
Self-learning and adaptation in a sensorimotor framework

Ali Ghadirzadeh, Judith Bütepage, Danica Kragic and Mårten Björkman

Abstract— We present a general framework to autonomously
achieve a task, where autonomy is acquired by learning
sensorimotor patterns of a robot, while it is interacting with
its environment. To accomplish the task, using the learned
sensorimotor contingencies, our approach predicts a sequence
of actions that will lead to the desirable observations.

Gaussian processes (GP) with automatic relevance determi-
nation is used to learn the sensorimotor mapping. In this way,
relevant sensory and motor components can be systematically
found in high-dimensional sensory and motor spaces. We
propose an incremental GP learning strategy, which discerns
between situations, when an update or an adaptation must be
implemented. RRT* is exploited to enable long-term planning
and generating a sequence of states that lead to a given goal;
while a gradient-based search finds the optimum action to steer
to a neighbouring state in a single time step.

Our experimental results prove the successfulness of the
proposed framework to learn a joint space controller with
high data dimensions (10×15). It demonstrates short training
phase (less than 12 seconds), real-time performance and rapid
adaptations capabilities.

I. INTRODUCTION

Sensorimotor learning is a vital ability resulting in skilled
performance in biological systems. However, the amount of
uncertainty presented in both sensory and motor channels
impedes the learning of even basic actions significantly.
Additionally, an embodied agent has to control and optimize
trajectories in high-dimensional sensory and motor spaces in
a changing and dynamic environment, that further compli-
cates learning. In humans, the interplay of sensory and motor
signals is the substantial basis to allow movement generation
under these complicated conditions [1].

Biological studies [2] suggest three main categories of
control mechanisms - reactive, predictive and biomechanical.
As latency in the processing of sensory data is inherent in
these systems, predictive control plays a significant role in
skilled action generation. It is based on the learning of a
mapping between motor commands and sensory observa-
tions. This mapping, known as a forward model, predicts
the sensory outcomes of a given action.

Additionally, the forward model is essential in error-based
learning and mismatch detection - two main components to
allow an adaptive behaviour. A mismatch between expected
and perceived sensory effects during active manipulation
allows to detect externally caused changes and to launch
appropriate corrective actions. For example, as illustrated in
Fig. 1, an initial predicted effort may not match the actual
required one to lift the object due to e.g. a change in the

Authors are with the Computer Vision and Active Perception Lab
(CVAP), CSC, KTH Royal Institute of Technology, Stockholm, Sweden.
algh|butepage|dani|celle@kth.se

low
high

|q - q*| > ε |q - q*| < ε

Fig. 1: Top: The sensorimotor framework - The forward
model provides the basis for relevant dimension selection and
adaptation. Gradient-based optimization and the RRT* algo-
rithm enable the selection of proper actions by optimizing a
non-convex cost functions. Bottom: The perceived mismatch
between the predicted (q∗) and actual (q) joint position is
larger than a threshold (ε). This suggests that the system
should adapt accordingly to produce a larger effort.

material or the load conditions. Therefore, the applied torque
results in a mismatch between the predicted and current
observations. This mismatch is used not only to adjust future
motor commands, but also to acquire further information
about the object being manipulated. As an example, it
realizes that a filled bottle requires more efforts than an
empty one (for an early study in human control, see [3]).

In this work, we present a sensorimotor framework to self-
learning of a specific task. The framework gives the ability to
reach to an intended goal without any prior expert knowledge
or assumptions about robot models. All computations are
solely based on internal motor and sensory signals that are
generated during active interaction with the environment. By
this, tedious calibrations can be avoided and the method can
easily adapt itself to system changes, such as a change in
the task setting or of the robot itself.

We apply the framework to learn a joint position controller
of a PR2 robot. Given high-dimensional sensory and motor
spaces and the dynamic nature of this task, it is a good candi-
date to study different aspects of the framework. We extend
our earlier work [4] by introducing advanced optimization,
dimensionality reduction and adaptation. The following are
the prominent features of the proposed framework:

1) Autonomous and incremental learning of optimal mo-

ar
X

iv
:1

60
1.

00
85

2v
1

 [
cs

.R
O

]
 5

 J
an

 2
01

6

tor commands, purely based on sensorimotor signals
in a real-time setting.

