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Abstract

We provide effective algorithms for solving block tridiagonal block Toeplitz systems with
m×m quasiseparable blocks, as well as quadratic matrix equations with m×m quasiseparable
coefficients, based on cyclic reduction and on the technology of rank-structured matrices.
The algorithms rely on the exponential decay of the singular values of the off-diagonal
submatrices generated by cyclic reduction. We provide a formal proof of this decay in the
Markovian framework. The results of the numerical experiments that we report confirm a
significant speed up over the general algorithms, already starting with the moderately small
size m ≈ 102.

1 Introduction

Cyclic reduction (CR) is an effective tool that can be used for solving several problems in linear
algebra and in polynomial computations [4]. It has been originally introduced by G.H. Golub
and R.W. Hockney in the mid 1960s [13, 8], for the numerical solution of block tridiagonal linear
systems stemming from the finite differences solution of elliptic problems, and has been gener-
alized to solve nonlinear matrix equations associated with matrix power series with applications
to queuing problems, Markov chains and spectral decomposition of polynomials. In fact, an
important application of CR concerns the computation of the minimal nonnegative solution of
the matrix equation X = A−1 +A0X+A1X

2, encountered in Quasi Birth-Death (QBD) Markov
chains, where A−1, A0, and A1 are given m×m nonnegative matrices such that A−1 +A0 +A1

is irreducible and stochastic and where X is the matrix unknown [2, 4]. The computation of the
solution X allows to recover the steady state vector π of the Markov chain.

Rewriting the matrix equation as A−1 +(A0−I)X+A1X
2 = 0, CR computes four sequences
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“Mathematical models and computational methods for complex networks” funded by the University of Pisa.

1

ar
X

iv
:1

60
1.

00
86

1v
1 

 [
m

at
h.

N
A

] 
 5

 J
an

 2
01

6



of matrices, A
(h)
i , i = −1, 0, 1 and Â

(h)
0 , according to the following equations

A
(h+1)
1 = −A(h)

1 S(h) A
(h)
1 , S(h) = (A

(h)
0 − I)−1

A
(h+1)
0 = A

(h)
0 −A(h)

1 S(h) A
(h)
−1 − A

(h)
−1 S

(h) A
(h)
1 ,

A
(h+1)
−1 = −A(h)

−1 S
(h) A

(h)
−1 , Â

(h+1)
0 = Â

(h)
0 −A(h)

1 S(h) A
(h)
−1 ,

(1)

for h = 0, 1, . . ., with A
(0)
i = Ai, i = −1, 0, 1 and Â

(0)
0 = A0 − I. It can be proved, in the context

of Markov chains, [2] that the sequence −(Â
(h)
0 )−1A−1 converges to the minimal nonnegative

solution G of the matrix equation.
If the QBD process is not null recurrent, applicability and quadratic convergence of the

algorithm are guaranteed [2][Theorems 7.5, 7.6]. In the null recurrent case, it has been proved
in [11] that convergence is linear with factor 1

2 .
Without any further assumption on the structure of the blocks, each step of CR requires a

small number of matrix multiplications and one matrix inversion for the resulting computational
cost of O(m3) arithmetic operations (ops) per step. On the other hand, there are several models
from the applications in which the blocks Ai exhibit special structures. In order to decrease the
computational complexity of the iterations, variations of CR which exploit these structures have
been proposed, see for instance [3], [17], [1].

Here, we are interested in analysing the case where the blocks Ai are quasiseparable matrices.
That is, the case where the off-diagonal submatrices of A−1, A0 and A1, strictly contained in
the upper or in the lower triangular part, have low rank with respect to m. The maximum
of the ranks of the off-diagonal submatrices is called quasiseparable rank and a matrix with
quasiseparable rank k is called k-quasiseparable. Observe that k-quasiseparable matrices include
banded matrices. These structures are encountered in wide and important classes of applications
like, bidimensional random walks [16], the Jackson tandem queue model [14] and other QBD
processes, or, for instance, in the finite differences discretization of elliptic PDEs.

Our goal is to design a version of CR which exploits the rank structures of the blocks Ai and
which can be implemented at a substantially lower cost. This way, we may arrive at designing
effective solvers both for block tridiagonal block Toeplitz systems and for the quadratic matrix
equations encountered in QBD Markov chains. Indeed, a way to reach this goal is to find out

if some structure of the blocks A
(h)
i is maintained during the CR steps (1), and then to try to

exploit this structure in order to design an effective implementation of CR.
Looking at the iterative scheme (1), one can find out that the quasiseparable rank can grow

exponentially at each step. Despite that, plotting the singular values of the off-diagonal blocks

of the matrices A
(h)
i shows an interesting behaviour as reported in Figure 1. For a randomly

generated QBD process with tridiagonal blocks of size 1600, the singular values of an off-diagonal

submatrix of size 799× 800 in A
(h)
0 have an exponential decay in the first 20 steps of CR.

It is evident that, even though the number of nonzero singular values grows at each step of
CR, the number of singular values above the machine precision – denoted by a horizontal line in
Figure 1– is bounded by a moderate constant. Moreover, the singular values seem to stay below
a straight-line which constitutes an asymptotic bound. That is, they get closer to this line as

h→∞. The logarithm scale suggest that the computed singular values σ
(h)
i decay exponentially

with i and the basis of the exponential grows with h but has a limit less than 1.
We will prove this asymptotic property relying on the technology of rank-structured matrices

and relate the basis of the exponential decay to the width of the domain of analiticity of the
matrix function ϕ(z)−1 for ϕ(z) = −z−1A−1 + I −A0 − zA1.

