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Abstract. We propose a derived version of non-archimedean analytic geometry.
Intuitively, a derived non-archimedean analytic space consists of an ordinary
non-archimedean analytic space equipped with a sheaf of derived rings. Such
a naive definition turns out to be insufficient. In this paper, we resort to the
theory of pregeometries and structured topoi introduced by Jacob Lurie. We
prove the following three fundamental properties of derived non-archimedean
analytic spaces:

(1) The category of ordinary non-archimedean analytic spaces embeds fully
faithfully into the ∞-category of derived non-archimedean analytic spaces.

(2) The ∞-category of derived non-archimedean analytic spaces admits fiber
products.

(3) The ∞-category of higher non-archimedean analytic Deligne-Mumford
stacks embeds fully faithfully into the ∞-category of derived non-archimedean
analytic spaces. The essential image of this embedding is spanned by n-localic
discrete derived non-archimedean analytic spaces.

We will further develop the theory of derived non-archimedean analytic geom-
etry in our subsequent works. Our motivations mainly come from intersection
theory, enumerative geometry and mirror symmetry.
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1. Introduction

Motivations. Derived algebraic geometry is a far-reaching enhancement of classical
algebraic geometry. We refer to Toën-Vezzosi [28, 29] and Lurie [15, 18] for
foundational works. The prototypical idea of derived algebraic geometry originated
from intersection theory: Let X be a smooth complex projective variety. Let Y, Z be
two smooth closed subvarieties of complementary dimension. We want to compute
their intersection number. When Y and Z intersect transversally, it suffices to
count the number of points in the set-theoretic intersection Y ∩Z. When Y and Z
intersect non-transversally, we have two solutions: the first solution is to perturb
Y and Z into transverse intersection; the second solution is to compute the Euler
characteristic of the derived tensor product OY ⊗L

OX
OZ of the structure sheaves.

The second solution can be seen as doing perturbation in a more conceptual and
algebraic way. It suggests us to consider spaces with a structure sheaf of derived
rings instead of ordinary rings. This is one main idea of derived algebraic geometry.

Besides intersection theory, motivations for derived algebraic geometry also come
from deformation theory, cotangent complexes, moduli problems, virtual funda-
mental classes, homotopy theory, etc. (see Toën [27] for an excellent introduction).
All these motivations apply not only to algebraic geometry, but also to analytic
geometry. Therefore, a theory of derived analytic geometry is as desirable as derived
algebraic geometry.

The purpose of this paper is to define a notion of derived space in non-archimedean
analytic geometry and then study their basic properties. By non-archimedean
analytic geometry, we mean the theory of Berkovich spaces over a non-archimedean
field k (cf. [1, 2]). Our approach is mainly based on the works of Lurie [18, 19, 20, 17]
on derived algebraic geometry and derived complex analytic geometry.

A more direct motivation of our study on derived non-archimedean analytic
geometry comes from mirror symmetry. Mirror symmetry is a conjectural duality
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between Calabi-Yau manifolds (cf. [31, 30, 5, 11]). More precisely, mirror symme-
try concerns degenerating families of Calabi-Yau manifolds instead of individual
manifolds. An algebraic family of Calabi-Yau manifolds over a punctured disc
gives rise naturally to a non-archimedean analytic space over the field C((t)) of
formal Laurent series. In [13, §3.3], Kontsevich and Soibelman suggested that the
theory of Berkovich spaces may shed new light on the study of mirror symmetry.
Progresses along this direction are made by Kontsevich-Soibelman [14] and by Tony
Yue Yu [33, 32, 35, 34]. The works by Gross, Hacking, Keel, Siebert [10, 9, 8] are
in the same spirit.

In [34], a new geometric invariant is constructed for log Calabi-Yau surfaces, via
the enumeration of holomorphic cylinders in non-archimedean geometry. These
invariants are essential to the reconstruction problem in mirror symmetry. In
order to go beyond the case of log Calabi-Yau surfaces, a general theory of virtual
fundamental classes in non-archimedean geometry must be developed. The situation
here resembles very much the intersection theory discussed above, because moduli
spaces in enumerative geometry can often be represented locally as intersections of
smooth subvarieties in smooth ambient spaces. The virtual fundamental class is
then supposed to be the set-theoretic intersection after perturbation into transverse
situations. However, perturbations do not necessarily exist in analytic geometry.
Consequently, we need a more general and more robust way of constructing the
virtual fundamental class, whence the need for derived non-archimedean geometry.

Basic ideas and main results. Our previous discussion on intersection numbers
suggests the following definition of a derived scheme:

Definition 1.1 (cf. [27]). A derived scheme is a pair (X,OX) consisting of a
topological space X and a sheaf OX of commutative simplicial rings on X, satisfying
the following conditions:
(i) The ringed space (X, π0(OX)) is a scheme.
(ii) For each j ≥ 0, the sheaf πj(OX) is a quasi-coherent sheaf of π0(OX)-modules.

In order to adapt Definition 1.1 to analytic geometry, we need to impose certain
analytic structures on the sheaf OX . For example, we would like to have a notion
of norm on the sections of OX ; moreover, we would like to be able to compose
the sections of OX with convergent power series. A practical way to organize
such analytic structures is to use the notions of pregeometry and structured topos
introduced by Lurie [18]. We will review these notions in Section 2 (see also the
introduction of [23] for an expository account of these ideas).

Then we define a pregeometry Tan(k) which will help us encode the theory of
non-archimedean geometry relevant to our purposes.
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After that, we are able to introduce our main object of study: derived k-analytic
spaces. It is a pair (X,OX) consisting of an ∞-topos X and a Tan(k)-structure
OX, satisfying analogs of Definition 1.1 Conditions (i)-(ii). We will explain more
intuitions in Remark 2.6.

The goal of this paper is to study the basic properties of derived k-analytic
spaces and to compare them with ordinary k-analytic spaces. Here are our main
results:

Fix a non-archimedean field k with nontrivial valuation. All k-analytic spaces
are assumed to be strict in this paper.

Theorem 1.2 (cf. Theorem 4.11). The category of k-analytic spaces embeds fully
faithfully into the ∞-category of derived k-analytic spaces.

Theorem 1.3 (cf. Theorem 6.5). The ∞-category of derived k-analytic spaces
admits fiber products.

Let (Ank, τqét) denote the category of k-analytic spaces endowed with the quasi-
étale topology (cf. [3, §3]) and let Pqét denote the class of quasi-étale morphisms.
The triple (Ank, τqét,Pqét) constitutes a geometric context in the sense of [25]. The
associated geometric stacks are called higher k-analytic Deligne-Mumford stacks.

Theorem 1.4 (cf. Corollary 7.10). The ∞-category of higher k-analytic Deligne-
Mumford stacks embeds fully faithfully into the ∞-category of derived k-analytic
spaces. The essential image of this embedding is spanned by n-localic discrete
derived k-analytic spaces.

Further developments. In order to apply derived non-archimedean geometry to
enumerative geometry, mirror symmetry as well as other domains of mathematics,
we must show that derived non-archimedean analytic spaces arise naturally in
these contexts. The key to the construction of derived structures is to prove a
representability theorem in derived non-archimedean geometry. This will be the
main goal of our subsequent works.

Important ingredients in the proof of the representability theorem will include the
theories of analytification and deformation. Their counterparts in derived complex
geometry are studied by Mauro Porta in [23, 24] and his upcoming works. More
specifically, he studied the analytification functor, relative flatness, derived GAGA
theorems, square-zero extensions, analytic modules and cotangent complexes.
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Outline of the paper. In Section 2, we introduce the pregeometry Tan(k) and
the notion of derived k-analytic space.

In Section 3, we study the properties of the pregeometry Tan(k). We prove the
unramifiedness conditions as well as the compatibility with truncations.

In Section 4, we construct a functor Φ: Ank → dAnk from the category of
k-analytic spaces to the ∞-category of derived k-analytic spaces. We prove that Φ
is a fully faithful embedding.

In Section 5, we study closed immersions and quasi-étale morphisms under the
embedding Φ.

In Section 6, we prove the existence of fiber products between derived k-analytic
spaces.

In Section 7, we characterize the essential image of the embedding Φ. Moreover,
we compare derived k-analytic spaces with higher k-analytic stacks in the sense of
[25].

Notations and terminology. We refer to Berkovich [1, 2] for the theory of
Berkovich geometry, to Huber [12] for the theory of adic spaces, to Lurie [16, 21] for
the theory of ∞-categories, and to Lurie [18] for the theory of structured spaces.

Throughout the paper, we denote by Set the category of sets and by S the
∞-category of spaces. For any small ∞-category C equipped with a Grothendieck
topology τ and any presentable ∞-category D, we denote by PShD(C) the ∞-
category of D-valued presheaves on C and by ShD(C, τ) the ∞-category of D-
valued sheaves on the ∞-site (C, τ). We will refer to S-valued presheaves (resp.
sheaves) simply as presheaves (resp. sheaves), and denote PSh(C) := PShS(C),
Sh(C, τ) := ShS(C, τ). We denote the Yoneda embedding by

h : C→ PSh(C), X 7→ hX .

We fix a non-archimedean field k with nontrivial valuation. For any k-affinoid
algebra A, we denote by SpB A the associated Berkovich spectrum.

Acknowledgements. We are grateful to Vladimir Berkovich, Antoine Chambert-
Loir, Brian Conrad, Antoine Ducros, Bruno Klingler, Maxim Kontsevich, Marco
Robalo, Matthieu Romagny, Pierre Schapira, Carlos Simpson, Michael Temkin,
Bertrand Toën and Gabriele Vezzosi for valuable discussions. The authors would
also like to thank each other for the joint effort.

2. Basic definitions

Intuitively, a derived non-archimedean analytic space is a “topological space” X

equipped with a structure sheaf OX of “derived non-archimedean analytic rings”.
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In order to give the precise definition, we introduce the notions of pregeometry and
structured topos following [18].

Definition 2.1 ([18, 3.1.1]). A pregeometry is an ∞-category T equipped with a
class of admissible morphisms and a Grothendieck topology generated by admissible
morphisms, satisfying the following conditions:

(i) The ∞-category T admits finite products.
(ii) The pullback of an admissible morphism along any morphism exists, and is

again admissible.
(iii) For morphisms f, g, if g and g ◦ f are admissible, then f is admissible.
(iv) Every retract of an admissible morphism is admissible.

We now define two pregeometries responsible for derived non-archimedean geom-
etry.

Construction 2.2. We define a pregeometry Tan(k) as follows:

(i) the underlying category of Tan(k) is the category of paracompact, separated,
quasi-smooth strictly k-analytic spaces;

(ii) a morphism in Tan(k) is admissible if and only if it is quasi-étale;
(iii) the topology on Tan(k) is the quasi-étale topology (cf. [3, §3]).

Construction 2.3. We define a pregeometry Tdisc(k) as follows:

(i) the underlying category of Tdisc(k) is the full subcategory of the category of
k-schemes spanned by affine spaces Spec(k[x1, . . . , xn]);

(ii) a morphism in Tdisc(k) is admissible if and only if it is an isomorphism;
(iii) the topology on Tdisc(k) is the trivial topology, i.e. a collection of admissible

morphisms is a covering if and only if it is nonempty.

Definition 2.4 ([18, 3.1.4]). Let T be a pregeometry, and let X be an ∞-topos. A
T-structure on X is a functor O : T → X with the following properties:

(i) The functor O preserves finite products.
(ii) Suppose given a pullback diagram

U ′ U

X ′ X

f
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in T, where f is admissible. Then the induced diagram

O(U ′) O(U)

O(X ′) O(X)

is a pullback square in X.
(iii) Let {Uα → X} be a covering in T consisting of admissible morphisms. Then

the induced map ∐
α

O(Uα)→ O(X)

is an effective epimorphism in X.
A morphism of T-structures O→ O′ on X is local if for every admissible morphism
U → X in T, the resulting diagram

O(U) O′(U)

O(X) O′(X)

is a pullback square in X. We denote by Strloc
T (X) the ∞-category of T-structures

on X with local morphisms.
A T-structured ∞-topos is a pair (X,OX) consisting of an ∞-topos X and a

T-structure OX on X. We denote by TopR (T) the ∞-category of T-structured
∞-topoi and we refer to [18, Definition 1.4.8] for its construction.

We have a natural functor Tdisc(k)→ Tan(k) induced by analytification. Com-
posing with this functor, we obtain an “algebraization” functor

(−)alg : Strloc
Tan(k)(X)→ Strloc

Tdisc(k)(X).

In virtue of [18, Example 3.1.6, Remark 4.1.2], we have an equivalence induced by
the evaluation on the affine line

Strloc
Tdisc(k)(X) ∼−−→ ShCAlgk(X),

where CAlgk denotes the ∞-category of simplicial commutative algebras over k.
We are now ready to introduce our main object of study: derived k-analytic

spaces.

Definition 2.5. A Tan(k)-structured∞-topos (X,OX) is called a derived k-analytic
space if X is hypercomplete and there exists an effective epimorphism from ∐

i Ui
to the final object of X satisfying the following conditions, for every index i:
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(i) The pair (X/Ui , π0(Oalg
X |Ui)) is equivalent to the ringed ∞-topos associated to

the quasi-étale site on a strictly k-analytic space Xi.
(ii) For each j ≥ 0, πj(Oalg

X |Ui) is a coherent sheaf of π0(Oalg
X |Ui)-modules on Xi.

We denote by dAnk the full subcategory of TopR (Tan(k)) spanned by derived
k-analytic spaces.

Remark 2.6. Let us explain the heuristic relation between Definition 2.5 and
Definition 1.1 in the introduction. Let (X,OX) be a derived k-analytic spaces as
in Definition 2.5. Let A1

k be the k-analytic affine line and let O := OX(A1
k) ∈ X.

We have the sum operation +: A1
k ×A1

k → A1
k and the multiplication operation

• : A1
k ×A1

k → A1
k. By Definition 2.4(i), they induce respectively a sum operation

+: O × O → O and a multiplication operation • : O × O → O on O. Therefore,
intuitively, we can think of O as a sheaf of commutative simplicial rings as in
Definition 1.1. Moreover, the sheaf O is also equipped with analytic structures.
For example, let D1

k ⊂ A1
k denote the closed unit disc. By Definition 2.4(ii), we

obtain a monomorphism OX(D1
k) ↪→ O. We can think of OX(D1

k) as the subsheaf
of O consisting of functions of norm less than or equal to one. Furthermore, any
holomorphic function f on D1

k induces a morphism fO : OX(D1
k) → O, which we

think of as the composition with f . (See also the discussion after Definition 1.1.)

Remark 2.7. Let (X,OX) and (Y,OY) be two Tan(k)-structured ∞-topoi. When
we denote a morphism from (X,OX) to (Y,OY) by a single letter f , we denote
by f∗ : X � Y : f−1 the underlying geometric morphism of ∞-topoi and by
f ] : f−1OY → OX the underlying local morphism of Tan(k)-structures on X.

The goal of this paper is to study the basic properties of derived k-analytic
spaces and to compare them with ordinary k-analytic spaces as well as with the
higher k-analytic stacks introduced in [25].

Before moving on, it is important to stress that the underlying ∞-topos of a
derived k-analytic space is, by definition, hypercomplete. Therefore, using the
notations of [18, §2.2], if X ∈ Tan(k), the Tan(k)-structured ∞-topos SpecTan(k)(X)
is not a derived k-analytic space. We remedy this problem by introducing the
hypercomplete spectrum as follows:

Let TopR (resp. TopL ) denote the ∞-category of ∞-topoi where morphisms are
right (resp. left) adjoint geometric morphisms. Denote by HTopR the full subcate-
gory of TopR spanned by hypercomplete ∞-topoi. Denote by HTopR (Tan(k)) the
full subcategory of TopR (Tan(k)) spanned by Tan(k)-structured ∞-topoi (X,OX)
such that X is a hypercomplete. It follows from [16, 6.5.2.13] that the inclusion
HTopR → TopR admits a right adjoint, given by hypercompletion. This induces a
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right adjoint to the inclusion HTopR (Tan(k)) ↪→ TopR (Tan(k)), as the next lemma
shows:
Lemma 2.8. The inclusion HTopR (Tan(k)) ↪→ TopR (Tan(k)) admits a right ad-
joint, which we denote by Hyp: TopR (Tan(k))→ HTopR (Tan(k)).
Proof. Fix X := (X,OX) ∈ TopR (Tan(k)). Since the hypercompletion L : X→ X∧ is
left exact, we obtain a well defined functor Strloc

Tan(k)(X)→ Strloc
Tan(k)(X∧) induced by

composition with L. Let X∧ := (X∧, L(OX)) be the resulting hypercomplete Tan(k)-
structured ∞-topos. In TopR (Tan(k)) there is a natural morphism ϕ : X∧ → X.

