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Abstract

A dedicated study of the πΣc scattering around its threshold is carried out in this work to probe
the nature of Λc(2595)+. We first demonstrate that the effective range expansion approach fails to
work near the Λc(2595)+ pole position, due to the presence of a nearby CDD pole around the πΣc

thresholds. We then develop a general framework to properly handle the situation with a CDD pole
accompanied by nearby thresholds, which is first elaborated for the single-channel case and then
generalized to the coupled-channel study. The isospin breaking effects of the three πΣc channels with
different thresholds are specially taken into account in our study. The finite-width effects from the
Σc baryons are considered and found to be relevant to give the Λc(2595)+ width fully compatible to
its experimental value. Through the compositeness analysis, our robust conclusion is that the π0Σ+

c

component is subdominant inside the Λc(2595)+.

PACS: 14.20.Lq, 11.10.St, 03.65.Nk
Keywords: Charmed baryons. Meson-baryon scattering.

1 Introduction

The recent discovery of a large number of new hadronic states, especially those with open or hidden
heavy flavors, has triggered great interests both on the experimental and theoretical sides [1]. One of
the common noticeable features of the newly observed hadrons is that many of them lie very close to the
thresholds of two underlying intermediate states. It is then important to discriminate that the observed
peak structures from experimental analyses correspond to genuine resonances or threshold effects. The
resonance Λc(2595)+, just lying on top of the threshold of πΣc(2455) (simply denoted as πΣc in the rest
of this paper), is a typical kind of such states and it is the focus of the current work. However we should
mention that our present formalism can be also straightforwardly generalized to other similar systems.

The resonance Λc(2595)+ is a well established charm baryon, which was first observed by CLEO [2]
and then confirmed later by other collaborations [3–5]. The up-do-date experimental measurement is from
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the CDF collaboration [6]. Regarding its nature, the quark model can easily accommodate this state, by
assigning symmetric orbital wave functions for the two constituent light quarks inside the Λc(2595)+ [7–13].
On the other hand, a striking feature for the Λc(2595)+ is the noticeable closeness of its mass to the
πΣc thresholds, with quantum numbers that are consistent with an S-wave πΣc baryon resonance. This
point has prompted several studies of this state by analyzing πΣc scattering, as well as including other
relevant heavier intermediate states, such as ND, ND∗, etc [14–23]. In these latter works, the unitarized
chiral perturbation theory (UChPT) approach1 is extended from the strange baryons to the charm sector,
mainly motivated by the similarity of the isoscalar S-wave Λ(1405) and Λc(2595) baryons [14–23]. The
former state has a mass between the thresholds of πΣ and K̄N and it also couples strongly to both
channels [24, 27, 31, 32]. The fact that the Λc(2595)+ lies between the πΣc and DN thresholds further
supports the resemblance of the dynamics related to Λ(1405) and Λc(2595). In Refs. [14,16], the Λc(2595)+

is generated by including the channels πΣc and KΞc (a much further away threshold) and considered as
a dynamically generated state by the nearby πΣc channel. Intermediate states including also the lightest
charmed pseudoscalars are considered in Refs. [15, 17–19]. Based on the argument that the pseudoscalar
charmed mesons D and its vector companions D∗ should be treated equally according to the heavy quark
symmetry, channels including the latter ones are taken into account in Refs. [20–23]. These references
stress the large couplings of the Λc(2595)+ to both DN and D∗N .

Nevertheless, we should mention that although the idea to generalize the UChPT study of Λ(1405)
to Λc(2595)+ is appealing, it is rather difficult for the previously mentioned UChPT studies to precisely
reproduce the mass and width of the Λc(2595)+ simultaneously [14–23]. This may be due to the fact that
ND threshold is more than 200 MeV above the Λc(2595)+ mass, in contrast to the only 20 MeV or so
difference between the K̄N threshold and the mass of Λ(1405). Therefore in this work we propose to
make a delicate study for the Λc(2595)+ in the neighborhood energy region close to the πΣc threshold,
for |√s − (mπ + mΣc

)| . 5 MeV, with s the usual Mandelstam variable corresponding to the center of
mass energy squared of πΣc. Generally speaking, the effective range expansion (ERE) seems to offer an
appropriate tool in this respect, due to the marked proximity of the Λc(2595)+ and the πΣc threshold.
In fact, very recently the ERE has been applied to investigate the near-threshold S-wave resonances in
Refs. [33, 34]. As a matter of fact, the resonance Λc(2595) was specially exemplified in these works as an
ideal S-wave πΣc baryon candidate.

For our represent study we include in the partial wave amplitudes the Castillejo-Dalitz-Dyson (CDD)
poles [35], which effectively encode the extra degrees of freedom not directly corresponding to the explicit
πΣc states, e.g. higher energy channels that are open much beyond the πΣc threshold energy region, like
ND, ND∗ components, or compact quark-gluon states. Naively speaking the ERE should work well near
the threshold region. But the convergence region can be severely restricted when a CDD pole lies close to
threshold and this happens to be the situation for the Λc(2595)+, as shown in Sec. 2. Therefore one should
be cautious when applying the ERE up to the Λc(2595)+ pole because the convergence of ERE becomes
questionable, a point overlooked in Refs. [33, 34]. We find a way out to this problem in the present work
by explicitly keeping the CDD contributions around the threshold. Furthermore, because the mass of
Λc(2595)+ lies just between the threshold of π0Σ+

c and those of π+Σ0
c , π−Σ++

c , a subtle issue that needs to
be seriously taken into account is the isospin breaking effects associated with the mass differences between
the three πΣc channels. This is one of the novelties of our present work, as isospin breaking effects are
totally neglected in the previous discussions on the Λc(2595)+ [14–23,33, 34].

The paper is organized as follows. In Sec. 2, we demonstrate in detail the problem of ERE in the
Λc(2595)+ study. Our single-channel solution to this problem is discussed in Sec. 3 and the coupled-
channel formalism is developed in Sec. 4. The finite-width effects from the Σc baryons are considered in
Sec. 5. We then carry out the compositeness study of the Λc(2595)+ in Sec. 6 . A short summary and our

1Key references for this approach are [24–30].
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conclusions are given in Sec. 7.

2 General considerations for a resonance around thresholds and

the ERE study of Λc(2595)+

The experimental values for the mass and width of the Λc(2595)+ are [1]

MR = 2592.25 ± 0.28 MeV , ΓR = 2.6 ± 0.6 MeV . (1)

These values should be compared with the threshold of π0Σ+
c (1), 2587.9 MeV, and the almost degenerate

ones of π+Σ0
c (2) and π−Σ++

c (3), around 2593.5 MeV. Here we have indicated between parenthesis the
numbering of every channel from lower to higher thresholds. As a result the Λc(2595)+ has the appealing
property of lying in between the thresholds of the lightest channel and those of the two heavier ones.
Notice that the differences between the Λc(2595)+ mass and the πΣc thresholds are comparable to the
Σc width, which could lead to some non-negligible effects, as already noticed in Ref. [12]. We shall also
consider the small but finite width from the Σc states in this work.