The paper is organized as follows. In Section 2 we recall some useful properties of CR. In
Section 3 we prove some preliminary lemmas for bounding the singular values of sums, products
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Figure 1: Log-scale plot of the largest singular values of the largest south-western submatrix of
A0 contained in the lower triangular part, for m = 1600. The horizontal line denotes the machine
precision threshold. Matrices are randomly generated so that Ai > 0 are tridiagonal matrices
and A−1 +A0 + I +A1 is stochastic.

and inverses of matrices. Section 4 contains the proof of the main result concerning the exponen-
tial decay of the singular values. In Section 5 we describe our algorithm which implements CR
relying on the package H2Lib [5], concerning H-matrices, and the related code together with the
results of the numerical experiments. Finally, in Section 6, we give some concluding comments
and possible future developments.

2 Main properties of cyclic reduction

We recall a functional interpretation of cyclic reduction introduced in the Markov chains frame-
work [2], [4] to prove applicability and convergence properties.

Associate the matrices A
(h)
i , i = −1, 0, 1 defined in (1) with the matrix Laurent polynomial

ϕ(h)(z) := −z−1A
(h)
−1 + (I − A(h)

0 ) − zA(h)
1 , where ϕ(0)(z) = ϕ(z) = z−1A−1 + (I − A0) − zA1,

and define the matrix rational function ψ(h)(z) = ϕ(h)(z)−1. The following property holds{
ψ(0)(z) := ψ(z),

ψ(h+1)(z2) := 1
2 (ψ(h)(z) + ψ(h)(−z)).

In particular, making explicit the recurrence relation in the sequence {ψ(h)}, we find that

ψ(h)(z2h) = 1
2h

∑2h−1
j=0 ψ(0)(ωjNz) where ωN = e

2π
N i is a principal N -th root of the unity for

N = 2h, and i denotes the imaginary unit, so that

ϕ(h)(z2h) =

 1

2h

2h−1∑
j=0

ψ(0)(ωjNz)

−1

. (2)

Observe that in the case where A−1, A0 and A1 are tridiagonal, then ϕ(z) is tridiagonal as
well, so that for any value of z such that detϕ(z) 6= 0, the matrix ψ(z) is semiseparable, that is,
tril(ψ(z)) = tril(L), triu(ψ(z)) = triu(U), where L and U are matrices of rank 1 [18].

3



Relying on this property, in the next section we will show that ψh(z), as well as the blocks

A
(h)
−1 , A

(h)
0 and A

(h)
1 , has off-diagonal submatrices with singular values which decay exponentially.

3 Singular values of sums, products and inverses

In this section, we recall some basic facts on the singular values decomposition (SVD) and provide
some technical lemmas. Let us denote by σj(A) the j-th singular value of the m × n matrix A
sorted in non-ascending order and by A = UΣV ∗, Σ = diag(σ1, . . . , σp), p = min{m,n}, the
SVD of A where U and V are unitary and V ∗ denotes the transpose conjugate of V . Moreover,
denote by ui and vi the ith column of U and V , respectively. We recall the following well-known
property concerning the SVD of a matrix A.

Property 3.1. For any matrix A the function f(X) = ‖A −X‖2 takes its minimum over the

class of matrices of rank `− 1 for X =
∑`−1
i=1 σiuiv

∗
i and the value of the minimum is exactly σ`.

3.1 Some technical lemmas

Let ‖A‖2 be the Euclidean norm of A and µ2(A) = ‖A‖2 · ‖A−1‖2 be the condition number of
A. The following result relates the singular values of the matrices A, B and C = AB.

Lemma 3.2. Consider two matrices A ∈ Cm×n, B ∈ Cn×n, such that B is invertible. Then

σj(A)

‖B−1‖2
6 σj(AB) 6 ‖B‖2 · σj(A),

σj(A)

‖B−1‖2
6 σj(BA

∗) 6 ‖B‖2 · σj(A),

Proof. We prove only the first statement since the other follows directly from it. Consider the
SVD decompositions A = UAΣAV

∗
A, B = UBΣBV

∗
B . Recall that the singular values of a generic

matrix M ∈ Cm×n are the square roots of the eigenvalues of M∗M , so that by the minimax
theorem, we can write

σj(M)2 = max
dim(V )=j
V⊆Cn

min
x∈V
x 6=0

x∗M∗Mx

x∗x
.

Now note that AB = UAΣAV
∗
AUBΣBV

∗ and since unitary matrices do not change the singular
values we have σj(AB) = σj(ΣAQΣB) where Q = V ∗AUB . Thus, we can express σj(AB)2 as

σj(AB)2 = max
dim(V )=j
V⊆Cn

min
x∈V

x∗Σ∗BQ
∗Σ∗AΣAQΣBx

x∗x
= max

dim(V )=j
V⊆Cn

min
x∈V

(ΣBx)∗Q∗Σ2
AQ(ΣBx)

x∗x
.

By setting y = ΣBx and recalling that ΣB is invertible by hypothesis we have

σj(AB)2 = max
dim(V )=j
V⊆Cn

min
y∈V

y∗Q∗Σ2
AQy

y∗y
· y
∗y

x∗x

so that, by using the fact that Q is unitary and that x∗x
‖B−1‖22

6 y∗y 6 ‖B‖22x∗x, we obtain

σj(A)2

‖B−1‖22
=

σj(ΣA)2

‖B−1‖22
6 σj(AB)2 6 ‖B‖22 · σj(ΣA)2 = ‖B‖22 · σj(A)2.

