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Abstract

We have studied the single particle heat engine and refrigerator driven by time asymmetric protocol of
finite duration. Our system consists of a particle in a harmonic trap with time-periodic strength that
drives the particle cyclically between two baths. Each cycle consists of two isothermal steps at different
temperatures and two adiabatic steps connecting them. The system works in irreversible mode of operation
even in the quasistatic regime. This is indicated by finite entropy production even in the large cycle time
limit. Consequently, Carnot efficiency for heat engine or Carnot Co-efficient of performance (COP) for
refrigerators are not achievable. We further analysed the phase diagram of heat engines and refrigerators.
They are sensitive to time-asymmetry of the protocol. Phase diagram shows several interesting features,
often counterintuitive. The distribution of stochastic efficiency and COP is broad and exhibits power law
tails.

In recent years a lot of interest has been generated in the study of stochastic single particle heat engines
and refrigerators [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Engines at nanoscale are ubiquitous in biology [12, 13, 14] and
become increasingly pertinent synthetically. With the progress of technology micrometer sized stochastic heat
engines have been realised experimentally [15, 16, 17, 18]. At these length scales thermal fluctuation plays
a pivotal role in determining the performance characteristics of the system. Typical energy transformations
(work and heat) in these systems are of the order of kBT , where T is the temperature of the surrounding
reservoir.Therefore taking account of thermal fluctuations is an absolute necessity to achieve engineering
capabilities in designing such small scale devices [19].

The apt theory for the thermodynamics of small scale devices comes under the frame work of stochastic
thermodynamics where the macroscopic thermodynamic variables (e.g. work, heat, total entropy, internal
energy etc.) are defined over a single trajectory and thereby differs stochastically from one measurement to
another [20, 21, 22, 23, 24, 25, 26, 27]. Besides validating macro thermodynamics after averaging over all
possible trajectories, the new frame work offers first law like equality defined over a single trajectory and
fluctuation theorems [28, 29, 30, 31, 32, 33], a set of equalities between stochastically varying thermodynamic
variables that put rigorous constraints to their distributions.

Using stochastic thermodynamics microscopic heat engines and refrigerators have been explored. Ex-
tensive studies including both quasistatic and nonquasistatic regime have been done on systems consisting
of a harmonically trapped Brownian particle driven periodically (with period τ) by the time dependent
strength of the confining potential within two thermal reservers having different temperatures Th and Tl
where Th > Tl [10, 11]. The protocol studied in [10, 11] consists of two isotherms having equal length along
time axis (that is why the protocol can be termed as time-symmetric) and two adiabatic path connecting
them by instantaneous jumps. We found that in this case the system operates in four thermodynamically
favourable modes: a.) Engine - heat from hot bath is converted partially into work and the rest is supplied
to the cold bath, b.) Heater I - work done on the system is divided into two parts that heat up both the
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baths, c.) Heater II - the system takes heat from hot bath and with the help work done on it, the heat is
transferred from hot to the cold bath, d.) Refrigerator - the system takes heat from the cold bath and with
the help of work done transfers heat to the hot bath. Different operational mode of the system appears at
different values of τ and Th

Tl
, which are described by the phase diagram in τ − Th plane for fixed Tl.

In the following we extend our previous studies [10, 11] by driving the single particle heat engine and
refrigerator with time-asymmetric protocols. Here we will analyse the thermodynamics of the system in
quasistatic as well as nonquasistatic regime, driven by the protocol having fixed τ but with unequal lengths
of the isothermal steps along the time axis (i.e. the protocol is time-asymmetric) together with the equal
jumps of the protocol along the adiabatic steps. We find that in nonquasistatic limit, tuning the lengths
of the isothermal steps keeping τ fixed, the phase diagram can be modified. Secondly, we find that in
quasistatic regime with high friction, the heights of the adiabatic jumps of the protocol and the ratio of
the bath temperatures together will determine a generic condition for the system operating under reversible
mode of operation.

In this paper, first we describe the model and the protocols for the drive. Then we analyse the quasistatic
behaviour of the system driven by all the protocols both in the underdamped and overdamped limit. Next,
after briefly discussing the basics of stochastic thermodynamics for completeness, we provide detailed analysis
of non-quasistatic behaviour of the system focussing on the effects of time asymmetry of the protocols used.
Finally we summarise our result and conclude.

1. Model

Our system consists of a Brownian particle of mass m having position x and velocity v, confined in a
harmonic trap. The stiffness of the trap k(t) is varied periodically in time using a time-asymmetric protocols.
For the underdamped case, the equation of motion of the particle in contact with a heat bath at temperature
T is given by [34, 35]

mv̇ = −γv − k(t)x+
√
γkBTξ(t) (1)

In overdamped limit, the equation of motion reduces to

γẋ = −k(t)x+
√
γkBTξ(t). (2)

Here the fluctuation dissipation relation between noise strength, temperature of the bath (T ) and friction
coefficient (γ) is maintained. In further analysis, the mass of the particle, friction coefficient and Boltzmann
constant kB are set to unity. The noises from the bath ξ are Gaussian distributed with zero mean and are
delta correlated, i.e., 〈ξ(t)〉 = 0 and 〈ξ(t1)ξ(t2)〉 = 2δ(t1 − t2).