Using the dual of [16, 5.2.7.8] it suffices to show that ϕ exhibits X∧ as a
colocalization of X relative to HTopR (Tan(k)). In order to prove this, let Y :=
(Y,OY) be any hypercomplete Tan(k)-structured ∞-topos. Using [16, 6.5.2.13] we
obtain an equivalence

Map TopR (Y,X∧)→ Map TopR (Y,X).
Fix a geometric morphism g∗ : Y � X∧ : g−1 and let (f−1, f∗) denote the induced
geometric morphism Y � X. We remark that f−1 ' g−1 ◦ L. Using [16, 2.4.4.2]
and [18, Remark 1.4.10] we obtain a morphism of fiber sequences:

MapStrloc
Tan(k)(Y)(g−1L(OX),OY) Map TopR (Tan(k))(Y,X∧) Map TopR (Y,X∧)

MapStrloc
Tan(k)(Y)(f−1OX ,OY) Map TopR (Tan(k))(Y,X) Map TopR (Y,X).

Since f−1 ' g−1 ◦L, we see that the left vertical morphism is an equivalence. Since
this holds for all base points in Map TopR (Y,X), we conclude that the middle vertical
morphism is an equivalence as well, completing the proof. �

Definition 2.9. Given X ∈ Tan(k), we define its hypercomplete (absolute) spectrum
HSpecTan(k)(X) to be Hyp(SpecTan(k)(X)).
Lemma 2.10. Let Y := (Y,OY) be a derived k-analytic space and let X ∈ Tan(k).
The natural morphism HSpecTan(k)(X)→ SpecTan(k)(X) induces an equivalence

Map HTopR (Tan(k))(Y,HSpecTan(k)(X)) ∼−−→ Map TopR (Tan(k))(Y, SpecTan(k)(X)).
Proof. Since Y belongs to HTopR (Tan(k)), the statement is an immediate conse-
quence of Lemma 2.8. �

3. Properties of the pregeometry

In this section, we study the properties of the pregeometry Tan(k) introduced in
Section 2. More specifically, we will prove the unramifiedness of Tan(k), the unram-
ifiedness of the algebraization and the compatibility of Tan(k) with n-truncations.
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3.1. Unramifiedness. In order that the collection of closed immersions behaves
well with respect to fiber products, our pregeometry Tan(k) has to verify a condition
of unramifiedness.

Definition 3.1 ([17, 1.3]). A pregeometry T is said to be unramified if for every
morphism f : X → Y in T and every object Z ∈ T, the diagram

X × Z X × Y × Z

X X × Y

induces a pullback square

XX×Z XX×Y×Z

XX XX×Y

in TopR , where the symbol X(−) denotes the associated ∞-topos.

Our first goal is to prove that the pregeometry Tan(k) is unramified (cf. Corol-
lary 3.11). In order to do this, we need to describe explicitly the ∞-topos XX

associated to a strictly k-analytic space X and prove that the assignment X 7→ XX

is well behaved with respect to closed immersions (cf. Proposition 3.5).
Let Ank denote the category of strictly k-analytic spaces and let Afdk denote the

category of strictly k-affinoid spaces. For X ∈ Ank, let (AnX)qét (resp. (AfdX)qét)
denote the category of quasi-étale morphisms from strictly k-analytic spaces (resp.
strictly k-affinoid spaces) to X. We equip the categories (AnX)qét and (AfdX)qét
with the quasi-étale topology (cf. [3, §3]). By [25, Proposition 2.24], the inclusion
(AfdX)qét ↪→ (AnX)qét induces an equivalence of ∞-topoi

Sh((AfdX)qét) ∼−−→ Sh((AnX)qét). (3.1)

We call the two equivalent ∞-topoi above the quasi-étale ∞-topos associated to X,
and denote it by XX . We will denote the site (AfdX)qét by Xqét for simplicity.

Remark 3.2. The ∞-topos XX is not hypercomplete in general. In the subsequent
sections we will also consider its hypercompletion X∧X .

Remark 3.3. Since the site Xqét is a 1-category, the ∞-topos XX is 1-localic. It
follows that for any ∞-topos Y one has an equivalence of ∞-categories

Fun∗(Y,XX) ' Fun∗(τ≤0Y, τ≤0XX),
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where Fun∗ denotes the ∞-category of geometric morphisms (taken in TopR ). Put
Y = S and observe that τ≤0XX = ShSet(Xqét) and τ≤0(S) ' Set. We conclude
that the points of XX correspond bijectively to the points of the classical 1-topos
associated to the site Xqét. The latter is classified by the geometric points of the
adic space associated to X in the sense of Huber (cf. [12, Proposition 2.5.17]).

Since the site Xqét is finitary, it follows from [19, Corollary 3.22] that the
hypercompletion X∧X is locally coherent. Therefore, by Theorem 4.1 in loc. cit., the
∞-topos X∧X has enough points.

Remark 3.4. As we already discussed in Section 2, [18, §2.2] assigns to every
X ∈ Tan(k) a Tan(k)-structured ∞-topos SpecTan(k)(X), called the spectrum of X.
It is characterized by the following universal property: for any Tan(k)-structured
∞-topos (Y,OY) there is a natural equivalence

Map TopR (Tan(k))((Y,OY), SpecTan(k)(X)) ' MapInd(Gan(k)op)(X,ΓG(Y,OY)),
where Gan(k) denotes a geometric envelope of Tan(k) (cf. [18, Theorem 2.2.12]). We
note that the underlying ∞-topos of SpecTan(k)(X) can be identified with XX .

We refer to [16, 7.3.2] for the notion of closed immersion of ∞-topoi.

Proposition 3.5. The functor

Ank −→ h( TopR )
X 7−→ XX

preserves closed immersions, where h( TopR ) denotes the homotopy category of
TopR .

Remark 3.6. It will follow from the results of Section 4 (see in particular Lemma 4.4
and the construction of Φ) that the functor above can be promoted to an∞-functor
Ank → TopR .

Lemma 3.7. Let X,Y be ∞-topoi and let U ∈ X. Let f−1 : X/U � Y : f∗ be a
geometric morphism. Then (f−1, f∗) is an equivalence if and only if there exists an
effective epimorphism V → 1X such that X/V /(U×V ) � Y/f−1(V ) is an equivalence.

Proof. To see that the condition is necessary it is enough to take V → 1X to be the
identity of 1X. We now prove the sufficiency. Let us denote by j−1 : X � X/U : j∗
(resp. i−1 : X � X/V : i∗) the given closed (resp. étale) morphism of ∞-topoi. We
claim that

X/V /(U × V ) ' (X/U)/j−1(V ).

Indeed, the left hand side can be identified with the pullback X/V ×XX/U in virtue
of [16, 6.3.5.8]. The right hand side can be identified with the same pullback in
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virtue of [16, 7.3.2.13]. At this point, we obtain a commutative square of geometric
morphisms in TopR

Y/f−1(V ) (X/U)/j−1(V )

Y X/U.
f∗

So the lemma follows from the descent property of ∞-topoi [16, 6.1.3.9(3)]. �

Lemma 3.8. Let A→ B be a surjective morphism of strictly k-affinoid algebras.
Let B → B′ be an étale morphism of strictly k-affinoid A-algebras. Then there
exists an étale A-algebra A′ and a pushout square:

A B

A′ B′.

Proof. Since B → B′ is étale, by [12, Proposition 1.7.1], we can write

B′ = B〈y1, . . . , ym〉/(f1, . . . , fm),

such that the Jacobian J := Jac(f1, . . . , fm) is invertible in B′. So

ρ := min
x∈SpB B′

|J(x)|

is positive, where SpB B
′ denotes the Berkovich spectrum associated to B′. Since

A→ B is surjective, the induced morphism

A〈y1, . . . , ym〉 → B〈y1, . . . , ym〉

is surjective as well. Therefore we can find elements f1, . . . , fm ∈ A〈y1, . . . , ym〉
lifting f1, . . . , fm. Set

A0 := A〈y1, . . . , ym〉/(f1, . . . , fm).

Let J := Jac(f1, . . . , fm). Let n be a positive integer such that ρn ∈ |k| and let a
be an element in k such that |a| = ρn. Set A′ := A0〈w〉/(wJ

n − a). We see that
the natural morphism A0 → B′ factors as

A0 → A′ → B′.

It follows from the construction that A→ A′ is étale, and moreover B′ ' A′ ⊗̂AB,
completing the proof. �
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Proof of Proposition 3.5. Let f : Y → X be a closed immersion in Ank. Let
U : Xqét → S be the functor defined by the formula

U(Z) =

{∗} if Z ×X Y = ∅,
∅ otherwise.

This is a sheaf and therefore determines a closed subtopos XX/U . The morphism
f induces a geometric morphism

f−1 : XX � XY : f∗.
We claim that f∗ factors through the closed subtopos XX/U . Indeed, it suffices to
check that for every sheaf G ∈ XY and every representable sheaf hZ in XX such
that MapXX

(hZ , U) 6= ∅, the space MapXX
(hZ , f∗(G)) is contractible. This is true,

because we have
MapXX

(hZ , f∗(G)) ' G(Z ×X Y ) = G(∅) ' {∗}.
We denote by (f−1, f∗) again the induced adjunction

f−1 : XX/U � XY : f∗. (3.2)
We conclude our proof by the following lemma. �

Lemma 3.9. The adjunction in Eq. (3.2) is an equivalence.

Proof. By Lemma 3.7, we can assume that both X and Y are affinoid. Note that
XX/U and XY are 1-localic∞-topoi in virtue of [16, 7.5.4.2] and [20, Lemma 1.2.6].
Therefore it suffices to show that the adjunction (f−1, f∗) induces an equivalence
when restricted to 1-truncated objects of XX/U and XY .

Let us prove that the functor f∗ is conservative. Let α : F → F ′ be a morphism
in XY and suppose that f∗(α) is an equivalence. By the equivalence (3.1), it is
enough to show that α induces equivalences F (Y ′)→ F ′(Y ′) for every quasi-étale
morphism Y ′ → Y . Using Lemma 3.8, we can form a pullback diagram

Y ′ X ′

Y X,

where X ′ → X is quasi-étale. It follows that
F (Y ′) = (f∗F )(X ′)→ (f∗F ′)(X ′) = F (Y ′)

is an equivalence.
We are left to check that the unit of the adjunction (f−1, f∗) is an equivalence

over 1-truncated objects. For this, it suffices to check that for every 1-truncated
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sheaf F ∈ XX , the unit u : F → f∗f
−1F induces an equivalence on sheaves of

homotopy groups. Since both F and f∗f−1F are 1-truncated, they are hypercom-
plete objects. Therefore, it suffices to check that η−1(u) is an equivalence for every
geometric morphism η−1 : XX → S : η∗. Such a geometric morphism corresponds to
a geometric point x of the adic space associated to X (cf. Remark 3.3). Let {Vα}
be a system of quasi-étale neighborhoods of x. We have η−1(G) = colimG(Vα).

If x does not meet Y , we see that η−1(G) is contractible whenever G ∈ XX/U .
In particular η−1(u) is an equivalence for every 1-truncated F ∈ XX/U .

Otherwise, x lifts to a geometric morphism η−1
1 : XY → S, satisfying η−1 =

η−1
1 ◦ f−1. So we have

η−1(f∗f−1F ) ' colim(f∗f−1F )(Vα)
' colim(f−1F )(Vα ×X Y )
' η−1

1 f−1F ' η−1F,

completing the proof. �

Proposition 3.10. Let

W Y

X Z

g

f

be a pullback square in Ank and assume that f is a closed immersion. The induced
square of ∞-topoi

XW XY

XX XZ

g∗

f∗

is a pullback diagram in TopR .

Proof. Let UX be the sheaf on the quasi-étale site Zqét of Z defined by

UX(T ) :=

{∗} if T ×Z X = ∅
∅ otherwise.
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Define UW to be the sheaf on the quasi-étale site Yqét of Y in a similar way. Using
Lemma 3.9 twice, we can rewrite the induced square of ∞-topoi as

XY /UW XY

XZ/UX XZ .

g∗

In virtue of [16, 7.3.2.13], we only need to show that g−1UX ' UW . First of all, let
us observe that there exists a map UX → g∗UW : indeed, if T → X is quasi-étale
with T → Z a quasi-smooth morphism such that T ×Z X = ∅, then we also have
(T×ZY )×YW ' (T×ZW )×ZY = ∅, and therefore g∗(UW )(T ) = UW (T×ZY ) = ∆0.
This allows to define the desired map, which induces by adjunction a morphism
g−1UX → UW . By construction, UW is (−1)-truncated and [16, 5.5.6.16] shows
that g−1UX is (−1)-truncated too. Therefore they are both hypercomplete. So it
suffices to check that g−1UX → UW is an isomorphism on the stalks of XY . This
is true because a geometric point η∗ : S → XY factors through XW if and only if
g∗ ◦ η∗ factors through XX (cf. Remark 3.3). �

Corollary 3.11. The pregeometry Tan(k) is unramified.

Proof. We check that Definition 3.1 is satisfied. Let X, Y, Z ∈ Tan(k) and let
f : Y → X be any morphism. The diagram

X Y

X × Y Y × Y

idX × f ∆

is a pullback diagram. Since Y is separated, Y is a closed immersion, and therefore
the same goes for X → X × Y . We can therefore use Proposition 3.10 to conclude
that the induced square

XX×Z XX

XX×Y×Z XX×Y .

is a pullback diagram in TopR . �

3.2. Algebraization. The functor Tdisc(k)→ Tan(k) induced by analytification is
a transformation of pregeometries in the following sense:
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Definition 3.12 ([17, 3.2.1]). A transformation of pregeometries from T to T′ is a
functor θ : T → T′ such that
(i) it preserves finite products;
(ii) it sends admissible morphisms in T to admissible morphisms in T′;
(iii) it sends coverings in T to coverings in T′;
(iv) it sends any pullback in T along an admissible morphism to a pullback in T′.

In the following, we study some properties of the transformation of pregeometries
Tdisc(k)→ Tan(k).

Lemma 3.13. Let X be an ∞-topos. The algebraization functor

(−)alg : Strloc
Tan(k)(X)→ Strloc

Tdisc(k)(X)

induced by composition with the transformation Tdisc(k)→ Tan(k) is conservative.

Proof. Let f : O → O′ be a local morphism of Tan(k)-structures on X such that
f alg : Oalg → O′alg is an equivalence. We will show that for every X ∈ Tan(k), the
induced morphism O(X) → O′(X) is an equivalence. Since X is quasi-smooth,
we can cover it by affinoid domains {SpBBi} such that every SpBBi admits a
quasi-étale morphism to a k-analytic affine space.

So we obtain a commutative square
∐
O(SpBBi)

∐
O′(SpBBi)

O(X) O′(X),

where the vertical morphisms are effective epimorphisms. Moreover, since analytic
domain embeddings are quasi-étale and f is a local morphism, we see that the above
square is a pullback. We are therefore reduced to show that O(SpBB)→ O′(SpBB)
is an equivalence whenever SpB B admits a quasi-étale morphism to a k-analytic
affine space An

k . Since f is a local morphism, we have in this case a pullback square

O(SpBB) O(An
k)

O′(SpBB) O′(An
k).