The following lemma relates the singular values of an off-diagonal submatrix of the inverse
of a given matrix A with those of the corresponding submatrix of A.
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Lemma 3.3. Let A ∈ Cn×n be an invertible matrix and consider the block partitioning

A =

(
A B
C D

)
, A−1 =

(
Ã B̃

C̃ D̃

)
,

where A and Ã are i× i matrices for 2 6 i 6 n− 1. We have the following properties

1. If D is invertible then 1
‖D‖2‖SD‖2σj(C) 6 σj(C̃) 6 ‖D−1‖2 · ‖S−1

D ‖2 · σj(C), where SD =

A−BD−1C is the Schur complement of D.

2. If A is invertible then 1
‖A‖2‖SA‖2σj(C) 6 σj(C̃) 6 ‖A−1‖2 · ‖S−1

A ‖2 · σj(C), where SA =

D − CA−1B is the Schur complement of A.

Proof. Let us consider part 1. If D is invertible we can write(
A B
C D

)−1

=

(
S−1
D S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

)
and in particular we have C̃ = −D−1CS−1

D . Repeatedly applying Lemma 3.2 to C̃ yields
1
‖D‖2σj(CS

−1
D ) 6 σj(C̃) 6 ‖D−1‖2 · σj(CS−1

D ) and eventually 1
‖SD‖2σj(C) 6 σj(CS

−1
D ) 6

‖S−1
D ‖2 · σj(C). Combining these inequalities gives us the thesis. For proving part 2, we can

proceed in the same manner relying on the inversion formula(
A B
C D

)−1

=

(
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)
.

Lemma 3.4. Let A =
∑+∞
i=−∞Ai and A+ =

∑+∞
i=0 Ai where Ai ∈ Cm×n have rank at most k

and suppose that ‖Ai‖2 6Me−α|i|. Then σj(A) 6 2M
1−e−α · e

−α j−k2k , σj(A
+) 6 M

1−e−α · e
−α j−kk .

Proof. Note that Bs =
∑s−1
i=−s+1Ai has rank at most k(2s − 1). For j positive integer, set

s = d j−k2k e and observe that, since 2kd j−k2k e < j + k, we have k(2s− 1) 6 j − 1 so that Bs is an
approximation to A of rank at most j − 1. By Property 3.1 it follows that σj(A) 6 ‖A− Bs‖2.
Moreover, since A−Bs =

∑
|i|>sAi, we have σj(A) 6

∑
|i|>s ‖Ai‖2 6 2Me−αs/(1− e−α) which

completes the proof of the first bound. The second bound is proved similarly.

Remark 3.5. In the particular case where k = 1, Lemma 3.4 yields σs(A) 6 2M
1−e−α · e

−α s2 ,

σs(A
+) 6 M

1−e−α · e
−α(s−1).

4 Exponential decay of the singular values

We can now state the main result about the decay of the singular values. It is clear that, if the
blocks Ai i = −1, 0, 1 have an off-diagonal rank structure, then the matrix ϕ(0)(z) also enjoys
this property. We will show that this fact implies the exponential decay of the singular values of

the off-diagonal blocks of ϕ(h)(z2h) for every h and for any z ∈ T where T = {z ∈ C : |z| = 1}
denotes the unit circle in the complex plane.

Given an integer N > 0, let ωN = ei2π/N and observe that the quantity 1
N

∑N−1
j=0 (zωjN )k

coincides with zk if k ≡ 0 mod N and with 0 otherwise. This way, if A(z) =
∑
i∈Z z

iAi
is a matrix Laurent series analytic on the annulus A(r1, r2) = {z ∈ C : r1 < |z| < r2} for

5



0 < r1 < 1 < r2, then 1
N

∑N−1
j=0 A(ωjnz) = B(zN ) where B(z) =

∑
i∈Z z

iANi is analytic on

A(rN1 , r
N
2 ). We denote by IN the operator which mapsA(z) intoB(z) and writeB(z) = IN (A(z)).

Observe that IN is linear and continuous on the space of analytic functions on A(r1, r2).
Moreover, in view of (2), we have ψ(h) = IN (ψ(0)) for N = 2h. This way, if we prove that any

off-diagonal submatrix B(z) of ψ(0)(z) is such that IN (B(z)) has the exponential decay property
for its singular values, then we have shown this property also for ψ(h)(z).

Partition ϕ(z) and ϕ(z)−1 as follows

ϕ(z) =

[
I − E(z) −B(z)
−C(z) I −D(z)

]
, ψ(z) := ϕ(z)−1 =

[
Ẽ(z) B̃(z)

C̃(z) D̃(z)

]
, (3)

where E(z) and D(z) are square matrices of any compatible size.

Theorem 4.1. Let ϕ(z) = −z−1A−1 + I −A0 − zA1 be an m×m matrix function such that

(i) The Ai are non-negative and I − ϕ(z) has spectral radius smaller than 1 for any z ∈ T.

(ii) The blocks Ai are k-quasiseparable and ‖Ai‖2 6 L, i = −1, 0, 1.

(iii) There exist t > 1 and δ > 0 such that detϕ(z) 6= 0 and ‖ϕ(z)−1‖2 6 δ for z ∈ A(t−1, t).

