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This paper focuses on the coordinate update method, which is use-
ful for solving large-sized problems involving linear and nonlinear
mappings, and smooth and nonsmooth functions. It decomposes a
problem into simple subproblems, where each subproblem updates
one, or a small block of, variables. The coordinate update method
sits at a high level of abstraction and includes many special cases
such as the Jacobi, Gauss-Seidel, alternated projection, as well as
coordinate descent methods. They have found greatly many appli-
cations throughout computational sciences.

In this paper, we abstract many problems to the fixed-point
problem x = T x and study the favorable structures in operator
T that enable highly efficient coordinate updates: xk+1

i = (T xk)i.
Such updates can be carried out in the sequential, parallel, and
async-parallel fashions. This study leads to new coordinate update
algorithms for a variety of problems in machine learning, image
processing, as well as sub-areas of optimization. The obtained al-
gorithms are scalable to very large instances through parallel and
even asynchronous computing. We present numerical examples to
illustrate how effective these algorithms are.

Keywords and phrases: coordinate update, fixed-point, operator split-
ting, parallel, asynchronous.

∗This work is supported by NSF Grants DMS-1317602 and ECCS-1462398.

1

http://arxiv.org/abs/1601.00863v1
http://intlpress.com/site/pub/pages/journals/items/amsa/_home/_main/index.html


2

1. Introduction

This paper studies the coordinate update method, which reduces a large prob-

lem to smaller subproblems and, thus, is useful for solving large-sized prob-

lems. This method handles both linear and nonlinear maps, smooth and non-

smooth functions, and convex and nonconvex problems. Coordinate update

algorithms generalize the coordinate descent algorithm by relaxing the form

of an update from coordinate-wise minimization to other forms. The most

common examples of these algorithms are the Jacobian and Gauss-Seidel

algorithms for solving linear equations. Coordinate update algorithms are

also commonly found for solving differential equations (e.g., domain decom-

position) and optimization problems (e.g., coordinate descent).

After coordinate update algorithms are initially introduced in each topic

area, their developments slowed down until recently, when modern applica-

tions in signal and image processing, statistical and machine learning, and

data-driven tasks routinely involve a large amount of data; consequently,

numerical methods of small footprints become increasingly popular. Since
coordinate update algorithms decompose a large problem into much smaller

subproblems, they tend to have low complexities and low memory require-

ments at each step. In addition, their implementations tend to be simpler

and more amenable to taking advantages of existing numerical packages.

The coordinate update method generates simple subproblems by fixing

all but one variable, or a small block of variables. The updating variable

can be selected in the cyclic, random, or greedy orders, making the method

flexible and adaptive to specific problems. The form of subproblem varies

depending on both the subproblem structure and the tradeoff between exact-

ness and complexity. Different subproblems can be solved either sequentially

in a single thread or concurrently in multiple threads, or even in an asyn-

chronous parallel fashion. Therefore, coordinate update algorithms give rise

to powerful numerical algorithms for large-scale problems.

Regardless its update order, a coordinate update algorithm is compu-

tationally worthy only if updating each coordinate, or each small block of

coordinates, is much cheaper than updating all the coordinates together.

When this assumption fails to hold, coordinate update is at a disadvantage

to the full update (to all the coordinates). For example, given a C2 function

f : Rn → R, consider the Newton update xk+1 ← xk−
(
∇2f(xk)

)−1∇f(xk).
Since updating only a single xi (keeping other components fixed), in gen-

eral, still requires forming ∇2f(x) (taking O(n2) operations) and factorizing

it (taking O(n3) operations), there is little save in computation compared
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to updating all the components of x; hence, the Netwon’s method is gener-
ally not amenable to coordinate update. Therefore, identifying the favorable
structures is the key to develop coordinate update algorithms.

The existing coordinate-update literature mostly focuses on introducing
new algorithms, analyzing their convergence, and applying them to specific
(classes of) problems with skillful improvements. §1.1 below will review the
literature. This paper, however, has a different focus: the components of
an efficient coordinate-update algorithm and their structures. We do not

limit our discussion to specific update orders, update forms, or classes of
applications. We also largely ignore convergence guarantees though they
are important. Instead, the developed coordinate update algorithms in this
paper solve the abstract fixed-point problem

(1) x = T x,

where T : H → H is an operator and H is a Hilbert space. For a problem
defined on H and a given iterative algorithm for the problem, we can let T
abstract each iteration of the algorithm:

(2) xk+1 = T xk.

The limit of the sequence {xk} is a fixed point of T and also a solution to the
underlying problem. The update scheme (2) generalizes iterative methods
for solving linear equations, gradient descent, proximal gradient method,
operator splitting methods, and many other methods.

We study the structures of T that make the following coordinate update
algorithm computationally worthy

(3) xk+1
i = xki − ηk(x

k − T xk)i,

where xi is a coordinate of x and ηk is a step size. We define the so-called
Coordinate Friendly (CF) operator and provide examples.

We construct coordinate update algorithms based on CF operators for

a variety of problems including, but not limited to, linear programming,
second-order cone programming, variational image processing, support vec-
tor machine, empirical risk minimization, portfolio optimization, and non-
negative matrix factorization. For each problem, we present an algorithm in
the form of (2) so that its coordinate update (3) is efficient. A final coordi-

nate update algorithm can be obtained by plugging (3) into an algorithmic
framework reviewed in §1.1.
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The algorithms developed in this paper are generalizations to many algo-
rithms that are recently developed primarily for empirical risk minimization
problems in machine learning. The generalization empowers us to solve more
problems, such as those with multiple functions and constraints, as well as
saddle-point formulations and variational inequalities.

In addition, the developed coordinate update algorithms can run on
multiple agents in a parallel and even asynchronous fashion. This gives rise
to parallel and asynchronous extensions to existing algorithms including the
Alternating Direction Method of Multipliers (ADMM), primal-dual splitting
algorithms, and others.

The paper is organized as follows. §1.1 reviews the existing frameworks
of coordinate update algorithms. §2 discusses the underlying structures of
CF operators. §3 reviews operator splitting methods and presents compos-
ite CF operators. §4 reviews primal-dual splitting methods. Based on the
results of previous sections, §5 introduces coordinate update algorithms for
various applications, some of which have been tested with numerical results
presented in §6.

Throughout this paper, all functions f, g, h are proper closed convex and
can take the extended value ∞, and all sets X,Y,Z are nonempty closed
convex. The indicator function ιX(x) returns 0 if x ∈ X, and ∞ elsewhere.

1.1. Coordinate Update Algorithmic Frameworks

This subsection reviews the sequential and parallel algorithmic frameworks
for coordinate updates, as well as the relevant literature. They give rise to
coordinate update algorithms once their components such as (T xk)i and
(xk − T xk)i are realized for specific problems.

1.1.1. Sequential Update. In this framework, there is a sequence of
coordinate indices i1, i2, . . ., and at each iteration k = 1, 2, . . . , only the ikth
coordinate is updated:

{

xk+1
i = xki − ηk(x

k − T xk)i, i = ik,

xk+1
i = xki , for all i 6= ik.

Sequential updates have been long known for special types of problems and
their corresponding operators T , for example, the Gauss-Seidel iteration for
solving linear equations, alternated projection [67, 4] for finding a point in
the intersection of two sets, ADMM [29, 28] for solving monotropic pro-
grams, and Douglas-Rachford Splitting (DRS) for finding a zero to the sum
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of two operators. (ADMM and DRS also introduce and update additional
variables.)

In optimization, coordinate descent algorithms minimize the function
f(x1, . . . , xn) by fixing all by one variable. Let

x−i := (x1, . . . , xi−1, xi+1, . . . , xn),

collect all but the ith coordinate of x. Coordinate descent updates take one
of the following forms:

(T xk)i = argmin
xi

f(xi, x
k
−i),(4a)

(T xk)i = argmin
xi

f(xi, x
k
−i) +

1

2ηk
‖xi − xki ‖2,(4b)

(T xk)i = argmin
xi

〈∇if(x
k
i , x

k
−i), xi〉+

1

2ηk
‖xi − xki ‖2,(4c)

(T xk)i = argmin
xi

〈∇if
diff(xki , x

k
−i), xi〉+ fprox

i (xi) +
1

2ηk
‖xi − xki ‖2,(4d)

which are called direct update, proximal update, gradient update, and prox-
gradient update, respectively. The last update applies to the function

f(x) = fdiff(x) +

n∑

i=1

fprox
i (xi),

where fdiff is differentiable and each fprox
i is proximable (its proximal map

takes O
(
dim(xi) polylog(dim(xi))

)
operations).