Ref. [33] proposes to study the Λc(2595)+ through πΣc scattering in the isospin symmetric limit, so
that common masses are used there for the Σc and pions. Then an uncoupled S-wave ERE is employed
as dynamical tool. However, one has to realize that there is an ambiguity in taking definite values for the
common isospin limit mass. The variation in the thresholds of the different channels is mainly due to the
change from the π+ to the π0 masses, since Mπ+ −Mπ0 ≃ 4.5936(5) MeV while MΣ0

c
−MΣ+

c
= 0.9(4) MeV [1].

When taking the π0Σ+
c threshold as the isospin limit one, the Λc(2595)+ is around 4.4 MeV above it, while

when the π+Σ0
c or π−Σ++

c threshold is chosen instead, the Λc(2595)+ lies below it by around 1.2 MeV. As
a result these two scenarios lead to dramatically different values for the ERE parameters (cf. Table 1).
This makes that an ERE in this case is extremely sensitive to the actual values taken for the masses (a
situation not realized indeed in Ref. [33]).

In order to show this important point we make a necessary detour, since we propose to fix the pole
position of the Λc(2595)+ to its actual physical value in Eq. (1), independently of the taken values for the
common isospin limit masses. The fact that this procedure makes sense and is valuable for learning on
the actual physical world is based on the following two reasons.

Firstly, this proposal could be qualified as a gedankenexperiment in QCD because one has four active
free parameters in the energy range involved, namely, the common mass of u and d quarks, the masses of
the s and c quarks and the coupling constant (or ΛQCD). These free parameters would be fixed to the four
conditions of choosing the common isospin masses of π and Σc together with the two extra constraints
of reproducing the actual physical value of the pole position of the Λc(2595)+ (that is, its mass and
width). This procedure would define a possible QCD isospin limit hadronic world, that once it is properly
characterized will give us valuable information on the actual physical situation.

Secondly, we can make use of the general principles for two-body scattering and show that the param-
eters characterizing the interactions change little under variations in the chosen mass within an isospin
multiplet, while keeping the Λc(2595)+ pole position fixed, as expected for isospin breaking corrections.
Thus, by performing this gedankenexperiment we will be able to determine rather approximately these
parameters and calculate the actual partial wave amplitudes, which in turn will provide us with extra
relevant information, in particular, regarding the Λc(2595)+ resonance.

More specifically, due to the fact that the Λc(2595)+ is almost on top of the thresholds of the πΣc

channels, with involved three-momenta much less than the pion mass, we could take a pionless effective-
field-theory point of view [36], so that only local interactions enter in the dynamical picture of the process.
A scattering amplitude in this case has only right-hand cut or unitarity cut because, due to the contact
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nature of interactions, there are no crossed-channel cuts in the πΣc scattering amplitude relevant for such
low three momenta. The general expression for a partial wave when no crossed-channel cuts are present
is given in Ref. [26], making use of the N/D method [37]. Since the Λc(2595)+ lies so close to the πΣc

thresholds, it is very narrow and its quantum numbers correspond to a πΣc S-wave resonance, to assume
only the πΣc elastic S-wave amplitude, t(s), seems a safe assumption (as also pointed out in Ref. [1]).
This partial wave can be expressed in such circumstances as [26, 27] (we consider here the single-channel
case for simplicity and later we will generalize the discussion to the coupled-channel case)

t(s) =

[
∑

i

γ2
i

s − M2
i,CDD

+ G(s)

]−1

. (2)

Let us comment on the different elements appearing in the previous equation. Every term γi/(s−M2
i,CDD)

corresponds to the contribution of one CDD pole [35]. In this way t(s) is zero at s = M2
i,CDD since

1/t(s) has a pole at this point. As in the original paper [35] we concentrate here on CDD poles lying on
the real axis, so that both M2

i,CDD and γi are real parameters. The CDD poles are typically associated
with resonances and bound states because 1/t(s) for s around M2

i,CDD crosses the pole associated with
γi/(s − M2

i,CDD) so that, if the rest of contributions are smooth around M2
i,CDD, the real part of 1/t(s)

would have also a zero not far from M2
i,CDD. For example, Dyson constructed a model [38] in which the

relation between the CDD poles to bound states and resonances is explicitly exhibited.
The final term in Eq. (2) is the function G(s) which is the scalar two-point loop function, or simply

unitarity loop function, which comprises the unitarity cut, the only type of cut singularity in the present
discussion. This function can be expressed as [39, 40]

G(s) = α(µ2) +
1

(4π)2

(
log

m2
2

µ2
− κ+ log

κ+ − 1

κ+
− κ− log

κ− − 1

κ−

)
, (3)

with

κ± =
s + m2

1 − m2
2

2s
± k√

s
,

k =

√
(s − (m1 − m2)2)(s − (m1 + m2)2)

2
√

s
, (4)

being k the modulus of the center-of-mass three-momentum for a two-particle system with masses m1 and
m2. The constant α(µ2) in Eq. (3) is a subtraction constant, with µ2 the renormalization scale. Notice
that the combination of α(µ2) − log µ2/(16π2) is independent of µ2.

It can be easily verified from Eq. (2) that if the common isospin masses of the πΣc are changed one can
still keep the pole position of the Λc(2525)+ fixed at the physical value with little changes of the parameters
entering in Eq. (2). We do this exercise below in Sect. 3 by including one CDD pole. However, we point
out that little change of the parameters in the partial-wave amplitude in Eq. (2) does not necessarily lead
to similar results for the expansion parameters in the ERE approach. In the following we explicitly show
the extreme sensitivity of the ERE parameters, namely the scattering length and effective range, to the
actual values used for the πΣc masses.

In this respect we consider three possibilities by taking as common isospin masses the ones of every
coupled channel separately, that is, i) MΣc

= MΣ+
c
, Mπ = Mπ0 , ii) MΣc

= MΣ0
c
, Mπ = Mπ+ , and iii)

MΣc
= MΣ++

c
, Mπ = Mπ− . The choices i) and iii) represent the extreme cases of the lowest and highest

physical thresholds. By now, as in Ref. [33], we assume blindly that an ERE for t(s) at the resonance pole
position is applicable, so that one can write

t(s) =8π
√

s
(

1

a
+

1

2
rk2 − ik

)−1

, (5)
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where a is the scattering length and r is the effective range. These parameters are then fixed by imposing
that Eq. (5) has a pole at

√
s = MR − iΓR/2, cf. Eq. (1). One then obtains

a =
2ki

|kR|2 ,

r = − 1

ki

, (6)

where kr and −ki(ki > 0) are the real and imaginary parts of kR, respectively, being the latter the value
of k at the pole position, kR = kr − iki . As a technical remark, we notice that the pole position is located
in the second Riemann sheet (RS), which implies that Imk < 0 (while in the physical or first Riemann
sheet Imk > 0).

It is then clear from Eq. (6) that there is a resonance only for a > 0, r < 0 and further it is required
that a/2 < −r. The resulting numerical values for the different choices of common isospin masses are
given in Table 1, where the estimated uncertainties result by propagating the error bars in the Λc(2595)+

pole position from Eq. (1). Furthermore, since the pole position is very close to threshold, for calculating
these numbers we have used nonrelativistic kinematics for k,

k =
√

2µ̄(
√

s − MΣc
− Mπ) , (7)

with µ̄ = MΣc
Mπ/(MΣc

+ Mπ) the reduced mass of the πΣc system.