Two types of time-asymmetric periodic protocols of periodicity τ have been applied on our system viz.
engine protocol and refrigerating protocol(reverse of the previous one). Each of the protocol consists of
four steps: two isothermal and two adiabatic. The isothermal processes takes place in finite time whereas
the adiabatic processes occur instantaneously. During one isothermal process the system is connected to a
hot bath at temperature Th and in the other isothermal process the system is connected to cold bath at
temperature Tl. Time-asymmetry in protocols refers to the fact that the contact time with two heat baths
during the isothermal processes is different. These protocols are described below.

Engine protocol: In the first step the system undergoes an isothermal expansion in contact with hot bath
and the stiffness is changed from an initial value a to a/2. In second step the stiffness is changed from a/2
to a/4 instantaneously to perform the adiabatic expansion process. In this step the system is disconnected
from the hot bath and instantly connected to the cold bath. Next, another isothermal process takes place
in which the trapped is compressed and the stiffness is changed from a/4 to 3a/4. In the last step adiabatic
compression takes place and the stiffness is changed instantaneously from 3a/4 to a. In this step the system
is again connected back to the hot bath. The ratio of the contact times with two heat baths during the

isothermal processes is r : s i.e., the duration of isothermal expansion is τ1 =
(

r
r+s

)
τ and the duration

of the isothermal compression is τ2 =
(

s
r+s

)
τ . The time dependency of stiffness is given in the following
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equations,

k(t) = a

(
1− r + s

2r

t

τ

)
0 ≤ t < τ1

= a/4 t = τ1

= a

(
1

4
− r

2s
+
r + s

2s

t

τ

)
τ1 ≤ t < τ

= a t = τ. (3)

k(t)

a

3a/4

a/2

a/4

t
ττ1

k(t)

3a/4
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a/2

a/4

t
τ τ
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Figure 1: (Color online) A. Engine protocol consisting of two isothermal steps at two different temperatures Th and Tl, with
two instantaneous adiabatic steps connecting them. Three different protocols had been shown for three different contact time
ratios(r : s) - 1:1, 1:3 and 3:1. τ1 denotes the time during which the system undergoes an isothermal expansion in contact with
the hot bath and τ1 denotes the time during which the system undergoes an isothermal compression in contact with the cold
bath. B. Refrigerator protocol obtained by reversing the engine protocol. In this protocol the system undergoes isothermal
compression in contact with the hot bath for a time duration of τ1 and isothermal expansion in contact with the cold bath for
a time duration of τ2.

Refrigerator protocol: The refrigerator protocol is the reverse(in time) of the engine protocol. In the first
step the system undergoes an isothermal compression in contact with the hot bath for a time duration of
τ1 where the stiffness of the trap is increased from a/2 to a. Next there is adiabatic expansion process in
which the stiffness of the trap is decreased instantaneously from a to 3a/4. In the third step the system go
isothermal expansion process in contact with the cold bath for a duration τ2. In this step the stiffness is
decreased from 3a/4 to a/4. In the last step the system undergoes adiabatic compression and the stiffness
is instantly changed back to a/2. The time dependency of stiffness is given in the following equations,

k(t) =
1

2
a

(
1 +

r + s

r

t

τ

)
0 ≤ t < τ1

= 3a/4 t = τ1

= a

(
3

4
+

r

2s
− r + s

2s

t

τ

)
τ1 ≤ t < τ

= a/2 t = τ. (4)

The protocols are shown in Fig. 1 .

2. Stochastic thermodynamics

Before we investigate further, for completeness here we describe the essentials of stochastic thermody-
namics for our system. For underdamped case, using equation of motion one can write the first law along a
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trajectory of the particle as
∆u = w − q, (5)

where u = 1
2mv

2 + 1
2k(t)x2, w =

∫
∂u
∂t dt and q = −

∫
(−γv +

√
γTξ)vdt are change of internal energy of the

particle, work done on the particle and heat exchange between the particle and the thermal bath respectively.
Note that, though w and q depends on the points along a single trajectory of the particle but ∆u depends
only on the initial and final points.

Using the definition of work along a single trajectory one can write the work along the isothermal steps
as

wisoth =

∫ τ1

0

dt
∂u

∂t
+

∫ τ

τ1

dt
∂u

∂t

=

∫ τ1

0

dt
1

2

(
k̇x2
)
T=Th

+

∫ τ

τ1

dt
1

2

(
k̇x2
)
T=Tl

. (6)

As the adiabatic steps are instantaneous, the work along those steps is

wad = [u(τ+1 )− u(τ−1 )] + [u(τ+)− u(τ−)] (7)

and therefore the total work along a single trajectory is given by

w = wisoth + wad. (8)

The heat transfer along the isothermal paths are given by (from the first law)

q1 = −
∫ τ1

0

dt
1

2

(
k̇x2
)
T=Th

+ [u(τ−1 )− u(0)] (9)

q2 = −
∫ τ

τ1

dt
1

2

(
k̇x2
)
T=Tl

+ [u(τ−)− u(τ+1 )]. (10)

Since the heat transfer along the adiabatic steps are zero, the total heat transfer along the total heat transfer
along a cycle is q = q1+q2. Using the definition of heat and work for engine protocol one can define efficiency
as

η =
−w
−q1

(11)

and for refrigerator protocol COP as

ε =
−q2
w

. (12)

η and ε depend on the individual trajectory of the particle and therefore they vary stochastically for different
cycles of the engine/refrigerator. Here we study their distributions in the following sections.

