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1Université de Nice Sophia Antipolis, CNRS,
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Abstract

We present temporal intensity correlation measurements of light scattered by a hot atomic vapor.

Clear evidence of photon bunching is shown at very short time-scales (ns) imposed by the Doppler

broadening of the hot vapor. Moreover, we demonstrate that some relevant information about

the scattering process, such as the ratio of single to multiple scattering, can be deduced from the

measured intensity correlation function. These measurements confirm the interest of temporal in-

tensity correlation measurements to access non-trivial spectral features, with potential applications

in astrophysics.
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I. Introduction

Intensity correlation was first developed in astrophysics, where the correlation of light col-

lected by two telescopes with various separations made possible the measurement of stellar

angular diameters [1] [2]. Temporal intensity correlation measurements, or intensity corre-

lation spectroscopy, from astrophysical light sources, with a single telescope, has not been

demonstrated yet due to technical challenges for the time resolution and spectral filtering,

but it may be used to resolve narrow spectral features [3] [4]. On the other hand, tem-

poral intensity correlation spectroscopy is becoming a commonly used technique in atomic

physics [5] and quantum optics. Ideal photon bunching, with maximum temporal contrast,

has even been recently reported in a cold-atom experiment [6]. One of the main challenge in

intensity correlation measurements holds in the detection time resolution that needs to be

on the order of the temporal coherence time, the latest being inversely proportional to the

spectrum bandwidth. For blackbody sources, a time resolution of about 10−14s is necessary

[7]. Such measurements have only been achieved with two-photon absorption techniques in

semiconductors [8], and in ghost imaging experiments [9]. Those are incompatible with as-

trophysics applications in terms of light intensity requirements. Recently, temporal photon

bunching in blackbody radiation has been demonstrated with intensity correlation measure-

ment via strong spectral filtering of the light source [10]. Here we demonstrate temporal

intensity correlation measurements with a hot (room temperature and higher) atomic vapor.

If our measurements from a broad pseudo-thermal source are another step towards intensity

correlation spectroscopy in astrophysics, we also show that the technique can be efficiently

used to measure different properties of the scattered light, such as the ratio between single

and multiple scattering as a function of the optical thickness. We discuss how the time

resolution as well as the complexity of the fluorescence spectrum are impacting the intensity

correlation measurement. Our experimental data is compared with numerical calculations,

in particular to compute the theoretical single to multiple scattering ratio and the evolution

of the scattered light spectrum.

II. Experiment

In this experiment, we study the temporal intensity correlation of light scattered by a

hot rubidium vapor. For a stationary process the temporal intensity correlation function is,

by definition,
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g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

(1)

From Cauchy-Schwarz inequalities, one can show that the g(2)(τ) function is always smaller

than its value at zero delay (1 < g(2)(τ) < g(2)(0)). For chaotic light, the second order

intensity correlation function can be given by the Siegert equation,

g(2)(τ) = 1 + β|g(1)(τ)|2, (2)

where the first order correlation g(1)(τ) is the Fourier transform of the light spectrum The

factor β is linked to the number N of optical modes (β = 1/N) and denotes the spatial

coherence. For a detector radius smaller than the coherence length of the scattered light,

we have β = 1. In this case, and for chaotic light, the intensity correlation at zero delay is

g(2)(0) = 2 (as g(1)(0) = 1 by definition).

50/50 SMF

Cell

Laser

TDC

APD

APD

F = 2

F = 3

F’ = 1
F’ = 2
F’ = 3
F’ = 4

Raman

3 GHz

ΓD

(a) (b)

FIG. 1: (a) Experimental setup. The light scattered in the rubidium cell is collected with a

nude single mode fiber beam splitter (SMF). The two outputs of the SMF beam splitter are

coupled to two single photon avalanche photo diodes (APD). The photon counts are digitized

with a time to digital converter (TDC) and analyzed with a computer. (b) Schematic of the

Rubidium 85 D2 transition hyperfine structure. (red arrows) Excitation and emission at the

{F = 3→ F ′ = 3, F = 3→ F ′ = 4} crossover frequency. ΓD gives the magnitude of the Doppler

broadening. (black dashed arrow) Emission through Raman scattering.