Case MΣc
Mπ MΣc

+ Mπ − MR (MeV) a (fm) r (fm)
i) MΣ+

c
Mπ0 −4.37 1.66 ± 0.38 −40.1 ± 9.1

ii) MΣ0
c

Mπ+ +1.06 16.9 ± 1.7 −10.4 ± 1.0
iii) MΣ++

c
Mπ− +1.30 16.5 ± 1.4 −9.7 ± 0.8

Table 1: Single-channel analysis based on the ERE for t(s), Eq. (5). The masses used for the Σc, π, and the
difference between the corresponding threshold and resonance mass are indicated in the 2nd, 3rd and 4th columns,
in order. The values of the scattering length a and effective range r are given in the next two columns for each
case, respectively. The errors bars stems from the uncertainties in the mass and width of the resonance, Eq. (1).

It is striking the huge variation in the values of both a and r, given in the 5th and 6th columns of
Table 1, respectively, as the threshold changes by just a few MeV. One can appreciate a change in a by
an order of magnitude and around a factor 4 for r from cases i) to iii). This is a clear indication of a fine
tuning situation, and the results are extremely dependent on the exact values for the threshold. Let us
stress that we are considering here only isospin breaking differences in the masses of the particles involved.
Another notorious fact from Table 1 is the large magnitude of r, for case i) it is actually huge, with values
obtained that are much larger than 1/mπ or 1/ΛQCD ≃ 1 fm.2 Indeed pure potential scattering requires
that the effective range should have a value around the range of interactions [41,42]. From here it follows
the important conclusion that in order to account for the huge absolute values of r one has to include
another scale beyond the natural one for the range of the strong interactions.

There is indeed room in Eq. (2) to accomplish this by including a CDD pole near the threshold, so that
the new small energy scale would be the difference between the CDD mass and the threshold. The large
magnitude of r also indicates that the ERE could possibly have a very limited radius of convergence in k,
much smaller than mπ. This is actually related to the appearance of such a small new energy scale which
is not required by branch points (due to the exchange of particles) but to the presence of some preexisting

2Let us recall that ΛQCD ≈ 190 MeV with 4 quark flavors in the MS scheme [1].
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state that manifests in the need of including a CDD pole. In this subtle situation it is then not obvious
that one could apply the ERE to the Λc(2595)+ because for the 4-MeV difference between MR and the
threshold in case i) one would have |k| ≃ 34 MeV. Thus, one should consider the results in Table 1 as just
indicative, and a more detailed discussion is necessary to settle whether the ERE could indeed be used at
the Λc(2595)+ pole position, as we do in the next section.

We point out that the changes in the values of the scattering length due to the different isospin masses
are much more dramatic than the large quark-mass dependence of the nucleon-nucleon scattering lengths,
as calculated in Refs. [43,44], which is a paradigmatic example of a fine-tuning problem. Here the situation,
as remarked above, is much more impressive since we are just considering isospin breaking corrections in
the masses while in the nucleon-nucleon case much larger changes in the pion masses are involved, e.g. by
approaching to the chiral limit.

3 Single-channel CDD analysis

Our main aim here is then to develop a picture based on Eq. (2) that explains the results in Table 1 and
could be used even when ERE in Eq. (5) cannot be employed at the Λc(2595)+ pole position. As we are
just considering only one resonance it is then natural to include just one CDD pole. Then the S-wave πΣc

scattering close to the threshold is approximated by

t(s) =

[
γ2

s − M2
CDD

+ G(s)

]−1

. (8)

We follow the convention of taking the renormalization scale µ = Mπ+ in the G(s) function defined in
Eq. (3), since Mπ is an upper scale in the low-energy effective field theory required for the scattering of πΣc

around the Λc(2595)+ resonance. As a result we denote in the following the subtraction constant simply
as α, without indicating its dependence on µ. We now require that Eq. (8) reproduces for the cases i) and
iii) the pole position of the Λc(2495)+. We do not explicitly consider case ii) in the subsequent since its
threshold is very close to that of iii). In this way we end with 4 equations, 2 for each case separately.

Instead of solving numerically these equations by using Eq. (8) we consider first its nonrelativistic
reduction since it is simpler and allows us to derive algebraic expressions, which are enlightening and
numerically accurate, given the proximity of the resonance to the threshold. In this limit Eq. (8) becomes
simply

t(s) =8πσ

[
λ2

√
s − MCDD

+ β − ik

]−1

, (9)

where the new quantities λ and β are related to γ and α, respectively, as

λ =γ

√
8πσ

σ + MCDD

, (10)

β =8πσα +
1

π

(
Mπ log

Mπ

Mπ+

+ MΣc
log

MΣc

Mπ+

)
, (11)

with σ = MΣc
+ Mπ and k given by the nonrelativistic Eq. (7). Notice that the contribution from the

first log on the right-hand side (rhs) of the last equation is negligibly small compared to the one from the
second term.

Eq. (9) exhibits in a concise way how one can generate the results compiled in Table 1, that are
characterized by such large absolute values of a and r, as well as their dramatic variations with little
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changes in the thresholds. For that let us perform an expansion in k2 of kcotδ = 8πσ/t(s) + ik, with
δ the S-wave πΣc phase shifts and t(s) given by nonrelativistic expression of Eq. (9). We also use the
nonrelativistic expression for

√
s, which reads

√
s =σ +

k2

2µ̄
. (12)

Then the following expansion results

kcotδ =
λ2

σ − MCDD + k2/2µ̄
+ β

=
λ2

σ − MCDD

+ β − k2λ2

2µ̄(σ − MCDD)2
+

λ2

σ − MCDD

O
[(

k2

2µ̄(σ − MCDD)

)n]
, (13)

with n > 1. From Eq. (13), one can identify 1/a and r as

a−1 =
λ2

σ − MCDD

+ β ,

r = − λ2

µ̄(σ − MCDD)2
. (14)

It is then clear that in order to generate a large absolute value for a, one needs a strong cancellation
between the λ2/(σ − MCDD) and β. While to have a large magnitude for r, one would naturally expect
MCDD → σ. Equation (14) also clearly shows why the ERE could fail to converge for values of |k|2 ≪ M2

π ,
since it could perfectly be that |σ − MCDD| ≪ Mπ in the Λc(2595)+ case because, as just discussed, we
expect that MCDD ≈ σ. As a result instead of applying the ERE in Eq. (13), we consider directly Eq. (9).

We now impose that t(s) from Eq. (9) has a pole at sR = (MR − iΓR/2)2 in the second RS for masses
corresponding to channels i) and iii). In this RS Eq. (9) becomes [25]

t(s)II =8πσ

[
λ2

√
s − MCDD

+ β + ik

]−1

, (15)

so that there is a change of sign in front of k when comparing with Eq. (9), where k is calculated in the
1st RS with Imk > 0. For a specific channel j), we denote by σj the value of σ and by ρj the combination

ρj =
1

π

(
Mj,π log

Mj,π

Mπ+

+ Mj,Σc
log

Mj,Σc

Mπ+

)
, (16)

with Mj,π and Mj,Σc
the corresponding masses of pion and Σc in the channel j). Notice that ρj is the last

term on the rhs of Eq. (11). To require t(s)II in Eq. (15) to have a pole for both channels i) and iii)

provides us four equations, which allow us to determine γ, α, M
i)
CDD and M

iii)
CDD. Notice that we allow

different CDD pole masses for every case since, as it is clear from Eq. (14), the final results are quite
sensitive to MCDD as the threshold changes. In contrast, one should expect smooth changes for the values
of α and γ and we take the same value for them in different channels. In addition we also distinguish
between k

i)
R and k

iii)
R as k depends on the threshold of the channel.