Running the dynamics for large number of cycles (N), we define the average work, power and heats as

W =
1

N

∑
all cycles

w; P =
W

τ
; Q1 =

1

N

∑
all cycles

q1; Q2 =
1

N

∑
all cycles

q2. (13)

Note that using Q1 and Q2, we can calculate the change of average bath entropy 〈∆Sbath〉 = −Q1

Th
+ Q2

Tl
. In

time periodic steady state and large enough N , 〈∆Sbath〉 = 〈∆Stot〉. Therefore from numerics we can explore
non-quasistatic as well as quasistatic behaviour of thermodynamic quantities (W , P , Q1, Q2) by varying τ
from small to large values. Similar analysis can be done in the overdamped limit with u = 1

2k(t)x2.
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3. Quasistatic results

3.1. Engine protocol

3.1.1. Underdamped dynamics

We calculate the thermodynamic quantities like average work and heat exchanges for different steps
of a cycle. During the isothermal processes the system instantaneously adjusts to the equilibrium state
corresponding to the value of the protocol at that instant. Hence the work done along any isothermal
process is the the free energy difference between the initial and the final state. In the first step, i.e.,
isothermal expansion the work done on the system is

W1 = ∆Fh =
Th
2

ln

(
k(t = τ−1 )

k(0)

)
=
Th
2

ln

(
a/2

a

)
=
Th
2

ln

(
1

2

)
(14)

At t = τ1, the system is in equilibrium with the bath at temperature Th with stiffness constant a/2. The
second step being instantaneous, no heat will be dissipated and the phase space distribution given by

Pτ1(x, v) =
1

2πTh

√
a

2
exp

(
−ax

2

4Th
− v2

2Th

)
(15)

remains unaltered. Correspondingly, the average work done on the particle is the change in its internal
energy,

W2 =

∫ ∞
−∞

dxdv
(a

4
− a

2

) x2
2
Pτ1(x, v) = −Th

4
. (16)

Similarly in the isothermal compression step the work done on the particle in the quasistatic limit is

W3 = ∆Fl =
Tl
2

ln

(
k(t = τ)

k(τ1)

)
=
Tl
2

ln

(
3a/4

a/4

)
=
Tl
2

ln 3. (17)

At the end of the third step the system is in equilibrium with the cold bath with stiffness constant 3a/4 and
the corresponding distribution is

Pτ (x, v) =
1

4πTl

√
3a exp

(
−3ax2

8Tl
− v2

2Tl

)
. (18)

In the last step, i.e., adiabatic compression step the work done on the system is

W4 =

∫ ∞
−∞

dxdv

(
a− 3a

4

)
x2

2
Pτ (x, v) =

Tl
6
. (19)

Hence, the average total work done in a full cycle of the engine protocol in the quasistatic limit is given by

Wtot = W1 +W2 +W3 +W4 =
Th
2

ln

(
1

2

)
− Th

4
+
Tl
2

ln 3 +
Tl
6

(20)

Heat exchanged with the hot bath in the isothermal expansion process is obtained by calculating the internal
energy change and using first law of thermodynamics. At t = 0−, the system was in contact with the cold
bath whereas at t = 0+ the system is connected to hot bath. Thus the system has to relax into a new
equilibrium after a sudden change of temperature. This relaxation leads to a heat exchange between the
system and the hot bath which accounts to change in internal energy. One can readily obtain the change in
internal energy as

∆U = U(τ−1 )− U(0+) = Th −
7

6
Tl. (21)

Now, using first law, the average heat absorption from the hot bath for the first step is

−Q1 = ∆U −W1 = Th −
7

6
Tl −

Th
2

ln

(
1

2

)
. (22)
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Similarly we can obtain the heat transferred from the cold bath to the system,

−Q2 = Tl −
3

4
Th −

Tl
2

ln 3. (23)

From Eq.22 and Eq. 23, Q1 is negative and Q2 is positive for all values of the temperature ratio Th/Tl in
the quasistatic limit. But, from Eq. 20, W is positive when (Th/Tl) < 1.2 and negative otherwise. This
implies that in the quasistatic limit, the system will act as heater II when (Th/Tl) < 1.2 and as an engine
when (Th/Tl) > 1.2.