Since O(An
k) = Oalg(An

k)→ O′alg(An
k) = O′(An

k) is an equivalence by our assumption,
we deduce that O(SpB B)→ O′(SpBB) is an equivalence as well, completing the
proof. �
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Proposition 3.14. Let X be an ∞-topos and let f : O → O′ be a morphism in
Strloc

Tan(k)(X). The following conditions are equivalent:
(i) The morphism f is an effective epimorphism, i.e. for every U ∈ Tan(k) the

morphism O(U)→ O′(U) is an effective epimorphism in X.
(ii) The morphism f alg : Oalg → O′alg is an effective epimorphism.
(iii) The morphism O(A1

k)→ O′(A1
k) is an effective epimorphism.

Proof. It follows directly from the definition of effective epimorphism of Tan(k)-
structures that (i) implies (ii) and (ii) implies (iii). Let us show that (iii) implies
(i). Let X ∈ Tan(k). Choose a quasi-étale covering {Ui → X} such that each Ui
admits a quasi-étale morphism to An

k . Since f is a local morphism, we have the
following pullback square: ∐

O(Ui)
∐
O′(Ui)

O(X) O′(X).

The vertical arrows are effective epimorphisms, and therefore it suffices to check
that the upper horizontal map is an effective epimorphism. Since f is a local
morphism, we see that the diagram

O(Ui) O′(Ui)

O(An
k) O′(An

k)

is a pullback diagram. So it suffices to show that O(An
k)→ O′(An

k) is an effective
epimorphism. This follows from the hypothesis and the fact that both O and O′

commute with products. �

Definition 3.15 ([17, 10.1]). Let θ : T′ → T be a transformation of pregeometries,
and Θ: Top(T)→ Top(T′) the induced functor given by composition with θ. We
say that θ is unramified if the following conditions hold:
(i) The pregeometries T and T′ are unramified.
(ii) For every morphism f : X → Y in T and every object Z ∈ T, the diagram

Θ SpecT(X × Z) Θ SpecT(X)

Θ SpecT(X × Y × Z) Θ SpecT(X × Y )
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is a pullback square in Top(T′).

Proposition 3.16. The transformation of pregeometries Tdisc(k) → Tan(k) is
unramified.

Proof. For X ∈ Tan(k), we denote the spectrum SpecTan(k)(X) by (XX ,OX). For
a morphism X → Y in Tan(k), we denote by O

alg
Y |X the image of Oalg

Y under the
pullback functor Strloc

Tdisc(k)(XY )→ Strloc
Tdisc(k)(XX). We have to show that for every

morphism f : X → Y in Tan(k) and every Z ∈ Tan(k), the commutative square

O
alg
X×Y |(X × Z) O

alg
X |(X × Z)

O
alg
X×Y×Z |(X × Z) O

alg
X×Z

(3.3)

is a pushout in Strloc
Tdisc(k)(XX×Z) ' ShCAlgk(XX×Z).

Form the pushout

O
alg
X×Y |(X × Z) O

alg
X |(X × Z)

O
alg
X×Y×Z |(X × Z) A

in ShCAlgk(XX×Z). Let A∧ be the hypercompletion of A. We will prove below that
A∧ is equivalent to O

alg
X×Z . Assuming this, we see that A∧ is discrete. It follows

that A is discrete as well, and therefore it is hypercomplete. We thus conclude that
the square (3.3) is a pushout.

So we are reduced to show that the map A∧ → O
alg
X×Z is an equivalence. Both

sheaves are hypercomplete and Remark 3.3 shows that X∧X×Z has enough points.
Thus, it suffices to show that for every geometric point (x, z) of the adic space
associated to X × Z in the sense of Huber, the diagram

O
alg
(x,y) Oalg

x

O
alg
(x,y,z) O

alg
(x,z)

(3.4)

is a pushout square, where we set y := f(x). Choose a fundamental system of quasi-
étale affinoid neighborhoods {Vα} of (x, y) in X × Y . Set Uα := Vα ×X×Y X and
observe that {Uα} forms a fundamental system of quasi-étale affinoid neighborhoods
of x in X. Choose moreover a fundamental system {Wβ} of quasi-étale affinoid
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neighborhoods of z in Z. We have pullback squares

Uα ×Wβ Uα

Vα ×Wβ Vα.

(3.5)

Assume Uα = SpB Aα, Vα = SpBBα and Wβ = SpBCβ. Since Uα → Vα is a
closed immersion, the pullback above corresponds to a pushout in the category of
k-algebras

Bα Bα ⊗̂k Cβ

Aα Aα ⊗̂k Cβ

(3.6)

Taking limit in Diagram 3.5 (or equivalently, taking colimit in Diagram 3.6), we
observe that Diagram 3.4 is a pushout diagram in the category of k-algebras. Since
the projections Vα×Wβ → Vα are flat, we see that every morphism Bα → Bα ⊗̂k Cβ
is flat. As a consequence, Oalg

(x,y) → O
alg
(x,y,z) is flat. The pushout (3.4) is therefore a

derived pushout square, completing the proof. �

Intuitively, the pregeometry Tan(k) enables us to consider structure sheaves with
“non-archimedean analytic structures” in addition to the usual algebraic structures.
The unramifiedness of the transformation Tdisc(k)→ Tan(k) in Proposition 3.16 will
imply that for certain purposes, this additional analytic structure can be ignored.
Here is a simple example illustrating this phenomenon: Consider the completed
tensor product A ⊗̂B C of three strictly k-affinoid algebras. When C is finitely
presented as a B-module, we have an isomorphism A ⊗̂B C ' A ⊗B C. That is,
in this case, for the purpose of tensor product, the analytic structure on affinoid
algebras can be ignored. The proposition below elaborates on this idea:

Proposition 3.17. Let f : (Y,OY)→ (X,OX) and g : (X′,OX′)→ (X,OX) be mor-
phisms in TopR (Tan(k)). Assume that the induced map θ : f−1O

alg
X → O

alg
Y is an

effective epimorphism. Then:
(i) There exists a pullback diagram

(Y′,OY′) (X′,OX′)

(Y,OY) (X,OX)

f ′

g′ g

f
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in TopR (Tan(k)). If moreover (X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)),
then Hyp(Y′,OY′) is equivalent to the pullback computed in HTopR (Tan(k)).

(ii) The underlying diagram of ∞-topoi

Y′ X′

Y X

is a pullback square in TopR . If moreover

(X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)),
then (Y′)∧ is equivalent to the pullback computed in HTopR .

(iii) The diagram
f ′−1g−1O

alg
X f ′−1O

alg
Y

g′−1O
alg
Y O

alg
Y′

is a pushout square in ShCAlgk(Y′). If moreover (X,OX), (X′,OX′), (Y,OY) ∈
HTopR (Tan(k)), the same holds after applying the hypercompletion functor
L : Y′ → (Y′)∧.

(iv) The map θ′ : f ′−1OX′ → OY′ is an effective epimorphism. If moreover (X,OX),
(X′,OX′), (Y,OY) ∈ HTopR (Tan(k)), the same holds after applying the hyper-
completion functor L : Y′ → (Y′)∧

Proof. We first deal with the non-hypercomplete case. Proposition 3.14 shows
that the morphism f−1OX → OY is an effective epimorphism. Moreover, Tan(k) is
unramified in virtue of Corollary 3.11. Therefore [17, Theorem 1.6] implies the first
two statements. Combining Proposition 3.16, Proposition 3.14 and [17, Proposition
10.3], we deduce the other two statements.

We now assume that (X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)). Then (i) and
(ii) follow from what we already proved and the fact that Hyp commutes with
limits, being a right adjoint by Lemma 2.8. On the other side, (iii) and (iv) follow
from the fact that the hypercompletion functor L : Y′ → (Y′)∧ commutes with
colimits and finite limits. �

3.3. Truncations. Now we discuss the compatibility of the pregeometry Tan(k)
with n-truncations.

Definition 3.18 ([18, 3.3.2]). Let T be a pregeometry and let n ≥ −1 be an
integer. The pregeometry T is said to be compatible with n-truncations if for every
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∞-topos X, every T-structure O : T → X and every admissible morphism U → V

in T, the induced square

O(U) τ≤n(O(V ))

O(V ) τ≤n(O(V ))

is a pullback in X.

This definition is equivalent to say that for every T-structure O : T → X the
composition τ≤n ◦O is again a T-structure and the canonical morphism O→ τ≤n ◦O
is a local morphism of T-structures, where τ≤n : X → X denotes the truncation
functor of the ∞-topos X.

In order to prove that Tan(k) is compatible with n-truncations for every n ≥ 0,
it will be convenient to introduce a pregeometry slightly different from Tan(k).

Construction 3.19. We define a pregeometry TGan(k) as follows:
(1) the underlying category of TGan(k) is the category of paracompact, separated,

quasi-smooth strictly k-analytic spaces;
(2) a morphism in TGan(k) is admissible if and only if it is an analytic domain

embedding;
(3) the topology on TGan(k) is the G-topology (cf. [2, §1.3]).

Lemma 3.20. The pregeometry TGan(k) is compatible with n-truncations for every
n ≥ 0.

Proof. Since analytic domain embeddings are monomorphisms, the lemma is a
direct consequence of [18, 3.3.5]. �

Lemma 3.21. Let U → V be a quasi-étale morphism in Tan(k). There exists a
G-covering {Vi → V }i∈I , G-coverings {Uij → U ×V Vi}j∈Ji for every i ∈ I, smooth
algebraic k-varieties Yi and Xij, étale morphisms Xij → Yi, analytic domain
embeddings Vi ↪→ Y an

i and Uij ↪→ Xan
ij such that the morphism Uij → Vi equals the

restriction of the morphism Xan
ij → Y an

i for every i ∈ I and j ∈ Ji.

Proof. Since V is quasi-smooth, there exists an affinoid G-covering {Vi → V }i∈I
such that every Vi admits a quasi-étale morphism to a polydisc Dni . By [12,
Proposition 1.7.1], the affinoid algebra associated to Vi has a presentation of the
form

k〈T1, . . . , Tni , T
′
1, . . . , T

′
mi
〉/(f1, . . . , fmi)

such that the determinant det
(
∂fα
∂T ′

β

)
α,β=1,...,mi

is invertible in k〈T1, . . . , Tni〉. By
[6, Chap. III Theorem 7 and Remark 2], there exists a smooth affine scheme Yi
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and an étale morphism Yi → Ani
k such that Vi is isomorphic to the fiber product

Y an
i ×(Ani

k
)an Dni .

We now fix i ∈ I. Since the morphism U → V is quasi-étale, by base change,
the morphism U ×V Vi → Vi is quasi-étale. So the composition

U ×V Vi → Vi → Dni

is quasi-étale. Let {Uij → U ×V Vi}j∈Ji be an affinoid G-covering. For every j ∈ Ji,
by [12, Proposition 1.7.1], the affinoid algebra associated to Uij has a presentation
of the form

k〈T1, . . . , Tni , T
′
1, . . . , T

′
mij
〉/(f1, . . . , fmij)

such that the determinant det
(
∂fα
∂T ′

β

)
α,β=1,...,mij

is invertible in k〈T1, . . . , Tni〉. By
[6, Chap. III Theorem 7] again, there exists a smooth affine scheme Zij and
an étale morphism Zij → Ani

k such that Uij is isomorphic to the fiber product
Zan
i ×(Ani

k
)an Dni . Let Xij := Yi ×Ani

k
Zij. By the universal property of the fiber

product, there exists a unique map r : Uij → Xan
ij making the following diagram

commutative:
Uij

U ×V Vi Xan
ij Zan

ij

Vi Y an
i (Ani

k )an

r
t

s

The map t is an analytic domain embedding, so it is in particular quasi-étale. The
map s is étale by base change, so it is quasi-étale. Since t = s ◦ r, we deduce that
the map r is quasi-étale. Moreover, the map t is a monomorphism, so the map r
is also a monomorphism. Since the map r is quasi-étale, we deduce that it is an
analytic domain embedding. �

Lemma 3.22. Let X be an ∞-topos and let

U W Z

V Y X
p

be a diagram in X. Assume that the left and the outer squares are pullbacks and
that p is an effective epimorphism. Then the right square is a pullback as well.
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Proof. Let W ′ := Y ×X Z. We obtain a commutative diagram

U W ′ Z

V Y X.
p

Since the outer square is a pullback by our assumption, the left square is a pullback
as well. The universal property of pullbacks induces a morphism α : W → W ′. By
hypothesis, the induced map α×Y V : W ×Y V → W ′×Y V is an equivalence. Since
p is an effective epimorphism, the pullback functor p−1 : X/Y → X/V is conservative
(cf. [16, 6.2.3.16]). We conclude that α is an equivalence, completing the proof. �

Theorem 3.23. The pregeometry Tan(k) is compatible with n-truncations for every
n ≥ 0.

Proof. When n ≥ 1, the statement is a direct consequence of [18, 3.3.5]. We now
prove the case n = 0. Let X be an ∞-topos and let O ∈ Strloc

Tan(k)(X).
For the purpose of this proof, we will say that a morphism f : U → V in Tan(k)

is compatible if the induced diagram

O(U) τ≤0O(U)

O(V ) τ≤0O(V )

(3.7)

is a pullback square. We need to show that every quasi-étale morphism is compati-
ble.

Let us start by observing the following properties of compatible morphisms:

(1) Analytic domain embeddings are compatible. This follows from Lemma 3.20.
(2) If f : X → Y is an étale morphism of smooth k-varieties, then the analytifi-

cation f an : Xan → Y an is compatible. Indeed, let Tét(k) be the pregeometry
of [18, Definition 4.3.1]. The analytification functor induces a morphism
of pregeometries ϕ : Tét(k)→ Tan(k). We have O(Xan) = (O ◦ ϕ)(X) and
O(Y an) = (O ◦ ϕ)(Y ). Since O ◦ ϕ is a Tét(k)-structure on X, the statement
follows from the fact that Tét(k) is compatible with 0-truncations (cf. [18,
Proposition 4.3.28]).

(3) Compatible morphisms are stable under composition. This follows from the
composition property of pullback squares (cf. [16, 4.4.2.1]).
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(4) Suppose given a pullback square

U V

X Y

g

f ′ j

f

where f is compatible and j is an analytic domain embedding. Then f ′ is
compatible. To see this, consider the commutative diagram

O(U) O(X) τ≤0O(X)

O(V ) O(Y ) τ≤0O(Y ).

Since analytic domain embeddings are in particular quasi-étale morphisms
and since O is a Tan(k)-structure, we see that the left square is a pullback
diagram. On the other side, the right square is a pullback because f
is compatible by assumption. We conclude that the outer square in the
commutative diagram

O(U) τ≤0O(U) τ≤0O(X)

O(V ) τ≤0O(V ) τ≤0O(Y )

is a pullback square. We remark that τ≤0 ◦O is a TGan(k)-structure in virtue
of Lemma 3.20. So by [18, Proposition 3.3.3], the right square is a pullback
as well. It follows that the left square is also a pullback, completing the
proof of the claim.

(5) Being compatible is G-local on the source. Indeed, let f : X → Y be a
morphism in Tan(k) and assume there exists a G-covering {Xi} of X such
that each composite fi : Xi → X → Y is compatible. We want to prove
that f is compatible as well. Consider the commutative diagram∐

O(Xi) O(X) O(Y )

∐
τ≤0O(Xi) τ≤0O(X) τ≤0O(Y ).

Since G-coverings are quasi-étale coverings, it follows from the properties of
Tan(k)-structures that the total morphism ∐

O(Ui)→ O(U) is an effective
epimorphism. Since τ≤0 commutes with coproducts (being a left adjoint)
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and with effective epimorphisms (cf. [16, 7.2.1.14]), we conclude that the
total morphism ∐

τ≤0O(Ui)→ τ≤0O(U) is an effective epimorphism as well.
Since each Xi → X is an analytic domain embedding, Property (1) implies
that the left square is a pullback. Moreover, the outer square is a pullback
by hypothesis. Thus, Lemma 3.22 shows that the right square is a pullback
as well, completing the proof of this property.