In the present experiment, we used a rubidium cell, with a natural mixture of the isotopes,

with a radius of 10 cm and a thickness of 5 mm (see Fig.1 a). The beam of a commercial

3



extended cavity laser diode was centered in the middle of the cell with a waist of 2 mm and

a power of 900 µW . The scattered light was collected with a single mode fiber, placed at a

distance L = 25cm after the cell, with an angle θ = 5.6◦ from the laser propagation direction,

without any coupling lens. The distance was chosen to make sure that the conditions for

maximum spatial coherence (β = 1) were satisfied [6]. Indeed, the correlation length was

estimated to be lc = λL/(πs) = 62µm for a source radius s = 1mm, which is much larger

than the mono-mode fiber mode-field diameter (≈ 5 − 6 µm). The coupled light was split

with a 50/50 fibered beam splitter and detected by two single-photon avalanche photo-diodes

(model SPCM-AQRH from Excelitas Technologies [11]) with a quantum efficiency of about

60 % at 780 nm. To build up the g(2)(τ) measurements, time tags, with a resolution of

160 ps, where obtained from a multichannel time to digital converter, and sent for analysis

to a computer. For the measurements presented here, the laser frequency was locked at

the {F = 3→ F ′ = 3, F = 3→ F ′ = 4} cross over frequency of the rubidium 85 D2 line.

The rubidium cell was placed in an oven in order to vary the saturation vapor pressure and

therefore the atomic density. The temperature was varied from 20◦ C to 78◦ C, leading

to optical thicknesses b in the range 0.07 < b < 12. The detector count rate was ranging

between 2.7 × 103s−1 and 4 × 104s−1. In order to keep the signal high compared to stray

light and detector dark counts, decision was made to not use a polarizer after the rubidium

cell, mainly due to the low count rate at the lowest temperatures/optical thickness. The

measurement time, from 10 hours to a couple of days, was adapted to observe a total number

of counts of at least 5 × 108 for every series of measurements. The temperature of the cell

was obtained by fitting the transmission through the cell as a function of the laser frequency,

with low power [12], in the full range of the rubidium 85 and 87 D2 lines. Even though this

was not a critical parameter in the work presented here, a good precision on the temperature

was obtained by simultaneously fitting the Doppler broadening of the rubidium multilevel

cross-section and the temperature-dependent atomic density (through the optical opacity).

III. Results

In Fig.2 a, we show, as an example, the intensity correlation measured for b = 0.38. At

first, we clearly see the modification of the photon statistics induced by the scattering of

the light by the atoms. This evidence of photon bunching was indeed not observed with

the light scattered by a piece of white paper. We also see that the ideal value g(2)(0) = 2

is not reached and that the correlation decay cannot be described with a simple Gaussian
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function. In order to compare the measurements made at the different optical thicknesses,

we normalized the g(2)(τ) − 1 curves by the temporal contrast defined as g(2)(0) − 1, the

resulting intensity correlations are shown in Fig.2 b) (dots). From here, the shape of the

measured intensity correlation and the evolution of the temporal contrast (Fig. 5 b) will

be discussed separately. The measured correlation clearly reveal the superposition, with

various weights, of sensitively different decay times. At large optical depths, the scattered

light measured in transmission is mainly composed of photons that have scattered more than

once. The Doppler broadening of the scattered light is in average isotropic and one expects

a complete frequency redistribution (CFR) [13]. Fitting the g(2)(τ) curve obtained for b = 4

with a Gaussian distribution gives a Doppler width of 2π.212 MHz (pink line) which is

close to the Doppler width expected in the CFR regime at 64◦C, σm =
√

kBT
mc2

ω0 = 2π.230

MHz, with ω0 the atomic transition angular frequency, kB the Boltzman constant, T the