Sequential-update literature. Coordinate descent algorithms date
back to the 1950s [32], when the cyclic update-order was used. Its conver-
gence has been established under a variety of cases, for both convex and
nonconvex objective functions; see [69, 76, 51, 31, 40, 63, 30, 65]. Proxi-
mal updates are studied in [30, 1] and developed into prox-gradient updates
in [66, 11] and mixed updates in [72].

The stochastic update-order appeared in [43] and then [55, 39]. Re-
cently, [73, 71] compared the convergence speeds of cyclic and stochastic
orders. The gradient update has been relaxed to stochastic gradient update
for large-scale problems in [19, 74].

The greedy update-order leads to fewer total iterations but is often im-
practical since it requires a lot of effort to calculate scores for all the co-
ordinates. However, there are cases where calculating the scores is easy [9,
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36, 70] and the save in the total iterations significantly outweighs the effort

[66, 23, 49, 57].

A simple test. Although our purpose is not to compare different update

orders, we feel necessary to make them concrete for the reader. For simplicity,

we adopt the least squares problem

minimize
x

1

2
‖Ax− b‖2,

where A ∈ Rp×m and b ∈ Rp are Gaussian random, to numerically demon-

strate the advantages of coordinate updates over the full update of gradient

descent:

xk+1 = xk − ηkA
⊤(Axk − b).

The four coordinate update schemes are: cyclic, cyclic permutation, random,

and greedy under the Gauss-Southwell rule. In the full update, the step size

ηk is set to the theoretical upper bound 2
‖A‖2

2

. For each coordinate update to

xi, the step size ηk is set to 1
(A⊤A)ii

. All of the full and coordinate updates

have same per-epoch complexity, so we plot the objective errors in Figure

1. Note that the performance of coordinate update algorithms depend on

many factors such as condition number, the level of coupling among different

coordinates, whether greedy selection can be efficiently made, as well as the

amount of memory move needed. The demonstration here is limited.

1.1.2. Parallel Update. We discuss both synchronous (sync) and asyn-

chronous (async) versions of parallel updates.

Sync-parallel (Jacobi) update. In this framework, there is a sequence

of index sets I1, I2, . . . (which are subsets of {1, . . . , n}), and at each iteration

k = 1, 2, . . . , the coordinates in Ik are updated in parallel by multiple agents:

{

xk+1
i = xki − ηk(x

k − T xk)i, i ∈ Ik,

xk+1
i = xki , i 6∈ Ik.

The counter k increases after all coordinate updates in Ik are completed. If

Ik = {1, . . . , n}, then all the coordinates are updated; hence, each iteration

reduces to the standard update: xk+1 = xk − ηk(x
k − T xk).

Async-parallel update. In this framework, a set of agents perform

simultaneous updates that are aligned up in time. Each of them continuously

applies (5) below to the variable x in the shared memory (or locally storing
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Figure 1: Gradient descent: the coordinate updates are faster than the full
update since the former can take larger steps at each step.

x and communicating with other agents):

(5)

{

xk+1
i = xki − ηk

(
(I − T )xk−dk

)

i
, i = ik,

xk+1
i = xki , for all i 6= ik.

Here, k increases whenever one agent completes an update, and dk is the

asynchronous delay.

At each sync-parallel iteration, synchronization must wait for the com-
pletion of the last (slowest) update. Async-parallel updates eliminate such

Agent 1

Agent 2

Agent 3

0 1 2

idle idle

idle

idle

(a) sync-parallel computing

Agent 1

Agent 2

Agent 3

0 1 2 3 4 5 6 7 108 9

(b) async-parallel computing

Figure 2: Sync-parallel computing (left) versus async-parallel computing
(right). On the left, all the agents must wait at idle (white boxes) until
the slowest agent has finished.
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idle time, spread out memory access and communication, and is generally
more fault-tolerant. However, async-parallel is less stable and more difficult
to analyze because of the asynchronous delay.

Asynchronous delay occurs if, after an agent reads x yet before it com-
pletes updating xik , other agents also make updates to x. In (5), the agent
reads xk−dk and commits the update to xkik . The delay dk equals the number
of updates by other agents during this period. Here we assume the consistent
case, i.e., x read by one agent is in the history of {xk}. For the inconsistent
case, please see [48, Section 1.2] for more details.

The sync-parallel update is a special case of the async-parallel update
where the number of agents equals |Ik| and the asynchronous delay is uni-
formly zero.

Parallel-update literature. Async-parallel methods can be traced
back to [15] for linear systems. For function minimization, [10] introduced an
async-parallel gradient-projection method. Convergence rates are obtained
in [62]. Recently, [12, 54] developed parallel randomized methods.

For fixed-point problems, async-parallel methods date back to [3] in
1978. In the pre-2010 methods [2, 8, 6, 25] and the review [27], each agent
updates its own subset of coordinates. Convergence is established under the
absolute Lipschitz contractive condition and its variants [8]. Papers [6, 7]
show convergence for async-parallel iterations with simultaneous reading and
writing to the same set of components. Unbounded but stochastic delays are
considered in [60].

Recently, random coordinate selection appeared in [17] for fixed-point
problems. The works [42, 52, 38, 37, 33] introduced async-parallel stochastic
methods for function minimization. For fixed-point problems, [48] introduced
async-parallel stochastic methods, as well as several applications.

1.1.3. Contributions of this paper. The paper systematically discusses
the CF structures found in both single and composite operators underly-
ing many interesting applications. We introduce approaches to recognize
CF operators and develop coordinate-update algorithms based on them.
We provide a variety of applications to illustrate our approaches. In par-
ticular, we obtain new coordinate-update algorithms for image deblurring,
portfolio optimization, second order conic programming, as well as tensor
decomposition. Our analysis also provides guidance to the implementation
of coordinate-update algorithms by specifying how to compute certain op-
erators and maintain certain quantities in memory.

This paper does not focus on the convergence perspective of coordi-
nate update algorithms (or coordinate descent for function minimization).
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In general, in fixed-point algorithms, the iterate convergence is ensured by
the monotonic decrease of the distance between the iterates and the solu-

tion set, while in minimization problems, the objective value convergence is
ensured by the monotonic decrease of a certain energy function. The reader
is referred to the existing literature for details.

In our fixed-point setting, the operator T generally needs to be nonex-

pansive (under a certain metric). The operator splitting methods reviewed
in §3 below generate nonexpansive operators T for many problems consid-

ered in this paper. The convergence of the resulting stochastic sequential
and (async)-parallel coordinate-update algorithms, as well as their step size

selections, is referred to the recent works [17, 48]. On the other hand, the
structure properties of operators discussed in this paper are irrelevant to
nonexpansiveness or convexity. Hence, the algorithms developed can be still

applied to nonconvex problems without guarantees.

2. Coordinate Friendly Operators

2.1. Notation

For convenience, we do not distinguish a coordinate from a block of coordi-
nate throughout this paper. A coordinate is treated as the unit of variable(s)

that are updated together each time. We assume that there are m coordi-
nates and their spaces are H1, . . . ,Hm. For simplicity, we assume that they

are finite-dimensional real Hilbert spaces, though most results hold for gen-
eral Hilbert spaces. For brevity, we also let

x = (x1, . . . , xm) ∈ H := H1 × · · · ×Hm and xi ∈ Hi, i = 1, . . . ,m.

A function maps from H to R, and an operator maps from H to G, where the
definition of G depends on the context. The operator T and those operators

in the splitting methods in §3.2 map from H to H.

Several definitions below use x, x+ ∈ H that differ by one coordinate: for
some i ∈ {1, . . . ,m} and δi ∈ H that is supported on Hi,

(6) x+ = x+ δi.

Note that x+j = xj for all j 6= i.

Definition 1 (number of operations). We let M [a 7→ b] denote the number

of basic operations that it takes to compute the quantity b from the input a.



10

For example, M [x 7→ (T x)i] denotes the number of operations to com-
pute the ith component of T x given a general point x. We explore the pos-
sibility to compute (T x)i with much fewer operations than what is needed
to first compute T x and then take its ith component.

For a given matrix A, let Ai,: and A:,j be its ith row and jth column,
respectively. Let A⊤ be the transpose of A and A⊤

i,: be (A⊤)i,:, i.e., the ith
row of the transpose of A.

2.2. Single Coordinate Friendly Operators

This subsection studies a few kinds of CF operators and then formally define
the CF operator. We motivate the first kind through an example.

Example 1 (least squares). We consider the least squares problem

(7) minimize
x

f(x) :=
1

2
‖Ax− b‖2,

where A ∈ Rp×m and b ∈ Rp. In this example, assume that m = Θ(n),
namely, m and p are of the same order. We compare the full update of
gradient descent and its coordinate update for problem (7).1 The full update
is xk+1 = T xk where

(8) T x := x− η∇f(x) = x− ηA⊤Ax+ ηA⊤b.