Then ρ(I − ϕ(z)) < 1 for any z ∈ A and in the partitioning (3), both blocks I − E(z) and
I − D(z) are invertible for any z ∈ A. Moreover, for any z ∈ T and for any h, the singular
values of C̃(h) := IN (C̃(z)), with N = 2h, are such that

σs(C̃
(h)(z)) 6 3Me−

s−3k
6k log t, M =

4Lδ2

(1− e−N log t)(1− t−1)
. (4)

Moreover, if A−1, A0, A1 are tridiagonal then the above bound turns into

σs(C̃
(h)(z)) 6Me−

s
2 log t. (5)

Proof. Let us prove that ρ(I − ϕ(z)) < 1 for any z ∈ A. By contradiction, assume that there
exists ξ ∈ A such that ρ(I −ϕ(ξ)) > 1. Since Ai > 0 for i = −1, 0, 1 then |I −ϕ(ξ)| 6 I −ϕ(|ξ|),
and by the monotonicity of the spectral radius we get 1 6 ρ(I − ϕ(ξ)) 6 ρ(I − ϕ(|ξ|)). Thus,

since ρ(I−ϕ(1)) < 1 6 ρ(I−ϕ(|ξ|)) and ρ is a continuous function, then there exists 1/t < ξ̂ < t

such that ρ(I −ϕ(ξ̂)) = 1. Since I −ϕ(ξ̂) is nonnegative, then by the Perron-Frobenius theorem

there exists an eigenvalue of I−ϕ(ξ̂) equal to 1, that is ϕ(ξ̂) would be singular, which contradicts
the assumptions.

Now we prove that I−D(z) and I−E(z) are invertible for any z ∈ A. Since |D(z)| 6 D(|z|),
for the monotonicity of the spectral radius, we have ρ(D(z)) 6 ρ(|D(z)|) 6 ρ(D(|z|)). On
the other hand, D(|z|) is a principal submatrix of the nonnegative matrix I − ϕ(|z|) so that
ρ(D(|z|)) 6 ρ(I − ϕ(|z|)) which is less than 1 since |z| ∈ A. We conclude that ρ(D(z)) < 1 for
any z ∈ A so that I − D(z) is nonsingular. The same argument can be used to deduce that
I − E(z) is nonsingular.

Now we prove the bound (4) on the singular values. For simplicity we assume that k = 1,
the general case can be treated similarly. Since the off-diagonal blocks of Ai have rank at
most 1 then Ci = uiv

T
i , i = −1, 0, 1, for suitable vectors ui, vi where we assume that ‖ui‖2 =

‖Ci‖2, ‖vi‖2 = 1. Thus, we have C(z) =
∑1
i=−1 z

iuiv
T
i . Since I − D(z) is invertible on A, we

have C̃(z) = H(z)
∑1
i=−1 z

iuiv
T
i K(z) where H(z) = (I − D(z))−1, K(z) = SD(z)−1 = Ẽ(z),

and H(z), K(z) are analytic for z ∈ A. Consider the Fourier series of H(z) and K(z), that

6



is, H(z) =
∑
s∈Z z

sHs, K(z) =
∑
s∈Z z

sKs, and recall that the coefficients Hs, Ks have an

exponential decay [12][Theorem 4.4c], that is, |(Hs)i,j | 6 maxz∈A |(H(z))i,j |e−|s| log t, |(Ks)i,j | 6
maxz∈A |(K(z))i,j |e−|s| log t. Since for any matrix norm induced by an absolute norm ‖ · ‖ and
for any matrix A it holds that |ai,j | 6 ‖A‖ so that we may write

‖Hs‖ 6 max
z∈A
‖H(z)‖e−|s| log t, ‖Ks‖ 6 max

z∈A
‖K(z)‖e−|s| log t, (6)

Now recall that C̃ = H(z)
∑
i=−1,0,1 z

iuiv
T
i K(z), set z ∈ T and consider the generic ith term

ziH(z)uiv
T
i K(z) in the above summation. We have

ziH(z)uiv
T
i K(z) =

∑
s,h∈Z

zs+h+iHsuiviKh =
∑
s∈Z

Hsui
∑
p∈Z

zp+ivTi Kp−s,

where we have set p = s + h. Now, applying the operator IN to the above matrix cancels out
the terms in zp+i such that p+ i is not multiple of N , so that we are left with the terms where
p+ i = Nq and we get

IN (ziH(z)uiv
T
i K(z)) =

∑
s∈Z

Hsui
∑
q∈Z

zqvTi KNq−i−s =:
∑
s∈Z

û(i)
s v̂(i)

s (z),

for û
(i)
s = Hsui, v̂

(i)
s (z) =

∑
q∈Z z

qvTi KNq−i−s. Thus we may write

IN (C̃) =
∑
s∈Z

ÛsV̂s(z)
T , Ûs =

[
û(−1)
s , û(0)

s , û(1)
s

]
, V̂s(z) =

[
v̂(−1)
s (z), v̂(0)

s (z), v̂(1)
s (z)

]
.

To complete the proof, recall that z ∈ T and apply Lemma 3.4 with k = 3 to the series∑
s∈Z ÛsV

T
s . In order to do this, we have to provide upper bounds to ‖ÛsV̂s(z)T ‖2 for z ∈ T.