temperature, m the mass of the rubidium atoms and c the speed of light. For a small

optical thickness, most of the detected photons only scattered once. There, the Doppler

broadening is anisotropic and we expect it to be σs = sinθ .σm = 2π.21 MHz in the single

scattering regime at T = 20◦C, with θ = 5.6◦ the measured angle between the detector

axis and the laser propagation direction. This is in good agreement with the 23 MHz

value measured for our smallest optical thickness b = 0.076. From here, we will show that

temporal intensity correlation measurement can be used for a quantitative measurement of

the multiple scattering ratio.

In the intermediate regime between single and multiple scattering, the Doppler-broadened

spectra can be approximated by:

P (ω) ∝ a exp

(
−(ω − ω0)

2

2σ2
m

)
+ b exp

(
−(ω − ω0)

2

2σ2
s

)
(3)

with a and b the relative amplitudes of the two components (a+b = 1). With this definition,

the ratios of multiple and single scattering (proportional to the area of each Gaussian) are

Rm = aσm/(aσm + bσs) and Rs = bσs/(aσm + bσs). This leads to the temporal intensity

correlation,

g(2)(τ)− 1 = R2
me

(−σ2
mτ

2) +R2
se

(−σ2
sτ

2) + 2RmRse
(−σmσsτ2/2) (4)

Note that, as g(2)(τ) is a quadratic function of g(1)(τ), the two components of the optical
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FIG. 2: (a) Measurement of the second order intensity correlation g(2)(τ)− 1 as a function of the

time delay. (b) Experimental data normalized by the contrast (dots). Numerical fit according to

Eq. 4, with the ratio σm/σs fixed by the experimental measurement of the detector position (full

lines).

spectrum give rise to the superposition of three decay times. Fig.2 b) shows the fit of the

measured g(2)(τ) by Eq.4 (full lines), with all parameters set free, apart from the ratio

σs/σm = sinθ, fixed according to the experimental detection angle. The calculated fits as

well as the experimental data have been normalized by the contrast (R2
m + R2

s + RmRs)

shown in Fig. 5 b) (black squares). On Fig. 3 b), we show the deduced single scattering

ratio Rs as a function of the optical thickness.

We also performed measurement while detuning the laser frequency out of the atomic

resonance with a fixed atomic density (green dots). For detunings smaller than the Doppler

width ΓD, this mainly acts as a change of the optical thickness. The shift of the central

frequency of the spectrum [14] does not affect the g(2)(τ) curve according to Eq. 4. For

larger detunings, two asymmetric components are expected in the spectrum [14], this go

beyond our simple model and may not be resolved with our experimental time resolution

and signal to noise.

IV. Simulations

In order to determine the accuracy of this measurement, we performed random walk

simulations with a Monte Carlo routine based on first principles. The simulations use a two-
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level atom model. The absorption profile of the vapor is a Voigt profile (velocity integration):

α(ω) ∝
∫
dvev

2 1

1 + 4ω
2

a2
(5)

with a = Γ/ΓD, where Γ is the natural line width, ΓD = 2u/λ is the Doppler width at

1/e of its maximum, u =
√

2kBT/m is the half-width of the Maxwell-Boltzmann velocity

distribution, λ is the wavelength of the atomic transition. The detuning ω is taken in units

of Doppler width, we have u = 1 and λ = 1 such that ΓD = u/λ = 1. A cell with the

same dimensions of the cell of the experiment is considered (radius 10 cm thickness 5mm).