Assuming that A⊤A and A⊤b are made available by pre-computing, we have
M [x 7→ T x] = O(m2). The coordinate update at the kth iteration performs

xk+1
ik

= Tikxk = xkik − η∇ikf(x
k),

and xk+1
j = xkj ,∀j 6= ik, where ik is some selected coordinate.

Since for all i,
(
A⊤(Ax− b)

)

i
= (A⊤A)i,:·x−(A⊤b)i, we have M [x 7→ Tix] =

O(m) = O( 1
m
M [x 7→ T x]). Therefore, the coordinate gradient descent is

computationally worthy.

The operator T in the above example is a special Type-I CF operator.

Definition 2 (Type-I CF). For an operator T : H→ H, let M [x 7→ (T x)i]
be the number of operations for computing the ith coordinate of T x given x
and M [x 7→ T x] the number of operations for computing T x given x.

1Although gradient descent is seldom used to solve least squares, it often appears
as a part in first-order algorithms for problems involving a least-squares term.
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We say T is Type-I CF (denoted as F1) if for any x ∈ H and ∀ i ∈
{1, . . . ,m}, it holds

M [x 7→ (T x)i] = O

(
1

m
M [x 7→ T x]

)

.

Example 2 (least squares II). We can implement the coordinate update in
Example 1 in a different manner by maintain the result T xk throughout,

which works when m = Θ(n) or p ≫ m. The full update is unchanged. At

each iteration, we immediately obtain xk+1
ik

= (T xk)ik but need to refresh

T xk to T xk+1. Since xk+1 and xk only differ by just one coordinate, the

refreshing only requires multiplying the ikth column of A⊤A by xk+1
ik
− xkik ,

which is much cheaper than multiplying A⊤A by xk+1. The refreshing takes

O(m) operations, which is O( 1
m
M [x 7→ T (x)]). Therefore,

M

[

{xk,T xk, xk+1} 7→ T xk+1
]

= O

(
1

m
M

[

xk+1 7→ T xk+1
])

.

The operator T in the above example is a special Type-II CF operator.

Definition 3 (Type-II CF). An operator T is called Type-II CF (denoted

as F2) if, for any x, i, δi, x
+ satisfying (6), the following holds

(9) M
[
{x,T x, x+} 7→ T x+

]
= O

(
1

m
M

[
x+ 7→ T x+

]
)

.

Sometimes, maintaining certain quantities other than T x can also make
the coordinate update computationally worthy.

Example 3 (least squares III). For the case p≪ m, i.e., the system Ax = b

is highly undetermined, we should avoid pre-computing A⊤A because multi-

plying A and then A⊤ is cheaper. Therefore, we change the implementations

of both the full and coordinate updates in Example 1. In particular, the full

update

xk+1 = T xk = xk − η∇f(xk) = xk − ηA⊤(Axk − b),

pre-multiplies xk by A and then A⊤. Hence, M
[
xk 7→ T (xk)

]
= O(mp).

We change the coordinate update to maintain the intermediate quantity

Axk. The coordinate update computes

(T xk)ik = xkik − η(A⊤Axk −A⊤b)ik ,
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by pre-multiplying Axk by A⊤
ik,: and refreshing Axk to Axk+1 by adding

(xk+1
ik
− xkik)A:,ik to Axk. Both steps take O(p) operations, so

M

[

{xk, Axk} 7→ {xk+1, Axk+1}
]

= O(p) = O

(
1

m
M

[

xk 7→ T xk
])

Combining Type-I and Type-II CF operators with the last example, we
arrive at the following definition:

Definition 4 (CF operator). We say that an operator T : H→ H is CF if,
for any x, i, δi, x

+ satisfying (6), the following holds

(10) M
[
{x,M(x)} 7→ {x+,M(x+)}

]
= O

(
1

m
M [x 7→ T x]

)

,

where M(x) is some quantity, possibly non-existing, that is maintained in
the memory to facilitate each coordinate update and refreshed toM(x+).

The left-hand side of (10) measures the cost of performing one coor-
dinate update (including the cost of updating M(x) to M(x+)) while the
right-hand side measures the average per-coordinate cost of updating all
the coordinates together. When (10) holds, T is amenable to coordinate
updates.

By definition, a Type-I CF operator T is CF without maintaining any
quantity, i.e.,M(x) = ∅.

A Type-II CF operator T satisfies (10) with M(x) = T x, so it is also
CF. Indeed, given any x and i, we can compute x+ by immediately letting
x+i = (T x)i (at O(1) cost) and keeping x+j = xj, ∀j 6= i; then, by (9), we

update T x to T x+ at a low cost. Formally, lettingM(x) = T x,

M
[
{x,M(x)} 7→ {x+,M(x+)}

]

≤M
[
{x,T x} 7→ x+

]
+M

[
{x,T x, x+} 7→ T x+

]

(9)
=O(1) +O

(
1

m
M

[
x+ 7→ T x+

]
)

=O

(
1

m
M [x 7→ T x]

)

.

In general, the set of CF operators is much larger than the union of
Type-I and Type-II CF operators.

Another important subclass of CF operators are operators T : H → H

where (T x)i only depend on one, or a few, entries out of x1, . . . , xm. Based
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on how many input coordinates they depend on, we partition them into
three subclasses.

Definition 5 (Separable operator). Consider T := {T : H→ H}. We have
the partition T = C1 ∪ C2 ∪ C3, where
• separable operators: T ∈ C1 if, for any index i, there exists Ti : Hi →
Hi such that (T x)i = Tixi, that is, (T x)i only depends on xi.

• nearly-separable operators: T ∈ C2 if, for any index i, there exists Ti
and index set Ii such that (T x)i = Ti({xj}j∈Ii) with |Ii| ≪ m, that is,
each (T x)i depends on a few coordinates of x.

• non-separable operators: C3 := T \ (C1 ∪ C2). If T ∈ C3, there exists
some i such that (T x)i depends on many coordinates of x.

Throughout the paper, we assume the coordinate update of a (nearly-)
separable operator costs roughly the same for all coordinates. Under this
assumption, separable operators are both Type-I CF and Type-II CF, and
nearly-separable operators are Type-I CF.2

2.3. Examples of CF Operators

In this subsection, we give examples of CF operators arising in different
areas including linear algebra, optimization, and machine learning.

Example 4 ((block) diagonal matrix). Consider the diagonal matrix

A =






a1,1 0
. . .

0 am,m




 ∈ R

m×m.

Clearly T : x 7→ Ax is separable.

Example 5 (gradient and proximal maps of a separable function). Consider
a separable function

f(x) =

m∑

i=1

fi(xi).

2Not all nearly-separable operators are Type-II CF. Indeed, consider a sparse
matrix A ∈ Rm×m whose non-zero entries are only located in the last column. Let
T x = Ax and x+ = x+δm. As x+ and x differ by the last entry, T x+ = T x+(x+

m−
xm)A:,m takes m operations. Therefore, we have M [{x, T x, x+} 7→ T x+] = O(m).
Since T x+ = x+

mA:,m takes m operations, we also have M [x+ 7→ T x+] = O(m).
Therefore, (9) is violated, and there is no benefit from maintaining T x.
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Then, both ∇f and proxγf are separable, in particular,

(∇f(x))i = ∇fi(xi) and (proxγf (x))i = proxγfi(xi).

Here, proxγf (x) ( γ > 0) is the proximal operator that we define in (67).

Example 6 (projection to box constraints). Consider the “box” set B :=
{x : ai ≤ xi ≤ bi, i = 1, . . . ,m} ⊂ Rm. Then, the projection operator projB
is separable. Indeed,

(
projB(x)

)

i
= max(bi, min(ai, xi)).

Example 7 (sparse matrices). If every row of the matrix A ∈ Rm×m is

sparse, T : x 7→ Ax is nearly-separable.

Examples of sparse matrices arise from various finite difference schemes

for differential equations, problems defined on sparse graphs. When most

pairs of a set of random variables are conditionally independent, their inverse
covariance matrix is sparse.

Example 8 (sum of sparsely supported functions). Let E be a class of

index sets and every e ∈ E be a small subset of {1, ...,m}, |e| ≪ m. Let

xe := (xi)i∈e, and

f(x) =
∑

e∈E

fe(xe).

The gradient map ∇f is nearly-separable.

An application of this example arises in wireless communication over a
graph of m nodes. Let each xi be the spectrum assignment to node i, each e be

a neighborhood of nodes, and each fe be a utility function. The input of fe is

xe since the utility depends on the spectra assignments in the neighborhood.