The average efficiency and the average entropy production in the quasistatic limit is given by

ηq =
−Wtot

−Q1
=

Th

2Tl
ln 2 + Th

4Tl
− 1

2 ln 3 + 1
6

Th

Tl
− 7

6 + Th

2Tl
ln 2

, (24)

∆Sq =
3Th
4Tl
− 7Tl

6Th
+

1

2
ln 6, (25)

From the above expression it can be shown that ∆Sq never vanishes for any y > 1. Hence there will be
positive heat dissipation implying that the system always work in irreversible mode. Therefore the system
cannot reach Carnot efficiency in the quasistatic limit.

3.1.2. Overdamped dynamics

In the overdamped limit, the dynamics of the system is described by Eq. 2 where the inertial effects
are ignored. This approximation is valid when the time steps of observation is large compared to m/γ.
The internal energy is given only by the potential energy term. The analytical calculations for the average
thermodynamic quantities in the quasistatic limit are similar to the underdamped case. The work done in
the isothermal expansion and compression are exactly the same as Eq. 14 and 17. The work done along the
adiabatic steps will be same as given by Eq. 16 and 19, except the fact that the probability distribution will
depend only on the position of the particle and not on its velocity. The total work done on the system in a
whole cycle will be the same as that obtained in the underdamped case(Eq. 20). Using the same arguments
similar to the underdamped case and keeping in mind the fact that there is only one phase space variable,
namely position, the averaged internal energy change in the first step is given by

∆U = U(τ−1 )− U(0+) =
1

2
Th −

2

3
Tl. (26)

Using the first law, the average heat absorption from the hot bath in the first step is

−Q1 = ∆U −W1 =
1

2
Th −

2

3
Tl −

Th
2

ln

(
1

2

)
(27)

and the heat exchanged with the cold bath is given by,

Q2 =
Tl
2

ln 3 +
1

4
Th −

1

2
Tl. (28)

From the above expressions, it is easy to show that Q1 is negative and Q2 is positive for all values of
the temperature ratio Th/Tl in the quasistatic limit. Similar to the underdamped dynamics, the system
acts in the same operational behaviour in the overdamped dynamics when the driving protocol is applied
quasistatically i.e., it works as an engine when (Th/Tl) > 1.2 and as heater II otherwise.

The average efficiency and the average total entropy are given by

ηq =
−Wtot

−Q1
=
Th ln 2 + 1

2Th − Tl ln 3− 1
3Tl

Th + Th ln 2− 4
3Tl

, (29)
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∆Sq =
−Q1

Th
+
Q2

Tl
=

1

2
ln 6 +

1

4

Th
Tl
− 2

3

Tl
Th
. (30)

From the above expression of ηq, we conclude that for any Th

Tl
> 1, ηq 6= ηc = 1− Tl

Th
. Hence the system

works irreversibly. It is also in compliance with the fact that ∆Sq ≥ 0, evident from Eq.30. In fig.2 we
numerically calculate the total entropy with varying τ at Th

Tl
= 2. Apart from the nonquasistatic behaviour

of total entropy for small τ , it shows that for larger τ , the total entropy saturates to a nonzero positive value

which is, ∆Sq

∣∣∣Th
Tl

=2
.
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Figure 2: Average total entropy production as a function of cycle time for four different contact time ratios: red - 1:1, green -
1:3, blue - 3:1, pink - 4:1. The hot bath temperature is maintained at Th = 0.2.
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t
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1
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Thursday 31 December 15

Figure 3: (Color online)Carnot type engine protocol with arbitrary jump heights. The system first undergoes an isothermal
expansion in presence of hot bath where the stiffness of the trap is changed from a to r2a. In the second step the system
is subjected to adiabatic expansion by changing the stiffness instantaneously from r2a to r3a. Next the stiffness is changed
isothermally changed in presence of cold bath from r3a to r1a. In the final step, the stiffness of the is suddenly changed from
r1a to a. One should note that r3 < r2 < r1 < 1. In order to get a reversible mode in the quasistatic limit one needs to main

a certain temperature ratio
(

Th
Tl

)
and r1, r2&r3 should maintain a definite ratio(derived in the text). As this is a quasistatic

result one should not consider about the time-asymmetry of the protocol. That is why the protocol shown in the figure is
time-symmetric but have different jump heights.

As opposed to the protocols in [10, 11], our protocol does not exhibit Carnot efficiency for any values
of Th and Tl in the overdamped quasistatic limit. This is due to the equal adiabatic jump heights in our
protocol. One can change the jump heights and obtain the Carnot value given the fact that the heights and
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the temperature of the two baths maintain a certain relation. To demonstrate this, let’s consider a general
protocol as shown in Fig. 3 and calculate the efficiency in the quasistatic regime.