2) Automatic determination of relevant motor and sensory
components to increase computational efficiency.

3) Active detection of changes in the environment and
adaptation of the system during task completion.

4) Additional long-term planning to optimize non-convex
cost functions under some constraints.

II. RELATED WORK

A task in this work is defined as finding a sequence
of actions that result in desirable observations or states.
To autonomously learn such a task, Jordan and Rumelhart
[5] introduced distal supervised learning. Similar to our
approach, they attempted to overcome redundancies in the
task space by using a trained forward model to guide a single
solution. However, there is no guaranty for the solution to
be optimal; and once an inverse model is learned, it is not
possible to alter it to converge to a better solution. As we
do not rely on an inverse model, but aim to find the optimal
action according to a cost function at every time instant, we
circumvent this issue.

Möller and Schenck [6] combined a forward model and
an inverse model to learn a collision-free mobile robot
navigation task, as well as to distinguish dead-ends from
corridors. Here, the forward model was used to continuously
simulate sensory outcomes of a sequence of actions such
that the inverse model could be trained with the proper
training data. In contrast to our task setting, the complexity
of the action space in [6] is not high which facilitates the
performance of the inverse model.

Deisenroth and Rasmussen [7] introduced PILCO (proba-
bilistic inference for learning control). PILCO applies Gaus-
sian processes to learn forward dynamic models; which in
turn is used for policy evaluations and improvements. It is
successfully applied to cart-pole and block stacking [8] tasks.
Instead of concentrating on policy learning, we focus here on
the structure of a low-level controller based on sensorimotor
signals. Our emphasis lies on the notion of adaptation to
provide self-learning in a dynamic environment.

A method resembling our approach was used by Forssén
[9]. Minimizing a predefined cost function predicted by
the forward model, they learned a saccadic gaze controller.
Here, they used a kernel-based regression model to learn a
visual forward model that predicts visual point displacements
resulting from different motor commands. While, as in this
work, no inverse model was learned, the aim of Forssén was
not to find optimal actions in an ill-posed problem setting,
but to speed up the training phase.

Model predictive control (MPC) methods [10] follow
a similar approach of using forward dynamic models to
optimize a future cost function. Recently, Ostafew et al.
[11] presented a mobile robot path tracking method based
on non-linear MPC. Given an imperfect model of the robot,
the method learns unmodelled dynamics based on Gaussian
processes. Similarly, Lenz et al. [12] learned a complete set
of dynamic models to master the task of cutting different

food items based on deep learning. Comparable to these
ideas, instead of optimizing the cost function over a time
horizon, we use forward models in combination with a
planning phase based on the RRT* algorithm to simulate
action-observation pairs and determine a sequence of states
towards the target. A sampling based approach as the RRT*
offers good performance even in higher dimensions.

III. METHOD

This section introduces the proposed framework for sen-
sorimotor learning. Fig. 1 illustrates the structure of the
framework. It consists of a forward model that predicts
sensory outcomes of a given action and an action planner
to find a sequence of optimal actions to minimize a given
cost function. The planner itself is divided into a global
search method, that finds an optimal path to the goal state,
and a local optimizer to steer between the states in the
path. Furthermore, the framework addresses the problems of
determining relevant sensory and motor channels and allows
active adaptation in a dynamic environment.

Algorithm 1: The framework structure to incremental
model learning and reaching a goal state.

S,A,∆S← MotorBabbling();
TrainForwardModel(S,A,∆S);
input: goal state S∗

while St 6= S∗ do
St ← GetCurrentState();
P ← PlanPathToGoal(St, S∗);
for each state Ŝ∗t+1 in P do

At ← SteerToState(St, Ŝ
∗
t+1);

ExecuteAction(At);
St+1 ← GetCurrentState();
Ŝt+1 ← F (St, At);
ζ ← EvaluatePrediction(Ŝt+1, St+1);
if ζ < T then

UpdateForwardModel(St, At,∆St);

St ← St+1;

Algorithm 1 gives an overview of the learning procedure.
First, in an initialization phase, known as motor babbling, the
robot generates some random actions and stores them along
with the resulting sensory outcomes. A regression model,
in this case Gaussian processes (GP), is initially trained
with these random samples. This model is then continuously
updated and refined, while the robot tries to reach a given
goal state. Here the notion of relevant dimensions and
adaptation comes into play. The former is used to release
computational overloads, while the latter is required to stay
functional under dynamic settings. A long-term planner finds
a path of states to the goal, that is compatible with some
given constraints.
Below follows a brief description of the functions used in
Algorithm 1, with notations introduced in the respective

sections that follow.