In machine learning, if each observation only involves with a few fea-
tures, then each function of the optimization objective will depend on a small

number of components of x.

Example 9 (square hinge loss function). Consider for a, x ∈ Rm,

f(x) :=
1

2

(
max(0, 1 − βa⊤x)

)2
,

which is the squared hinge loss function. Consider the operator

(11) T x := ∇f(x) = −βmax(0, 1 − βa⊤x)a.



Coordinate Friendly Structures, Algorithms, and Applications 15

Let us maintain M(x) = a⊤x. For arbitrary x and i, let

x+i := (T x)i = −βmax(0, 1 − βa⊤x)ai

and x+j := xj, ∀j 6= i. Then, computing x+i from x and a⊤x takes O(1) (as

a⊤x is maintained), and computing a⊤x+ from x+i −xi and a⊤x costs O(1).
Formally, we have

M

[

{x, a⊤x} 7→ {x+, a⊤x+}
]

=M

[

{x, a⊤x} 7→ x+
]

+M

[

{a⊤x, x+i − xi} 7→ a⊤x+
]

=O(1) +O(1) = O(1).

On the other hand, M [x 7→ T x] = O(m). Therefore, (10) holds, and T
defined in (11) is CF.

3. Composite Coordinate Friendly Operators

There are many popular operator-splitting based algorithms, e.g., proximal
gradient method, ADMM, primal-dual method, which reduce the original
problem to simpler subproblems, each corresponding to a part of the ob-
jective or constraints. Coordinate updates can be combined with operator
splitting to further simplify their subproblems and even offer better par-
allelism. Most operator splitting algorithms are sequential compositions of
two or more operators. This section studies when their compositions are CF
operators.

3.1. Combinations of Operators

We start by an example with numerous applications. It is a generalization
of Example 9.

Example 10 (scalar map pre-composing affine function). Let aj ∈ Rm, bj ∈
R, and φj : R→ R be differentiable functions, j = 1, . . . , p. Let

f(x) =

p
∑

j=1

φj(a
⊤
j x+ bj).

Assume that evaluating φ′
j costs O(1) for all j. Then, ∇f is CF. Indeed, let

T1y := A⊤y, T2y := Diag(φ′
1(y1), . . . , φ

′
p(yp)), T3x := Ax+ b.
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Then ∇f(x) = T1 ◦ T2 ◦ T3x. For any x and i ∈ {1, . . . ,m}, let x+i = ∇if(x)
and x+j = xj ,∀j 6= i, and letM(x) = T3x. We can first compute T2◦T3x from

T3x for O(p) operations, then compute ∇if(x) and thus x+ from {x,T2◦T3x}
for O(p), and finally update the maintained T3x to T3x+ from {x, x+,T3x}
for another O(p). Formally,

M
[
{x,T3x} 7→ {x+,T3x+}

]

=M [T3x 7→ T2 ◦ T3x] +M
[
{x,T2 ◦ T3x} 7→ x+

]
+M

[
{x,T3x, x+} 7→ {T3x+}

]

=O(p) +O(p) +O(p) = O(p).

Since M [x 7→ ∇f(x)] = O(pm), therefore ∇f = T1 ◦ T2 ◦ T3 is CF.
If p = m, T1,T2,T3 all map from Rm to Rm. Then, it is easy to check

that T1 is Type-I CF, T2 is separable, and T3 is Type-II CF. The last one is
crucial since not maintaining T3x would disqualify T from CF. Indeed, to
obtain (T x)i, we must multiple A⊤

i to all the entries of T2 ◦ T3x, which in
turn needs all the entries of T3x, computing which from scratch costs O(pm).

There are some rules to preserve Type-I and Type-II CF. For example,
T1◦T2 is still Type-I CF, and T2◦T3 is still CF but there are counter examples
where T2 ◦ T3 can be neither Type-I nor Type-II CF. Such properties are im-
portant for developing efficient coordinate update algorithms for complicated
problems; we will fomarlize them in the following.

The operators T2 and T3 in the above example are prototypes of cheap
and easy-to-maintain operators from H to G that arise in operator compo-
sitions.

Definition 6 (cheap operator). For a composite operator T = T1 ◦ · · · ◦ Tp,
an operator Ti : H → G is cheap if M [x 7→ Tix] is less than or equal to the
number of remaining coordinate-update operations, in order of magnitude.

Definition 7 (easy-to-maintain operator). For a composite operator T =
T1◦· · ·◦Tp, an operator Tj : H→ G is easy-to-maintain, if for any x, i, δi, x

+

satisfying (6), M [{x,Tjx, x+} 7→ Tjx+] is less than or equal to the number
of remaining coordinate-update operations, in order of magnitude, or belongs
to O( 1

dimG
M [x+ 7→ T x+]).

The splitting schemes in §3.2 below will be based on T1+T2 or T1 ◦T2. If
T1 and T2 are both CF, T1 + T2 must be CF while T1 ◦ T2 is not necessarily
so. This subsection discusses how T1 ◦T2 inherits the properties from T1 and
T2, and we summarize the results in Tables 1 and 2.

The combination T1 ◦ T2 generally inherits the weaker property from T1
and T2.
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Case T1 ∈ T2 ∈ (T1 ◦ T2) ∈
1 C1 (separable) C1, C2, C3 C1, C2, C3, respectively
2 C2 (nearly-sep.) C1, C3 C2, C3, resp.
3 C2 C2 C2 or C3, case by case
4 C3 (non-sep.) C1 ∪ C2 ∪ C3 C3

Table 1: T1 ◦ T2 inherits the weaker separability properties from those of T1
and T2.

Case T1 ∈ T2 ∈ (T1 ◦ T2) ∈ Example

5 C1 ∪ C2 F , F1 F , F1, resp. Examples 11 and 13
6 F , F2 C1 F , F2, resp. Example 10
7 F1 F2 F Example 12
8 cheap F2 F Example 13
9 F1 cheap F1 Examples 10 and 13

Table 2: Summary of how T1 ◦ T2 inherits CF properties from those of T1
and T2.

The separable (C1) property is preserved by composition. If T1, . . . ,Tn
are separable, then T1 ◦ · · · ◦ Tn is separable. However, combining nearly-
separable (C2) operators may not yield a nearly-separable operator since
composition introduces cross dependence on the input entries. Only when
cross dependence is not introduced, is near-separability preserved. There-
fore, composition of nearly-separable operators can either nearly-separable
or non-separable.

Next, we discuss how T1 ◦ T2 inherits the CF properties from T1 and
T2, and the results are summarized in Table 2. For simplicity, we only use
matrix-vector multiplication as examples in this subsection; more examples
will be given later.

• If T1 is separable or nearly-separable (C1 ∪ C2), then as long as T2 is
CF (F), T1 ◦ T2 remains CF. In addition, if T2 is Type-I CF (F1), so
is T1 ◦ T2; see Example 11.

Example 11. Let A ∈ Rm×m be sparse and B ∈ Rm×m dense. Then
T1x = Ax is nearly-separable and T2x = Bx is Type-I CF. For any
i, let Ii index the set of nonzeros on the ith row of A. We first com-
pute3 (Bx)Ii that costs O(|Ii|m) and then ai,Ii(Bx)Ii that costs O(|Ii|),
where ai,Ii is formed by the nonzeros entries on the ith row of A.

3For this example, one can of course pre-compute AB and claim that (T1 ◦ T2)
is Type-I CF. Our arguments keep A and B separate and only use the nearly-
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Assume O(|Ii|) = O(1), ∀i. We have, from the above discussion, that
M [x 7→ (T1 ◦ T2x)i] = O(m), while M [x 7→ T1 ◦ T2x] = O(m2). Hence,
T1 ◦ T2 is Type-I CF.

• Assume that T2 is separable (C1). It is easy to see that if T1 is CF (F),
then T1 ◦ T2 remains CF. In addition if T1 is Type-II CF (F2), so is
T1 ◦ T2; see Examples 10.
Note that if T2 is nearly-separable, in general we do not have CF
properties for T1 ◦ T2. This is because T2x and T2x+ can be totally
different (so updating T2x is expensive) even if x and x+ differ only at
one coordinate; see the example in footnote 2.

• Assume that T1 is Type-I CF (F1). Then if T2 is Type-II CF (F2),
T1 ◦ T2 must be CF (F); see the next example.

Example 12. Let A,B ∈ Rm×m be dense. Then T1x = Ax is Type-I
CF and T2x = Bx Type-II CF (by maintaining Bx; see Example 2).
For any x and i, let x+ satisfy (6). Maintaining T2x, we can compute
T2x+ for O(m) operations and then (T1 ◦ T2x+)j for O(m) operations
for any j. On the other hand, computing T1◦T2x+ without maintaining
T2x costs O(m2).