We have ‖ÛsV̂s(z)T ‖2 6 ‖Ûs‖2‖V̂s(z)‖2. Concerning ‖Ûs‖2, since Ûs = Hs [u−1, u0, u1], we have
‖Ûs‖2 6 ‖Hs‖2‖ [u−1, u0, u1] ‖2 6

√
3‖Hs‖2 maxi ‖Ci‖2, where the latter inequality follows from

the fact that ‖ui‖2 = ‖Ci‖2 and that consequently, ‖ [u−1, u0, u1] ‖2 6
√

3 maxi ‖Ci‖2. Thus
from (6) we get

‖Ûs‖2 6
√

3Lmax
z∈A
‖H(z)−1‖2e−|s| log t.

Similarly, since ‖vi‖2 = 1 and |z| = 1, we have

‖v̂(i)
s ‖2 6

∑
q∈Z

‖KNq−i−s‖2 6 max
z∈A
‖K(z)‖2

∑
q∈Z

e−|Nq−i−s| log t,

where the last inequality follows from (6). Define r the remainder of the division of i + s
by N , so that i + s = Nq̂ + r, and get

∑
q∈Z e

−|Nq−i−s| log t =
∑
q∈Z e

−|N(q−q̂)+r| log t =∑
q∈Z e

−|Nq+r| log t = e−r log t +
∑
q>1 e

−(Nq−r) log t +
∑
q>1 e

−(Nq+r) log t = e−r log t + (er log t +

e−r log t)( 1
1−e−N log t − 1) 6 2

1−e−N log t . Whence we deduce that

‖V̂s‖2 6
2
√

3

1− e−N log t
max
z∈A
‖K(z)‖2.

Combining the two bounds yields

‖ÛsV̂s(z)‖2 6
6L

1− e−N log t
max
z∈A
‖K(z)‖2 max

z∈A
‖H(z)‖2e−|s| log t. (7)

7



It remains to estimate ‖K(z)‖2 and ‖H(z)‖2. Concerning K(z) = Ẽ(z), observe that this is
a principal submatrix of ψ(z) so that ‖K(z)‖2 6 ‖ψ(z)‖2. Concerning H(z) = (I − D(z))−1,
observe that from the condition Ai > 0 it follows that |D(z)| 6 D(|z|) and that ρ(D(z)) 6
ρ(|D(z)|) 6 ρ(D(|z|)) 6 ρ(ϕ(|z|)) < 1 since I −D(z) is a principal submatrix of ϕ(z). Thus we
may write (I −D(z))−1 =

∑∞
j=0D(z)j and |(I −D(z))−1| 6 (I −D(|z|))−1. Now, since Ai > 0

for i = −1, 0, 1, then

D̃(|z|) = (I −D(|z|))−1 + (I −D(|z|))−1︸ ︷︷ ︸
>0

C(|z|)︸ ︷︷ ︸
60

S−1
I−D(|z|)︸ ︷︷ ︸

>0

B(|z|)︸ ︷︷ ︸
60

(I −D(|z|))−1︸ ︷︷ ︸
>0

> (I −D(|z|))−1

so that ‖(I − D(z))−1‖2 6 ‖(I − D(|z|))−1‖2 6 ‖D̃(|z|)‖2 6 maxz∈A ‖ψ(z)‖2. Thus, applying
Lemma 3.4 together with the bound (7) and rank of the blocks 3 yields

σs(C̃
(h)(z)) 6

12Lδ2

(1− e−N log t)(1− t−1)
e−

s−3
6 log t.

If the blocks Ai are k-quasiseparable, then Lemma 3.4 is applied with rank of the blocks 3k so
that the exponent (s−3)/6 is replaced by (s−3k)/(6k), If ϕ(z) is tridiagonal, then u−1 = u0 = u1

and v−1 = v0 = v1, so that Ûj and V̂j are formed by a single column, i.e., Lemma 3.4 is applied
with rank of the blocks 1. This provides (5).

4.1 Exponential decay of the singular values in ϕ(z)

In this section, we prove the decay property of the singular values in the off-diagonal submatrices
of ϕ(h)(z) when |z| = 1. The proof is obtained by combining the decay property for the matrix
function ψ(h), stated in Theorem 4.1, with a suitable lemma which allows to extend this property
to the matrix inverse.

Lemma 4.2. Let ϕ(h)(z) = −z−1A
(h)
−1 +I−A(h)

0 −zA
(h)
1 be the m×m-matrix Laurent polynomial

obtained at the hth step of CR. Under the hypotheses of Theorem 4.1, for every z ∈ T we have
the following bound:

σj(C
(h)) 6 K(Lh, ϕ) · σj(C̃(h)), K(Lh, ϕ) = (1 + 3Lh)(1 + Lh + L2

h‖ϕ(1)−1‖2)

where ϕ(h)(z) and ϕ(h)(z)−1 are partitioned as in (3) and Lh is such that ‖A(h)
i ‖2 6 Lh.