The work done in the first isothermal step when the system is attached to hot bath at temperature Th is
given by

W1 =
Th
2

ln

[
k(t = τ

2
−)

k(0)

]
=
Th
2

ln
[r2a
a

]
=

1

2
Th ln(r2) (31)

At the end of the first step the system is in thermal equilibrium with the hot bath with stiffness r2a.
The average work done in the second step is given by average internal energy change,

W2 =

∫ ∞
−∞

dx
1

2
(r3a− r2a)x2

√
r2a

2πTh
exp

(
− r2a

2Th
x2
)

=
1

2r2
(r3 − r2)Th (32)

Work done in the third step i.e., when the system is undergoing an isothermal process in contact with
the cold bath is

W3 =
Tl
2

ln

[
k(t = τ−)

k( τ2 )

]
=
Tl
2

ln

[
r1a

r3a

]
=

1

2
Tl ln

(
r1
r3

)
(33)

The last step being adiabatic compression step, the stiffness of the harmonic trap is changed instan-
taneously from r1a to a while the system is still in equilibrium with the cold bath. As a result the heat
dissipation vanishes and the work done is readily given by the internal energy change

W4 =

∫ ∞
−∞

dx
1

2
(a− r1a)x2

√
r1a

2πTl
exp

(
−r1a

2Tl
x2
)

=
1

2r1
(1− r1)Tl. (34)

Hence the average total work in the quasistatic limit is given by

Wtot = W1 +W2 +W3 +W4

=
1

2
Th ln(r2) +

1

2r2
(r3 − r2)Th +

1

2
Tl ln

(
r1
r3

)
+

1

2r1
(1− r1)Tl (35)

Using the similar arguments as before one can calculate the internal energy change in the isothermal expan-

sion as ∆U = 1
2

(
Th − 1

r1
Tl

)
. The average heat absorbed from the hot bath in this step is given by

−Q1 = ∆U −W1 =
1

2

(
Th −

1

r1
Tl

)
− 1

2
Th ln(r2). (36)

The average efficiency and the average entropy production in the quasistatic regime is given by

ηq =
−Wtot

−Q1
=

Th

Tl
ln(r2) + Th

Tlr2
(r3 − r2) + ln

(
r1
r2

)
+ 1

r1
(1− r1)

Th

Tl
ln(r2)− Th

Tl
+ 1

r1

, (37)

∆Sq =
−Q1

Th
+
Q2

Tl
= 1− Th

2Tl
− 1Tl

2r1Th
− 1

2r2
(r3 − r2)

Th
Tl
− 1

2
ln

(
r1r2
r3

)
. (38)

From the above expression, it can be easily shown that ηq equals Carnot efficiency ηc

(
= 1− Tl

Th

)
when

both the conditions namely Th

Tl
= r2

r3
and r1 = r3

r2
are satisfied. Under these conditions the entropy production

vanishes and hence the system works in reversible mode [36].
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3.2. Refrigerator protocol
3.2.1. Underdamped dynamics

Here we calculate the average thermodynamical quantities in quasistatic limit under the application of
refrigerator protocol. In the first step, i.e., isothermal compression step the work done on the particle is the
free energy difference as given by,

W ′1 = ∆Fh =
Th
2

ln

(
k(τ−1 )

k(0)

)
=
Th
2

ln

(
a

a/2

)
=
Th
2

ln 2 (39)

At t = τ−1 , the system is in equilibrium with the hot bath and the corresponding probability distribution is
given by

Pτ1(x, v) = N ′1 exp

[
−
(
ax2

2Th
+

v2

2Th

)]
, (40)

where N ′1 =
√
a

2πTh
. The second is an adiabatic expansion process. This step is instantaneous and hence no

heat is dissipated to the bath. So, the work done on the particle is the instantaneous change in its internal
energy, given by

W ′2 =

∫ ∞
−∞

1

2

(
3a

4
− a
)
x2Pτ1(x, v)dxdv = −1

8
Th (41)

Similar to the first step, the work done on the particle in the isothermal expansion(third step) is given by,

W ′3 =
Tl
2

ln

(
k(τ−)

k(τ+1 )

)
=
Tl
2

ln

(
a/4

3a/4

)
=
Tl
2

ln

(
1

3

)
. (42)

At the end of the third step, the system is in equilibrium with the cold bath and probability distribution of
the state of the particle is,

Pτ (x, v) = N ′2 exp

[
−
(
ax2

8Tl
+

v2

2Tl

)]
, (43)

where N ′2 =
√
a

4πTl
. In the last step, the average work done on the particle is given by

W ′4 =

∫ ∞
−∞

1

2

(a
2
− a

4

)
x2Pτ (x, v)dxdv =

1

2
Tl. (44)

The total average work is given by

W ref
tot = W ′1 +W ′2 +W ′3 +W ′4 =

Th
2

ln 2− 1

8
Th +

Tl
2

ln

(
1

3

)
+

1

2
Tl. (45)

To obtain heat absorption from the cold bath (Qref2 ) first we have to calculate internal energy change along

the third step. The average internal energy at t = τ+1 is U
(
τ
2
+
)

=
∫∞
−∞

(
3ax2

8 + v2

2

)
Pτ1(x, v)dxdv = 7

8Th.