Let now f : U → V be a quasi-étale morphism in Tan(k). We will prove that f is
compatible. Using Lemma 3.21 we obtain a G-covering {Vi → V }i∈I , G-coverings
{Uij → U ×V Vi}j∈Ji for every i ∈ I, smooth algebraic k-varieties Yi and Xij , étale
morphisms Xij → Yi, embeddings of analytic domains Vi ↪→ Y an

i and Uij ↪→ Xan
ij

such that the morphism Uij → Vi equals to restriction of the morphism Xan
ij → Y an

i .
In particular we can factor Uij → Vi as the composition

Uij Xan
ij ×Y an

i
Vi Vi

where the first morphism is an analytic domain embedding and the second is
compatible by Property (4) of compatible morphisms. Therefore, Property (3)
implies that Uij → Vi is compatible. Finally, using Property (5) we conclude that
the morphisms U ×V Vi → Vi are compatible.

We are therefore reduced to prove the following statement: given a morphism
f : U → V , suppose that there exists a G-covering {vi : Vi → V } such that each
base change fi : Ui := U ×V Vi → Vi is compatible, then f is compatible. We
consider the commutative diagram∐

O(Ui) O(U) τ≤0O(U)

∐
O(Vi) O(V ) τ≤0O(V ).

Since O is a Tan(k)-structure, the total morphism ∐
O(Ui)→ O(U) is an effective

epimorphism. Moreover, since each Vi → V is an analytic domain embedding, so in
particular quasi-étale, we see that the left square is a pullback. By hypothesis, the
outer square is a pullback as well, so we conclude the proof using Lemma 3.22. �

Corollary 3.24. Let (X,OX) be a derived k-analytic space. Then (X, π0(OX)) is
also a derived k-analytic space. Moreover, we have (π0(OX))alg ' π0(Oalg

X ).

Proof. It follows from Theorem 3.23 that π0(OX) is a Tan(k)-structure on X. Let
ϕ : Tdisc(k)→ Tan(k) be the transformation of pregeometries induced by the ana-
lytification functor. Then we have by definition

(π0(OX))alg = (πX
0 ◦ OX) ◦ ϕ ' πX

0 ◦ (OX ◦ ϕ) = π0(Oalg
X ),
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where πX
0 denotes the truncation functor of the ∞-topos X. In particular, we see

that (X, π0(OX)alg) is a derived k-analytic space. �

Definition 3.25. A Tan(k)-structured ∞-topos (X,OX) is said to be discrete if OX

is a discrete object in Strloc
Tan(k)(X). We denote by TopR 0(Tan(k)) the full subcategory

of TopR (Tan(k)) spanned by discrete Tan(k)-structured ∞-topoi.
We say that a derived k-analytic space (X,OX) is discrete if it is discrete as

a Tan(k)-structured ∞-topos. We denote by dAn0
k the full subcategory of dAnk

spanned by discrete derived k-analytic spaces.

Choose a geometric envelope Gan(k) for Tan(k) and let Gan(k) → G≤0
an (k) be a

0-stub for Gan(k) (cf. [18, Definition 1.5.10]). It follows from [18, Proposition 1.5.14]
that

TopR (G≤0
an (k)) ' TopR 0(Tan(k)).

The relative spectrum (cf. [18, § 2.1]) is a functor

SpecG
≤0
an (k)

Gan(k)
: TopR (Gan(k))→ TopR (G≤0

an (k)) ' TopR 0(Tan(k)),

which we refer to as the truncation functor. Using Theorem 3.23, we can identify
the action of this functor on objects with the assignment

(X,OX) 7→ (X, π0(OX)).

The following proposition is an analogue of [23, Proposition 3.13] and of [29,
Proposition 2.2.4.4]:

Proposition 3.26. Let i : dAn0
k → dAnk denote the natural inclusion functor.

Then:
(i) The functor SpecG

≤0
an (k)

Gan(k)
: Top(Tan(k)) → Top0(Tan(k)) restricts to a functor

t0 : dAnk → dAn0
k.

(ii) The functor i is left adjoint to the functor t0.
(iii) The functor i is fully faithful.

Proof. The statement (iii) holds by definition of the functor i. It follows from
Corollary 3.24 that the functor SpecG

≤0
an (k)

Gan(k)
respects the ∞-category of derived

k-analytic spaces. Therefore the statements (i) and (ii) follow immediately. �

4. Fully faithful embedding of k-analytic spaces

In this section, we construct a functor Φ: Ank → dAnk from the category of
strictly k-analytic spaces to the category of derived k-analytic spaces. We will
prove that Φ is a fully faithful embedding.

First we will define the functor Φ on objects, then we will define it on morphisms.
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Let dAn1,0
k be the full subcategory of dAnk spanned by derived k-analytic spaces

(X,OX) such that X is 1-localic and OX is 0-truncated.

Definition 4.1. Let X be a strictly k-analytic space and let XX be the quasi-étale
∞-topos associated to X. We define a functor OX : Tan(k)→ XX by the formula

OX(M)(U) = HomAnk(U,M).

Lemma 4.2. Let X be a strictly k-analytic space. Then OX is a 0-truncated
Tan(k)-structure on the ∞-topos XX . Let X∧X denote the hypercompletion of XX

and let Φ(X) denote the pair (X∧X ,OX). Then Φ(X) is a derived k-analytic space.

Proof. In order to prove that OX is a Tan(k)-structure on XX , it suffices to verify
that if {Mi →M} is a quasi-étale covering of M ∈ Tan(k), then the induced map∐
iOX(Mi)→ OX(M) is an effective epimorphism in XX . Observe that for any U

in the quasi-étale site on X and any morphism U →M , there exists a quasi-étale
covering {Uj → U} such that the composite morphisms Uj → M factor though∐
Mi →M . So we conclude using [25, Corollary 2.9].
Since OX is 0-truncated by construction, it is hypercomplete. Therefore the

second statement follows from the first. �

In order to define the functor Φ on morphisms, our strategy is to prove that
the mapping spaces MapdAnk(Φ(X),Φ(Y )) are discrete for all X, Y ∈ Ank (cf.
Proposition 4.10). In this way we can promote Φ to an ∞-functor without the
need to specify higher homotopies.

We begin by introducing an auxiliary functor Υ. Let LRT denote the 2-category
of locally ringed 1-topoi and let Υ: Ank → LRT be the functor sending every
strictly k-analytic space to the associated locally ringed quasi-étale 1-topos. For
X ∈ Ank, we denote by O

alg
X the structure sheaf of k-algebras of Υ(X).

Lemma 4.3. Let X be a strictly k-affinoid space, Y a strictly k-analytic space and
α : X → Y a morphism. Then there exists a positive integer N and a monomor-
phism β : X ↪→ DN

Y over Y , where DN
Y denotes the unit polydisc over Y .

Proof. Let A := Γ(OX). Write A = k〈x1, . . . , xn〉/I as a quotient of a Tate algebra.
Denote by a1, . . . , an the images of x1, . . . , xn in A. We cover X by finitely many
rational subdomains Ui such that α(Ui) is contained in an affinoid subdomain
Vi ⊂ Y . Write

Γ(OUi) = A
〈
bi1
bi0
, . . . ,

bini
bi0

〉
,

where bi0, . . . , bini is a collection of elements in A with no common zero. Let
ci0, . . . , cini be elements in k such that |cij| ≥ ρ(bij) for j = 0, . . . , ni, where ρ(·)
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denotes the spectral radius. Consider the morphism

Γ(OVi)〈y1, . . . , yn, yi0, . . . , yini〉 → Γ(OUi)

that sends yj to aj and yij to bij/cij. It induces a monomorphism Ui ↪→ Dn+ni+1
Vi

.
Let N := n + ∑m

i=1(ni + 1). Consider the unit polydisc DN
Y over Y . We

denote by yi, yij for i = 1, . . . ,m, j = 0, . . . , ni the coordinate functions on DN
Y .

Let β : X → DN
Y be the morphism that sends yi to ai and yij to bij/cij for all

i = 1, . . . ,m, j = 0, . . . , ni. Let Zi be the analytic domain in DN
Y given by the

inequalities |ci0 · yij| ≤ |ci0 · yi0| for j = 1, . . . , ni. Let Z ′i := Zi ×Y Vi. We see that
β−1(Z ′i) is Ui. By construction, β|Ui : Ui → Z ′i is a monomorphism. We conclude
that β : X → DN

Y is a monomorphism. �

Lemma 4.4. Let f : X → Y be a morphism of strictly k-analytic spaces. Let

(f, f#) :
(
ShSet(Xqét),Oalg

X

)
→
(
ShSet(Yqét),Oalg

Y

)
denote the induced morphism of locally ringed 1-topoi. Let t be a 2-morphism from
(f, f#) to itself. Then t equals the identity.

Proof. Using Lemma 4.3, the same proof of [26, Tag 04IJ] applies. �

Lemma 4.5. The functor

Υ: Ank −→ LRT

X 7−→ (ShSet(Xqét),Oalg
X )

is fully faithful.

Proof. Let X, Y be two strictly k-analytic spaces. Let

(g, g#) :
(
ShSet(Xqét),Oalg

X

)
→
(
ShSet(Yqét),Oalg

Y

)
be a morphism of locally ringed 1-topoi. We would like to show that there exists
a unique morphism of k-analytic spaces f : X → Y which induces (g, g#). We
proceed along the same lines as [26, Tag 04JH].

Let g−1 : ShSet(Yqét) � ShSet(Xqét) : g∗ denote the morphism of 1-topoi.
First, we assume that X = SpBA, Y = SpBB for some strictly k-affinoid algebras

A and B. Since B = Γ(Yqét,O
alg
Y ) and A = Γ(Xqét,O

alg
X ), we see that g# induces a

map of affinoid algebras ϕ : B → A. Let f = SpB ϕ : X → Y . Let us show that f
induces (g, g#).

Let V → Y be an affinoid space quasi-étale over Y . Assume V = SpBC. By [12,
Proposition 1.7.1], we can write

C = B〈x1, . . . , xn〉/(r1, . . . , rn),
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where r1, . . . , rn ∈ B〈x1, . . . , xn〉 and the determinant Jac(r1, . . . , rn) is invertible
in C. Now the sheaf hV on Yqét is the equalizer of the two maps

∏n
i=1 O

alg
Y

a
//

b
//
∏n
j=1 O

alg
Y

where b = 0 and a(h1, . . . , hn) =
(
r1(h1, . . . , hn), . . . , rn(h1, . . . , hn)

)
. We have the

following commutative diagram

g−1hV

α

��

//
∏n
i=1 g

−1O
alg
Y∏
g#

��

g−1a
//

g−1b

//
∏n
j=1 g

−1O
alg
Y∏

g#

��

hX×Y V
//
∏n
i=1 O

alg
X

a′
//

b′
//
∏n
j=1 O

alg
X ,

(4.1)

where b′ = 0, a′(h1, . . . , hn) =
(
ϕ(r1)(h1, . . . , hn), . . . , ϕ(rn)(h1, . . . , hn)

)
, the two

horizontal lines are equalizer diagrams and the dotted arrow α is obtained by the
universal property of equalizers.

We claim that the map α : g−1hV → hX×Y V is an isomorphism. Let us check this
on the stalks. Let x̄ be a geometric point of the adic space Xad associated to X in
the sense of Huber. Denote by p the associated point of the 1-topos ShSet(Xqét) (cf.
Remark 3.3). Applying localization at p to Diagram (4.1), we would like to show
that αp : (g−1hV )p → (hX×Y V )p is an isomorphism. Set q := g ◦ p. This is a point
of the 1-topos ShSet(Yqét). We denote by ȳ the corresponding geometric point of
the adic space Y ad associated to Y . Then the localization of the map g# at p has
the following description

(g#)p : Oalg
Y,ȳ = O

alg
Y,q = (g−1O

alg
Y )p −→ O

alg
X,p = O

alg
X,x̄.

It suffices to treat the two cases: either V → Y is finite étale, or V → Y is an
affinoid domain embedding. In the first case, there exists an étale neighborhood
U of ȳ in Y ad such that the pullback morphism V ×Y U → U splits. Then the
equalizer of ∏n

i=1 O
alg
Y (U)

a
//

b
//
∏n
j=1 O

alg
Y (U) (4.2)

is isomorphic to the equalizer of
∏n
i=1 k(ȳ)

a
//

b
//
∏n
j=1 k(ȳ), (4.3)

where k(ȳ) denotes the residue field of ȳ. Similarly, there exists an étale neighbor-
hood U ′ of x̄ inXad such that the pullback morphismX×Y V ×XU ′ ' V ×Y U ′ → U ′
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splits. Then the equalizer of

∏n
i=1 O

alg
X (U ′)

a′
//

b′
//
∏n
j=1 O

alg
X (U ′) (4.4)

is isomorphic to the equalizer of

∏n
i=1 k(x̄)

a′
//

b′
//
∏n
j=1 k(x̄). (4.5)

Since the equalizer of Eq. (4.3) and the equalizer of Eq. (4.5) are isomorphic by
construction, we deduce that the equalizer of Eq. (4.2) and the equalizer of Eq. (4.4)
are isomorphic. Taking colimits over all such étale neighborhoods, we conclude
that αp : (g−1hV )p → (hX×Y V )p is an isomorphism. Then let us consider the second
case where V → Y is an affinoid domain embedding. If the geometric point ȳ can
be lifted to a geometric point in V , then for any étale neighborhood U of ȳ in Y ad

refining V , the equalizer of Eq. (4.2) consists of a single element. The same goes
for the equalizer of Eq. (4.4). If the geometric point cannot be lifted to a geometric
point in V , then the equalizer of Eq. (4.2) is empty, so is the equalizer of Eq. (4.4).
We conclude that αp : (g−1hV )p → (hX×Y V )p is an isomorphism.

Now the same argument in [26, Tag 04I6] shows that the isomorphisms g−1hV →
hX×Y V are functorial with respect to V and that the map f : X → Y indeed
induces the morphism of locally ringed 1-topoi (g, g#) we started with. Finally, the
argument in [26, Tag 04I7] allows us to deduce the general case from the affinoid
case considered above. �

Lemma 4.6. Let X be an ∞-topos. The induced functor

Strloc
Tan(k)(τ≤0X)→ Strloc

Tdisc(k)(τ≤0X)

is faithful.

Proof. We can factor the functor Strloc
Tan(k)(τ≤0X)→ Strloc

Tdisc(k)(τ≤0X) as

Strloc
Tan(k)(τ≤0X) Strloc

Tét(k)(τ≤0X) Strloc
Tdisc(k)(τ≤0X),U

where Tét(k) is the pregeometry introduced in [18, Definition 4.3.1]. Combining
[18, Propositions 4.3.16, 2.6.16 and Remark 2.5.13] we see that the functor U is
faithful. So we are reduced to prove the same statement for

Strloc
Tan(k)(τ≤0X)→ Strloc

Tét(k)(τ≤0X).

The mapping spaces of τ≤0X are discrete by definition. It follows from [16,
2.3.4.18] that we can find a minimal 1-category D and a categorical equivalence
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τ≤0X ' D. Let F,G ∈ Strloc
Tan(k)(D). We want to show that the natural morphism

MapStrloc
Tan(k)(D)(F,G)→ MapStrloc

Tét(k)(D)(F alg, Galg)

is a homotopy monomorphism. Since F and G take values in the 1-category D,
both mapping spaces above are sets. We want to prove that the given map is a
monomorphism. Since Strloc

Tét(k)(D) is a 1-category, two natural transformations ϕ
and ψ represent the same object in MapStrloc

Tét(k)(D)(F alg, Galg) if and only if they are
equal, in the sense that

F alg(X) Galg(X)

F alg(X) Galg(X)

ϕalg
X

idFalg(X) idGalg(X)

ψalg
X

commutes for every X ∈ Tét(k). Fix U ∈ Tan(k). We first assume that U is
isomorphic to an affinoid domain in Xan for a smooth k-variety X.

Since U → Xan is a monomorphism, we have a pullback square

U U

U Xan.

Since U → X is an affinoid embedding, it is quasi-étale, so it is an admissible
morphism in Tan(k). Applying the functor F , we obtain another pullback square

F (U) F (U)

F (U) F (Xan).

So F (U)→ F (Xan) is a monomorphism in the category D.
We have a commutative cube

F (U) F (Xan)

G(U) G(Xan)

F (U) F (Xan)

G(U) G(Xan)
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where the dotted arrow exists by the universal property of the pullbacks. Since
F (U) → F (Xan) is a monomorphism, the dotted arrow is in fact the identity of
F (U).