Proof. With the notation of the partitioning (3) applied to ϕ(h)(z), from Lemma 3.3 applied to
ϕ(h)(z) we have σj(C

(h)) 6 ‖I − E(h)(z)‖2‖SI−E(h)(z)‖2σj(C̃(h)). Thus, since z ∈ T and I −
E(h)(z) is a submatrix of ϕ(h)(z), we have ‖I−E(h)(z)‖2 6 ‖ϕ(h)(z)‖2 6 1+3Lh. Moreover, tak-
ing the norms in SI−E(h)(z) = I−D(h)(z)−C(h)(z)(I−E(h)(z))−1B(h)(z) we get ‖SI−E(h)(z)‖2 6
1 +Lh+Lh‖(I−E(h)(z))−1‖2Lh. Moreover, for z ∈ T we have |I−E(h)(z))−1| 6

∑∞
i=0E

(h)(1)i

so that ‖I − E(h)(z))−1‖2 6 ‖(I − E(h)(1))−1‖2 = ‖
∑∞
i=0E

(h)(1)i‖2 6 ‖
∑∞
i=0A

(h)(1)i‖2 =

‖ϕ(h)(1)−1‖2, where we have set A(h)(z) = z−1A
(h)
−1 + A

(h)
0 + zA

(h)
1 . Here, we have used the

property that the conditions A
(h)
−1 , A

(h)
0 , A

(h)
1 > 0 and ρ(A

(h)
−1 +A

(h)
0 +A

(h)
1 ) < 1 are preserved at

each step of CR (see [2]). Finally, since ϕ(h)(1)−1 = ψ(h)(1) = 1
N

∑N−1
i=0 ψ(ωiN ), for N = 2h (see

Section 2), we have ‖ϕ(h)(1)−1‖2 6 ‖ψ(1)‖2.

Remark 4.3. Note that the previous bound still holds with ‖ϕ(h)(1)−1‖2, in place of ‖ϕ(1)−1‖2.
Experimentally, ‖ϕ(h)(1)−1‖2 is much smaller than ‖ϕ(1)−1‖2 just after few steps h.
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Observe that Lh depends on the step h of CR. However, since under the assumptions of

Theorem 4.1, the sequences generated by CR are such that limk A
(h)
i = 0, for i = 1,−1 while

limhA
(h)
0 is finite (see [2]), then there exists L such that L > Lh. Thus, Combining Lemma 4.2

and Theorem 4.1 we obtain the following result.

Corollary 4.4. Let ϕ(h)(z) = −z−1A
(h)
−1 + I − A

(h)
0 − zA

(h)
1 be the m × m-matrix Laurent

polynomial obtained at the hth step of CR and assume the hypothesis of Theorem 4.1. Then

for any off-diagonal submatrix C(h)(z) of ϕ(h)(z) we have σs(C
(h)) 6 3MK · e s−3k

6k log t, where

K = (1+3L)(1+L+L2‖ϕ(1)−1‖2), M is the constant defined in Theorem 4.1 and L > ‖A(h)
i ‖2,

for i = −1, 0, 1. In particular, if Ai is tridiagonal for i = −1, 0, 1 then σs(C
(h)) 6MK ·e−( s2 ) log t

4.2 Exponential decay of the singular values in A
(h)
i

To prove the decay of the singular values in the off-diagonal submatrices of A
(h)
i for i = −1, 0, 1

we rely on the following result of which we omit the elementary proof.

Lemma 4.5. Let A(z) = z−1A−1 +A0 +zA1 and let ξ be a primitive 6-th root of the unity. Then
A−1 = 1

3

(
ξA(ξ) + ξ5A(ξ5)−A(−1)

)
, A0 = 1

2 (A(z) +A(−z)), A1 = 1
3

(
ξ5A(ξ) + ξA(ξ5)−A(−1)

)
.

Lemma 4.6. Let A = 1
k

∑k
i=1Ai ∈ Cn×n where σj(Ai) 6 γe−αj, for j = 1, . . . , n. Then

σj(A) 6 γ̃e−α
j−k
k , γ̃ = γ

1−e−α .

Proof. Relying on the SVD, we write Ai =
∑∞
j=1 σj(Ai)ui,jv

∗
i,j where ui,j and vi,j are the singular

vectors of Ai and where, for convenience, we have expanded the sum to an infinite number of
terms by setting σj(Ai) = 0 for j > n. This allows us to write

A =
1

k

k∑
i=1

Ai =

∞∑
j=1

(
1

k

k∑
i=1

σj(Ai)ui,jv
∗
i,j

)
=

∞∑
j=1

Ãj .

Observe that Ãj have rank k and ‖Aj‖ 6 γe−αj . Applying Lemma 3.4 completes the proof.

We may conclude with the decay property for the singular values of the off-diagonal subma-

trices of A
(h)
i , for i = −1, 0, 1.

Lemma 4.7. Let ϕ(h)(z) be the matrix function genertaed at the hth step of CR with the prop-
erty that every offdiagonal submatrix B(z) of ϕ(h)(z) has decaying singular values such that
σs(B(z)) 6 γe−αs. Then every coefficient Bi of B(z) = z−1B−1 + B0 + zB1 is such that

σs(B0) 6 γe−α
j−2
2 , σs(Bi) 6 γe−α

j−3
3 , for i = 1,−1.

Proof. By Lemma 4.5, we have an expression for Bi based on evaluations of B(z). In particular,
we have A0 = 1

2 (B(i)+B(−i)), A±1 = 1
3 (ξ∓1B(ξ)+ξ∓5B(ξ5)−B(−1)), where ξ is a primitive

6-th root of the unity. Applying Lemma 4.6 completes the proof.

4.3 The Markovian case

One of the most interesting application of CR algorithm is in the Markovian framework, in
which applicability and convergence properties are guaranteed. In that case, the matrix function
ϕ satisfies almost all the hypotheses made in the previous subsections but it is singular at z = 1
since 1 is always an eigenvalue of ϕ(z). Nevertheless we will show that Corollary 4.4 can still be
applied considering a rescaled version of ϕ(z).
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When the coefficients Ai for i = −1, 0, 1 represent the blocks of the transition matrix of an
irreducible not null recurrent QBD process, the eigenvalues of ϕ(z) enjoy the following properties
[9, 4]:

(i) |λ1| 6 |λ2| 6 . . . 6 |λm−1| 6 λm < λm+1 6 |λm+2| 6 . . . 6 |λ2m|, with λm, λm+1 ∈ R and
one of the two equal to 1.