The incident beam is infinitely narrow, it is centered and spectraly monochromatic. By

computing the path and the Doppler frequency shift of a large number of photons, we are

able to build up statistics about the number of scattering events and frequency distribution

of the output photons. In Fig. 3 b) we show, for different values of optical thicknesses, the

probability that a photon, initially at resonance, and detected in the solid angle 0◦ < θ < 5◦,

has scattered n times. The solid angle was chosen larger than in the experiment in order

to reduce the computing time. The data shown here was not very sensitive to this angle,

especially at small optical thickness. The deduced values of single scattering ratio (n = 1))

are summarized in Fig. 3 b) (red squares). We can see that the ratio deduced with our

experimental measurement and our simple model is well reproduced by the simulations.
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FIG. 3: (a) Simulated probability that a photon detected in the solid angle 0◦ < θ < 5◦ has

scattered n times. (b) Single scattering ratio Rs as a function of the optical thickness.

It must be stressed that the simulations do not take the multilevel structure of rubidium

into account, neither non elastic scattering such as Raman scattering or the Mollow triplet
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[15]. In contrast with intensity correlation measurements with cold atoms, the Mollow

triplet is expected, here, to give rise to a decay time on much longer time scale (µs scale)

than the Doppler broadening. Furthermore, the applied laser intensity of about 10 times

the saturation intensity is only expected to induce a saturation of the atoms with a small

longitudinal velocity and in the center of the laser beam. None of the measurements revealed

such a slow decay time.

On the other hand, anti-Stokes Raman scattering between the ground levels (F = 3 →

F = 2) may not be negligible (see black dashed arrow in Fig.1 b)). In Fig. 4 a), we show

the evolution of the emission spectrum of rubidium at room temperature by taking the

multilevel structure and the Raman scattering into account. The spectra are calculated for

an infinite medium by including the laser spectral width, the frequency dependent atomic

cross-section, the Maxwell-Boltzman distribution of the atomic velocities and the different

transition factors within the multilevel structure. The numerical method used for single

and multiple scattering is detailed in [16] (see equations 19 and 21). We used, as in the

experiment, a 1 MHz broad excitation at the Rubidium 85 crossover frequency. For the

spectrum after the first scattering we considered two cases. First, an emission at θ = 90◦

which gives a good estimation of the spectrum averaged in all the scattering angles (red

curve Fig. 4 b)). This is necessary to calculate the next spectra [16] but does not reflect the

spectrum measured in our experiment. In order to simulate the single scattering spectrum

as measured in the experiment, we include the angle dependence by considering the energy

conservation of a photon scattered at θ = 5.6◦ from the incident laser propagation direction

(see black curve in Fig. 4 b)) [23]. For the multiple scattering regime, we calculated the

evolution of the spectra after up to 10 scattering events which was enough to obtain a

complete frequency redistribution (no noticeable change of Raman scattering ratio, neither

change of the spectrum linewidth was observed above).

V. Discussion

In order to determine the impact of the multilevel structure of the rubidium and the

Raman scattering on our intensity correlation measurement, we estimated the spectrum of

the measured photons as a function of the optical thickness by multiplying the spectra shown

in Fig. 4 a) with their respective weights as given in Fig. 3 a). As an example, we show the

theoretical correlation for b = 10 on Fig. 5 a) (black curve).

By itself, the impact of the hyperfine structure of the excited states only gives rise to
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FIG. 4: Simulated evolution of the emission spectrum, averaged in all directions at room temper-

ature, by taking the multilevel structure and the Raman scattering into account. (black curve)

Spectrum after the first scattering for θ = 5.6◦

.

a larger effective broadening of the spectrum. This induces a negligible decrease of the

correlation decay time. To the contrary, we calculate that 26% of the photons are scattered

through Raman scattering at the first scattering event. This ratio increases with the number

of scattering events (up to ≈ 50%). One of the consequences is a small decrease of the overall

atomic cross section σsc that is not included in the random walk simulations.