• Assume that one of T1 and T2 is cheap. If T2 is cheap, then as long as
T1 is Type-I CF (F1), T1 ◦T2 is Type-I CF. If T1 is cheap, then as long
as T2 is Type-II CF (F2), T1 ◦ T2 is CF (F); see Example 13.

We will see more examples of the above cases in the rest of the paper.

3.2. Operator Splitting Schemes

Before we apply our discussions above to operator splitting schemes for
new algorithms, we review several major operator splitting schemes and
discuss their CF properties by using the results from §3.1. For basic operator
concepts like monotonicity and cocoercivity, please refer to Appendix A. The
definitions of resolvent and reflective-resolvent operators JA andRA are also
given there, in (65) and (66) respectively.

Consider the following problem: given three operators A,B, C, possibly
set-valued,

(12) find x ∈ H such that 0 ∈ Ax+ Bx+ Cx,

separability of T1 and Type-I CF of T2, so our result holds for any such composition
even when T1 and T2 are nonlinear.



Coordinate Friendly Structures, Algorithms, and Applications 19

This is a high-level abstraction of many problems. The study began in the

1960s, and since then a large number of algorithms and applications have

been introduced. We review a few general methods in this subsection.

When A,B are maximally monotone (think it as the subdifferential ∂f

of a proper convex function f) and C is β-cocoercive (think it as the gradient

∇f of a 1/β-Lipschitz differentiable function f), a solution can be found by

the iteration (2) with T = T3S, introduced recently in [22], where

(13) T3S := I − JγB + JγA ◦ (2JγB − I − γC ◦ JγB).

Indeed, by setting γ ∈ (0, 2β), T3S is ( 2β
4β−γ

)-averaged (think it as a weaker

property than the Picard contraction that does not guarantee T having a

fixed point). Following the standard convergence result (cf. textbook [5]),

provided that T has a fixed point, the sequence from (2) converges to a

fixed-point x∗ of T3S. Instead of x∗, JγB(x∗) is a solution to (12). Applying

the results in §3.1, T3S is CF if JγA is separable (C1), JγB is Type-II CF

(F2), and C is Type-I CF (F1).

We give a few special cases of T3S below, which have much longer history.

They all converge to a fixed point x∗ whenever a solution exists and γ is

properly chosen. Whenever B 6= 0, JγB(x∗) replaces x∗ as a solution to (12).

Forward-Backward Splitting (FBS): Letting B = 0 yields JγB = I.
Then, T3S reduces to FBS [46]:

(14) TFBS := JγA ◦ (I − γC)

for solving the problem 0 ∈ Ax+ Cx.
Backward-Forward Splitting (BFS): Letting A = 0 yields JγA = I.

Then, T3S reduces to BFS:

(15) TBFS := (I − γC) ◦ JγB

for solving the problem 0 ∈ Bx + Cx. When A = B, TFBS and TBFS apply

the same pair of operators in the opposite orders, and they solve the same

problem. Iterations based on TBFS are rarely used in the literature because

they need an extra application of JγB before returning the solution, so

TBFS is seemingly an unnecessary variant of TFBS. However, they become

different in coordinate update algorithms; in particular, TBFS is CF (but

TFBS is generally not) when JγB is Type-II CF (F2) and C is Type-I CF

(F1). Therefore, TBFS is worth discussing alone.
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Douglas-Rachford Splitting (DRS): Letting C = 0, T3S reduces to

(16) TDRS := I − JγB + JγA ◦ (2JγB − I) =
1

2
(I +RγA ◦ RγB)

introduced in [24] for solving the problem 0 ∈ Ax + Bx. A more general
splitting is the relaxed Peaceman-Rachford splitting (RPRS) with λ ∈ [0, 1]:

(17) TRPRS = (1− λ)I + λRγA ◦ RγB,

which recovers TDRS by setting λ = 1
2 and Peaceman-Rachford splitting

(PRS) [47] by λ = 1.
Forward-Douglas-Rachford Splitting (FDRS): Let V be a linear

subspace, and NV and PV be the normal cone and projection operators,
respectively. Letting B = NV and C = PV ◦ C̃ ◦ PV , T3S reduces to

TFDRS = I − PV + JγA ◦ (2PV − I − γPV ◦ C̃ ◦ PV )

introduced in [13] for solving the problem 0 ∈ Ax+ C̃ x+NV x.
Forward-Backward-Forward Splitting (FBFS): Composing TFBS

with one more forward step gives TFBFS introduced in [64]:

TFBFS = −γC + (I − γC)JγA(I − γC).(18)

TFBFS is not a special case of T3S. At the expense of one more application
of (I − γC), TFBFS relaxes the convergence condition of TFBS from the co-
coercivity of C to its monotonicity (for example, a nonzero skew symmetric
matrix is monotonic but not cocoercive). From Table 2, we know that TFBFS

is CF if both C and JγA are separable.

3.2.1. Examples in Optimization. Consider the optimization problem

(19) minimize
x∈X

f(x) + g(x),

where X is the feasible set and f and g are objective functions. We present
examples of operator splitting methods discussed above.

Example 13 (proximal gradient method). Let X = Rm, f be differentiable,
and g be proximable in (19). Letting A = ∂g and C = ∇f in (14) gives
JγA = proxγg and reduces xk+1 = TFBS(x

k) to prox-gradient iteration:

(20) xk+1 = proxγg(x
k − γ∇f(xk)).
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A special case of (20) with g = ιX is the projected gradient iteration:

(21) xk+1 = PX(xk − γ∇f(xk)).

If ∇f is CF and proxγg is (nearly-)separable (e.g., g(x) = ‖x‖1 or the
indicator function of a box constraint) or if ∇f is Type-II CF and proxγg is
cheap (e.g., ∇f(x) = Ax−b and g = ‖x‖2), the FBS iteration in (20) is CF.
In the latter case, we can also apply the BFS iteration (15) (i.e, compute
proxγg and then the gradient update), which is also CF.

Example 14 (alternating direction method of multipliers (ADMM)). Set-
ting X = Rm simplifies (19) to

(22) minimize
x,y

f(x) + g(y), subject to x− y = 0.

The ADMM method iterates:

xk+1 = proxγf (y
k − γsk),(23a)

yk+1 = proxγg(x
k+1 + γsk),(23b)

sk+1 = sk +
1

γ
(xk+1 − yk+1).(23c)

(The iterations can be generalized to handle the constraints Ax − By = b.)
The dual problem of (22) is mins f

∗(−s) + g∗(s), where f∗ is the convex
conjugate of f . Letting A = −∂f∗(−·) and B = ∂g∗ in (16) recovers the
iteration (23) through (see the derivation in Appendix B)

tk+1 = TDRS(t
k) = tk − JγB(tk) + JγA ◦ (2JγB − I)(tk).

From the results in §3.1, a sufficient condition for the above iteration to be
CF is that JγA is (nearly-)separable and TγB being CF.

4. Primal-Dual Coordinate Friendly Operators

We study how to solve the problem

(24) minimize
x∈H

f(x) + g(x) + h(Ax),

with primal-dual splitting algorithms and its coordinate updates, where f is
differentiable and A is a “p-by-m” linear operator from H = H1 × · · · ×Hm

to G = G1 × · · · × Gp. Problem (24) abstracts many applications in image
processing and machine learning.
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Example 15 (image deblurring/denoising). Let u0 be an image, where u0i ∈
[0, 255], and B be the blurring linear operator. Let ‖∇u‖1 be the anisotropic
total variation of u. Suppose that b is a noisy observation of Bu0. Then, we
can try to recover u0 by solving

(25) minimize
u

1

2
‖Bu− b‖2 + ι[0,255](u) + λ‖∇u‖1,

which can be written in the form of (24) with f = 1
2‖B · −b‖2, g = ι[0,255],

A = ∇, and h = λ‖ · ‖1.
More examples with formulation (24) will be given in §4.2. In general,

primal-dual methods are capable of solving complicated problems involving
constraints and the compositions of proximable and linear maps.

In many applications, although h is proximable, h ◦ A is generally non-
proximable and non-differentiable. To avoid using the slow subgradient method,
we can consider the primal-dual splitting approaches to separate h and A
so that proxh can be applied. The problem (24) is equivalent (for convex
case) to finding x such that

(26) 0 ∈ (∇f + ∂g +A⊤ ◦ ∂h ◦A)(x).