MotorBabbling(): Performs a number of random actions and
records the set of the action-observation pairs.
TrainForwardModel(S,A,∆S): Trains a regression model
from observed outcomes ∆S, given applied actions A and
current states S (Sec. III-A).
PlanPathToGoal(St, S

∗): Finds a possible path (a number
of waypoint states) from the current state St to a goal S∗,
that takes into account a set of constraints while planning
(Sec. III-C).
SteerToState(St, S

∗): Defining a cost function as the dis-
tance between the current state St and goal S∗, this function
finds the optimal actions, that minimize the cost (Sec. III-B).
UpdateForwardModel(St, At,∆St): Updates the model by
newly acquired data, if the prediction is poor; thus it incre-
mentally improves the model (Sec. III-A.2 and III-A.3).

A. Forward model learning

Forward models predict the sensory outcomes of different
actions of an embodied agent. In more general terms, they
estimate how a robot’s state will change as the result of a
certain action, as the following:

∆St = F (St, At), (1)

where St = [s1t , ..., s
ns
t] is the state vector at time t, ∆St =

St+1 − St and At = [a1t , ..., a
na
t] is the performed action at

the same time step. Here we apply GP regression to learn
these sensorimotor contingencies. In our earlier works [4],
[13] we observed that GPs offer good generalization prop-
erties within the sensorimotor setting. Since, the Bayesian
nature of the model takes uncertainty in the data into account,
it is less prone to overfit and less vulnerable to noise.

In the following we describe the steps of the forward
model learning.

1) Gaussian process regression: For each observed state
dimension i a separate GP is trained, modeling a function
Fi. Let a set of N training samples be given in terms of a
N × (ns + na) matrix X with rows given by concatenated
state-action pairs X = (S,A), with corresponding outputs in
a N×1 vector Y i = [∆si] . Assuming a zero-mean prior, the
posterior mean of the GP is used as the regression output for
the corresponding dimension of the test data Xt = (St, At),

ȳit = k(Xt,X)K−1Y i (2)

and subsequently, the posterior variance gives the regression
quality as

vit = k(Xt, Xt)− k(Xt,X)K−1k(Xt,X)T . (3)

Here the vector k(Xt,X) and matrix K = k(X,X) denote
the test-train and train-train covariances respectively. We use
the squared exponential kernel as the covariance function
defined as

k(Xm, Xn) = σf exp(

na+ns∑
j=1

−λj(x
j
m − xjn)2

2
) + σ2

nδmn,

(4)

where δmn denotes the Kronecker delta function and Θ =
(σf , σn, λ1, ...λna+ns) are hyperparameters which are found
by optimizing the marginal log likelihood of the training data.
Instead of a slowly converging gradient descent we make
use of the Resilient backpropagation (Rprop) algorithm that
has been shown to successfully determine hyperparameters
of GPs [14]. Rprop is a fast first order optimization method
based on the sign of the local gradient and adaptive step sizes
which are adjusted independently across dimensions.

To optimize the cost function the derivative of the regres-
sion output is required, as described in the Sec. III-B. In this
case, the partial derivative of the GP posterior mean w.r.t.
the jth dimension of the test input Xt can be found as

∂Fi

∂xjt
= λj(X

j − xjtJ)T (k(Xt,X)� (K−1Y i)) (5)

where the operator � is an element-wise product, and Xj is
the jth column of X, and J is a N × 1 vector of ones.

2) Relevance determination: Considering the limited pro-
cessing resources of a robot and a large number of degrees
of freedom and sensory inputs, it is crucial to involve only
task-relevant actions and sensory data in the computations. In
this framework, properties of the GP regression are exploited.
We use automatic relevance determination [15] to determine
which action and state dimensions are relevant for a given
task. Considering Eq. 4, small values of λj suggest that
the jth input dimension is irrelevant to the predicted output
ȳit of the ith GP at time t. Therefore, this dimension can
be ignored while optimizing and employing Fi to decrease
computational efforts and reduce the level of noise.