Let us now consider a general U ∈ Tan(k). Choose a G-covering of U by affinoid
domains {Ui → U} such that each Ui is isomorphic to an affinoid domain in Xan

i for
some smooth k-variety Xi. Set U0 := ∐

Ui and consider the Čech nerve U• → U .
Observe that both F (U•) and G(U•) are groupoid objects in the 1-topos D and that
their realizations are respectively F (U) and G(U). Since we have a commutative
square of groupoids

F (U•) G(U•)

F (U•) G(U•),

ϕU•

ψU•

the square
F (U) G(U)

F (U) G(U)

ϕU

ψU

commutes as well. Since the identity is functorial, the proof is now complete. �

Lemma 4.7. Let T be a pregeometry and let (X,OX), (Y,OY) be T-structured
∞-topoi such that X and Y are 1-localic and the structure sheaves OX, OY are
discrete. Then Map TopR (T)((X,OX), (Y,OY)) is 1-truncated. Moreover, the canonical
morphism

Map TopR (T)((X,OX), (Y,OY))→ Map TopR 1(T)((τ≤0X,OX), (τ≤0Y,OY))

is an equivalence, where TopR
1 denotes the ∞-category of 1-topoi with morphisms

being right adjoint geometric morphisms.

Proof. Consider the coCartesian fibration TopL (T) → TopL . We know from [18,
Remark 1.4.10] that the fiber over an ∞-topos X is equivalent to Strloc

T (X). Let
f−1 : X � Y : f∗ be a geometric morphism between X and Y. Using [16, 2.4.4.2]
and [18, Remark 1.4.10] we obtain a fiber sequence

MapStrloc
Tan(k)(X)(f−1OY,OX) Map TopR (T)((X,OX), (Y,OY)) Fun∗(X,Y),

where the fiber is taken at the geometric morphism (f−1, f∗). Since both X and Y

are 1-localic, there is an equivalence

Fun∗(X,Y) ' Fun∗(τ≤0X, τ≤0Y).
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Therefore Fun∗(X,Y) is 1-truncated. On the other side, OX is 0-truncated, so
MapStrloc

T (X)(f−1OY,OX) is discrete. The second statement follows as well. �

Lemma 4.8. Let X = (X,OX) and Y = (Y,OY) be two Tan(k)-structured ∞-topoi.
Let Xalg := (X,Oalg

X ) and Y alg := (Y,Oalg
Y ) be the underlying Tdisc(k)-structured

∞-topoi. Assume that X and Y are 1-localic and that OX and OY are 0-truncated.
Then the canonical map

Map TopR (Tan(k))(X, Y )→ Map TopR (Tdisc(k))(Xalg, Y alg)
induces monomorphisms on π0 and on π1 (for every choice of base point).

Proof. Let f∗ : X � Y : f−1 be a geometric morphism in TopR . We have a commu-
tative diagram in S:

MapStrloc
Tan(k)(X)(f−1OY,OX) Map TopR (Tan(k))(X, Y ) Fun∗(X,Y)

MapStrloc
Tdisc(k)(X)(f−1O

alg
Y ,Oalg

X ) Map TopR (Tdisc(k))(Xalg, Y alg) Fun∗(X,Y).

Using [16, 2.4.4.2] and [18, Remark 1.4.10] we see that the two horizontal lines are
fiber sequences. Moreover, since OX and OY are 0-truncated, we can use Lemma 4.6
to deduce that the first vertical map is a homotopy monomorphism. Passing to the
long exact sequences of homotopy groups and applying the five lemma, we obtain
monomorphisms

π0 Map TopR (Tan(k))(X, Y )→ π0 Map TopR (Tdisc(k))(Xalg, Y alg),
π1 Map TopR (Tan(k))(X, Y )→ π1 Map TopR (Tdisc(k))(Xalg, Y alg),

completing the proof. �

Lemma 4.9. Let Y be an n-localic ∞-topos and let X be any ∞-topos. Then there
is a canonical equivalence in the homotopy category of spaces H:

Map TopR (X∧,Y∧) ' Map TopR (X,Y).

Proof. Using [16, 6.5.2.13] we see that the canonical morphism
Map TopR (X∧,Y∧)→ Map TopR (X∧,Y)

is an equivalence. Since Y is n-localic, the restriction
Map TopR (X∧,Y)→ Map TopR

n
(τ≤n−1(X∧), τ≤n−1Y)

is an equivalence as well. On the other side, the restriction
Map TopR (X,Y)→ Map TopR

n
(τ≤n−1X, τ≤n−1Y)

is also an equivalence. We now conclude by observing that τ≤n−1X ' τ≤n−1(X∧). �
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Proposition 4.10. Let X, Y ∈ Ank. Then Map TopR (Tan(k))(Φ(X),Φ(Y )) is dis-
crete.

Proof. It follows from Lemma 4.9 that

MapdAnk(Φ(X),Φ(Y )) ' Map TopR (Tan(k))((XX ,OX), (XY ,OY )). (4.6)

On the other side, Lemma 4.7 shows that the right hand side is 1-truncated and

Map TopR (Tan(k))((XX ,OX), (XY ,OY )) ' Map TopR 1(Tan(k))((τ≤0XX ,OX), (τ≤0XY ,OY ))
(4.7)

We can now apply Lemma 4.8 to conclude that the canonical map

Map TopR 1(Tan(k))((τ≤0XX ,OX), (τ≤0XY ,OY ))→

Map TopR 1(Tdisc(k))((τ≤0XX ,O
alg
X ), (τ≤0XY ,O

alg
Y ))

induces monomorphisms on π0 and on π1.
It follows from Lemma 4.5 that the canonical map

HomAnk(X, Y )→ π0 Map TopR 1(Tdisc(k))((τ≤0XX ,O
alg
X ), (τ≤0XY ,O

alg
Y ))

is an isomorphism. At this point, we can invoke Lemma 4.4 to deduce that, for
every choice of base point, we have

π1 Map TopR 1(Tdisc(k))((τ≤0XX ,O
alg
X ), (τ≤0XY ,O

alg
Y )) = 0.

Thus, we conclude that

π1 Map TopR 1(Tan(k))((τ≤0XX ,OX), (τ≤0XY ,OY )) = 0

for every choice of base point. It follows from the equivalences (4.6) and (4.7) that
MapdAnk(Φ(X),Φ(Y )) is discrete, completing the proof. �

We can now promote X 7→ Φ(X) to an ∞-functor.
Let C temporarily denote the full subcategory of dAnk spanned by the objects

which are equivalent to Φ(X) for some X ∈ Ank. Proposition 4.10 shows that
mapping spaces in C are discrete, hence C is equivalent to a 1-category. Fix a
morphism f : X → Y in Ank. It induces a morphism of sites

ϕ : Yqét → Xqét

given by base change along f . Since all the morphisms in Xqét and Yqét are quasi-
étale, it follows that Xqét and Yqét have fiber products. Moreover, ϕ is left exact.
Therefore, it follows from [25, Lemma 2.16] that the induced adjunction

ϕs : XY � : XX : ϕs
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is a geometric morphism of∞-topoi. In particular, we obtain an induced geometric
morphism X∧Y � X∧X , which we denote by

f−1 : X∧ � X∧X : f∗.

We obtain in this way a well defined morphism (X∧X ,OX) → (X∧Y ,OY ). Since
mapping spaces in C are discrete, we see that this assignment is functorial. We
denote the resulting ∞-functor by

Φ: Ank → dAnk.

Theorem 4.11. The functor Φ: Ank → dAnk is fully faithful.

Proof. Let X, Y ∈ Ank. We want to show that

HomAnk(X, Y )→ MapdAnk(Φ(X),Φ(Y ))

is an equivalence. Lemma 4.7 allows us to identify MapdAnk(Φ(X),Φ(Y )) with

Map TopR 1(Tan(k))

(
(ShSet(Xqét),OX), (ShSet(Yqét),OY )

)
.

Let us first prove the faithfulness. Let f, g : X → Y be two morphisms and
assume that Φ(f) = Φ(g). Since the question of f being equal to g is local on both
X and Y , we can assume that both X and Y are affinoid. In this case, f (resp. g)
can be recovered as global section of the natural transformation Φ(f)(A1

k) (resp.
Φ(g)(A1

k)), where A1
k denote the k-analytic affine line. Therefore we have f = g.

Let us now turn to the fullness. Let

(f, f ]) : (ShSet(Xqét),OX)→ (ShSet(Yqét),OY )

be a morphism in TopR (Tan(k)). After forgetting along the morphism Tdisc(k)→
Tan(k), we get a morphism of locally ringed 1-topoi. Lemma 4.5 implies that this
morphism comes from a map ϕ : X → Y . This means that Φ(ϕ)alg and (f, f ])alg

coincide. Lemma 4.6 implies that Φ(ϕ) and (f, f ]) coincide as well, completing the
proof. �

5. Closed immersions and quasi-étale morphisms

In this section, we study closed immersions and quasi-étale morphisms under
the fully faithful embedding Φ: Ank → dAnk.

Definition 5.1 ([17, 1.1],[18, 2.3.1]). Let T be a pregeometry and X, Y two ∞-
topoi. A morphism O→ O′ in Strloc

T (X) is said to be an effective epimorphism if for
every object X ∈ T, the induced map O(X)→ O′(X) is an effective epimorphism
in X. A morphism f : (X,OX)→ (Y,OY) in TopR (T) is called a closed immersion
(resp. an étale morphism) if the following conditions are satisfied:
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(i) the underlying geometric morphism f∗ : X→ Y is a closed immersion (resp.
an étale morphism) of ∞-topoi;

(ii) the morphism of structure sheaves f−1OY → OX is an effective epimorphism
(resp. an equivalence) in Strloc

T (Y).

Lemma 5.2. The hypercompletion functor TopR → HTopR preserves closed im-
mersions.

Proof. Let f∗ : X � Y : f−1 be a closed immersion of ∞-topoi. By definition we
can find a (−1)-truncated object U ∈ Y such that the geometric morphism f∗ is
equivalent to the induced geometric morphism j∗ : Y/U � Y : j−1. Since U is (−1)-
truncated, it belongs to Y∧. It is therefore enough to prove that (Y/U)∧ ' Y∧/U .
The geometric morphism Y/U → Y induces by passing to hypercompletions a
morphism (Y/U)∧ → Y∧ which by construction fits in the commutative diagram

Y/U Y

(Y/U)∧ Y∧.

j∗

iU∗

j∧∗

i∗

Since j∗, i∗ and iU∗ are fully faithful, the same goes for j∧∗ . Observe that by [16,
7.3.2.5], an object V ∈ Y∧ belongs to Y∧/U if and only if V × U ' U . Since both
i∗ and j∗ commute with products, we conclude that j∧∗ factors through Y∧/U .

This provides us a fully faithful functor (Y/U)∧ → Y∧/U . In order to complete
the proof, it is enough to prove that it is essentially surjective. The canonical map
Y∧/U → Y∧ → Y factors through Y/U . Now it suffices to prove that this functor
can be further factored through (Y/U)∧. This follows from the fact that j∗ respects
the collection of ∞-connected morphisms. To see this, let V ∈ Y/U . Since U is
(−1)-truncated, we see that for every n ≥ 0 one has:

τ≤n(V )× U ' τ≤n(V )× τ≤n(U) ' τ≤n(V × U) ' τ≤n(U) ' U.

In particular, τ≤n(V ) belongs to Y/U as well. It follows that j∗ commutes with
truncations, and therefore with ∞-connected morphisms. �

Lemma 5.3. Let f−1 : X � Y : f∗ be a closed immersion of ∞-topoi. Let F ∈ X,
G ∈ Y and let f−1F → G be a morphism in Y. If the morphism F → f∗G is an
effective epimorphism, then so is the morphism f−1F → G.

Proof. Since f−1 is left exact, it commutes with effective epimorphisms. Therefore,
f−1F → f−1f∗G is an effective epimorphism. Since f∗ is fully faithful, we see that
f−1f∗G ' G, hence completing the proof. �

Theorem 5.4. Let f : X → Y be a morphism in Ank. Then:
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(i) The morphism f is a quasi-étale morphism if and only if Φ(f) is an étale
morphism.

(ii) The morphism f is a closed immersion if and only if Φ(f) is a closed immer-
sion.

Proof. We start by dealing with quasi-étale morphisms. Assume first that f is
a quasi-étale morphism. If X is affinoid, it determines an object in the site Yqét.
Let us denote by U this object. It follows from [16, 5.1.6.12] that the adjunction
f∗ : XX � XY : f−1 induced by f can be identified with the étale morphism
(XY )/U � XY . Since X is an ordinary k-analytic space, U is 0-truncated and
therefore it is hypercomplete. It follows that we can identify the adjunction

f∗ : X∧X � X∧Y : f−1

with the étale morphism j∗ : (X∧Y )/U � X∧Y : j−1. Moreover, since f is quasi-étale,
we see that (f−1OY )(V ) = OY (V ). In particular, we deduce that f−1OY = OX .
In other words, Φ(f) is étale. If now X is arbitrary, we choose a quasi-étale
covering {Xi → X} such that every Xi is affinoid. The above argument shows
that the induced morphisms XXi � XX and XXi � XY are étale. It follows that
f∗ : XX � XY : f−1 is étale as well.

Let us now assume that Φ(f) is étale. We will prove that f is quasi-étale.
The question being local on X and Y , we can assume that they are affinoid, say
X = SpB B, Y = SpB A. By hypothesis, f−1OY → OX is an equivalence. Since the
morphism of ∞-topoi f∗ : X∧X � X∧Y : f−1 is étale, we see that, for every U → X

quasi-étale, one has
f−1(OY )(U) = OY (U).

Consider the sheaf LOX/f−1OY on X∧X defined by

C 7→ Lan
OX(C)/f−1OY (C) = Lan

C/f−1OY (C),

where the symbol Lan denotes the analytic cotangent complex (cf. [7, §7.2]). Since
f−1OY ' OX , this sheaf is identically zero. On the other side, if η−1 : X∧X → S is a
geometric point, then

η−1(Lan
OA/f−1OB

) ' Lan
η−1OA/η−1f−1OB

.

We can identify η−1f−1OB with a strictly henselian B-algebra B′. Since the map
B → B′ is formally étale, we conclude that

Lan
η−1OA/η−1f−1OB

' Lan
η−1OA/B

.

This is also the stalk of the sheaf on X∧X defined by

C 7→ Lan
C/B.
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Therefore, this sheaf vanishes as well. In particular, Lan
A/B ' 0, completing the

proof.
We now turn to closed immersions. Assume first that f is a closed immersion in

Ank. Proposition 3.5 and Lemma 5.2 show that the induced geometric morphism
f∗ : X∧Y � X∧X : f−1 is a closed immersion of ∞-topoi. We are left to show that the
morphism f−1OX → OY is an effective epimorphism. In virtue of Proposition 3.14, it
suffices to show that (f−1(OX))(A1

k)→ OY (A1
k) is an effective epimorphism, where

A1
k denote the k-analytic affine line. Observe that (f−1(OX))(A1

k) ' f−1(OX(A1
k)).

Since (f−1, f∗) is a closed immersion of ∞-topoi, Lemma 5.3 shows that it is
sufficient to check that

OX(A1
k)→ f∗(OY (A1

k)) (5.1)

is an effective epimorphism in X∧X . This question is local on X∧X , so we can assume
that X is an affinoid space. Observe now that OX(A1

k) is the underlying sheaf
of (discrete) spaces associated to the structure sheaf of X. In the same way,
f∗(OY (A1

k)) is the underlying sheaf of spaces associated to the pushforward of the
structure sheaf of Y . Both are coherent on X, and f∗(OY (A1

k)) is the quotient
of OX(A1

k) by some coherent sheaf of ideals. In particular, the map (5.1) is an
effective epimorphism.

Assume now that Φ(f) is a closed immersion. We want to prove that f is a closed
immersion as well. The question is local both on the source and on the target, so
we can assume that X and Y are affinoid, say X = SpBA and Y = SpBB. In this
case, it follows from the proof of Theorem 4.11 that f corresponds to the morphism

A = OX(A1
k)(X)→ B = OY (A1

k)(Y ).