Introducing the dual variable s ∈ G and applying the biconjugation prop-
erty: s ∈ ∂h(Ax)⇔ Ax ∈ ∂h∗(s), yields the equivalent condition

(27) 0 ∈
( [
∇f(x)

0

]

︸ ︷︷ ︸

operator A

+

[
∂g(x)
∂h∗(s)

]

+

[
0 A⊤

−A 0

]

︸ ︷︷ ︸

operator B

) [
x
s

]

︸︷︷︸
z

,

which we shorten as 0 ∈ Az + Bz.
Problem (27) can be solved iteratively by the Condat-Vũ algorithm [18,

68]:

(28)

{
sk+1 = proxγh∗(sk + γAxk),

xk+1 = proxηg(x
k − η(∇f(xk) +A⊤(2sk+1 − sk))),

which explicitly applies A and A⊤ and updates s, x in a Gauss-Seidel style.
4 We introduce an operator TCV : H×G→ H×G and write

iteration (28) ⇐⇒ zk+1 = TCV(z
k).

4By the Moreau identity: proxγh∗ = I−γprox 1
γ
h(

·

γ
), one can compute prox 1

γ
h

instead of proxγh∗ . The latter inherits the same separability properties from the
former.
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Switching the orders of x and s yields the following algorithm:

(29)

{
xk+1 = proxηg(x

k − η(∇f(xk) +A⊤sk))

sk+1 = proxγh∗(sk + γA(2xk+1 − xk))
as zk+1 = T ′

CVz
k.

It is known from [16, 20] that both (28) and (29) reduce to iterations of
nonexpansive operators (under a special metric), i.e., TCV is nonexpansive;
see Appendix C for the reasoning.

Remark 1. Similar primal-dual algorithms can be used to solve problems
that are more other than (24) such as saddle point problems [35, 41, 14] and
variational inequalities [61]. Our coordinate update algorithms below apply
to these problems as well.

4.1. Primal-dual coordinate update algorithms

In this subsection, we make the following assumption.

Assumption 1. Functions g and h∗ are separable and proximable. Specifi-
cally,

g(x) =

m∑

i=1

gi(xi) and h∗(y) =

p
∑

j=1

h∗i (yi).

Furthermore, ∇f is CF.

Proposition 1. Under Assumption 1, the followings hold:

(a) when p = O(m), TCV in (28) is CF, more specifically,

M

[

{zk, Ax} 7→ {z+, Ax+}
]

= O

(
1

m+ p
M

[

zk 7→ TCVz
k
])

;

(b) when m ≪ p and M [x 7→ ∇f(x)] = O(m), T ′
CV in (29) is CF, more

specifically,

M

[

{zk, A⊤s} 7→ {z+, A⊤s+}
]

= O

(
1

m+ p
M

[

zk 7→ T ′
CVz

k
])

.

Proof. Computing zk+1 = TCVz
k involves evaluating∇f , proxg, and proxh∗,

applyingA andA⊤, and adding vectors. Formally,M
[
zk 7→ TCVz

k
]
= O(mp+

m+ p) +M[x→ ∇f(x)], and M
[
zk 7→ T ′

CVz
k
]
is the same.

(a) We assume ∇f ∈ F1 for simplicity, and other cases are similar.
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1. If (TCVz
k)j = sk+1

i , computing it involves: adding ski and γ(Axk)i, and
evaluating proxγh∗

i
. In this case M

[
{zk, Ax} 7→ {z+, Ax+}

]
= O(1).

2. If (TCVz
k)j = xk+1

i , computing it involves evaluating: the entire sk+1

for O(p) operations, (A⊤(2sk+1 − sk))i for O(p) operations, proxηgi

for O(1) operations, ∇if(x
k) for O( 1

m
M [x 7→ ∇f(x)]) operations, as

well as updating Ax+ for O(p) operations. In this case
M

[
{zk, Ax} 7→ {z+, Ax+}

]
= O(p+ 1

m
M [x 7→ ∇f(x)]).

Therefore, M
[
{zk, Ax} 7→ {z+, Ax+}

]
= O

(
1

m+p
M

[
zk 7→ TCVz

k
] )

.

(b) When m≪ p and M [x 7→ ∇f(x)] = O(m), by arguments similar to the
above,
M

[
{zk, A⊤s} 7→ {z+, A⊤s+}

]
= O(1)+M [x 7→ ∇if(x)] if (T ′

CVz
k)j = xk+1

i ;
and M

[
{zk, A⊤s} 7→ {z+, A⊤s+}

]
= O(m) +M [x 7→ ∇f(x)] if (T ′

CVz
k)j =

sk+1
i .
In both casesM

[
{zk, A⊤s} 7→ {z+, A⊤s+}

]
= O( 1

m+p
M

[
zk 7→ T ′

CVz
k
]
).

4.2. Extended monotropic programming

The extended monotropic program is the problem

(30)
minimize

x∈H
g1(x1) + g2(x2) + · · ·+ gm(xm) + f(x)

subject to A1x1 +A2x2 + · · · +Amxm = b,

where x = (x1, . . . , xm) ∈ H = H1 × . . . × Hm with Hi being Euclidean
spaces. It generalizes linear, quadratic, second-order cone programs by al-
lowing general objective functions gi and f . It is a special case of (24) by

letting g(x) =

m∑

i=1

gi(xi), A = [A1, · · · , Am] and h = ι{b}.

Example 16 (quadratic programming). Consider the quadratic program

(31) minimize
x∈Rm

1

2
x⊤Ux+ c⊤x, subject to Ax = b, x ∈ X,

where U is a symmetric positive semidefinite matrix, X = {x : xi ≥ 0 ∀i}.
Then, (31) is a special case of (30) with gi(xi) = ι·≥0(xi), f(x) =

1
2x

⊤Ux+
c⊤x and h = ι{b}.

Example 17 (SOCP). The second-order cone program

minimize
x∈Rm

c⊤x, subject to Ax = b

x ∈ X = Q1 × · · · ×Qn,
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(where the number of cones n may not be equal to the number of blocks m,)
can be written in the form of (30): minimizex∈Rm ιX(x) + c⊤x+ ι{b}(Ax).

Applying the iteration (28) to the problem (30) and eliminating sk+1

from the second row yields the Jacobi-style update (denoted as Temp):

(32)

{
sk+1 = sk + γ(Axk − b)
xk+1 = proxηg(x

k − η(∇f(xk) +A⊤sk + 2γA⊤Axk − 2γA⊤b)).

Note that xk+1 no longer depends on sk+1, making it more convenient to
perform parallel coordinate updates.

Remark 2. In general, when the s update is affine, we can plug the s update
into the x update and decouple sk+1 and xk+1. It is the case when h is affine
and quadratic in problem (24).

One sufficient condition for Temp to be CF is proxg ∈ C1 i.e., separable.
Indeed, we have Temp = T1 ◦ T2, where

T1 =
[
I

proxηg

]

, T2
[
s
x

]

=

[
s+ γ(Ax− b)

x− η(∇f(x) +A⊤s+ 2γA⊤Ax− 2γA⊤b)

]

.

Case 5 of Table 2 gives the CF of Temp. When O(m) = O(p), the separability
condition on proxg can be relaxed to proxg ∈ F1 since in this case T2 ∈ F2,

and we can apply Case 7 of Table 2 (by maintaining ∇f(x), A⊤s, Ax and
A⊤Ax.)

4.3. Overlapping-block coordinate updates

In the coordinate update scheme proposed in §4.1, updating xi involves
computing sk+1 but the result is discard (see the proof of Proposition 1,
item 1). This is because of xi’s and sj’s are coupled through the matrix A.

We define, for each i, J(i) ⊂ {1, 2, . . . , p} as the set of indices j such that
A⊤

i,j 6= 0, and, for each j, I(j) ⊂ {1, 2, . . . ,m} as the set of indices of i such
that Aj,i 6= 0. We also let mj := |I(j)|, and assume mj 6= 0,∀j = 1, 2, . . . , p
without loss of generality.

We arrange the coordinates of z = [x; s] intom (overlapping) blocks. The
ith block consists of the coordinate xi and sj for all j ∈ J(i). We propose a
block coordinate update scheme based on (28). Because the blocks overlap,
the sj update is relaxed with parameters ρi,j ≥ 0 that satisfy

∑

i∈I(j)

ρi,j = 1, ∀j = 1, 2, . . . , p,
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so that the aggregated effect is to update sj without scaling. (Following the
KM iteration[34], we can also assign a relaxation parameter ηk for the xi
update; then, the sj update should be relaxed with ρi,jηk.)

Our update scheme is proposed as:

(33)







when the ith coordinate is chosen, compute

s̃j
k+1 = proxγh∗

j
(skj + γ(Axk)j), for all j ∈ J(i)

x̃i
k+1 = proxηgi(x

k
i − η(∇if(x

k) +
∑

j∈J(i)A
⊤
i,j(2s̃

k+1
j − skj )))

update xk+1
i = xki + (x̃k+1

i − xki )

update sk+1
j = skj + ρi,j(s̃

k+1
j − skj ), for all j ∈ J(i).