These equations have two different solutions because they are quadratic in the CDD pole masses. In
order to simplify the output for the solutions we take into account MCDD ≈ σ, so that we take λ = γ

√
4π

7



instead of Eq. (10). The algebraic solutions for α, γ, M
i)
CDD and M

iii)
CDD read

α =
ΓR

(
k

iii)
i − ρ3

)
+ 2kiii)

r

(
M

iii)
CDD − MR

)

8πσ3ΓR

,

γ2 =
kiii)

r

(
(M

iii)
CDD − MR)2 + Γ2

R/4
)

2πΓR

,

M
i)
CDD =

χ11 ± √
χ12

k
i)
r (k

i)
r σ2

3 − k
iii)
r σ2

1)
,

M
iii)
CDD =

χ21 ± √
χ22

k
iii)
r (k

i)
r σ2

3 − k
iii)
r σ2

1)
,

χ11 =MRki)
r (ki)

r σ2
3 − kiii)

r σ2
1) + ΓRki)

r σ3(−k
i)
i σ3 + ρ1σ3 + k

iii)
i σ1 − ρ3σ1)/2 ,

χ12 =
Γ2

R

4
ki)

r kiii)
r σ2

1

[
σ2

3

(
ki)

r (ki)
r − kiii)

r ) + (k
i)
i − ρ1)2

)
− 2σ1σ3(k

iii)
i − ρ3)(k

i)
i − ρ1)

+ σ2
1

(
kiii)

r (kiii)
r − ki)

r ) + (k
iii)
i − ρ3)2

)]
,

χ21 =MRkiii)
r (ki)

r σ2
3 − kiii)

r σ2
1) + ΓRkiii)

r σ1(−k
i)
i σ3 + ρ1σ3 + k

iii)
i σ1 − ρ3σ1)/2 ,

χ22 =χ12
σ2

3

σ2
1

. (17)

α γ [MeV] M
i)
CDD [MeV] M

iii)
CDD [MeV]

1st solution −0.03427(3) 1.9(2) 2592.3(2) 2590.0(6)
2nd solution −0.03366(8) 3.0(5) 2593.9(7) 2596.2(7)

Table 2: From left to right, values for the parameters α, γ, M
i)
CDD and M

iii)
CDD after imposing that t(s), Eq. (8),

has a pole at sR for channels i) and iii).

We point out that when deriving the expressions in Eq. (17) a numerically small term proportional to
k2 from the expansion of G(s) in Eq. (8) is neglected. This is mainly done to derive the concise analytical
results in Eq. (17). Nevertheless, we mention that it is straightforward to keep the small k2 term from the
nonrelativistic expansion of G(s). In this way one should add in the denominator of Eq. (9) the piece

k2

2πMj,Σc
Mj,π

[
2(Mj,Σc

+ Mj,π) − (Mj,Σc
− Mj,π) log

Mj,Σc

Mj,π

]
. (18)

The values corresponding to Eq. (17) are almost the same as the exact solutions obtained by requiring
that t(s) given in Eq. (8) has a pole at sR. This is because k2/2µ̄ ≪ √

s and MCDD ≈ σ. We provide the
exact solutions in Table 2, where the two emerging solutions are distinguished. Notice that both CDD
pole masses are very close to their respective thresholds, which severely restricts the convergent radius
of the ERE around k = 0. For channel i) one has that |ki)

R| = 34.2 MeV, while the presence of the
CDD pole implies that the ERE does not converge for |k| > 33.6 and 39.3 MeV for the first and second

solutions, respectively. The situation is similar for channel iii) with |kiii)
R | = 22.0 MeV but the ERE does

not converge for |k| > 30.6 (1st solution) and 26.5 MeV (2nd solution) due to the proximity of M
iii)
CDD to

the threshold. Thus, one can conclude from this analysis that the ERE is not an adequate tool to study
the Λc(2595)+ since its convergence is disrupted by the nearby CDD pole before reaching the pole position
of the resonance.
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4 Coupled-channel CDD analysis I: stable asymptotic states.

We consider the generalization of Eq. (8) to the realistic 3 × 3 coupled-channel scattering problem for the
study of the πΣc-threshold energy region where the Λc(2595)+ sits. We first discuss the results obtained
with stable asymptotic states, that is, taking zero widths for the Σc baryons and afterwards we estimate
in Sec. 5 the effects of including finite Σc widths. Our preferred outcomes correspond to the 1st solution
in Table 2 because, as shown below, in the 3 × 3 coupled-channel case they give rise to a resonance signal
in accordance with the mass and width of the Λ+

c (2595).

4.1 Scattering equation

To end with the adequate coupled-channel equation let us rewrite Eq. (8) as an algebraic Bethe-Salpeter
equation [25]

t(s) = w(s) − w(s)G(s)t(s) , (19)

with w(s) the inverse of the CDD pole contribution, namely,

w(s) =
s − M2

CDD

γ2
. (20)

E.g. the isoscalar and scalar ππ partial wave amplitude at leading order in Chiral Perturbation Theory
has precisely this form [26].

Now, let us discuss the generalization of Eqs. (19) and (20) to the coupled-channel case under consid-
eration. Since the Λ+

c (2595) is an isoscalar resonance [1] there is an extra factor 1/3 multiplying w(s)
in Eq. (20) for each transition matrix element (as it is also clear from the Wigner-Eckart theorem). We
denote this contribution as

Kij(s) =
1

3
w(s) =

s − M2
CDD

3γ2
, (21)

with i, j, = 1, 2, 3. Here we are taking common values for the CDD pole and γ in all three channels,
so that isospin symmetry is preserved for these matrix elements. The main isospin breaking corrections
between the different coupled channels are expected to arise from the fact of using specific scalar loop
functions Gi(s), i = 1, 2, 3, Eq. (3), for every channel due to the associated branch point singularity at
each nearby threshold. One could argue about different CDD pole masses for different channels but then
the expression for the matrix elements Kij(s) would become ambiguous, and moreover our results are
phenomenologically suited, as we discuss below. In addition, the changes in the single-channel case of
MCDD of ∼ 2 ± 1 MeV for channels i) and iii) in both the 1st and 2nd solutions, see Table 2, seem to
indicate that isospin breaking effects in MCDD are expected to be similar to the small mass difference
within the Σc multiplet, rather than to the much larger differences in Mπ (which are the main sources for
the variation in the πΣc thresholds, as pointed out above).