Algorithm 2: Incremental forward model learning.
input: St, At,∆St

Xt ← (St, At), Yt ← ∆St ;
for i = 1, ..., ns do

r ← FindRelevantDimension(Θi);
assign Xr

t as the relevant subset of Xt given r;
assign Xr as the relevant sub matrix of X given r;
ȳit ← GP(Xr

t ,X
r, Y i,Θi);

if |yit − ȳit| > τq then
kmax ← max k(Xr

t ,X
r);

if kmax > τk then
id← arg max k(Xr

t ,X
r);

remove sample id from training set of Fi;

add (Xt, y
i
t) as the training sample for Fi;

Θi ← TrainGP(Xr, Y i);

3) Incremental learning and adaptation: The forward
model is initially trained by a few randomly generated
training samples. In each subsequent iteration a new action-
observation pair is available and a prediction is performed.
A poor prediction could be caused by either the lack of a
sufficient amount of training data or by a sudden change
in the environment not captured by the current model. In
the former case, the model should be updated while in the

latter case it needs to be adapted. The two situations can
be distinguished with the help of the test-train covariance
vector k(Xt,X), that is a measure of distance between the
query input Xt and the training data inputs X. If the query
input is close to a training point but the prediction is poor
the model has to adapt and replace the interfering data point
with the new data sample. Regardless of which, the current
action-observation pair will be added to the training data.

Algorithm 2 summarizes both the relevance determination
and the incremental learning of the framework. A list of the
functions used in algorithm can be found below, each of
which is applied to the ith GP model, represented by Fi.

FindRelevantDimension(Θi): Finds the relevant dimensions
r of the training data, given the optimized hyperparameters
Θi (Sec. III-A.2).
GP(Xt,X, Y

i,Θi): Returns the prediction of the ith output
dimension at a new input Xt, given the training data (X, Y i)
and hyperparameters Θi (Sec. III-A.1).
TrainGP(X, Y i): Optimizes Θi by maximizing the log like-
lihood of the training data (X, Y i) (Sec. III-A.1).

B. Optimized action selection

Action selection is done by finding the actions that mini-
mize a given cost function defined as the distance between
the current state St and the goal state S∗ with C = (St −
S∗)W(St−S∗)T , where W is a predefined diagonal weight
matrix.

We assume each action dimension aj to be bounded in a
symmetric range [−γj , γj] as following:

aj = γj
1− exp(−σj)
1 + exp(−σj)

, (6)

Here σj is an unbounded action parameter, which is used
to minimize the cost function. The gradient of the cost with
respect to σj is

∂C

∂σj
=

ns∑
i=1

ωi(s
i
∗ − sit)

∂Fi

∂aj
2γj exp(−σj)

(1 + exp(−σj))2
(7)

where the ωi are the diagonal elements of the weight matrix
W and ∂Fi/∂a

j is given by Eq. 5. The rprop algorithm is
again used to minimize the cost function.

C. Long-term planning

For long-term planning RRT* (Rapidly exploring Random
Tree) [16] is used as a global planner to find an optimal
path to the goal state. It is well-suited to solve non-convex
optimization problems under a set of constraints, that allow
to shape the performance of the system, e.x. the overshoot
or rise time. The root of the tree is given by the current
state of the robot Sinit = St. At each iteration, it generates
a random sample, Srand, around the goal state. In the case
that the sampled state does not violate the given constraints,
it is accepted. Then, the closest node in the tree, Snear, is
determined. To move from Snear to Srand, an optimized
action is found by minimizing the cost function as explained
in Sec. III-B. Given the optimized action and the state Snear,

the forward model predicts a new state, Snew. The quality
of the prediction is found according to Eq. 3. If the quality
is acceptable, Snew will be adopted to a parent which is
given by the RRT* method. An update of any parent-child
relationship is performed depending on reachability and the
cost of other points in the vicinity of Snew. When either
the goal state can be reached from a current Snew or after a
size limit is reached, the optimal path through the samples
space is computed. After determining the closest neighbour
to the goal state, its line of heritage is backtracked towards
the initial state Sinit. Finally, the forward model is used to
guide the robot along the determined path.