Remark 3. The use of relaxation parameters ρi,j makes our scheme differ-
ent from that in [50].

Following the assumptions and arguments in §4.1, if we maintain Ax,
the cost for each block coordinate update is O(p) +M [x 7→ ∇if(x)], which
is O( 1

m
M [z 7→ TCVz]). Therefore the coordinate update scheme (33) is com-

putationally worthy.
Typical choices of ρi,j include: (1) one of the ρi,j’s is 1 for each j, others

all equal to 0. This can be viewed as assigning sj fully to the block containing
xi. (2) ρi,j =

1
mj

for all i ∈ I(j).

Remark 4. In their paper [26], Fercoq and Bianchi proposed a different
primal-dual coordinate update algorithm. They produced a new matrix Ā
based on A, with only one nonzero entry in each row, i.e. mj = 1 for each
j. They also modify h to h̄ so that the problem

(34) minimize
x∈H

f(x) + g(x) + h̄(Āx)

has the same solution as (24). The they solve (34) by the scheme (33). Be-
cause they have mj = 1, every dual variable coordinate is only associated
with one primal variable coordinate. They create non-overlap blocks of z by
duplicating each dual variable coordinate sj multiple times. The computation
cost for each block coordinate update of their algorithm is the same as (33),
but more memory is needed since duplicated copies of each sj are stored and
updated.

5. Applications

In this section, we provide examples to illustrate how to develop coordinate
update algorithms based on CF operators. The applications are categorized
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into five different areas of applications. The first subsection discusses three
well-known machine learning problems: empirical risk minimization, Support
Vector Machine (SVM), and group Lasso. The second subsection discusses
image processing problems including image deblurring, image denoising, and
Computed Tomography (CT) image recovery. The remaining subsections
provide applications in finance, distributed computing as well as certain
stylized optimization models.

For each problem, we only describe the coordinate update. The final al-
gorithm is obtained after plugging the update in a coordinate update frame-
work in §1.1 along with initialization, parameter selection, and termination.

5.1. Machine Learning

5.1.1. Empirical Risk Minimization. We consider the following regu-
larized empirical risk minimization problem

(35) minimize
x∈Rm

1

p

p
∑

j=1

φj(a
⊤
j x) + f(x) + g(x),

where aj’s are sample vectors, φj ’s are loss functions, and f + g is a regular-
ization function, where f is differentiable and g is proximable. The problem
aims to learn a response vector x from aj’s so that the total loss measured
by

∑

j φj is small. When prior information about x such as sparsity is pro-
vided, it is modeled with a regularization function f + g such that the prior
information is kept by small value of f(x) + g(x). The need for coordinate
update algorithms arise in the many applications of (35) where there are a
very large number of samples, namely, p≫ m.

We define A = [a1, a2, ..., ap]
⊤, with ai being the ith row of A, and

h(y) := 1
p

∑p
i=1 φi(yi) . Hence, h(Ax) = 1

n

∑p
i=1 φi(a

⊤
i x), and the prob-

lem (35) reduces to the form (24). We can apply the primal-dual update
scheme (29) to solve this problem, for which we introduce the dual variable
s = (s1, ..., sp)

⊤. Since p≫ m, we use 1+p coordinates, where the 0th coor-
dinate is x ∈ Rm and the jth coordinate is sj, j = 1, . . . , p. Each iteration,
a coordinate is updated:

(36)







if x is chosen, then compute
xk+1 = proxηg(x

k − η(∇f(xk) +A⊤sk))
if sj is chosen, then compute

x̃k+1 = proxηg(x
k − η(∇f(xk) +A⊤sk))

and

sk+1
j = 1

n
proxnγφ∗

j
(nskj + nγa⊤j (2x̃

k+1 − xk)).
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We maintain A⊤s ∈ Rm in the memory. Depending on the structure of
∇f , we can compute it each time or maintain it. When proxg ∈ F1, we can

further apply coordinate updates to xi.

5.1.2. Support Vector Machine. Given the training data {(ai, βi)}mi=1

with βi ∈ {+1,−1}, ∀i, the kernel support vector machine [58] is the problem

(37)

minimize
x,ξ,y

1

2
‖x‖22+C

m∑

i=1

ξi, s.t. βi(x
⊤φ(ai)−y) ≥ 1−ξi, ξi ≥ 0, i = 1, . . . ,m,

where φ is a vector-to-vector map, mapping each data ai to a point in a

(possibly) higher-dimensional space. If φ(a) = a, then (37) reduces to the
linear support vector machine. The models (37) can be interpreted as finding

a hyperplane {w : x⊤w − y = 0} to roughly separate two sets of points
{φ(ai) : βi = 1} and {φ(ai) : βi = −1}.

The dual problem of (37) is

(38) minimize
s

1

2
s⊤Qs− e⊤s, subject to 0 ≤ si ≤ C, ∀i,

∑

i

βisi = 0,

where Qij = βiβjk(ai, aj), k(·, ·) is a so-called kernel function, and e =

(1, ..., 1)⊤ . If φ(a) = a, then k(ai, aj) = a⊤i aj .

Unbiased case. If y = 0 is enforced in (37), then the solution hyperplane
{w : x⊤w = 0} passes through the origin and is called unbiased. Conse-

quently, the dual problem (38) will no longer have the linear constraint
∑

i βisi = 0, leaving it with the coordinate-wise separable box constraints

0 ≤ si ≤ C. To solve (38), we can apply the FBS scheme (14). Letting
d(s) := 1

2s
⊤Qs− e⊤s, the coordinate update based on FBS is

sk+1
i = proj[0,C](s

k
i − γi∇id(s

k)),

where we can take γi =
1

Qii
.

Biased (general) case. In this case, the mode (37) has y ∈ R, so the
hyperplane {w : x⊤w − y = 0} may not pass the origin and is called biased.

Then, the dual problem (38) retains the linear constraint
∑

i βisi = 0. In this
case, we apply the primal-dual splitting scheme (28) or the three-operator

splitting scheme (13).



Coordinate Friendly Structures, Algorithms, and Applications 29

The coordinate update based on primal-dual splitting is:

tk+1 = tk + γ

m∑

i=1

βis
k
i ,(39a)

sk+1
i =proj[0,C]

(

ski − η
(
∇id(s

k) + βi(2t
k+1 − tk)

))

,(39b)

where t, s are the primal and dual variables, respectively. Note that we can

let w :=
∑m

i=1 βisi and maintain it. With variable w and substituting (39a)

into (39b), we can equivalently write (39) into

tk+1 = tk + γwk,(40a)

sk+1
i =proj[0,C]

(

ski − η
(
q⊤i s

k − 1 + βi(2γw
k + tk)

))

, i = 1, . . . ,m.(40b)

In parallel computing, whenever a processor updates some si, the w variable

must be also renewed as wk+1 = wk + βi(s
k+1
i − ski ).

We can also apply the three-operator splitting (13) as follows. Let D1 :=

[0, C]m and D2 := {s :
∑m

i=1 βisi = 0}. The full update is

sk+1 =projD2
(uk),(41a)

uk+1 =uk + ηk

(

projD1

(
2sk+1 − uk − γ(Qsk+1 − e)

)
− sk+1

)

,(41b)

where s is just an intermediate variable. Let β̃ := β
‖β‖2

and w := β̃⊤u. Then

projD2
(u) = (I − β̃β̃⊤)u. Hence, sk+1 = uk − wk b̃. Plugging it into (41b),

yields the coordinate update:

sk+1
i =uki − wkβ̃i,

uk+1
i =uki + ηk

(

proj[0,C]

(

uki − 2wkβ̃i − γ
(
q⊤i u

k − wk(q⊤i β̃)− 1
))

− uki + wkβ̃i

)

.

We can maintain w and renew it as wk+1 = wk + β̃i(u
k+1
i −uki ) whenever ui

is updated. The intermediate variable si is not kept throughout iterations.

5.1.3. Group Lasso. The group Lasso regression problem [75] is the

model

(43) minimize
x∈Rn

f(x) +

m∑

i=1

λi‖xi‖2,
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where f is a differentiable convex function, often bearing the form 1
2‖Ax−

b‖22, and xi ∈ Rni is a subvector of x ∈ Rn supported on Ii ⊂ {1, . . . , n}, and
∪iIi = {1, . . . , n}. If Ii ∩ Ij = ∅, ∀i 6= j, the model is called non-overlapping
group Lasso, and if there are two different groups Ii and Ij with a non-
empty intersection, it is called overlapping group Lasso. The model finds a
coefficient vector x that minimizes the fitting (or loss) function f(x) and
that is group sparse: all but a few xi are zero.