We can then generalize the single-channel formalism in Eq. (19) to the coupled-channel case by prompt-
ing t(s) as the matrix,

t(s) = K(s) − K(s)G(s)t(s) ,

[I + K(s)G(s)] t(s) = K(s) , (22)

where we denote by G(s), K(s) and t(s) the 3 × 3 matrices with matrix elements Gi(s), Kij(s) and tij(s),
in order. Note that the matrix G(s) is diagonal. The solution of Eq. (22) can be recast in the following
form

t(s) = [I + K(s)G(s)]−1 K(s) . (23)

9



α γ [MeV] MCDD [MeV] MCDD [MeV] MR [MeV] ΓR [MeV] MCDD [MeV]
RS (1, 1, 1) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
1st sol. −0.03427(3) 1.9(2) 2590.9(7) 2594.7(6) 2592.3(3) 2.3(3) 2594.2(5)
2nd sol. −0.03366(8) 3.0(5) 2595.0(2) 2594.3(5) 2592.6(4) 0.9(1) 2594.4(5)

Table 3: (From left to right.) The first two parameters (α and γ) were determined by the single-channel analysis
in Sec. 3. The corresponding RS where the pole lies is indicated in the second row. The fourth and fifth columns
give the CDD pole mass for the 3 × 3 coupled-channel analysis with asymptotic stable states, while the last three
columns refer to the coupled-channel analysis including finite widths for Σc. The resonance mass (MR) and width
(ΓR) are those of the pole position, and the CDD pole mass is reported in the last column.

Indeed, all the matrix elements tij(s) resulting from the previous equation are the same, due to the form
of K(s) given in Eq. (21), and the explicit expressions for tij(s) read

tij(s) =

[
3γ2

s − M2
CDD

+ G1(s) + G2(s) + G3(s)

]−1

. (24)

In terms of Eq. (21), it is not difficult to understand Eq. (24) since the interaction between all the three
channels is driven by the same function Kij(s). We now have analogous expressions to Eq. (8) for tij(s)
but with a sum over the three possible intermediate states.

Differences between Eqs. (8) and Eq. (24) arise because in the later equation we employ the physical
masses of the three πΣc channels in the different Gi(s) and in addition MCDD in the coupled-channel
case does not correspond a priori to any of the single-channel determinations in Table 2. While for the
other parameters, α and γ, we take their values from the single-channel analysis of Sec. 3, whose explicit
numbers are also provided in Table 3 for later convenience. Then, at this stage our only free parameter is
MCDD.

4.2 Application to the case of stable asymptotic states

We first consider the limit of zero width for the Σc baryons which have indeed small widths. The updated
PDG [1] gives the averages ΓΣ++

c
= 1.89+0.09

−0.18 MeV, ΓΣ0
c

= 1.83+0.11
−0.19 MeV while for the Σ+

c only an upper
bound is provided, ΓΣ+

c
< 4.6 MeV.

The value of MCDD can be fixed by requiring that tij(s), Eq. (24), has a pole at sR. However, for
the coupled-channel case one has to specify the nonphysical RS in which this pole lies. For the present
problem, with channels 2 (π+Σ0

c) and 3 (π−Σ++
c ) almost degenerate, we have two main RS’s that connect

continuously with the physical one. We denote these RS’s by (1,0,0) and (1,1,1) or by 2nd and 3rd RS’s,
respectively. The former connects continuously with the physical RS in the energy region between the
thresholds of channels 1 and 2, that is, for Mπ0 + MΣ+

c
<

√
s < Mπ+ + MΣ0

c
, while the latter does it above

the threshold for channel 3, namely,
√

s > Mπ− + MΣ++
c

.
To perform the analytical continuation to the nonphysical RS’s we employ the procedure of Ref. [25] so

that the unitarity loop function Gj(s) in its associated nonphysical RS,3 GII
j (s), is given by

GII
j (s) =Gj(s) + i

kj(s)

4π
√

s
, (25)

3For n-coupled channels there are 2n RS’s, with two sheets associated to each channel.
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where kj(s) is the three-momentum for channel j and it is required that Imkj(s) > 0. In this way, the
tij(s) in the (1,0,0) RS reads

tII
ij (s) =

[
3γ2

s − M2
CDD

+ GII
1 (s) + G2(s) + G3(s)

]−1

, (26)

and for the (1,1,1) RS it becomes

tIII
ij (s) =

[
3γ2

s − M2
CDD

+ GII
1 (s) + GII

2 (s) + GII
3 (s)

]−1

. (27)
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Figure 1: The partial wave |tij(s)|2 is plotted along the physical axis in all the panels (ordered from left to right)

in the case of asymptotic stable states. In the first and second panels we consider the physical axis within an

interval of ±5 MeV above and below the highest and lightest thresholds for the 1st and 2nd solutions, respectively.

We also indicate by horizontal lines the maximum value at the peak and its half value. The next panel corresponds

to the 1st solution and the region around the two heavier thresholds is highlighted.

It is possible to adjust MCDD so as to reproduce the physical parameters attached to the pole of the
Λ+

c (2595) in the RS (1,1,1) for both the 1st and 2nd solutions at the one-sigma level within the experimental
uncertainty. Notice that this condition implies two equations which are not trivial to be fulfilled since we
have only one free parameter at our disposal. We then obtain the values for MCDD given in the third
column of Table 3 for the 1st and 2nd solutions. In particular the central values given in Table 3 imply a
pole in the (1,1,1) RS located at 2592.1 − i 1.8 MeV for the 1st solution and at 2592.3 − i1.6 MeV for the
2nd one.

However, notice that the (1,1,1) RS only connects continuously with the physical RS for
√

s > Mπ+ +
MΣ++

c
= 2593.5 MeV, while the poles are below this threshold. It happens indeed that along the physical

energy axis |tij(s)|2 does have a resonance behavior but it does not correspond to the experimentally
determined parameters of the Λ+

c (2595), Eq. (1). To show this we plot |tij(s)|2 along the physical axis in
Fig. 1, within an interval in

√
s from Mπ0 +MΣ+

c
−5 MeV up to Mπ− +MΣ++

c
+5 MeV. For the 2nd solution

(2nd panel from left to right) there is a clear resonance structure just below the two heavier thresholds at
around 2593 MeV, close to the mass of the Λ+

c (2595), but its width, of only 0.6 MeV, is much smaller than
that of the Λ+

c (2595). For the 1st solution (1st panel) the situation is similar, although the peak lies at
lower energies, at around 2589.5 MeV. In the last panel we show closely the region around the π+Σ0

c and
π−Σ++

c thresholds for the 1st solution and one cannot appreciate any resonance behavior but just a cusp
effect due to the opening of the thresholds. Note also the presence of zeroes in |tij(s)|2 at

√
s = MCDD for

every solution, as it corresponds to the CDD pole.
We point out that the resonance structures along the real axis shown in Fig. 1 correspond to poles

of tij(s) in the (1,0,0) RS, instead of those in the (1,1,1) RS. The poles in the (1,0,0) RS are located at
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2589.5 − i 0.3 MeV (1st sol.) and at 2593.0 − i 0.4 MeV (2nd sol.), which are consistent with peaks shown
in the first two panels in Fig. 1. The RS (1,0,0) is the one that connects continuously with the physical
axis between the thresholds of π0Σ+

c and π+Σ0
c , along which the resonance signal occurs. Interestingly,

the two poles at the (1,0,0) and (1,1,1) RS’s are connected by changing continuously between these RS’s
by introducing a continuous parameter ν ∈ [0, 1], such that the functions Gj(s) in Eq. (25) for channels 2
and 3 are replaced by

GII
j (s) → Gj(s) + iν

kj(s)

4π
√

s
, j = 2, 3. (28)

In this way ν = 0 corresponds to the RS (1,0,0) and ν = 1 to (1,1,1). Then, one can observe how one pole
evolves into the other.
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Figure 2: From left to right, the function |dij(s)|2 is plotted along the physical axis for the 1st (blue solid line) and

2nd (red solid line) solutions for the coupled-channel case with stable Σc when the Λ+
c (2595) pole is reproduced

in the RS (1,1,1). We compare them with the standard Breit-Wigner formula (green dash-dotted line) with mass

and width corresponding to the resulting poles in the RS (1,0,0) for each solution: 2589.5 − i 0.3 MeV (1st sol.)

and at 2593.0 − i 0.4 MeV (2nd sol.).