(ii) In the annulus {λm < |z| < λm+1} ϕ is invertible and the spectral radius of I − ϕ(z) is
strictly less than 1.

Hence we consider the rescaled version of ϕ, that is, ϕθ(z) := ϕ(θz), and we choose θ =√
λmλm+1. We obtain a matrix function invertible on A = { 1

t < |z| < t} where t =
√

λm+1

λm
.

Observe that ϕ
(h)
α (z) := ϕ(h)(α2hz) so applying CR to ϕα one obtains the same matrix

sequences up to a rescaling factor. In particular the exponential decay of the singular values is
left unchanged as shown in the following.

Theorem 4.8. For given t > 1 and δ > 0, consider the following class of matrix functions
associated with QBD stochastic processes with k-quasiseparable blocks:

χδ,t :=
{
ϕ(z) : ‖ϕ−1(z)‖2 6 δ t−1 6 |z| 6 t, t < λm+1/λm

}
.

Then there exists a uniform constant γ(δ, t) such that for any off-diagonal block C(h)(z) of ϕ(h)(z),

with ϕ ∈ χδ,t, its s-th singular value is bounded by σs(C
(h)(z)) 6 γ(δ, t) · e− s−3k

6k log t.

Remark 4.9. Observe that in the case of null-recurrent QBD processes one has λm = λm+1 = 1,
so that there is no open annulus including T where ϕ(z) is nonsingular and we cannot apply
Theorem 4.1. This drawback can be partially overcome by applying the shift technique of [2, 4].
This technique allows to construct a new matrix function ϕ̃(z) which has the same eigenvalues
of ϕ(z) except for the eigenvalue 1 which is shifted to 0. So that ϕ̃(z) has an open annulus
containing T where it is nonsingular. Moreover, applying CR to ϕ̃(z) generates matrix sequences
which easily allow to recover the corresponding matrix sequences obtained by applying CR to
ϕ(z). The sequences associated with ϕ(z) differ from the sequences associated with ϕ̃(z) by
a rank-1 correction. This way, if the exponential decay of the singular values holds for the
latter sequences, it holds also for the former ones. The difficulty that still remains is that the
nonnegativity of the blocks A−1, A0 and A1 is not generally satisfied by the function ϕ̃(z) so that
in principle Theorem 4.1 cannot be applied and a different version specific for this case should
be formulated.

Remark 4.10. The bounds that we have given to the decay of the singular values of the off-
diagonal submatrices are not strict. Experimentally, singular values seem to decay slightly faster.
Even in the null-recurrent case where λm = λm+1 = 1, the decay still occurs even though in a
deteriorated form. The decay properties clearly depend on the domain of analyticity of ψ(z) but
this is not the only reason of the decay. More investigation is needed in this direction.

5 An algorithm using H-matrices

We have provided an implementation of CR, which applies to matrix functions ϕ(z) having
quasiseparable blocks, and relies on the approximate quasiseparable structure induced by the
decay of the singular values. We relied on the H-matrix representation of [6, 7, 10].
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CR H10−16 H10−12 H10−8

Size Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue
100 6.04e− 02 1.91e− 16 2.21e− 01 1.79e− 15 2.04e− 01 8.26e− 14 1.92e− 01 7.40e− 10
200 1.88e− 01 2.51e− 16 5.78e− 01 1.39e− 14 5.03e− 01 1.01e− 13 4.29e− 01 2.29e− 09
400 1.61e + 01 2.09e− 16 3.32e + 00 1.41e− 14 2.60e + 00 1.33e− 13 1.98e + 00 1.99e− 09
800 2.63e + 01 2.74e− 16 4.55e + 00 1.94e− 14 3.49e + 00 2.71e− 13 2.63e + 00 2.69e− 09
1600 8.12e + 01 3.82e− 12 1.18e + 01 3.82e− 12 8.78e + 00 3.82e− 12 6.24e + 00 3.39e− 09
3200 6.35e + 02 5.46e− 08 3.12e + 01 5.46e− 08 2.21e + 01 5.46e− 08 1.51e + 01 5.43e− 08
6400 5.03e + 03 3.89e− 08 7.83e + 01 3.89e− 08 5.38e + 01 3.89e− 08 3.58e + 01 3.87e− 08
12800 4.06e + 04 1.99e− 08 1.94e + 02 1.99e− 08 1.29e + 02 1.99e− 08 8.37e + 01 1.97e− 08

Table 1: Timings and accuracy for 15 iterations of CR at the increasing of the size of the blocks.

5.1 H-matrix representation

Here, we give a brief and informal description of the H-matrix representation that we have
implemented. For full details we refer to [6] where an overview of the definition and use of
hierarchical matrices is given.

Let A ∈ Rn×n be a k-quasiseparable matrix such that A =
[
A11 A22

A21 A22

]
, A11 ∈ Rn1×n1 , A22 ∈

Rn2×n2 , with n1 := bn2 c and n2 := dn2 e. Observe that the antidiagonal blocks A12 and A21 do
not involve any element of the main diagonal of A, hence they are representable as a sum of at
most k dyads. Moreover the diagonal blocks A11 and A22 are square matrices with the same
rank structure of A. Therefore these diagonal blocks are recursively represented with a similar
partitioning. If blocks become small enough, they are stored as full matrices.