In summary, we introduce a sensorimotor learning frame-
work based on data-efficient GP regressions and two different
optimization techniques to select goal-directed actions in
a dynamic environment. Our approach is able to handle
high-dimensional motor and sensory spaces and to adapt
its behaviour, when prediction errors are too large. In the
following, we present a number of experiments to analyse
the performance of the learning method.

IV. EXPERIMENTS

In this section, we exploit the introduced framework to
learn a joint position controller and to study the method
in operation. After introducing our setup (A) we provide
examples of: B) initial learning and system performance,
when maturely trained, C) cost prediction by forward models
and performance optimization, D) relevant dimension deter-
mination E) adapting to load conditions and F) long-term
planning.

A. Experimental setup

All experiments were performed on the right arm of a
PR2 robot, including the shoulder pan (1), shoulder lift (2),
forearm roll (3), wrist flex (4) and wrist roll joint (5). In
the following, let qi denote the position of joint i, q̇i denote
the velocity and the effort be denoted by τi. Following the
PR2 manual, the joint positions are limited to lie within
the reachable range of radians. Furthermore, the velocity
is limited to be within (-3,3) rad/s and the allowed torque
is limited to (-7,7) N for the shoulder pan and shoulder
lift joints and (-3,3) N for the remaining joints to prevent
damages to the robot. The entire framework is implemented
in C++.

Following the description in Sec. III-A, the input states to
the forward model at time t are defined as a vector consisting
of the current position, velocity and applied action or torque
for each joint, Xt = [St, At] = [q1t , ...q

5
t , q̇

1
t , ...q̇

5
t , τ

1
t , ..., τ

5
t].

The prediction of the forward model is the resulting state
St+1 = [q1t+1, ...q

5
t+1, q̇

1
t+1, ...q̇

5
t+1].

The diagonal weight matrix W introduced in Sec. III-
B consists of wi = 1 for i = 1, ..., 5 and wi = 0.1 for
i = 6, ..., 10. By this, an error in the position of a joint has
more influence than an error in the velocity.

Fig. 2: After an initial motor babbling period (approx. 12 s) the robot is supposed to move to different joint positions. Left:
Performance over time, where the target positions are indicated by color and the actual data is shown in gray scale. For the
sake of visualisation the joint positions are presented with an offset to each other. Right: The produced efforts.

B. Learning performance

The goal of this basic sensorimotor framework is to
learn how to apply a sequence of actions to get a desired
sensory outcome. With this experiment, we aim to test the
general learning performance of our method. During a motor
babbling phase, 20 randomly sampled state-action pairs are
generated in order to initially train the forward models.

As can be seen in Fig. 2, the desired configurations are
reached within only a few iterations after a target state is
introduced. In spite of the large number of dimensions and
the dynamic nature of the problem, the system learns to
navigate in the joint space successfully. At the onset of a
new target, nearly all joints exhibit an overshoot behaviour.
If such perturbations of the system are not desired a more
advanced planning will be applied as shown in Sec. IV-F.

C. Optimization of action selection

Here, we investigate the nature of our gradient-based
action selection approach. The goal is to acquire an under-
standing of the cost function and to show that, facing the
pressure to react fast, the optimization can select appropriate
actions. To find the optimal action while operating in up to
15 dimensions with redundant paths towards a goal state, is
non-trivial. Nevertheless, the optimization algorithm applied

Fig. 3: Four initializations for the optimization of the action
with two joints. The rprop algorithm finds the minimum for
several initial positions.

here, rprop, is able to find minima of the cost function.
While plain gradient descent moves only slowly over the
shallow parts of the cost manifold, rprop is independent
of the magnitude of the gradients and converges faster. In
order to guarantee a high chance of a sufficient solution,
we initialize the action parameters σi at three different
randomly chosen positions within the action bounds. For
each initialization, we run rprop for max. 20 iterations or
until convergence and apply the action with the deepest
minimum. In Fig. 3, we demonstrate how several random
initializations converge towards the minimum in a two-joint
setting. Although the cost function might contain several
local minima, especially in higher dimensions, the random
initialization in each iteration is often sufficient to find
appropriate actions towards a given goal state.