The presence of the CDD pole produces a rather strong distortion of the resonance signal in tij(s) because
of the nearby zero at

√
s = MCDD, which is close to the peak. This is also the case for the resonance

f0(500) due to the strong distortion that the Adler zero, as required by chiral symmetry, produces in
the scalar and isoscalar ππ scattering, see e.g. [45]. Indeed, as also discussed in the latter reference, the
production processes are not mediated by tij(s) itself but by the so-called dij(s) function, given in our case
by

dij(s) =tij(s)/Kij(s) =
(
1 + Kij(s) [G1(s) + G2(s) + G3(s)]

)−1
, (29)

where the zero of tij(s) caused by the CDD pole is removed. We plot |dij(s)|2 in Fig. 2 for the 1st (blue
solid line) and 2nd solution (red dashed line) along the same energy interval as in the first two panels of
Fig. 1. Due to the absence of the zero in dij(s) associated with the CDD pole, one observes a resonance
structure with a shape very close to that of a standard Breit-Wigner (BW) formula, bw(

√
s), defined by

bw(
√

s) =|dij(mR)|2 γ2
R/4

(
√

s − mR)2 + γ2
R/4

. (30)
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Here mR represents the position of the maximum height of the resonance peak, denoted by |dij(mR)|2, and
γR stands for its width. The mass and width parameters in the BW formula are consistent with the pole
positions in the RS (1,0,0) and the resulting curves are given by the green dash-dotted lines in Fig. 2.

By slightly changing the value of MCDD in the 1st-solution case, one can narrow down the gap between
the pole in the (1,0,0) RS and the experimental one for the Λc(2595)+ in Eq. (1). Our determination is
MCDD = 2594.7(6) MeV and the pole position in the (1,0,0) RS then becomes 2592.4(4)−i0.9(1) MeV. The
mass obtained is compatible with the experimental value within uncertainty, while the width (1.8±0.2 MeV)
is slightly low still, though compatible at the one-sigma level with Eq. (1). For the 2nd solution with
MCDD = 2594.3(5) MeV we find that the mass of the pole in the (1,0,0) RS is compatible at the one-sigma
level with the experimental value but in all cases the width remains always much smaller than that of
the Λ+

c (2595). The values for MCDD reported here by considering the RS (1,0,0) are gathered in the fifth
column of Table 3. In this respect, we consider the 1st solution as the preferred one in our study. These
results are illustrated in Figs. 3 and 4 where we plot the resulting |tij(s)|2 and |dij(s)|2 for the 1st (blue
solid lines) and 2nd (red dashed lines) solutions with these new values for MCDD, respectively. From these
figures it is clear that the resonance structure for the 1st solution is much wider than for the 2nd one,
as well as compared with those plotted previously in Figs. 1 and 2. For the former solution in the left
panel of Fig. 4 there is a departure from the BW shape in the tail to the right of the peak because of the
opening of the next threshold, π+Σ0

c , that precisely coincides with the starting energy of the shoulder. In
the next section we include the widths of the Σc’s, which are precisely as large as that of the Λ+

c (2595).
It turns out that after taking this new physical effect into play, the agreement between the experimental
width and the resulting one for the 1st solution improves, while keeping a proper value for the mass, but
still the width that stems from the 2nd solution is much smaller than the value in Eq. (1).
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Figure 3: The partial wave |tij(s)|2 for the coupled-channel case with stable asymptotic states is plotted along the

physical axis for the 1st (blue solid line) and 2nd (red dashed line) solutions, respectively. The values of MCDD

in the fifth column of Table 3 are used to plot these curves. See the text for details.
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Figure 4: The function |dij(s)|2 for the coupled-channel case with asymptotic stable states is plotted along the

physical axis for the 1st (blue solid line) and 2nd (red dashed line) solutions, respectively. The values of MCDD

in the fifth column of Table 3 are used. See the text for details.

5 Coupled-channel CDD analysis II: including the widths of Σc

Now we estimate the effects of taking into account the small but finite widths of the Σc baryons to evaluate
t(s) from Eq. (24). As indicated above we take for the widths of Σ++

c and Σ0
c the central values provided

by the updated PDG [1], ΓΣ++
c

= 1.89 MeV and ΓΣ0
c

= 1.83 MeV. For the Σ+
c we use in the following

the value ΓΣ+
c

= 1.8 MeV, because it is naturally expected that its decay width should be saturated also
by the strong decay to Λ+

c π [1] and then its value should be very close to the widths of its other isospin
multiplet companions. Note also that the decay channel Λ+

c π has a much lighter threshold than the Σc

mass, so that there is plenty of phase space available and then the width should be quite insensitive to
small changes in the masses of the decaying particles.
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Figure 5: The function |dij(s)|2 is plotted along the physical axis for the coupled-channel case including the finite

widths of Σc. For the meaning of the lines see Fig. 2 and the text in Sec. 5.

We follow the formalism of Ref. [46] to take into account the Σc widths in Eq. (24), which consists of
employing complex masses for the Σc, with the replacement MΣc

→ MΣc
− iΓΣc

/2. In this way, when
evaluating tij(s), given by Eq. (24), the changes only affect the unitarity loop functions Gi(s), while Kij(s)
in Eq. (21), is not changed.
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As a technical remark we briefly discuss now how to perform the analytical extrapolation into the
unphysical RS’s when the finite widths of the Σc are considered. We take the nonrelativistic limit to
simplify expressions and by including the finite widths Eq. (7) transforms for channel j into

kj =
√

2µ̄j

√√
s − MjΣc

− Mjπ + iΓjΣc
/2 ,

µ̄j =
Mjπ(MjΣc

− iΓjΣc
/2)

Mjπ + MjΣc
− iΓjΣc

/2
, (31)

with Mjπ and MjΣc
the masses of the pion and Σc corresponding to channel j, in order. According to

Eq. (31) kj has a complex branch point at Mjπ +MjΣc
− iΓjΣc

/2, with a horizontal cut running to the right
from this singularity in the complex