Therefore, we only have to show that this morphism is surjective. Let U = SpBC →
X be a quasi-étale morphism. Then it follows again from the proof of Theorem 4.11
that

f∗OY (A1
k)(U) = OY (A1

k)(Y ×X U) = B⊗̂AC
= f∗OY (A1

k)(X)⊗̂OX(A1
k
)(X)OX(A1

k)(U).

In particular, f∗OY (A1
k) is a coherent sheaf of OX(A1

k)-modules. We can thus apply
Tate’s acyclicity theorem to conclude that A → B is surjective, completing the
proof. �

6. Existence of fiber products

The goal of this section is to prove the existence of fiber products of derived
k-analytic spaces.
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First we will prove the existence of fiber products along a closed immersion
(Proposition 6.2). Then we will prove the existence of products over a point
(Lemma 6.4). We will deduce the existence of fiber products in the general case
from the two special cases above, plus Lemma 6.3, which shows that any derived
k-analytic space can locally be embedded into a non-derived quasi-smooth strictly
k-analytic space.

Lemma 6.1. Let f : (X,OX) → (Y,OY) be a map of derived k-analytic spaces
such that (X, π0OX) ' Φ(X) and (Y, π0OY) ' Φ(Y ) for two strictly k-analytic
spaces X, Y ∈ Ank. Assume that F is a connective sheaf of Oalg

Y -modules on Y

and that each πnF is a coherent sheaf of π0O
alg
Y -modules. Then the tensor product

F′ := f−1F⊗f−1Oalg
Y

O
alg
X is connective, and each πnF′ is a coherent sheaf of π0(Oalg

X )-
modules.

Proof. The connectivity of F′ := f−1F ⊗f−1OY
OX follows from the compatibility of

the tensor product with the t-structure (cf. [20, Proposition 2.1.3(6)].) In order to
prove that the homotopy groups πkF′ are coherent π0O

alg
X -modules, we first remark

that the question is local both on X and on Y. so we can assume that X and Y
are affinoid, say X = SpB A and Y = SpBB. We follow closely the proof of [17,
Lemma 12.11]. Thus, we start by proving that for every integer m ≥ −1 there
exists a sequence of morphisms

0 = F(−1)→ F(0)→ F(1)→ · · · → F(m)→ F

of Oalg
Y -modules with the following properties:

(i) For 0 ≤ i ≤ m, the fiber of F(i− 1)→ F(i) is equivalent to a direct sum of
finitely many copies of Oalg

Y [i].
(ii) For 0 ≤ i ≤ m, the fiber of F(i)→ F is i-connective.
(iii) For −1 ≤ i ≤ m, the homotopy groups πjF(i) are coherent π0(Oalg

Y )-modules,
which vanish for j < 0.

We proceed by induction on m. If m = −1, we simply take F(−1) = 0. The fiber of
F(−1)→ F is then F[1], which is (−1)-connective because F is connective. Assume
now that we are given a sequence

0 = F(−1)→ F(0)→ · · · → F(m)→ F

satisfying the conditions above. Let G be the fiber of the map F(m)→ F, so G is
m-connective. We have an exact sequence

πm+1F(m)→ πm+1F → πmF
′ → πmF(m)→ πmF,

from which we deduce that πmF′ is a coherent sheaf of π0(Oalg
X )-modules. In

particular, there exists a positive integer l and a surjection Bl → G(Y ). This
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induces an epimorphism (π0O
alg
Y )l → G[−m]. Composing with the canonical map

(Oalg
Y )l → (π0O

alg
Y )l, we obtain a map

(Oalg
Y )l[m]→ G.

Let F(m+1) be the cofiber of the composite map (Oalg
Y )l[m]→ G→ F(m). Then the

property (i) is satisfied by construction and the property (iii) follows from the long
exact sequence associated to the cofiber sequence (Oalg

Y )l[m]→ F(m)→ F(m+ 1).
Let G′ denote the fiber of the map F(m+ 1)→ F, so we have a fiber sequence

(Oalg
Y )l[m]→ G→ G′.

Passing to the long exact sequence, we deduce that G′ is (m+1)-connective, proving
the property (ii).

Let us now prove that the homotopy groups of F′ := f−1F ⊗f−1Oalg
Y

O
alg
X are

coherent sheaves of π0(Oalg
X )-modules. Fix an integer n ≥ 0. Choose a sequence

0→ F(−1)→ F(0)→ · · · → F(n+ 1)→ F

satisfying the properties (i), (ii) and (iii) above. In particular, the fiber of F(n+1)→
F is (n+ 1)-connective and therefore the same goes for the map

f−1F(n+ 1)⊗f−1Oalg
Y

O
alg
X → f−1F ⊗f−1Oalg

Y

O
alg
X .

So we obtain an isomorphism

πn
(
f−1F(n+ 1)⊗f−1Oalg

Y

O
alg
X

)
→ πn

(
f−1F ⊗f−1Oalg

Y

O
alg
X

)
.

We can therefore replace F by F(n+ 1). We will now prove that for −1 ≤ i ≤ n+ 1,
πn
(
f−1F(i)⊗f−1Oalg

Y

O
alg
X

)
is a coherent sheaf of π0(Oalg

X )-modules. We proceed by
induction on i. The case i = −1 is trivial. To deal with the inductive step, we note
that the property (i) implies the existence of a fiber sequence

(Oalg
Y )l[i]→ F(i)→ F(i+ 1).

We therefore obtain a long exact sequence

· · · → (πn−iOalg
X )l → πn(f−1F(i)⊗f−1Oalg

Y

O
alg
X )→

πn(f−1F(i+ 1)⊗f−1Oalg
Y

O
alg
X )→ (πn−i−1O

alg
X )l → · · ·

We conclude that πn
(
f−1F(i+ 1)⊗f−1Oalg

Y

O
alg
X

)
is a coherent sheaf of π0(Oalg

X )-
modules. �

Proposition 6.2. Assume we are given maps of derived k-analytic spaces f : (Y,OY)
→ (X,OX) and (X′,OX′)→ (Y,OY). Assume moreover that f is a closed immersion.
Then we have the following statements:
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(i) There exists a pullback diagram σ:

(Y′,OY′) (X′,OX′)

(Y,OY) (X,OX)

f ′

f

in the ∞-category HTopR (Tan(k)).
(ii) The image of σ in HTopR is a pullback diagram of hypercomplete ∞-topoi.
(iii) The map f ′ is a closed immersion.
(iv) The structured ∞-topos (Y′,OY′) is a derived k-analytic space.
(v) Assume that (Y, π0OY) = Φ(Y ), (X, π0OX) = Φ(X) and (X′, π0OX′) = Φ(X ′).

Then (Y′, π0OY′) can be identified with Φ(Y ×X X ′).

Proof. The statements (i), (ii) and (iii) follow from Proposition 3.17. We now prove
(v). Observe that the map f induces a closed immersion (Y, π0OY) → (X, π0OX).
So by Theorem 5.4, it corresponds to a closed immersion ϕ : Y → X of k-analytic
spaces. On the other side, the map Φ(X ′)→ Φ(X) corresponds to a map X ′ → X

by Theorem 4.11. Let Y ′ := Y ×X X ′ be the fiber product computed in Ank. Then
Proposition 3.10 allows us to identify XY ′ := Sh(Y ′qét)∧ with Y′. It follows from the
universal property of the fiber product that there exists a map in HTopR (Tan(k))

(Y′,OY ′)→ (Y′,OY′)

Moreover, it follows from Proposition 3.17(iii) that we have an identification

O
alg
Y′ ' f ′−1O

alg
X′ ⊗f ′−1g−1OX g

′−1OY .

Using [21, 7.2.1.22], we obtain an equivalence

π0(Oalg
Y′ ) ' Torf

′−1g−1(π0O
alg
X )

0 (f ′−1π0(Oalg
X′ ), g′−1(π0O

alg
Y )).

As π0(OX)→ f∗π0(OY) is surjective, we see that the same formula can be used to
describe OY ′ . Hence π0(OY′) ' OY ′ . This proves (v).

We are left to prove the statement (iv). The assertion is local on Y′, so we can
assume that (X, π0OX) = Φ(X), (Y, π0OY) = Φ(Y ) and (X′, π0OY) = Φ(X ′) for
strictly k-analytic spaces X,X ′ and Y . It follows from (v) that (Y′, π0O

alg
Y′ ) is a

strictly k-analytic space. Moreover, since f is a closed immersion, we see that
for each n ≥ 0 the pushforward f∗πnOalg

Y is a coherent sheaf of π0O
alg
X -modules on

X. Using Lemma 6.1 and Proposition 3.17, we conclude that for each n ≥ 0, the
pushforward f ′∗πnO

alg
Y′ is a coherent sheaf of π0O

alg
X′ -modules. Then each πnOalg

Y′ is a
coherent sheaf of π0O

alg
Y′ -modules. This completes the proof. �
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Lemma 6.3. Let (X,OX) be a derived k-analytic space and let 1X be the final
object of X. Then there exists an effective epimorphism ∐

Ui → 1X and a collection
of closed immersions (X/Ui ,OX|Ui)→ HSpecTan(k)(Vi), where Vi is a quasi-smooth
strictly k-analytic space.

Proof. We can assume without loss of generality that (X, π0OX) ' Φ(X) for a
strictly k-affinoid space X. So we have a closed immersion into a k-analytic poly-
disc X ↪→ Dn

k . Composing with the affinoid domain embedding Dn
k ↪→ An

k , we
obtain an embedding X ↪→ An

k . This embedding is given by n global sections
f1, . . . , fn ∈ π0(Oalg

X )(X). Let {ui : Ui → X}i∈I be a quasi-étale covering such
that each restriction fj ◦ ui is represented by some f̃ij ∈ OX(A1

k)(Ui). Combin-
ing Lemma 2.10 and [18, Theorem 2.2.12], we deduce that these global sections
determine a morphism of derived k-analytic spaces

ϕi : (X/Ui ,OX|Ui)→ HSpecTan(k)(An
k).

Choose a factorization of Ui → X → Dn
k as Ui

p−→ Vi
g−→ Dn

k , where p is a closed
immersion and g is quasi-étale. The composite map Vi → Dn

k → An
k is quasi-étale

and therefore by Theorem 5.4(i) the induced morphism of derived k-analytic spaces
HSpecTan(k)(Vi) → HSpecTan(k)(An

k) is étale. Then [18, Remark 2.3.4] shows that
the map ϕi factors through HSpecTan(k)(Vi) if and only if the underlying morphism
of ∞-topoi factors through XVi . The latter holds by construction. Moreover, the
truncation of ψi : (X/Ui ,OX|Ui)→ HSpecTan(k)(Vi) corresponds to the map Ui → Vi,
which is a closed immersion. It follows that ψi is a closed immersion as well,
completing the proof. �

Lemma 6.4. Let (X,OX) and (Y,OY) be derived k-analytic spaces. We have the
following statements:
(i) There exists a product (Z,OZ) ' (X,OX)× (Y,OY) in TopR (Tan(k)).
(ii) The structured ∞-topos (Z,OZ) is a derived k-analytic space.
(iii) Assume that (X, π0OX) ' Φ(X) and (Y, π0OY) ' Φ(Y ). Then (Z, π0OZ) is

equivalent to Φ(X × Y ).
(iv) Assume that (X, π0OX) ' Φ(X) where X is a separated strictly k-analytic

space. Then the diagonal map δ : (X,OX) → (X,OX) × (X,OX) is a closed
immersion.

Proof. The statements (i) and (ii) are local on (X,OX) and (Y,OY), so we can
assume in virtue of Lemma 6.3 that there exists closed immersions (X,OX) →
HSpecTan(k)(V ) and (Y,OY)→ HSpecTan(k)(W ), where V and W are quasi-smooth
strictly k-analytic spaces. Proposition 6.2 allows us to reduce to the case (X,OX) '
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HSpecTan(k)(V ) and (Y,OY) ' HSpecTan(k)(W ). In this case, we have

(Z,OZ) ' HSpecTan(k)(V ×W ).

The statement (iii) follows from the construction of (Z,OZ) we described and
Proposition 6.2(v). We are left to prove the statement (iv). The statement (ii)
shows that the induced map

π0(δ) : (X, π0O
alg
X )→ (X, π0O

alg
X )× (X, π0O

alg
X )

corresponds to Φ(∆): Φ(X)→ Φ(X ×X). Since X is separated, ∆: X → X ×X
is a closed immersion and therefore Theorem 5.4 implies that Φ(∆) is a closed
immersion. Now, the assertion follows from Proposition 3.14. �

Now we can deduce the main result of this section:

Theorem 6.5. The ∞-category dAnk admits fiber products.

Proof. Let (Y,OY) → (X,OX) ← (X′,OX′) be maps of derived k-analytic spaces.
We would like to construct the fiber product. Working locally on X, we can
assume that (X, π0O

alg
X ) ' υ(X) for a separated strictly k-analytic space X. Using

Lemma 6.4(i), we deduce the existence of two products (Z,OZ) := (X′,O′X)× (Y,OY)
and (X,OX) × (X,OX) in Top(Tan(k)). By Lemma 6.4(iv), the diagonal map
δ : (X,OX)→ (X,OX)×(X,OX) is a closed immersion. We now apply Proposition 6.2
to produce a fiber product

(Y′,OY′) (Z,OZ)

(X,OX) (X,OX)× (X,OX).

Note that (Y′,OY′) is the fiber product of (Y,OY)→ (X,OX)← (X′,OX′) , complet-
ing the proof. �

7. Comparison between derived spaces and non-derived stacks

In this section, we will characterize the essential image of the embedding
Φ: Ank → dAnk constructed in Section 4. Moreover, we will compare derived
k-analytic spaces with higher k-analytic stacks in the sense of [25].

7.1. Construction of the comparison functor. On the ∞-category dAnk of
derived k-analytic spaces, we define the étale topology τét to be the Grothendieck
topology generated by collections of étale morphisms {Ui → U} such that ∐Ui → U

is an effective epimorphism (cf. Definition 5.1).
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Remark 7.1. The restriction of τét to the full subcategory Ank of dAnk coincides
with the quasi-étale topology τqét.

Lemma 7.2. Every representable presheaf on dAnk is a hypercomplete sheaf for
the topology τét.

Proof. Let X := (X,OX) be a derived k-analytic space. The universal property
of étale morphisms (cf. [18, Remark 2.3.4]) shows that a τét-hypercovering of
X can be identified with a hypercovering U• of 1X in the ∞-topos X. Given
such a hypercovering, the associated τét-hypercovering X• of X is described by
Xn := (X/Un ,OX|Un). Therefore, we have to prove that

colim
∆

(X/U• ,OX|U•) ' (X,OX)

in the ∞-category dAnk. Using the statement (3’) in the proof of [18, Proposition
2.3.5], we see that it is enough to prove that X ' colimX/U• in TopR . Since X is
hypercomplete, this follows from the descent theory of ∞-topoi (cf. [16, 6.1.3.9])
and from the fact that |U•| ' 1X (cf. [16, 6.5.3.12]). �

Definition 7.3. A derived k-affinoid space is a derived k-analytic space (X,OX)
such that (X, π0(OX)) ' Φ(X) for some strictly k-affinoid space X. We denote by
dAfdk the full subcategory of dAnk spanned by derived k-affinoid spaces.

The Grothendieck topology τét on dAnk induces by restriction a Grothendieck
topology on dAfdk which we denote again by τét. We define the functor φ̃ as the
composition

dAnk Fun(dAnop
k , S) Fun((dAfdk)op, S),

where the first functor is the Yoneda embedding and the second one is the restriction
along dAfdk ⊂ dAnk. Since the Grothendieck topology τét on dAnk is subcanonical,
the functor φ̃ factors through Sh(dAfdk, τét). We denote by

φ : dAnk → Sh(dAfdk, τét)

the induced functor. Our first goal is to show that φ is fully faithful.