Since the system is in equilibrium with the cold bath at t = τ−, the average internal energy will be Tl. This
leads to the change in internal energy in the third step,

(
Tl − 7

8Th
)
. Using first law, we obtain average heat

dissipated to the cold bath,

Qref2 =
Tl
2

ln

(
1

3

)
− Tl +

7

8
Th. (46)

Similarly one can obtain the heat transferred to the hot bath,

Qref1 =
Th
2

ln 2− Th +
3

2
Tl. (47)

It can be easily shown from Eq. 45, W ref
tot is positive for all values of Th/Tl i.e., work is always done on the

system in the quasistatic limit. But Eq. 46 and Eq. 47 gives us three regimes where the system acts in
three different operational mode depending on (Th/Tl). When (Th/Tl) < 1.77, Qref2 is negative and Qref1 is
positive and hence the system act as a refrigerator in the quasistatic limit. When 1.77 < (Th/Tl) < 2.29,

both Qref2 and Qref1 are positive. Under this condition the system works as heater I. When 2.29 < (Th/Tl),

Qref2 is positive and Qref1 is negative and the system behaves as heater II.
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3.2.2. Overdamped dynamics

Quasistatic calculations similar to the underdamped case can also be done for overdamped limit with
only potential energy contributing to the total internal energy. The total average work done in a cycle in the
overdamped limit is same as that obtained for the underdamped case. At t = τ+1 , the average internal energy
is given by U(τ+1 ) = 3

8Th. At t = τ−, the system is in equilibrium with cold bath and the corresponding
average internal energy is U(τ−) = 1

2Tl. Hence the change in internal energy in the isothermal expansion
process is

(
1
2Tl − 3

8Th
)
. Hence, the average heat that is transferred to the cold bath in the quasistatic limit

is given by

Qref2 =
Tl
2

ln

(
1

3

)
− 1

2
Tl +

3

8
Th. (48)

The heat exchanged between the hot bath and the system is given by

Qref1 =
Th
2

ln 2− 1

2
Th + Tl. (49)

Similar to the underdamped case the work done on the system in overdamped dynamics is always positive.
Eq. 48 and Eq. 49 gives us three domains, depending on the ratio of the hot and the cold bath temperatures,
where the system works in three different operational modes. When (Th/Tl) < 2.79, Qref1 is positive and

Qref2 is negative i.e., heat is carried from cold bath to the hot bath using the work done on the system. Under
this condition the system works as a refrigerator in the quasistatic limit. When 2.79 < (Th/Tl) < 6.51, both

Qref1 and Qref2 are positive i.e., work done on the system is being used to heat up both the baths and the

system acts as a heater I. When 6.51 < (Th/Tl), Q
ref
1 is negative and Qref2 is positive. In this temperature

regime the system performs as heater II.

4. Numerical results

In this section we explore the non-quasistatic regime. We evolve the system using discretised Langevin
dynamics with time step dt = 0.001 in the underdamped as well as overdamped limit [Eq. 1 and Eq. 2]. The
system is driven by time periodic protocols [Eq. 3 and Eq. 4]. We follow Heun’s method [37]. We have set
γ = 1 and m = 1. All the physical quantities are in dimensionless form. Throughout the paper we have fixed
a = 5 and Tl = 0.1. We have considered four different values of the ratio r : s namely 1 : 1, 1 : 3, 3 : 1 and
4 : 1 and compared the results between them. We made sure that, after the initial transient regime(∼ 103

cycle time), the system settles to a TPSS i.e., Pss(x, v, t+ τ) = Pss(x, v, t).

4.1. Engine Protocol

4.1.1. Underdamped dynamics

Phase diagram: For each (τ, Th) pair, we calculate W , Q1, and Q2 and thereby obtained the phase
diagram [Fig. 4] for the operational modes of the system for four different asymmetric protocols. From
these phase diagrams it is clear that the area of different regions changes depending on the asymmetry of
the protocol.
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Figure 4: Different modes of operation of our system following underdamped Langevin dynamics with Carnot engine protocol:
Open boxes(pink): heater-I, asterisk(blue): refrigerator, cross(green): engine, plus(red): heater-II. The ratio (r : s) of the
contact time with hot bath during the isothermal expansion to the contact time with the cold bath during the isothermal
compression are: A - 1:1, B - 1:3, C - 3:1 and D - 4:1.

In Fig. 4 A the phase diagram is shown for r : s equals to 1 : 1 i.e., the driving protocol is symmetric.
Under the effect of this protocol the system acts as engine or heater II in the quasistatic limit depending on
the hot bath temperature. In non-quasistatic regime the system can act as heater I or even as a refrigerator
depending on τ and Th. One point to be noted, here, that the system behaves in the same way in the
quasistatic limit irrespective of the asymmetry in the driving protocol and hence the phase diagram is similar
in all the plots in Fig.4 in the quasistatic limit. This quasistatic limit is consistent with our analytical results
as mentioned earlier. In the non-quasistatic regime the plots are different. In Fig. 4 B, the phase diagram for
the asymmetry ratio r : s equals to 1:3 i.e., the isothermal compression takes place for larger time than the
isothermal expansion. In this case the refrigerator region vanishes and the region of heater I diminishes. On
the other hand when the isothermal expansion takes place for a larger time than the isothermal compression
the refrigerator and the heater I region increases as evident from Fig. 4 C and D, where the asymmetry ratio
is 3:1 and 4:1 respectively.