√
s plane. The transition to the associated 2nd RS when crossing this

cut downwards is obtained by the replacement kj → −kj and then one can move deeper in the lower half
plane of this RS. In this way the RS (1,0,0) is obtained by following this procedure only for the lightest
threshold (π0Σ+

c ), while the RS (1,1,1) would require to apply it to all the three channels.
We are now in a position to look for the pole in the RS (1,0,0) that connects continuously to the

physical axis and is responsible for the resonance signal of the Λ+
c (2595). As in Sec. 4, we take the

values of α and γ for every solution in Table 3 and readjust MCDD so that the resulting pole in the RS
(1,0,0) is inside the energy region corresponding to the mass of the Λ+

c (2595) resonance, Eq. (1). The
resulting value of MCDD for each solution is given in the last column of Table 3, around 2594 MeV.
This value is indeed almost coincident with that obtained already in the case of stable Σc (5th column
of Table 3), and perfectly compatible within errors. For the 1st solution we find a pole at the position
(2592.3 ± 0.3) − i (1.13 ± 0.15) MeV, that reproduces very well the parameters for the Λ+

c (2595) resonance.
However, for the 2nd solution although we can easily get the correct mass the width is always much smaller
than the experimental value, with the pole located at (2592.6 ± 0.4) − i (0.47 ± 0.05) MeV. The mass (MR)
and width (ΓR) corresponding to each of these poles are also given in Table 3. We see that the changes
both in MCDD and pole positions are small compared with the case of stable asymptotic states, which is
a welcome stability in the results and conclusions. Nevertheless, the increase in the width of around 10%
for the 1st solution makes its central value well inside the one-sigma level of the experimental value in
Eq. (1).

Next, we plot |dij(s)|2 in Fig. 5 by using the central values of the parameters, where the left panel is
for the 1st solution (blue solid line) and the right one for the 2nd solution (red dashed line). We further
estimate the mass and width of the resonance signal by comparing |dij(s)|2 with the BW formula, Eq. (30),
which is drawn in Fig. 5 with the green dash-dotted lines. For the 1st solution the resulting BW resonance
parameters are mR = 2592.6(5) MeV and γR = 2.5(5) MeV and for the 2nd case one has mR = 2592.6(5)
MeV and γR = 1.0(2) MeV. It is clear that the resulting pole positions for the 1st and 2nd solutions
(columns 6 and 7 in Table 3) agree quite closely with the BW parameters. This implies again that the
pole responsible for the resonance signal of Λc(2595)+ lies in RS (1,0,0), rather than in the RS (1,1,1). The
BW parameters reflect once more that while the 1st solution is able to give the correct resonance signal
corresponding to the experimental parameters for the Λ+

c (2595), both mass and width, the 2nd solution
is not able to reproduce the width, which is less than 50% of the experimental one. This is another good
reason to disfavor the 2nd solution within our analysis. The shoulder above the π+Σ0

c threshold clearly
present in Fig. 4 has now almost disappeared in Fig. 5 due to the finite widths of the Σc. The latter dilutes
the threshold effects, which are displaced from the real axis to inner the complex plane as discussed above.

It is important to remark that our conclusions are also stable if we refit the parameters α and γ in
Table 2 by repeating the same single-channel analysis as in Sec. 3 but with finite widths of Σc included.
The new values obtained for the parameters are given in Table 4. It is clear that α and γ from the
1st solution are quite stable when taking the finite-width effects into account, while for the 2nd one the
changes in these parameters are larger, specially for γ that decreases from 3.0 to 2.5 MeV, though the
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α γ [MeV] M
i)
CDD [MeV] M

iii)
CDD [MeV]

1st solution −0.03422(4) 1.9(1) 2592.6(1) 2587.8 ± 1.1
2nd solution −0.03387(6) 2.5(3) 2593.4(3) 2598.3 ± 0.8

Table 4: From left to right, values for the parameters α, γ, M
i)
CDD and M

iii)
CDD after imposing that t(s) of Eq. (8)

has a pole at sR for channels i) and iii) by including the finite-width effects of the Σc.

numbers are still compatible within errors. We have also explicitly verified that if one uses the values of α
and γ from Table 4 in the coupled-channel analysis with nonzero widths for the Σc the conclusions do not
change. Namely, the 1st solution still provides a pole for the Λ+

c (2595) that is compatible with experiment
while the pole for the 2nd solution has a width around a factor 2 smaller than the experimental one.
Nevertheless, we prefer to present the detailed analysis for the results of α and γ from Table 2, instead
of those from Table 4, because in this way we can more clearly identify the finite-width effects, since the
same input values for α and γ are used both in the zero- and finite-width cases.

Another way to account for the finite-width effects is to perform a convolution of the G(s) function
with a spectral mass distribution by considering the Σc width [46, 47]

G̃(s, Mπ, MΣc
) =

1

N

∫ MΣc
−2ΓΣc

MΣc
−2ΓΣc

d
√

s′ Im

[
1√

s′ − MΣc
+ iΓΣc

/2

]
G(s, Mπ,

√
s′) , (32)

with the function G(s) given in Eq. (3) and the normalization factor N corresponding to

N =
∫ MΣc

−2ΓΣc

MΣc
−2ΓΣc

d
√

s′ Im

[
1√

s′ − MΣc
+ iΓΣc

/2

]
. (33)

In order to clearly show the differences among the results of zero-width and those with finite-width for the
Σc, evaluated either with complex masses or making the convolution of G(s), we study the d(s) function
of the single-channel case from the three scenarios. In this case the function d(s) reads

d(s) = [1 + ω(s)G(s)]−1 , (34)

where three different scenarios are distinguished through the G(s) functions. We plot in Fig. 6 the modulus
squared of |d(s)|2 on the physical real axis with the πΣc masses corresponding to π0Σ+

c , case i). The same

values for the parameters α, γ and M
i)
CDD are used when plotting the curves in Fig. 6, where the left

(right) panel is for the 1st (2nd) solution. In this way the differences between lines in every panel are
purely caused by the way how the Σc widths are implemented. We consider the cases with zero width
for Σ+

c (blue solid lines), as originally done in Sec. 3, with a complex mass for this baryon (red dashed
lines), MΣ+

c
→ MΣ+

c
− iΓΣ+

c
/2, and with the spectral convolution of the G(s) function in Eq. (32) (green

dot-dashed lines). We see that the changes are small for both solutions and the results are stable, with
also little changes in the resulting pole positions. While for the coupled-channel case, if we take the same
input values for α, γ and MCDD in the scenarios with complex masses and convolution of G(s) with a
spectral mass distribution, visible differences appear in the curves. Nevertheless, by slightly changing the
value of MCDD within 0.5 MeV, we can easily get similar results for these two cases in the 1st solution. For
the 2nd solution, though the heights of |d(s)|2 are somewhat different, it is easy to obtain similar positions
of the peaks. Therefore, the results and conclusions obtained by using the function G(s) convoluted with
a spectral mass distribution are not changed compared to the case of using complex masses. Thus, the 1st
solution is able to reproduce the resonance parameters of the Λc(2595)+ while the 2nd one is not also in
the former case.
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Figure 6: The function |d(s)|2 in the single-channel case is plotted along the physical axis. The same values for

the parameters α, γ, M
i)
CDD are used for all the curves. The blue solid, red dashed, green dot-dashed lines stand

for the results with zero Σ+
c width, finite Σ+

c width using a complex mass and the function G(s) convoluted,

respectively. The left panel is for the 1st solution and the right panel is for the 2nd one.