D. Relevant dimension determination

Our goal in this part is to explore which input dimensions
are determined relevant by the forward models of the differ-
ent states. Since our problem setting spans a high number of
dimensions, it is of interest to decrease this number. As an
example, the position of the shoulder pan will not depend
on the joint position of the wrist. Including this redundant
information introduces noise and does not lead to a fast
and accurate optimization. Thus, the automatic relevance
determination of the input dimensions is crucial to reduce
computational loads. In this work, we applied the relevance
determination in every iteration t+1, while only considering
the set of dimensions that had been determined as relevant
in the last iteration t. The results of this procedure are
depicted in Fig. 4 for iteration 0, 1, 10 and 20 (post motor
babbling period) respectively. In iteration 0 it is apparent that
many of the hyperparameters are very small. Therefore, these
dimensions will not contribute significantly to the prediction.
After removing all dimensions with hyperparameters below
a small threshold, we observe that the system converges
towards a final set of relevant dimensions. In most cases,
∆qit+1 and ∆q̇it+1 are governed by q̇it and τ it .

It is important to notice, that the performance depicted in

Fig. 4: The normalized hyperparamters (λ′s) of each GP (row) for each input dimension (column). The darker the field, the
larger the entry and the more relevant is the dimension for the GP.

Fig. 2 is produced with dimensionality reduction. To better
understand the importance of including only the task relevant
data in the learning phase, we compared two sample results,
with and without the relevance determination. As shown in
Fig. 6, the method is applied to control only two joint
positions; as including more joints is hardly computational

Fig. 5: Adaptation to new conditions in a two-joint setting.
The period under which an object is placed into the gripper is
indicated by the gray area. The system learns how to adjust
the torque after the change in conditions. While the same
positions are aquired in both conditions, the applied torque
to reach to the target states changes before and after the
loading event.

traceable in the latter case. Still, even with a two-joint setup,
the difference in the performances is quite notable. The
former case, converges faster with a more stable output.

An interesting aspect to test in future experiments is
how the relevant dimensions are influenced by a changing
environment. While the joints are mostly independent in
the current setting, an action constrained setting, such as
carrying a table together with another agent, might change
the dependences of the different joints over the time. In order
to build an adaptive agent, these changes need to be detected
and appropriate adjustments need to be introduced into the
framework.

E. Adaptation

Our goal is to adaptively learn and interact in a real
world setting. Therefore, we study here the evolution of
the applied torques under changing loads. In order to test
for this ability, we first let the arm move to two specified
goal positions with the help of our framework and keep it
stable in the later configuration. In a short time period an
experimenter places a load (approx. 300 g) into the gripper
of the robot without moving it considerably. Starting of with
the previously learned forward model, the framework adapts
to the new load condition and optimizes the applied torques
in order to achieve the two previous configurations. Our
developed method demonstrates successfully, that it is able
to detect outliers in the training data and replace them with
the pair, gathered under the new conditions. In Fig. 5 the
behaviour of the system is shown in a two-joint setting. Both
before and after placing the load into the gripper, the desired
positions are acquired. After a new target state is set, the
system tries at first to navigate using the previously learned
models. When this attempt is failing, as the torque is too
high or low, the adaptation enables the system to adjust the
required torque and to reach the target state after only a few
iterations.

With this experiment, we investigated only slight changes
in the task setting and allowed the system to adjust over
time. Since the system adapts quickly, it might be able to
handle even more drastic changes within short time intervals.
However, this remains to be tested.

Fig. 6: Learning performance with and without dimension reduction presented in the left and right figures, respectively. In
the case which dimension reduction is applied, RRT* planning started after around 32 seconds (the blue line), with the aim
of reducing the overshoot to zero.

F. Planning

Here we demonstrate that the RRT* algorithm successfully
produces an action sequences that meets our specified con-
straint of no overshoot. As can be seen in Fig. 2, the basic
learning framework tends to exhibit overshoots when new
references are introduced. To avoid this behaviour and enable
more complex movements, we introduce planning with help
of the RRT* algorithm. We sample random configurations
within an ellipsoid between the current state and the goal
state with a higher probability around the goal. When the
target can be reached from any of the samples, we follow
the path of the lowest cost. In Fig. 7 one example of an action
tree is shown for a single joint. After an initial acceleration
the velocity is decreased in order to come to a halt at the goal
state. By altering the sampling strategy different planning
behaviours can be introduced. Fig. 6 (left) demonstrates an
example time-domain performance to constrain the overshoot
to zero.

Fig. 7: Path generated by the RRT* for a single joint. The
color of the nodes indicates how much torque is required to
reach to the specified positions.