Efficiency distribution: The effect of time-asymmetry in the protocols is evident in efficiency statistics.
In Fig.5 we have plotted the distribution of efficiency in the non-quasistatic regime with cycle time τ = 10
and hot bath temperature Th = 0.5. Efficiency, being a ratio of two stochastic quantities namely work and
heat, can take any value ranging from −∞ to +∞. More importantly we see power law (∼ η−α) tails in the
distribution both in positive and negative side with exponent α ' 2. A point is to be noted from this plot
is that the mean value is dominated by the standard deviation of the distribution thereby making efficiency
a non-self averaging quantity. Apart from the aforesaid general properties of all the plots in Fig.5, one can
also see the influence of the time-asymmetry . When the system undergoes compression for large part of the
cycle time, i.e., in 1 : 3 case, the distribution exhibits a double peak behaviour. This behaviour gradually
changes when the time for compression is decreased and the expansion time is increased. The double peak
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changes into a single peak with a shoulder on the negative side of the η- axis.
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Figure 5: Efficiency distribution for four different contact time ratios: red - 1:1, green - 1:3, blue - 3:1, pink - 4:1 at τ = 10
and Th = 0.5.

Power: The asymmetry in the protocol also affects the power of the engine. This fact can be seen in Fig.
6, where average power(P ) versus τ are plotted for two different asymmetry ratios(r : s) - 1:1 and 1:3. The
major difference between the asymmetric and symmetric drives is the maximum power of the symmetric
protocol is larger than that of the asymmetric one and shifts towards larger value of cycle time. In the limit
of τ → ∞, the power tends to zero (not shown in the figure). Efficiency at maximum power for symmetric
protocol is ηmax.P = 0.212. It is much below than the Curzon-Ahlborn(C-A) bound ηCA = 1−

√
( Tl

Th
) = 0.55.

Similar results hold for other asymmetric parameters. Thus we find no correlation between ηmax.P and C-A
bound.
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Figure 6: Power with cycle time for two different contact time ratios: red - 1:1 and blue - 3:1 at τ = 10 and Th = 0.5. The
corresponding dashed lines are guide to eye.

4.1.2. Overdamped dynamics

Phase diagram: We have scanned the parameter space (τ − Th), keeping Tl fixed at 0.1, to obtain the
phase diagram in overdamped regime (Fig. 7). It clearly depicts four different modes of operation of the
system.
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Figure 7: Different modes of operation of our system following overdamped Langevin dynamics with Carnot engine protocol:
Open boxes(pink): heater-I, asterisk(blue): refrigerator, cross(green): engine, plus(red): heater-II. The ratio (r : s) of the
contact time with hot bath during the isothermal expansion to the contact time with the cold bath during the isothermal
compression are: A - 1:1, B - 1:3, C - 3:1 and D - 4:1.

In contrast to the underdamped case, no critical cycle time is required for the operation in engine mode.
Therefore, total phase space area of the endine mode has increased in this limit. The phase boundaries in
quasistatic limit are consistent with our analytical results. Asymmetry in driving protocol has affected the
non-quasistatic part of the phase diagram. When the system is driven by a protocol with τ1 < τ2 i.e., the
time for isothermal expansion is smaller than that of isothermal compression, the refrigerator region vanishes
as shown in Fig. 7 B. Fig. 7 C and Fig. 7 D displays the phase diagram when τ1 > τ2. Thus phase diagram
is sensitive to asymmetry ratio.
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Figure 8: Efficiency distribution for two different contact time ratios: red - 1:1 & green - 3:1 at τ = 10 and Th = 0.5.
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Efficiency distribution: In Fig.8, efficiency distribution in the overdamped limit is plotted for two asym-
metry ratio at τ = 10 and Th = 0.5. It is evident from the plot, that due to stochastic behaviour of the
system, there exists trajectories for which η < 0 and even greater than Carnot bound(η = 0.8 for this case).
At large values of η, the probability distribution P (η) decays as power law (∼ η−α) with α ∼ 2. The effect
of time asymmetry of the protocol is not significant in high damping limit.

4.2. Refrigerator Protocol

4.2.1. Underdamped dynamics

Phase diagram: In Fig. 9, we have shown the phase diagram of the operation of our system. The four
plots in this figure correspond to protocols with different asymmetric ratio r : s. Even though the quasistatic
behaviour is same for all cases, the non-quasistatic behaviour is highly affected due to asymmetry. In Fig. 9
A, we plotted the phase diagram when there is no asymmetry in the protocol i.e., r : s = 1 : 1. It shows that
one needs a critical cycle time above which the system can act as a refrigerator otherwise it performs as a
heater of type II. Another interesting point is that apart from acting as refrigerator, heater I and heater II,
our system can even work as engine in some parameter space (Th & 0.3, 1.5 . τ . 6).
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Figure 9: Different modes of operation of our system following underdamped Langevin dynamics with Carnot refrigerator
protocol: Open boxes(pink): heater-I, asterisk(blue): refrigerator, cross(green): engine, plus(red): heater-II. The ratio (r : s) of
the contact time with hot bath during the isothermal compression to the contact time with the cold bath during the isothermal
expansion are: A - 1:1, B - 1:3, C - 3:1 and D - 4:1.

