interface position, see movies in [25]. (c) Dynamic structure
factor S(ω, q) as a function of frequency ω and wavenumber q.
The shape of S(ω, q) indicates a damped propagative mode.
(d) Frequency ωρ (also indicated in (c) by black dots) and
damping rate Γρ as function of wavenumber. Lines indicate
ωρ = Vρq, with Vρ ≈ 0.04V0, and Γρ = Dρq

2, with Dρ ≈
0.004D0, where D0 is the diffusion constant of a free ABP.

separates into a dense and a dilute phase at sufficiently
large Pe, φ, and xA [16], very similar to a pure ABP
fluid [10]; in addition, active and passive particles tend
to segregate inside the dense phase. This is illustrated
in Fig. 1(a), where the segregation order parameter field
Φ(r) of a large phase-separated system with curved in-
terfaces between the dense and the dilute phase is shown.
Φ is defined as Φ(r) = (φA−φP )/(φA+φP ) with coarse-
grained packing density fields φA(r) and φP (r) of active
and passive particles, respectively [25]. The dilute phase
consist mainly of passive particles (Φ ≈ −1) and the
bulk of the dense phase is a homogenous active-passive
mixture (Φ ≈ 0) with small patches of enriched active or
passive particles. Within the interface region, we observe
either an accumulation (Φ ≈ 1) or a depletion (Φ < 0) of
active particles.

Note that a completely different behavior appears for
dilute solutions (not considered here), namely, for mean
free paths much larger than the persistence length of
swimming (πσ/4φ� V0/Dr), where active (passive) par-

ticles behave as effectively ’hot’ (’cold’) particles. Such a
mixture exhibits phase separation into a solid-like cluster
of passive and a gaseous phase of the active particles [20].

Bulk travelling fronts – The focus of our paper is on the
kinetics of a phase-separated active-passive mixture. The
domain dynamics of a one-component ABP fluid in the
steady state is limited to fluctuating interfaces resembling
thermal capillary waves [14, 25], except for the coarsening
kinetics [10, 13]. By contrast, active-passive mixtures ex-
hibit amazingly mobile or travelling interfaces in a large
region of the Pe−φ−xA parameter space. The interface
propagation becomes apparent from Fig. 1(b), where the
time evolution of the interface position is shown, see also
movies in Ref. [25].

In order to quantify our observations, we anal-
yse the density correlations at xA = 0.5 and φ =
0.78 by the dynamic structure factor S(q, ω) =∫∞
−∞ F (q, t) exp (iωt) dt, where q is the wavevector, ω is

the angular frequency, and F (q, t) = 〈ρq(t)ρ−q(0)〉/N
is the correlation function of the Fourier components
ρq of the density [26]. The circularly averaged S(q, ω),
which is accessible by scattering experiments, is shown in
Fig. 1(c). The structure factor exhibits peaks at the fre-
quencies ±ωρ, with a width, which increases with increas-
ing q. This suggests a damped propagative mode [26]
related to the traveling interfaces indicated in Fig. 1(b).
We obtain the full dispersion relations ωρ(q) and Γρ(q)
by fitting F (q, 0) exp (−Γρt) cos (ωρt) to the correspond-
ing simulation data. As can be seen in Fig. 1(d), the
peak positions follow the Brillouin-like dispersion rela-
tion ωρ = Vρq up to q ≈ 0.2 with a velocity Vρ ≈ 0.04V0.
In a simple equilibrium fluid (Newtonian dynamics) such
a velocity is the speed of sound [26], but here, Vρ is related
to the velocity of interface propagation. The decay rate
Γρ(q) obeys Γρ = Dρq

2 up to q ≈ 0.2, with the transport
coefficient Dρ ≈ 0.004D0, where D0 = Dt + V 2

0 /(2Dr)
is the diffusion constant of a free ABP. All modes are
strongly damped for q > 0.25, i.e, dense (or dilute) phase
droplets with size smaller than 50a dissolve quickly.