6 Compositeness study of the Λ+
c (2595)

The presence of a nearby CDD pole to the Λ+
c (2595) resonance mass, with |MCDD − MR| ≈ ΓR, as it

follows from Tables 2 and 3, is a clear indication that there is an important component, maybe dominant
one, due to non πΣc degrees of freedom, either corresponding to other channels not included, e.g. heavier
ones like DN, D∗N, ... [14–23], or to the quark and gluon compact states [7–13].

In order to quantify this statement we apply here the theory developed in Ref. [48] that allows a
probabilistic interpretation of the compositeness relation [49–54] for resonances under the condition that√

ResR is larger than the lightest threshold. According to the Ref. [48] the weight of an open two-body
channel j to the resonance compositeness, Xj , is given by

Xj = |gj|2
∣∣∣∣∣
∂Gj(sR)

∂s

∣∣∣∣∣ , (35)

with g2
j the residue of t(s) to channel j at the resonance pole position,

lim
s→sR

(s − sR)tjj(s) = −g2
j . (36)

The difference between 1 and the sum of Xj over the open channels considered is the elementariness Z,
which measures the weight of all other components in the resonance.

We first apply Eq. (35) to the single-channel study of Sec. 3 for case i), since then the criterion of
applicability of Eq. (35) is fulfilled as Mπ0 + MΣ+

c
<

√
ResR, with the resonance lying in the RS that

connects continuously with the physical axis above this threshold. We then obtain the values of X given
in the 2nd column of Table 5 for the 1st and 2nd solutions, in order from top to bottom, with the input
parameters taken from the solutions of Table 2. We also give the absolute value of the residue of t(s) at
sR, |g|2 in Table 5. It is clear that X turns out to be small indicating that, as expected, the non-πΣc

components are dominant, so that Z > 0.8 holds for both solutions.
The results of Ref. [48] can also be applied to the channel i) in the case of the coupled-channel analysis

for stable asymptotic states. The results that follow for X1 and |g2| are given in the last two columns of
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X |g|2 [GeV2] X1 3|g|2 [GeV2]
1st sol. 0.14 ± 0.02 13.0 ± 1.8 0.11 ± 0.02 29.9 ± 3.9

2nd sol. 0.17 ± 0.04 15.2 ± 2.7 0.04 ± 0.01 9.8 ± 1.4

Table 5: Values for the compositeness X and residue |g|2: single-channel case (2nd and 3rd columns); poles in

the (1,0,0) RS for the 3 × 3 coupled-channel analysis with zero Σc widths (4th and 5th columns).

Table 5, respectively.4 Notice that here X1 is the compositeness coefficient for channel 1 only, while in
the single-channel analysis X corresponds to all three πΣc channels. For the preferred 1st solution the
value for X1 is smaller than X but significantly larger than X/3, while for the 2nd solution X1 is much
smaller than X but 3X1 is similar to the latter. These results clearly indicate that the π0Σ+

c channel has a
small contribution to the composition of the Λc(2595)+. In turn, the value of X for the single-channel case
suggests that the (πΣc)

+ total component in this resonance is also small, although we cannot be conclusive
here since the isospin breaking effects could distort the values of X2 and X3 (which are the compositeness
coefficients of π+Σ0

c and π−Σ++
c , respectively) from X/3. We simply cannot exclude that this could be the

case.
These non-πΣc components in Λc(2595), to which the CDD pole is associated, could correspond to

heavier channels, like DN, D∗N, etc, as proposed in Refs [14–23], three-body ππΛc (in connection with the
coupled-channel study of Sec. 5 including the finite width for the Σc so as to reproduce more accurately the
Λc(2595)+ width), as well as to possible more elementary degrees of freedom from the QCD Lagrangian
(quarks and gluons), as discussed in Refs. [7–13]. Having obtained that X1 ≃ 0.10 and X ≃ 0.15, cf. 1st
solution of Table 5, suggests also that the contribution from the two-body (πΣc) states are small but still
noticeable in the resonance composition [16].

7 Conclusions

In this paper we develop a general framework that goes beyond effective range expansion to scrutinize the
situation with a resonance pole locating very close to the underlying thresholds. In particular we apply
this formalism to make a thorough and delicate study of the Λc(2595)+, which just lies between the π0Σ+

c

and π+Σ0
c , π−Σ++

c thresholds.
We show that in order to give the correct Λc(2595)+ pole in the effective range expansion of the single-

channel or uncoupled scattering one needs large magnitudes for the scattering length (a) and effective
range (r). The latter could have an absolute value as large as 40 fm, which certainly indicates the presence
of an extra and small energy scale beyond the natural range for strong forces (∼ 1 fm). Moreover the
values of a and r are extremely sensitive to the actual masses used for the isospin multiplet πΣc. E.g.
the value of a resulting in the π0Σ+

c channel compared to the one for the other two channels changes
around one order of magnitude. This is indicative of a highly striking fine-tuned physical scenario. We
then develop a formalism that is applicable in the nearby threshold region with typical three-momenta
involved much smaller than mπ. It is based on the general form that partial wave amplitudes have when
only right-hand cuts are present and it is then applied to both the single- and coupled-channel cases. In
particular, the striking phenomena just referred are linked and could be naturally explained due to the
presence of a CDD pole near the (πΣc)

+ thresholds, which also prevents the application of effective range
expansion up to the pole position of the Λc(2595)+ resonance. In the coupled-channel formalism, we find
that the resonance signal showing up in the real physical axis corresponds to the pole appearing in the

4In this table we have multiplied by 3 the residue squared to compensate for the 1/3 introduced in Eq. (21), so that the
comparison with the single-channel case is more straightforward.
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2nd Riemann sheet, instead of the 3rd sheet. This finding is further quantified by comparing Breit-Wigner
functions with our outputs for the line shapes on the real axis, so that the Breit-Wigner mass and width
correspond closely to the pole position in the 2nd Riemann sheet.

The finite-width effects from the Σc are studied too. It is shown that these contributions, although
typically small, improve the description of the Λc(2595)+ pole, so that the 1st solution can properly
reproduce the experimental values for the Λc(2595)+ pole position. However, for the 2nd solution, though
the mass is well reproduced, the resulting width is always a factor 2 smaller than the experimental value.
Therefore the 1st solution is considered to be the favored one in our study (it is also the one that provides
the most stable results when passing from the zero- to the fine-width Σc analyses). Finally, we make the
compositeness analysis of πΣc for the Λc(2595)+ and our result in this respect is that the compositeness of
π0Σ+

c inside Λc(2595)+ is neatly small (. 10%). This result, together with the crucial role of the CDD pole
near the πΣc threshold, indicate that non-πΣc degrees of freedom are essential in the Λc(2595)+ resonance,
e.g. heavier hadronic channels, such as DN, D∗N , or compact quark-gluon structures, are likely to be
dominant components inside the Λc(2595)+.

We foresee that the formalism developed here could be useful in other similar systems, such as the
exotic heavy-flavor states XY Z [1].
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