Figure 2: The behavior of the block partitioning in the H-matrix representation. The blocks
filled with grey are represented as sum of dyads, the diagonal blocks in the last step are stored
as full matrices.

5.2 Quasiseparable CR

If the quasiseparable rank of the H-matrices we are dealing with can be treated as a constant
when compared to the dimension n, then the algorithms which perform the arithmetic operations
have almost linear complexity [6][Chapter 6]. In particular we can achieve complexity O(n log n)
for matrix addition and O(n log2 n) for matrix multiplication and inversion. This is almost
optimal, provided that the rank remains sufficiently low.

In order to fully exploit the numerical quasiseparable structure we perform the arithmetic
operations of CR adaptively with respect to the rank of the blocks. This means that the result
of an arithmetic operation (eg. matrix multiplication) will be an H-matrix with the same par-
titioning, where each low rank block is a truncated reduced SVD of the corresponding block of
the exact result. Hence the rank is not a priori fixed but depends on a threshold ε at which the
truncation is done. The parameter ε can be regarded as the desired accuracy (for us is close to
the machine precision 2.22× 10−16) and can be crucial for the performance of the algorithm.
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Figure 3: Timings of CR. To the left, CR is applied to tridiagonal blocks with increasing size.
To right, CR is applied to band blocks with increasing band and size 1600.

CR H10−16 H10−12 H10−8

Band Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue
2 7.47e + 01 2.11e− 16 1.58e + 01 6.95e− 15 1.08e + 01 2.62e− 13 7.86e + 00 2.57e− 09
4 7.65e + 01 1.66e− 16 1.92e + 01 4.88e− 15 1.48e + 01 2.36e− 13 9.44e + 00 3.15e− 09
8 7.82e + 01 1.48e− 16 2.81e + 01 6.11e− 15 2.15e + 01 2.08e− 13 1.31e + 01 2.10e− 09
16 7.50e + 01 1.35e− 16 4.99e + 01 4.98e− 15 3.48e + 01 2.29e− 13 2.28e + 01 2.08e− 09
32 7.97e + 01 1.33e− 16 9.40e + 01 5.79e− 15 6.32e + 01 2.01e− 13 4.15e + 01 2.28e− 09
64 8.03e + 01 1.31e− 16 1.97e + 02 6.79e− 15 1.29e + 02 1.99e− 13 8.37e + 01 2.01e− 09
128 7.53e + 01 1.28e− 16 4.01e + 02 5.89e− 15 2.71e + 02 2.02e− 13 1.75e + 02 2.15e− 09

Table 2: Timings and accuracy for 15 iterations of CR on blocks with size 1600 with different
bands.

5.3 A note on the implementation

For the implementation of this algorithm we relied on the open source library H2Lib [5]. The
library has been wrapped in MEX files for use in MATLAB, where the numerical experiments
have been run. The code developed in this context is freely available at [15]. The bindings
developed in the testing of the algorithm are only a partial mapping of all the routines available
in the original H2Lib library but we feel that it is worth making them public so they can be used
as a base for a further extension.

For a fair comparison, we have compiled H2Lib with the LAPACK library used by MATLAB.
Moreover, we have disabled the parallelism in the Intel MKL library to obtain more accurate
results. It is important to notice that running with parallelism enabled in the MKL library leads
to improved performance both for H2LIb and for MATLAB, but the improvement is more relevant
in the latter. This is due to the fact that the library is optimized for the multiplication of large
matrices, such as in the full CR implementation (when full matrices of large size are multiplied
together). The multiplication of the small rectangular matrices involved in the hierarchical
representation, instead, benefit less from this implementation. Anyway, also in this case we see
that our implementation is more efficient even if starting from larger dimension. For example,
on a Xeon server with 24 threads available our implementation is faster than the standard one
approximately for n > 500.

Table 1 reports the results of some numerical experiments, where in each column we have
reported: the size of the blocks from m = 100 up to m = 12800, the CPU time, in seconds,
required by standard CR and the residual error, then from column 3 to column 5 we reported
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the CPU time, in seconds, and the residual error of our implementation with values of ε =
10−16, 10−12, 10−8, respectively. It is interesting to observe that the precision of the result does
not deteriorate much for large values of m. Moreover, the speed-up that we get goes beyond two
order of magnitude.

In Table 2 we repeat the experiment fixing the size to 1600 and letting the band of the starting
blocks to increase exponentially from 2 up to 128. It should be note that the gain of time of our
implementation seems to deteriorate linearly with respect to the increase of the band.

In Figure 3 we give a graphic description, in logarithmic scale, of the growth of the CPU time
in the latter experiments. The test problems are generated randomly.

6 Conclusions

We have experimentally observed the exponential decay of the singular values of certain off-
diagonal submatrices generated by cyclic reduction applied to certain QBD stochastic processes
of practical interest. We have formally related this property to the width of the domain of
analyticity of the inverse matrix function associated with the QBD.

We have provided a software implementation of CR, for QBD with tridiagonal blocks encoun-
tered in the analysis of bidimensional random walk, which relies on this decay property. The
speed up that we get with respect to standard CR is substantial even with moderately large size
of the blocks.

Even though experiments confirm the validity of the theoretical bounds, the bounds obtained
in our analysis are not sharp with respect to the values actually encountered in our computational
experiments. This shows that the decay property depends also on other factors which deserve
further investigation. This is the aim of our future research.
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