Lemma 7.4. Let X = (X,OX) be a derived k-analytic space and let p : U → 1X

be an effective epimorphism. Let U• be the Čech nerve of p and put Xn :=
(X/Un ,OX|Un). Then in Sh(dAfdk, τét) we have

φ(X) ' colim
∆

φ(X•).
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Proof. Let j : dAfdk ↪→ dAnk denote the inclusion functor. It is continuous and
cocontinuous in the sense of [25, §2.4]. It induces a pair of adjoint functors

js : Sh(dAnk, τét) � Sh(dAfdk, τét) : js.
Since the Grothendieck topology τét on dAnk is subcanonical, we can factor φ as

dAnk
ψ−−→ Sh(dAnk, τét)

js−−→ Sh(dAfdk, τét).
Moreover, we have

ψ(X) ' colim
∆

ψ(X•).
Since the functor js is a left adjoint, it commutes with colimits, completing the
proof. �

Lemma 7.5. Let X = (X,OX) be a derived k-analytic space. Then there exists a
hypercovering X• of X in dAnk such that each Xn is a disjoint union of derived
k-affinoid spaces.

Proof. It follows directly from Definitions 2.5 and 7.3. �

Proposition 7.6. The functor φ : dAnk → Sh(dAfdk, τét) is fully faithful.

Proof. Let X, Y ∈ dAnk and consider the natural map
ψX,Y : MapdAnk(X, Y )→ MapSh(dAfdk,τét)(φ(X), φ(Y )).

Keeping Y fixed, let C be the full subcategory of dAnk spanned by those X such
that ψX,Y is an equivalence. Since C is stable under colimits, combining Lemmas
7.4 and 7.5, we are reduced to the case where X belongs to dAfdk. In this case,
the statement follows entirely from the Yoneda lemma. �

Our second goal is to identify the essential image of the functor φ. For this, we
need to introduce some notations.

Definition 7.7. Let Pét denote the class of étale morphisms in dAnk. The triple
(dAfdk, τét,Pét) constitutes a geometric context in the sense of [25]. We call the
associated geometric stacks derived k-analytic Deligne-Mumford stacks. We denote
by DM the ∞-category of derived k-analytic Deligne-Mumford stacks.

Definition 7.8. Let F ∈ DM. We say that F is n-truncated if F (X) is n-truncated
for every X = (X,OX) ∈ dAfdk such that OX is discrete. We denote by DMn the
full subcategory of DM spanned by n-truncated k-analytic Deligne-Mumford stacks.

We denote by dAn≤nk the full subcategory of dAnk spanned by those derived
k-analytic spaces (X,OX) such that X is n-localic (cf. [16, 6.4.5.8]).

With these notations we can now state our main comparison theorem, which is
an analogue of [23, Theorem 3.7] and [22, Theorem 1.7].
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Theorem 7.9. For every integer n ≥ 1, the functor φ : dAnk → Sh(dAfdk, τét)
restricts to an equivalence of ∞-categories dAn≤nk ' DMn.

The proof will occupy the rest of this section. Before plunging ourselves into the
details, let us deduce from this theorem an important application.

Corollary 7.10. Let (Ank, τqét,Pqét) be the geometric context consisting of the
category of strictly k-analytic spaces, the quasi-étale topology and the class of quasi-
étale morphisms. Let Geom(Ank, τqét,Pqét) denote the ∞-category of geometric
stacks associated to this geometric context. There is a fully faithful embedding
Geom(Ank, τqét,Pqét)→ dAnk whose essential image is spanned by those derived
k-analytic spaces (X,OX) such that X is n-localic for some n and OX is discrete.

Proof. Let (Afdk, τqét,Pqét) be the geometric context consisting of the category
of strictly k-affinoid spaces, the quasi-étale topology and the class of quasi-étale
morphisms. Let Geom(Afdk, τqét,Pqét) denote the ∞-category of geometric stacks
associated to this geometric context. By [25, §2.5], we have an equivalence

Geom(Ank, τqét,Pqét) ' Geom(Afdk, τqét,Pqét).

It follows from Theorem 4.11 that the natural inclusion j : Afdk → dAfdk is fully
faithful. So the induced functor

js : Sh(Afdk, τqét)→ Sh(dAfdk, τét)

is fully faithful as well. We know moreover that js preserves geometric stacks. There-
fore js factors through the full subcategory DM = ⋃DMn. Applying Theorem 7.9,
we obtain the desired fully faithful functor Geom(Afdk, τqét,Pét)→ dAnk.

Now it suffices to observe that if a geometric stack X ∈ dAn≤nk is discrete, then
φ(X) lies in the essential image of js. Indeed, if X is discrete, then

MapdAnk(Y,X) = MapdAnk(t0(Y ), X).

Therefore φ(X) coincides with the left Kan extension of its restriction along j,
completing the proof. �

7.2. The case of algebraic spaces. Given a derived k-analytic space X, we
denote by dAfdX the overcategory (dAfdk)/X . The Grothendieck topology τét on
dAnk induces a Grothendieck topology on dAfdX , which we still denote by τét. Let
Xbig,ét denote the Grothendieck site (dAfdX , τét).

Let (dAfdX)ét be the full subcategory of the overcategory dAfdX spanned by étale
morphisms Y → X. The étale topology τét on dAfdX restricts to a Grothendieck
topology on (dAfdX)ét, which we still denote by τét. LetXét denote the Grothendieck
site ((dAfdX)ét, τét).
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Remark 7.11. Let X be an ordinary strictly k-analytic space. Let f : (Y,OY) →
Φ(X) be an étale morphism in dAnk. Since the morphism f−1OX → OY is an
equivalence, we see that OY is discrete. In particular, if (Y,OY) is a derived k-
affinoid space, then it belongs to the essential image of Φ. This shows that there is
a canonical equivalence Xqét ' Φ(X)ét.

We have continuous functors between the sites

(Xét, τét) (Xbig,ét, τét) (dAfdk, τét).u v

By [25, §2.4], they induce adjunctions on the ∞-categories of sheaves

us : Sh(Xét, τét) � Sh(Xbig,ét, τét) : us,
vs : Sh(Xbig,ét, τét) � Sh(dAfdk, τét) : vs.

Moreover, since u is left exact, (us, us) is a geometric morphism of ∞-topoi. In
particular, us takes n-truncated objects to n-truncated objects. On the other side,
we can identify the adjunction (vs, vs) with the canonical adjunction

Sh(dAfdk, τét)/φ(X) � Sh(dAfdk, τét),

where the right arrow is the forgetful functor.

Definition 7.12. Let X ∈ dAfdk, Y ∈ Sh(dAfdk, τét) and α : Y → φ(X) a natural
transformation. We say that α exhibits Y as an étale derived algebraic space
over X if there exists a 0-truncated sheaf F ∈ Sh(Xét, τét) and an equivalence
Y ' vs(us(F )) in Sh(dAfdk, τét)/φ(X).

Proposition 7.13. Let X ∈ dAfdk, Y ∈ Sh(dAfdk, τét) and α : Y → φ(X) a
natural transformation. The following statements are equivalent:
(i) The natural transformation α exhibits Y as an étale derived algebraic space

over X.
(ii) There exists a discrete object U ∈ X such that φ(j) is equivalent to α, where

j : (X/U ,OX|U)→ (X,OX) is the induced étale morphism.
(iii) The natural transformation α is 0-truncated and 0-representable by étale

morphisms.

Proof. We first prove the equivalence between (i) and (ii). If α exhibits Y as an étale
derived algebraic space over X, we can find a 0-truncated sheaf U ∈ Sh(Xét, τét) and
an equivalence Y ' vs(us(U)) in Sh(dAfdk, τét)/φ(X). Consider XU := (X/U ,OX|U)
and let j : XU → X be the induced étale map. We want to prove that φ(j) is
equivalent to α. For any Z = (Z,OZ) ∈ dAfdk and any map f : φ(Z)→ φ(X), we
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have a fiber sequence

MapSh(dAfdk,τét)/φ(X)
(φ(Z)f , us(U)) MapSh(dAfdk,τét)(φ(Z), vs(us(U)))

{f} MapSh(dAfdk,τét)(φ(Z), φ(X)),

where φ(Z)f denotes the object f : φ(Z)→ φ(X) in Sh(dAfdk, τét)/φ(X). Since φ is
fully faithful by Proposition 7.6, we can view φ(Z)f as a representable object in
Sh(Xbig,ét, τét) ' Sh(dAfdk, τét)/φ(X). Therefore, the Yoneda lemma combined with
[16, 4.3.2.15] implies that

MapSh(dAfdk,τét)/φ(X)
(φ(Z)f , us(U)) ' Γ(Z, f−1(U)).

In particular, taking Z to be an atlas for XU and choosing f to be j, we obtain a
canonical map φ(XU)→ vs(us(U)). For any Z ∈ dAfdk, we obtain in this way a
commutative square

MapSh(dAfdk,τét)(φ(Z), φ(XU)) MapSh(dAfdk,τét)(φ(Z), φ(X))

MapSh(dAfdk,τét)(φ(Z), vs(us(U))) MapSh(dAfdk,τét)(φ(Z), φ(X)).

For any morphism f : φ(Z) → φ(X), we can combine the fully faithfulness of φ
and [18, Remark 2.3.4] to identify the fiber of the top horizontal morphism with
Γ(Z, f−1(U)). The same holds for the lower horizontal morphism in virtue of the
above discussion. Therefore, there is a canonical identification of φ(XU) with
Y = vs(us(U)) in Sh(dAfdk, τét), and a canonical identification of φ(j) with α. On
the other side, if (ii) is satisfied, then U defines an étale derived algebraic space
vs(us(U)) over X, which can be identified with Y using the same argument as
above.

Let us now prove the equivalence between (i) and (iii). First, assume that (iii) is
satisfied. In this case, we can define a sheaf U : Xét → S by sending an étale map
f : Z → X to the fiber product

U(Z) Y (Z)

{∗} φ(X)(Z).

αZ

f

Since α is 0-truncated, we see that U takes values in Set. Since both φ(X) and Y
are sheaves, the same goes for U . It follows that U defines a 0-truncated object in
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Sh(Xét, τét). Since α is 0-representable by étale maps we obtain a canonical map
Y → vs(us(Y )), and [18, Remark 2.3.4] shows that this map is an equivalence.

Finally, let us prove that (i) implies (iii). Choose a 0-truncated sheaf U ∈
Sh(Xét, τét) such that Y ' vs(us(U)). We already remarked that in this case α is
0-truncated. Choose Vi ∈ Xét and sections ηi ∈ U(Vi) which generate U , we obtain
an effective epimorphism∐

φ(Vi) =
∐
vs(us(Vi))→ vs(us(U))

in Sh(dAfdk, τét). Suppose there is a (−1)-truncated morphism vs(us(U))→ φ(Z)
for some Z ∈ Xét. In this case, we see that

φ(Vi)×vs(us(U)) φ(Vj) ' φ(Vi)×φ(Z) φ(Vj)

and therefore the maps φ(Vi)→ vs(us(U)) ' Y is (−1)-representable by étale maps.
In the general case, the fiber product Yi,j := φ(Vi)×vs(us(U)) φ(Vj) is again a derived
algebraic space étale over X. We claim that the canonical map Yi,j → φ(Vi ×X Vj)
is (−1)-truncated. Indeed, we have a pullback diagram

Yi,j vs(us(U))

φ(Vi)×φ(X) φ(Vj) vs(us(U))×φ(X) vs(us(U)).

Since the map α : Y → φ(X) is 0-truncated, we conclude the proof of the claim by
[16, 5.5.6.15]. At this point, we deduce that Yi,j → X is (−1)-representable by étale
maps, and therefore that each φ(Vi)→ Y is 0-representable by étale maps. �

7.3. Proof of Theorem 7.9. We begin with the following analogue of [22, Lemma
2.7]

Lemma 7.14. Let n ≥ 0 be an integer. Fix X = (X,OX) ∈ dAn≤n+1
k and let

V ∈ X be an object such that XV := (X/V ,OX|V ) is a derived k-affinoid space. Then
V is n-truncated.

Proof. We have to prove that for every object U ∈ X, the space

MapX(U, V ) ' MapX/U
(U,U × V )

is n-truncated. This property is local on U , so we can restrict ourselves to the
situation where XU := (X/U ,OX|U ) is a derived k-affinoid space. Using [18, Remark
2.3.4], we see that this space fits into a fiber sequence

MapX(U, V )→ MapdAnk(XU , XV )→ MapdAnk(XU , X).
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Since a derived k-analytic space (Y,OY) belongs to dAfdk if and only if its
truncation (Y, π0(OY)) does, we can replace X with its truncation. Let us denote
by FX : Afdk → S the functor of points associated to X and by FV : Afdk → S the
functor of points associated to (X/V ,OX|V ). The arguments above show that it
is enough to prove that for every ordinary strictly k-affinoid space Z, the fibers
of FX(Z) → FV (Z) are n-truncated. By hypothesis, FV is the functor of points
associated to some strictly k-affinoid space, so it takes values in Set. Since FV (Z)
is discrete, it suffices to show that FX(Z) is (n+ 1)-truncated. This follows directly
from [18, Lemma 2.6.19]. �

Proposition 7.15. Let n ≥ 1 and let X = (X,OX) ∈ dAnk be a derived k-analytic
space such that X is n-localic. Then φ(X) belongs to DMn.

Proof. Let Y = (Y,OY) ∈ dAfdk be a derived k-affinoid space such that OY is
discrete. For every geometric morphism f−1 : X � Y : f∗ we can use [16, 2.4.4.2] to
obtain a fiber sequence

MapStrloc
Tan(k)(Y)(f−1OX,OY)→ MapdAnk(Y,X)→ Map TopR (Y,X),

where the fiber is taken at (f−1, f∗).
Since Y is 1-localic and n ≥ 1, it is also n-localic. Therefore, [22, Lemma

2.2] shows that Map TopR (Y,X) is n-truncated. Since OY is discrete, we see that
MapStrloc

Tan(k)(Y)(f−1OX,OY) is 0-truncated, hence n-truncated. So

φ(X)(Y ) = MapdAnk(Y,X)

is n-truncated as well.
Let us now prove that φ(X) is geometric. Combining Corollary 8.6 and Corol-

lary 8.8, we see that it is enough to prove that φ(X) admits an atlas. Choose
objects Ui ∈ X such that (X/Ui ,OX|Ui) is a derived k-affinoid space and that the
joint morphism ∐

Ui → 1X is an effective epimorphism. Put Xi := (X/Ui ,OX|Ui).
By functoriality we obtain maps φ(Xi)→ φ(X). It follows from Lemma 7.4 that
the total morphism ∐

φ(Xi)→ φ(X) is an effective epimorphism. We are therefore
left to prove that φ(Xi)→ φ(X) are (n− 1)-representable by étale maps.

First of all, we remark that if Z ∈ dAfdk, then for any map φ(Z)→ φ(X), using
full faithfulness of φ, we obtain

φ(Z)×φ(X) φ(Xi) ' φ(Z ×X Xi),

and Z ×X Xi is étale over Z. Therefore we are reduced to prove that the stacks
φ(X)×φ(Z) φ(Xi) are (n− 1)-geometric.

We prove this by induction on n. If n = 1, Lemma 7.14 shows that the objects Ui
are discrete. It follows from Proposition 7.13 that φ(Z)×φ(X) φ(Xi) is 0-geometric.
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Now suppose that X is n-localic and n > 1. Lemma 7.14 shows again that the
objects Ui are (n − 1)-truncated. Therefore [18, Lemma 2.3.16] shows that the
underlying ∞-topos of Z ×X Xi is (n− 1)-localic. We conclude by the inductive
hypothesis. �

As a consequence of Proposition 7.15, the functor φ : dAnk → Sh(dAfdk, τét)
induces a well defined functor

φn : dAn≤nk → DMn.

In order to achieve the proof of Theorem 7.9, we are left to show that φn is
essentially surjective.

We will need the following elementary observation:

Lemma 7.16. Let X be a geometric stack for the geometric context (dAfdk, τét,Pét).
The functor t0 : Xét → (t0(X))ét is an equivalence of sites.

Proof. We prove this by induction on the geometric level of X. If X is (−1)-
geometric we can find Y = (Y,OY) ∈ dAfdk such that X ' φ(Y ). Consider the
chain of equivalences

( TopR (Tan(k))/Y )ét ' ( TopR
/Y )ét ' ( TopR (Tan(k))/t0(Y ))ét.