This engine region in the phase diagram can be tampered by involving asymmetry in the protocol. In
Fig. 9 B, we have used a protocol with asymmetry ratio 1 : 3 and obtained the phase diagram. It is clear
from the plot that the engine region has increased when the isothermal expansion takes place for longer
time than isothermal compression. In Fig. 9 C and D, we have plotted the phase diagram for asymmetry
ratio 3 : 1 and 4 : 1 respectively. These two plots clearly depicts the fact that when the time of isothermal
compression is increased more than the isothermal expansion, the engine region gradually vanishes. This
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is quite evident from the following fact. If the compression step takes place for larger time than expansion
step, more work will be done on the system. Work extraction is small due to short duration of expansion
step. So, in the whole cycle net work extraction in not possible. Under this circumstances, the system will
work as either of the two types of heater.

COP distribution: P (ε), the distribution of stochastic COP, is shown in Fig. 10 for τ = 10 for four
different contact time ratios. COP can take any value between −∞ to +∞. There are considerable number
of trajectories where COP can occur beyond Carnot bound. It can even be negative for significant number
of realisations. Moreover, we have noticed that the tail of P (ε) contains largely deviated values and has
power law (∼ ε−α) decay for several decades. The value of α is 2 ± 0.1. Like efficiency, the mean value
is dominated by the standard deviation of the distribution thereby making efficiency a non-self averaging
quantity and one need the full distribution of ε to analyse its statistics. Having said these generic properties
of stochastic COP, we also notice that, P (ε) for different contact time ratios are unimodal and unlike P (η)
in underdamped case, the time asymmetry has no significant effect on P (ε).
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Figure 10: Distribution of COP for four different contact time ratios: red - 1:1, green - 1:3, blue - 3:1, pink - 4:1 at τ = 10
and Th = 0.12.

4.2.2. Ovedamped dynamics

Phase diagram: In Fig. 11, we have plotted the phase diagrams for overdamped case with different
time asymmetric protocols. Unlike the underdamped case, here we do not need any critical cycle time for
the operation in refrigerator mode. The system acts as a refrigerator for higher temperature differences
compared to the earlier case. Therefore, total phase space area of the refrigerator mode has increased in this
limit. The phase boundaries in quasistatic limit are consistent with our analytical results. The area of the
engine mode in overdamped regime can also be monitored by changing τ1 and τ2. From the figure, it is seen
when τ1 < τ2, the system works as an engine for large number of values of τ and Th. As one decreases the
expansion time and increases the compression time, the engine mode gradually vanishes.
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Figure 11: Different modes of operation of our system following overdamped Langevin dynamics with Carnot refrigerator
protocol: Open boxes(pink): heater-I, asterisk(blue): refrigerator, cross(green): engine, plus(red): heater-II. The ratio (r : s) of
the contact time with hot bath during the isothermal compression to the contact time with the cold bath during the isothermal
expansion are: A - 1:1, B - 1:3, C - 3:1 and D - 4:1.

COP distribution: P (ε), the distribution of stochastic COP, is shown in Fig. 10 for τ = 10 for three
different contact time ratios, where all the properties are similar to that of P (ε) in underdamped limit except
the fact that here we notice a shoulder in the negative side of the distribution. It shows power law tails with
exponent ∼ 2.
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Figure 12: Distribution of COP for four different contact time ratios: red - 1:1, green - 1:3, blue - 4:1 at τ = 10 and Th = 0.12.
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5. Conclusion

We have explored the operational characteristics and performance statistics of micro heat engines and
refrigerators under time asymmetric protocols in detail. In our previous studies [10, 11] and also from the
present work, it is evident that the microscopic engines are not equivalent to their macroscopic counterpart.
Here, more importantly, we find that the time asymmetry of the protocol can considerably modify the phase
diagram, depicting different operational modes of such micro-machines in τ − Th plane. In non-quasistatic
regime, we have shown that performance of such micro-machines depend on the time asymmetry of he
protocol as it can affect the their performance statistics (e.g., P (η) and P (ε)). The distributions are broad
and shows power law tails. It has been shown that the power produced by the engine with asymmetric
protocol is less than that of the engine with time-asymmetric protocol in underdamped limit.

The jump heights of the protocol along the adiabatic steps play important role to determine whether
the micro-heat engine or refrigerator can have reversible mode of operation in the quasistatic limit. Here,
in high friction limit, a generic condition involving jump heights and bath temperatures is derived for which
the micro-machine works in a reversible mode.

It is evident from the analysis that micro heat engines and refrigerators work differently under differ-
ent protocols, particularly in non-quasistatic regime. We have also studied the thermodynamics of micro-
machines driven by another important protocol, namely micro-adiabatic protocol[]. We notice that in this
case, the micro-machine can operate only in two different modes namely Heater-I and engine for different τ
and Th and the phase diagram is comparatively simpler. Work along this direction is in progress.
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