Stabilized travelling fronts – In order to study a prop-
agating interface in more detail, we employ a quasi-
one-dimensional setup of an elongated box of lengths
Lx = 2Ly [14, 27] such that the interface favors to span
the shorter box length, see Fig. 2(a). Given that the
system phase-separates, such a configuration forms spon-
taneously and remains stable over long time. In Fig. 3
(a,b), we show the time evolution of the active-particle
packing profile φA(x, t) averaged over the y-coordinate.
The interface position in a pure active fluid performs
a diffusive motion [25]. By contrast, in our mixture
the translational symmetry is broken and both interfaces
propagate steadily in parallel (for the set up of Fig. 2)
either to the right or to the left with equal probabil-
ity [25]. The travelling front is extremely stable within
the typical simulation length of T = 5 × 103, however,
the steady propagation is occasionally interrupted by in-
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FIG. 2. (color online) (a) Snapshot of a mixture of active (red) and passive (blue) Brownian discs at xA = 0.5 in a box of
size Lx = Ly/2 = 100. The interfaces between the two phases (dashed lines) travel by chance to the right . (b) Vorticity
ωQ(r) = ∇ ×Q(r), where Q is the coarse-grained particle flux [25]. (c) Visualisation of the bulk flow. Particle positions are
shown after the time lag δt = 2, where particles are colored according to their initial x position, as indicated by the color scale.
The solid line marks the isoline of s(r, δt) used for the stability analysis. See corresponding movies in Ref. [25].
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FIG. 3. (color online) Space-time dependence of the active-
particle packing density φA(x, t) for (a) the mixture with
xA = 0.5 and (b) a pure active fluid with xA = 1. The
black lines indicate the center-of-mass position of φA(x, t).
(c) Velocities Vfront (bullets) of the interface and Vρ (circles)
extracted from S(q, ω), see Fig. 1, as function of xA. Phase
separation appears for xA = 0.2. (d-g) Time averaged pro-
files measured in a comoving frame, i.e., relative to the prop-
agating front, (d) of active- and passive-particle packing frac-
tions φA(x) and φP (x), (e) of the active-particle x-polaristion
〈ex〉(x), (f) of active- and passive-particle velocities along the
front propagation direction VA(x) and VP (x), and (g) of the
intensity of the particle flux vorticity EQ(x). We choose a
representation, where the front propagates to the right. Solid
lines correspond to xA = 0.5 and dashed lines to xA = 1.

termittent large-scale rearrangements of the front. The
front velocity Vfront is nearly independent of the over-

all packing fraction φ and activity Pe. However, Vfront
monotonously decreases with increasing xA [in a good
agreement with Vρ obtained from S(q, ω)], with a maxi-
mum just above the active-particle fraction, where phase
separation sets in, see Fig. 3 (c).

We calculate profiles of various quantities in a co-
moving frame. In a pure active fluid, the two inter-
faces are equivalent and the dense phase is symmetri-
cally surrounded by a corona of particles with their po-
lar vector pointing preferentially toward that phase, see
dashed lines in Fig. 3(d,e). In a mixture, this symme-
try is broken and active particles preferentially accumu-
late at one interface and deplete at the other. Similarly,
the x-polaristion 〈ex〉 at both interfaces is different; it is
larger at the side of preferred accumulation. Moreover,
〈ex〉 takes negative values in the dilute phase, accom-
panied by a negative x-velocity of active particles, VA,
causing in turn a negative velocity of passive particles,
VP , due to collisions between passive and active parti-
cles, see Fig. 3(f). The mass transport from the dense
into the dilute phase is characterized by the intensity of

the particle flux vorticity EQ(x) =
∫ Ly

0
ω2
Q(r) dy/Ly (see

detailed discussion below), where ωQ(r) is the curl of the
particle flux Q(r). EQ is most pronounced within the
interface region and, in case of a mixture, EQ is larger
at the side of larger polarisation and active particle ac-
cumulation, see Fig. 3(g) and Fig. 2(b).

Discussion of interfaces in pure ABP fluids – Interfaces
in pure ABP fluids are not propagating, but show a dif-
fusive dynamics as evident from Fig. 3(b) and the movies
in Ref. [25]. Within the picture of motility-induced phase
separation, there is a balance between an active flux of
particles from the low-density gas phase colliding with
the dense phase and a diffusive flux of particles leaving
the high-density phase due to rotational diffusion [10].
This alone would generate a very rough and uncorre-
lated interface structure, like in random particle depo-
sition [23].

However, activity also leads to smoothing of the inter-
face. For an undulated interface, particles which bump
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FIG. 4. (color online) (a) Growth velocities Vs(q) of the Fourier modes of an isoline of the scalar displacement field s(r, δt)
inside the dense phase, see Fig. 2(c). (b) Spectrum of the interfacial height fluctuations 〈|hq|2〉 as a function of the wave number
q; results for different Ly at fixed Ly/Lx are shown. (c) Decay rate Γh(q) of the interfacial height autocorrelation function
〈hq(t)h−q(0)〉. Different scaling regimes are indicated by lines.

into the interface slide into regions of high convexity
[11, 28], thereby level out the interface on small scales
and produce a local polarisation. In turn, this local po-
larisation induces an internal mass flow inside the dense
phase such that alternating vortices of opposite vorticity
emerge within the interface region due to mass conserva-
tion, see Fig. 3(g) and movies in Ref. [25]. As a result,
randomly oriented particles emerge from the bulk and
cause an evaporation of the interface protrusions.