The main impact of the Raman scattering on our measurement, is the beating at 3 GHz

between the Rayleigh and the Raman components of the fluorescence spectrum. This results

in an oscillatory behavior of the intensity correlation, on a timescale that is not accessible

with our experimental setup. In Fig. 5 a) we show, as an example, the calculated g(2)(τ)

curve for b = 10 (black line) where we can consider a complete frequency redistribution. We

then calculate the convolution between g(2)(τ) and a Gaussian function of FWMH = 350 ps

(grey dashed line) to simulate our detector jitter (red line) [11]. The red squares simulate

the time binning (160 ps) imposed by the time to digital converter. If the timing resolution

suppresses the oscillations, it also induces a reduction of the measured contrast, proportional

to the Raman scattering rate. Fig. 5 b) shows the resulting contrast for the calculated g(2)(τ)

(green triangles) and the contrast of the measured g(2)(τ) (black squares). The calculated

contrast has also been divided by a factor two to account for the fact that no polarizer was

placed between the cell and the detector [17] during the experiment (red dots). Note that
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signal as given by the time to digital converter. b) (black squares) Contrast of the experimental

measurement. Simulated contrast for a fully polarized ligth (green triangles), unpolarized light

(red dots).

additional measurements with a faster detector (70 ps jitter) but lower quantum efficiency

revealed the g(2)(τ) oscillation due to Raman scattering (not shown). The experimental

signal to noise ratio did not allow us to make any quantitative measurement of the Raman

scattering rate.

The normalized g(2)(τ) curves calculated for the different values of optical thickness,

including the multilevel structure, the Raman scattering, and the detection time resolution

are shown in Fig. 6. The single scattering and CFR regimes are respectively calculated from

the spectra after n = 1 and n = 10 scatterings. Despite the presence of non-elastic scattering

and the complex multilevel structure of rubidium, we can see a very good agreement between

the simulated and measured g(2)(τ) curves (Fig. 2 b). The analysis of the measured contrast

still shows some unexplained features. Apart for the smallest optical thickness b = 0.07, the

level of stray light was very low compared to the atomic fluorescence and one would expect

the contrast to follow the behavior shown by the red dots on Fig.5 a). We believe that the

higher contrast observed for b < 1 is due to a high remaining polarization of the scattered

photons. This could be verified in further experiments with the use of a polarizer before the

detector. Even though the light is expected to be fully depolarized after a high number of
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The single scattering and CFR regimes are respectively calculated from the spectra after n = 1

and n = 10 scatterings. The data has been normalized by the contrast shown in Fig. 5 b)

scattering events, the contrast decreases faster than expected as the high optical thicknesses

increases. It should be mentioned that the same phenomena has been predicted [18] and

observed in a cold atom experiment [19] where radiation trapping (with optical thicknesses

as low as 0.4) was considered as the origin of the g(2)(0) decay. Nevertheless, this assumption

was contradicted in a more recent publication, where full contrast intensity correlation was

reported in optical molasses with an optical density going up to 3 [6]. Further measurements

with a polarizer would, again, allow us to discard the impact of the fluorescence polarization

in order to get a better understanding of this phenomena. Ultra narrow spectral filtering

could also be used to isolate the Rayleigh component of the spectrum and cancel the g2(τ)

oscillations caused by Raman scattering. We already checked that the stray light (e.g. from

the laser diode amplified spontaneous emission), or the level of fluorescence, as well as the

increase of the source size with b due to diffusion [20], are not responsible for the anomalous

decrease of contrast.

VI. Conclusion

Intensity correlation measurements with broadband light is challenging as it requires a

detection with a high time resolution. Here we have demonstrated intensity correlation with

a hot atomic vapor where the coherence time is much lower than with cold atoms. This goes

toward applications to astrophysics where sub-GHz spectral filtering is still challenging in
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the visible range [21] and where spectral features such as astrophysics lasers may be investi-

gated [3] [4]. We have shown that we were able to quantitatively measure single to multiple

scattering ratio by demonstrating a good agreement between experimental and simulated

results. These measurements may also be useful, in further studies, to investigate the po-

larization or the anomalous correlation of the scattered light at different optical thicknesses.

In particular, it is still not clear why the contrast is reduced at high optical thicknesses.

One may also question the impact of the non-Gaussian statistics of the photon step length

in atomic vapors [22].
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