We now remark that, if X → Y is an étale map in TopR (Tan(k)), then X is a
derived k-analytic space. Moreover, a derived k-analytic space belongs to dAfdk if
and only if its truncation does. These observations imply that the above equivalence
restricts to an equivalence

Yét ' (t0(Y ))ét,

thus achieving the proof of the base step of the induction.
Suppose now that X is n-geometric and that the statement holds for (n − 1)-

geometric stacks. Choose an étale n-groupoid presentation U• for X. This means
that U• is a groupoid object in the∞-category Sh(dAfdk, τét) such that each Um is
(n− 1)-geometric and that the map U0 → X is (n− 1)-representable by étale maps.
Since t0 commutes with products in virtue of Proposition 3.26 and it takes effective
epimorphisms to effective epimorphisms by [16, 7.2.1.14], we see that V • := t0(U•)
is a groupoid presentation for t0(X).

Now, let Y → t0(X) be an étale map. We see that Y ×t0(X) V
• → V • is an étale

map (i.e. it is a map of groupoids which is étale in each degree). By the inductive
hypothesis, we obtain a map of simplicial objects Z• → U•, such that

t0(Z•) = Y ×t0(X) V
•.

Since Y ×t0(X) V
• is a groupoid, so is Z• (here we use again the equivalence

guaranteed by the inductive hypothesis). The geometric realization of Z• provides



52 MAURO PORTA AND TONY YUE YU

us with an étale map Z → X. Since t0 preserves effective epimorphisms, we
conclude that t0(Z) = Y . This construction is functorial in Y , and it provides the
inverse to the functor t0. �

Proposition 7.17. The functor φn : dAn≤nk → DMn is essentially surjective.

Proof. Let X ∈ DMn. By Lemma 7.16, Xét is equivalent to (t0(X))ét. By hypoth-
esis, t0(X) is n-truncated. Therefore, Proposition 8.2 shows that the mapping
spaces in (t0(X))ét are (n− 1)-truncated. In other words, (t0(X))ét is equivalent
to an n-category (cf. [16, 2.3.4.18]). As a consequence, Sh(Xét, τét) is n-localic.

Put X := Sh(Xét, τét)∧. Consider the composition

Tan(k)×Xop
ét → dAfdk × dAfdop

k

y−→ S,

where the last functor classifies the Yoneda embedding (cf. [21, §5.2.1]). This
induces a well defined functor

OX : Tan(k)→ PSh(Xét),

which factors through Sh(Xét, τét). Let OX be its hypercompletion. Since the
functor Tan(k) → dAfdk preserves products and admissible pullbacks, the same
holds for OX. Moreover, Lemma 7.4 implies that OX takes τét-coverings to effective
epimorphisms. In other words, OX defines a Tan(k)-structure on X.

If {Ui → X} is an étale n-atlas of X, each Ui defines an object Vi in X. Unrav-
eling the definitions, we see that the Tan(k)-structured ∞-topos (X/Vi ,OX |Vi) is
canonically isomorphic to Ui ∈ dAnk itself. Therefore X ′ := (X,OX) is a derived
k-analytic space.

We are left to prove that φ(X ′) ' X. We can proceed by induction on the
geometric level n of X. If n = −1, φ(X ′) is the functor represented by X ′, and the
same holds for X. Let now n ≥ 0. Choose an étale n-atlas {Ui → X} for X. Set
U := ∐

Ui and let U• denote the Čech nerve of U → X. Every map Un → X is
étale. In particular, the functor Xét → S sending Y to MapXét

(Y, Un) defines an
element V n ∈ Sh(Xét, τét). Using Lemma 7.16, we see that

MapXét
(Y, Un) ' Mapt0(X)ét

(t0(Y ), t0(Un)).

Since t0(Un) is a geometric stack, we conclude that the above space is truncated. In
particular, the object V n is a truncated object in Sh(Xét, τét), so it is hypercomplete.
In other words, V n belongs to X. We can therefore identify Sh(Un

ét, τét)∧ with X/V n .
The universal property of étale morphisms (cf. [18, Remark 2.3.4]) shows that we
can arrange the V ns into a simplicial object V • in X, whose geometrical realization
coincides with 1X. The inductive hypothesis shows that φ(X/V • ,OX |•V ) ' U• as
simplicial objects in Sh(dAfdk, τét). Since φ commutes with Čech nerves of étale
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maps and their realizations (in virtue of Lemma 7.4), we conclude that φ(X ′) is
equivalent to X itself. �

The proof of Theorem 7.9 is now achieved.

8. Appendices

8.1. Complements on overcategories. The goal of this subsection is to provide
a proof of the following basic result, for which we do not know a reference: if
(C, τ) is a Grothendieck site and C is a 1-category, then for every n-truncated sheaf
X ∈ PSh(C), the overcategory C/X is an (n− 1)-category. The proof relies on the
following lemma:

Lemma 8.1. Let C be an ∞-category. Let X ∈ C be an object and let f : U → X,
g : V → X be two 1-morphisms of C viewed as objects of C/X . For every morphism
h : U → V in C, choose a 2-simplex σ : ∆2 → C extending the morphism Λ2

1 → C

classified by h and g. Put f ′ := d1(σ). Then we have a fiber sequence

PathMapC(U,X)(f, f ′)→ MapC/X
(f, g)→ MapC(U, V ).

Proof. It follows from [16, Proposition 2.1.2.1] that the canonical map p : C/X → C

is a right fibration. In particular, it is a Cartesian fibration where every edge of
C/X is p-Cartesian. The 2-simplex σ : ∆2 → C can be viewed as an edge of C/X .
Reviewing the Kan complex MapC(U,X) as an ∞-category, we have a canonical
equivalence PathMapC(U,X)(f, f ′) ' MapMapC(U,X)(f, f ′). The conclusion follows at
this point from [16, Proposition 2.4.4.2]. �

Proposition 8.2. Let C be an ∞-category. Let X ∈ C be an n-truncated object.
Let f : U → X and g : V → X be two morphisms viewed as objects in C/X . If V is
m-truncated with m < n, then MapC/X

(U, V ) is (n− 1)-truncated.

Proof. Choosing f ′ as in Lemma 8.1, we obtain a fiber sequence

PathMapC(U,X)(f, f ′)→ MapC/X
(f, g)→ MapC(U, V ).

Now, MapC(U, V ) is m-truncated by hypothesis. On the other hand, we have a
pullback diagram

PathMapC(U,X)(f, f ′) {∗}

{∗} MapC(U,X).

f ′

f
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Therefore PathMapC(U,X)(f, f ′) fits in the pullback diagram

PathMapC(U,X)(f, f ′) MapC(U,X)

{∗} MapC(U,X)×MapC(U,X).

∆
(f, f ′)

Since X is n-truncated, it follows that MapC(U,X) is n-truncated. Therefore, [16,
5.5.6.15] shows that ∆ is (n− 1)-truncated. We deduce that PathMapC(U,X)(f, f ′) is
(n− 1)-truncated. Thus the fiber sequence of Lemma 8.1 implies that MapC/X

(f, g)
is (n− 1)-truncated as well, completing the proof. �

8.2. Complements on geometric stacks.

Definition 8.3. Let (C, τ) be an ∞-site. The ∞-category C is said to be closed
under τ -descent if for any morphism from a sheaf X to a representable sheaf Y ,
any τ -covering {Yi → Y }, the representability of X ×Y Yi for every i implies the
representability of X.

We need the following converse to [25, Corollary 2.12]:

Lemma 8.4. Let (C, τ) be a subcanonical ∞-site. Let F → G be an effective
epimorphism in Sh(C, τ). For any object X ∈ C and any morphism hX → G, there
exists a τ -covering {Ui → X} such that the composite morphisms hUi → hX → G

factor as
F

hUi hX G.

Proof. Using [25, Proposition 2.11] we see that the morphism π0(F ) → π0(G) is
an effective epimorphism of sheaves of sets. In particular, there exists a covering
{Vj → X} such that the composite morphisms π0(hVj)→ π0(hX)→ π0(G) factor
through π0(F ). Since π0(F ) is by definition the sheafification of the presheaf
Y 7→ π0(F (Y )) and since

MapSh(C,τ)(π0(hVj), π0(F )) ' MapSh(C,τ)(hVj , π0(F )) ' π0(F )(Vj),

we can find a τ -covering {Uij → Vj} such that every composite morphism hUij →
hVj → π0(F ) factors through F → π0(F ). Finally, again since π0(G) is the
sheafification of the presheaf Y 7→ π0(G(Y )), we can further refine the covering such
that the morphisms hUij → F are homotopic to the compositions hUij → hX → G.
This completes the proof. �
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Proposition 8.5. Let (C, τ,P) be a geometric context in the sense of [25]. Assume
that C is closed under τ -descent. Then the class of n-representable morphisms
is closed under τ -descent, in the sense that for any morphism f : X → Y with
Y a n-geometric stack, if there exists an n-atlas {Ui} of Y such that X ×Y Ui is
n-geometric for every i, then F is n-geometric as well.

Proof. The proof goes by induction on the geometric level n. When n = −1, this
holds because C is closed under τ -descent. Let now n ≥ 0. Let {Ui} be an n-atlas
of Y such that Xi := X ×Y Ui is n-geometric for every i. Choose an n-atlas {Vij}
of X ×Y Ui. The compositions Vij → Xi → X provide an n-atlas of X. We
are therefore left to prove that the diagonal of X is (n − 1)-representable. Let
V := ∐

Vij be the n-atlas of X introduced above. By construction, the map V → X

is (n− 1)-representable. It follows that the induced map V ×X V → V is (n− 1)-
representable as well. Since V is a disjoint union of (−1)-representable stacks, it
follows that V ×X V is (n − 1)-geometric. Observe now that V × V → X × X
is an effective epimorphism. Therefore for every morphism S → X × X from a
(−1)-representable stack S, by Lemma 8.4, we can choose a τ -covering Si → S

such that the composite map Si → S → X ×X factors as

V × V

Si S X ×X.

In order to prove that the diagonal ∆X : X → X ×X is (n− 1)-representable, we
have to show that S ×X×X X is (n− 1)-geometric. Using the induction hypothesis,
it suffices to show that each stack Si ×X×X X is (n− 1)-geometric. Note that this
stack fits in the following diagram of cartesian squares:

Si ×X×X X V ×X V X

Si V × V X ×X.

Since V × V , V ×X V and Si are (n− 1)-geometric, it follows that the same goes
for Si ×X×X X, thus completing the proof. �

Corollary 8.6. Let (C, τ,P) be a geometric context and assume that C is closed
under τ -descent. If X ∈ Sh(C, τ) admits an n-atlas, then it is n-geometric.

Proof. We have to prove that the diagonal of X is (n − 1)-representable. Let
V → X be an n-atlas. Then V × V → X × X is an n-atlas for X × X. By
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Lemma 8.4, for any map S → X × X, with S being representable, we can find
a τ -covering {Si → S} such that the composite maps Si → S → X × X factor
through V ×V . Using Proposition 8.5, we are reduced to prove that each Si×X×XX
is (n− 1)-geometric. Consider the diagram

Si ×X×X X V ×X V X

Si V × V X ×X.

The right and the outer squares are pullback diagrams by construction. Therefore,
so is the left square. Now we conclude from the fact that V ×X V is (n − 1)-
geometric. �

Proposition 8.7. The category Afdk of strictly k-affinoid spaces is closed under
τqét-descent.

Proof. Let Y be a strictly k-affinoid space and let f : F → hY be a morphism in
Sh(Afdk, τqét). Let {Yi → Y }i∈I be a finite quasi-étale covering in the category
Afdk. Assume that for every index i, the fiber product hYi ×hY F is representable
by Xi ∈ Afdk. Put Y 0 := ∐

i∈I Yi and let Y • be the Čech nerve of Y 0 → Y . By
assumption, we see that for every integer n, hY n ×hY F is representable. Choose
Xn ∈ Afdk such that hY n×hY F ' hXn . Fully faithfulness of the Yoneda embedding
implies that we can arrange the objects Xn into a simplicial object X• in Afdk. Let
∆s be the semisimplicial category. It follows from [16, 6.5.3.7] that the inclusion
∆op

s ⊂ ∆op is cofinal. Let ∆s,≤2 be the full subcategory of ∆s spanned by the
objects [0], [1] and [2]. The inclusion ∆op

s,≤2 ⊂ ∆op
s is 1-cofinal, in the sense that

for every [n] ∈∆s, the undercategory (∆op
s,≤2)[n]/ is nonempty and connected. Let

j : ∆op
s,≤2 ↪→ ∆ be the composite functor. Since Afdk is a 1-category, we see that

X• admits a colimit if and only if X•s,≤2 := X• ◦ j does. The latter statement is
true because Afdk admits finite colimits.

Let X be the colimit of X• and let g : X → Y be the canonical map. We claim
that Xn ' Y n ×Y X. To prove this, it is enough to show that X0 ' Y 0 ×Y X. We
first remark that if the map X0 → Y 0 is a closed immersion, then the statement
follows directly from the fpqc descent of coherent sheaves (cf. [4]). In the general case,
we factor X0 → Y 0 as X0 ↪→ DN

Y 0 → Y 0, where DN
Y 0 denotes the N -dimensional

unit polydisc over Y 0 and the first arrow is a closed immersion. Observe that the



DERIVED NON-ARCHIMEDEAN ANALYTIC SPACES 57

colimit of DN
Y • is DN

Y , and that DN
Y 0 ' Y 0×Y DN

Y . Consider the following diagram:

X0 X

DN
Y 0 DN

Y

Y 0 Y.

Since X0 ↪→ DN
Y 0 is a closed immersion, we see that the top square is a pullback.

Moreover, we remarked that the bottom square is also a pullback. Hence so is the
outer square, completing the proof of the claim.

As a consequence, we see that X• is the Čech nerve of the quasi-étale covering
X0 → X. In particular, in Sh(Afdk, τqét) we have

hX ' |hX•|,

where |·| denotes the geometric realization. Finally, since Sh(Afdk, τqét) is an
∞-topos, we obtain:

hX ' |hX• | ' |hY • ×hY F | ' |hY •| ×hY F ' F.

This shows that F is representable, thus completing the proof. �

Corollary 8.8. The category dAfdk of derived k-affinoid spaces is closed under
τét-descent.

Proof. Let Y = (Y,OY) be a derived k-affinoid space. Let F → hY be a morphism
in Sh(dAfdk, τét). Assume there exists an étale covering Yi → Y such that each base
change hYi ×hY F is representable by a derived k-affinoid space Xi. In particular,
t0(hYi ×hY F ) ' t0(hYi) ×t0(hY ) t0(F ) is representable by an ordinary strictly k-
affinoid space t0(Xi). It follows from Proposition 8.7 that t0(F ) is representable by
an ordinary strictly k-affinoid space Z.

Form the Čech nerve G• of ∐hYi ×hY F → F . By hypothesis, each Gn is a
disjoint union of derived k-affinoid spaces. Since φ is fully faithful, we obtain in
this way a simplicial object X• in dAnk, such that all the face maps are étale
morphisms. It follows from [18, Proposition 2.3.5] that this simplicial object admits
a colimit Y in TopR (Tan(k)) and that the canonical maps Xn → X are étale. This
shows that we can cover X with derived k-affinoid spaces. In particular, X is a
derived k-analytic space.

We are left to prove that X is a derived k-affinoid space. Observe that the
maps t0(Xn) → t0(X) are étale. Since X (resp. Xn) and t0(X) (resp. t0(Xn))
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share the same underlying ∞-topos, we can use the statement (3’) in the proof of
[18, Proposition 2.3.5] to conclude that the colimit of t0(X•) in TopR (Tan(k)) is
t0(X). On the other hand, since t0 commutes with limits, we can further identify
φ(t0(X•)) with the Čech nerve of the map ∐ t0(hYi ×hY F ) → t0(F ) ' φ(Z). It
follows that t0(X) ' Z in dAnk. This shows that X is a derived k-affinoid space,
and φ(X) ' F . The proof is thus complete. �
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