V. CONCLUSIONS AND FUTRUE WORK

In this work, we presented a framework for sensorimotor
learning based on forward models and two action selection
methods at different hierarchy levels. Our approach deter-
mines relevant input dimensions at no extra cost. Further-

more, it is able to actively adapt to a dynamic environment
and incorporate task constraints.

The experimental results provide evidence of fast, data-
efficient learning in a high-dimensional action space. We
showed that the quickly converging relevant dimensions and
adaptation contribute to the efficiency and flexibility of our
framework. Long-term planning with the RRT* algorithm re-
sults in successful action generation in a constrained setting.

While the current framework addresses the learning of
a low-level control system, in the future we are aiming at
an integration of high-level cognitive stages. The presented
approach can be extended to include human-robot interaction
scenarios. Since our system is able to detect and react to
external influences, it can learn how to interact with a human
while e.x. carrying an object together. Mismatch detection
between the prediction and outcome of sensory observations
enables the agent to interpret the signals implicated by
different forces applied by a human partner and to choose
appropriate actions. This transforms the robot from a reactive
and compliant partner to an active, autonomous agent.

ACKNOWLEDGMENT

This work was supported by the EU through the project
socSMCs (H2020-FETPROACT-2014) and the Swedish Re-
search Council.

REFERENCES

[1] D. W. Franklin and D. M. Wolpert, “Computational mechanisms of
sensorimotor control,” Neuron, vol. 72, no. 3, pp. 425–442, 2011.

[2] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, “Principles of
sensorimotor learning,” Nature Reviews Neuroscience, vol. 12, no. 12,
pp. 739–751, 2011.

[3] R. S. Johansson and K. J. Cole, “Sensory-motor coordination during
grasping and manipulative actions,” Current opinion in neurobiology,
vol. 2, no. 6, pp. 815–823, 1992.

[4] A. Ghadirzadeh, A. Maki, and M. Björkman, “A sensorimotor ap-
proach for self-learning of hand-eye coordination,” in Intelligent
Robots and Systems, 2015. IROS 2015. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IEEE, 2015.

[5] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised
learning with a distal teacher,” Cognitive science, vol. 16, no. 3, pp.
307–354, 1992.

[6] R. Möller and W. Schenck, “Bootstrapping cognition from behaviora
computerized thought experiment,” Cognitive Science, vol. 32, no. 3,
pp. 504–542, 2008.

[7] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408–
423, 2015.

[8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control
a low-cost manipulator using data-efficient reinforcement learning,” in
Robotics: Science & Systems (RSS), 2011.

[9] P.-E. Forssén, “Learning saccadic gaze control via motion prediciton,”
in Fourth Canadian Conference on Computer and Robot Vision, 2007,
pp. 44–54.

[10] E. F. Camacho and C. B. Alba, Model predictive control. Springer
Science & Business Media, 2013.

[11] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based
nonlinear model predictive control to improve vision-based mobile
robot path-tracking in challenging outdoor environments,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on.
IEEE, 2014, pp. 4029–4036.

[12] I. Lenz, R. Knepper, and A. Saxena, “Deepmpc: Learning deep latent
features for model predictive control.”

[13] A. Ghadirzadeh, G. Kootstra, A. Maki, and M. Bjorkman, “Learning
visual forward models to compensate for self-induced image motion,”
in Robot and Human Interactive Communication, 2014 RO-MAN: The
23rd IEEE International Symposium on. IEEE, 2014, pp. 1110–1115.

[14] M. Blum and M. Riedmiller, “Optimization of gaussian process
hyperparameters using rprop,” in European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning,
2013.

[15] C. E. Rasmussen, Gaussian processes for machine learning. MIT
Press, 2006.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

	I INTRODUCTION
	II Related work
	III Method
	III-A Forward model learning
	III-A.1 Gaussian process regression
	III-A.2 Relevance determination
	III-A.3 Incremental learning and adaptation

	III-B Optimized action selection
	III-C Long-term planning

	IV EXPERIMENTS
	IV-A Experimental setup
	IV-B Learning performance
	IV-C Optimization of action selection
	IV-D Relevant dimension determination
	IV-E Adaptation
	IV-F Planning

	V CONCLUSIONS AND FUTRUE WORK
	References