Discussion of interfaces in active-passive mixtures –
This picture changes considerably in mixtures, where the
interfaces are propagating due to the dynamical coupling
of active and passive particles. Imagine a perturbation
such that the polarisation in the right interface region of
Fig. 2(a) is larger then that in the left one. Hence, more
active particles leave the right interface, due to a larger
vorticity, and the collision-induced flux of passive parti-
cles from right to left exceeds the opposite flux. Now, a
corona of passive particles covers the dense phase in the
left interface region and inhibits the further discharge of
active particles. This is supported by the shape of the
profiles φA(x), φP (x), 〈ex〉(x), and EQ(x) in Fig. 3. The
overall picture that the traveling front is a consequence
of a flux imbalance and that the particle transport out
of the interface is dominated by vortex formation and
not by rotational diffusion is in line with the fact that
Vfront is independent of Pe, if V0 is fixed and Dr is var-
ied via kBT . In order to quantify the vorticity-induced
mass transport, we use the horizontal positions xi(t) of
all particles i (at time t) to construct a scalar displace-
ment field s(r, δt) [25]. The temporal evolution of s(r, δt)
then indicates the particle convection, see Fig. 2(c) and
movies in Ref. [25]. We choose a isoline of s(r, δt) inside
the dense phase; this isoline is initially flat, but roughens
as a function of time. This process is monitored by the
Fourier modes of this isoline, similar to a stability analy-
sis of the Rayleigh-Taylor instability. The Fourier-mode
amplitudes grow with constant velocity Vs(q) at short
times. The growth velocities first increase with increas-
ing q, reach a maximum at q ≈ 0.1, and exhibit a fast

decay for larger q, see Fig. 4(a). This confirms the visual
impression in Fig. 2(b,c) of a characteristic length scale
of internal mass currents.

Interface correlations and relaxation – We analyse the
structure and dynamics of the interface by a Fourier
transform of its fluctuations. From the Fourier am-
plitudes hq [25], we obtain the interface structure fac-
tor S(q) = 〈|hq|2〉 and the autocorrelation function
〈hq(t)h−q(0)〉, which we fit by S(q) exp (−Γht) to ob-
tain the damping rate Γh(q) as function of q. We ob-
serve a length-scale-dependent scaling S ∝ q−(1+2α) and
Γh ∝ qz, where α and z are the roughness and the dy-
namic exponent, respectively [29]. We find α ≈ 1/2 and
z ≈ 1.6 on large scales, q . 0.1, and α ≈ 1 and z ≈ 2
on intermediate scales, 0.1 . q . 0.4, for static as well
as traveling interfaces, see Fig. 4(b,c). In comparison, an
overdamped fluid interface with thermally excited capil-
lary waves in equilibrium has α = 1/2 [27] and z = 1
[30] for q < 0.6. However, physically more related is the
Edward-Wilkinson model [23, 24], for non-equilibrium
interface growth – where random particle arrival leads
to interface roughening, while lateral motion (e.g., due
to gravity) yields interface smoothing – with exponents
α = 1/2 and z = 2. If additionally local growth perpen-
dicular to the interface is present, as in the Kardar-Parisi-
Zhang model, the dynamic exponent z = 3/2 is expected
[23, 24], very close to the exponents characterizing the
interface behavior of our active particle fluids.

Conclusions – Active-particle systems display many
unexpected features – both static and dynamic. We have
shown that the large-scale interface structure in mixtures
is similar to that at equilibrium, however, the dynamics,
like interface relaxation or front propagation, exhibits
strong nonequilibrium characteristics. Our results call
for an experimental investigation over a wide range of
concentrations and activities. Active-passive mixtures
could be realized experimentally by active colloids [5–8],
vibrated polar disks [31] or even robots [32, 33].
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Löwen, Clemens Bechinger, and Thomas Speck, “Dy-
namical clustering and phase separation in suspensions of
self-propelled colloidal particles,” Phys. Rev. Lett. 110,
238301 (2013).

[8] Félix Ginot, Isaac Theurkauff, Demian Levis, Christophe
Ybert, Lydéric Bocquet, Ludovic Berthier, and Cécile
Cottin-Bizonne, “Nonequilibrium equation of state in
suspensions of active colloids,” Phys. Rev. X 5, 011004
(2015).

[9] Yaouen Fily, Silke Henkes, and M. Cristina Marchetti,
“Freezing and phase separation of self-propelled disks,”
Soft Matter 10, 2132–2140 (2014).

[10] Gabriel S. Redner, Michael F. Hagan, and Aparna
Baskaran, “Structure and dynamics of a phase-separating
active colloidal fluid,” Phys. Rev. Lett. 110, 055701
(2013).

[11] Adam Wysocki, Roland G. Winkler, and Gerhard
Gompper, “Cooperative motion of active brownian
spheres in three-dimensional dense suspensions,” Euro-
phys. Lett. 105, 48004 (2014).

[12] Michael E. Cates and Julien Tailleur, “Motility-induced
phase separation,” Annu. Rev. Condens. Matter Phys. 6,
219–244 (2015).

[13] Joakim Stenhammar, Davide Marenduzzo, Rosalind J.
Allen, and Michael E. Cates, “Phase behaviour of ac-
tive brownian particles: the role of dimensionality,” Soft
Matter 10, 1489–1499 (2014).
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