Let Ui be the formed by the columns of the identity matrix I in Ii, and let
U = [U1, . . . , Um]⊤ ∈ R(Σini)×n. Then, xi = U⊤

i x. Let hi(yi) = λi‖yi‖2, yi ∈
Rni for i = 1, . . . ,m, and h(y) =

∑m
i=1 hi(yi) for y = [y1; . . . ; ym] ∈ R

∑
i
ni .

This way, (43) becomes

(44) minimize
x

f(x) + h(Ux).

Non-overlapping case. In this case, we have Ii∩ Ij = ∅, ∀i 6= j, and can
apply the FBS scheme (14) to (44). Specifically, let T1 = ∂h and T2 = ∇f .
The FBS full update is

xk+1 = JγT1
◦ (I − γT2)(xk).

For i ∈ {1, . . . ,m}, the corresponding coordinate update is

xk+1
i =argmin

xi

1

2
‖xi − xki + γ∇if(x

k)‖22 + γhi(xi)(45a)

=max
(

‖xki − γ∇if(x
k)‖2 − γ, 0

) xki − γ∇if(x
k)

‖xki − γ∇if(xk)‖2
,(45b)

where the step size can be taken to γ = 1
‖A‖2

2

. When ∇f is either cheap or

easy-to-maintain, the coordinate update in (45) is inexpensive.

Overlapping case. This case allows Ii ∩ Ij 6= ∅ for some i 6= j, causing
the evaluation of JγT1

be generally difficult. However, we can apply the
primal-dual update (28) to this problem as

sk+1 =proxγh∗(sk + γUxk)(46a)

xk+1 =xk − η(∇f(xk) + U⊤(2sk+1 − sk)),(46b)

where s is the dual variable. Note that

h∗(s) =

{
0, if ‖si‖2 ≤ λi, ∀i,
+∞, otherwise,
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is cheap. Hence, for i ∈ {1, . . . ,m}, the coordinate update based on (46) is

sk+1
i =ProjBλi

(ski + γxki ),(47a)

xk+1
i =xki − η(∇if(x

k) + (2ProjBλi
(ski + γxki )− ski ),(47b)

where Bλ is the Euclidean ball of radius λ. When ∇f is easy-to-maintain,

the coordinate update in (47) is inexpensive.

5.2. Imaging

5.2.1. DRS for Image Processing in the Primal-dual Form [44].

Many convex image processing problems have the general form

minimize
x

f(x) + g(Ax),

where A is a matrix such as a dictionary, sampling operator, or finite differ-

ence operator. We can reduce the problem to the system: 0 ∈ A(z) + B(z),
where z = [x; s],

A(z) :=
[
∂f(x)
∂g∗(s)

]

, and B(z) :=
[

0 AT

−A 0

] [
x
s

]

.

(See Appendix C for the reduction.) The work [44] gives their resolvents

JγA =

[
proxγf

proxγg∗

]

,

JγB = (I + γB)−1 =

[
0 0
0 I

]

+

[
I
γA

]

(I + γ2ATA)−1

[
I
−γA

]T

,

where JγA is often cheap or separable and we can explicitly form JγB as

a matrix or implement it based on a fast transform. The resulting DRS

operator is CF when JγB is CF. We leave the DRS coordinate update to the

reader.

5.2.2. Total Variation Image Processing. We consider the following

Total Variation (TV) image processing model

(48) minimize
x

λ‖x‖TV +
1

2
‖Ax− b‖2,
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where x ∈ Rn is the vector representation of the unknown image, A is anm×
nmatrix describing the transformation from the image to the measurements,

and b ∈ Rm is the given measurements with noise. Let (∇h
i ,∇v

i ) be the
discrete gradient at pixel i. Then the TV semi-norm ‖ · ‖TV in the isotropic

and anisotropic fashions are, respectively,

(49)

‖x‖TV =
∑

i

√

(∇h
i x)

2 + (∇v
i x)

2, ‖x‖TV = ‖∇x‖1 =
∑

i

(

|∇h
i x|+ |∇v

i x|
)

.

Consider applications in which A is a sparse matrix. For example, in CT

image reconstruction, A models the discrete Radon transform. Each row

describes an line integral, and as each line only intersects with a few pixels,

there are many non-zeros in each row. For image deblurring, A models a

convolution kernel, and each row is sparse if the size of the kernel is small.

For simplicity, we use the anisotropic TV for analysis and in the numer-

ical experiment in § 6.2. It is slightly more complicated for the isotropic TV.
Introducing the following notation:

B: =

(
∇
A

)

, h(p, q): = λ‖p‖1 +
1

2
‖q − b‖2,

we can reformulate (48) as

minimize
x

h(B x) = h(∇x,Ax)

which reduces to the form of (24) with f = g = 0. Based on its definition,

the convex conjugate and proximal operator of h(p, q) are, respectively,

h∗(s, t) = ι‖·‖∞≤λ(s) +
1

2
‖t+ b‖2 − 1

2
‖b‖2,(50)

proxγh∗(s, t) = proj‖·‖∞≤λ(s) +
1

1 + γ
(t− γb).(51)

Applying (29) gives the following full update:

xk+1 = xk − η(∇⊤sk +AT tk),(52a)

sk+1 = proj‖·‖∞≤λ

(

sk + γ∇(xk − 2η(∇⊤sk +A⊤tk))
)

,(52b)

tk+1 =
1

1 + γ

(

tk + γA(xk − 2η(∇⊤sk +A⊤tk))− γb
)

.(52c)
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To perform the coordinate updates as described in §4, we can maintain ∇⊤sk

and A⊤tk. Whenever a coordinate of (s, t) is updated, the corresponding
∇⊤sk (or A⊤tk) should also be updated.

5.2.3. 3D Mesh Denoising. Follow an example in [53], we consider a
3D mesh described by their nodes x̄i = (x̄Xi , x̄Yi , x̄

Z
i ), i = 1, 2, ..., n, and the

adjacency matrix A ∈ Rn×n. We let Vi be the set of neighbours of node i.
Noisy mesh nodes zi, i = 1, 2, ..., n with the same adjacency matrix A are

observed. We try to recover the original mesh nodes by solving the following
optimization problem [53]:

(53) minimize

n∑

i=1

fi(xi) +

n∑

i=1

gi(xi) +
∑

i,j:j∈Vi

hi,j(xi − xj),

where fi’s are differentiable data fidelity terms, gi’s are box constraints, and
∑

i,j:j∈Vi
hi,j(xi − xj) is the total variation.

We introduce a dual variable s with coordinates si,j, for all (ordered)

pairs of adjacent nodes (i, j), and, based on the overlapping-block coordinate
updating scheme (33), perform coordinate update:







when xi is chosen, compute

s̃k+1
i,j = proxγh∗

i,j
(ski,j + γxki − γxkj ),∀j ∈ Vi

s̃k+1
j,i = proxγh∗

j,i
(skj,i + γxkj − γxki ),∀j ∈ Vi

and update

xi
k+1 = proxηgi(x

k
i − η(∇fi(xki ) +

∑

j∈Vi
(2s̃k+1

i,j − 2s̃k+1
j,i − ski,j + skj,i))),

sk+1
i,j = ski,j +

1
2 (s̃

k+1
i,j − ski,j),∀j ∈ Vi

sk+1
j,i = skj,i +

1
2(s̃

k+1
j,i − skj,i),∀j ∈ Vi.

5.3. Finance

5.3.1. Portfolio Optimization. Assume that we have one unit of capital
and m assets to invest on. The ith asset has an expected return rate ξi ≥ 0.

Our goal is to find a portfolio with the minimal risk such that the expected
return is no less than c. This problem can be formulated as

minimize
x

x⊤Qx,

subject to x ≥ 0,

m∑

i=1

xi ≤ 1,

m∑

i=1

ξixi ≥ c
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where Q is the covariance matrix. Let a1 = e/
√
m, b1 = 1/

√
m, a2 = ξ/‖ξ‖2,

and b2 = c/‖ξ‖2. The above problem is rewritten as

(54) minimize
x

x⊤Qx, subject to x ≥ 0, a⊤1 x ≤ b1, a
⊤
2 x ≥ b2.

We apply the three-operator splitting scheme (13) to (54). Let f(x) =
1
2x

⊤Qx, D1 = {x : x ≥ 0}, D2 = {x : a⊤1 x ≤ b1, a
⊤
2 x ≥ b2}, D21 =

{x : a⊤1 x = b1}, and D22 = {x : a⊤2 x = b2}. The full update is

yk+1 =projD2
(xk),(55a)

xk+1 =xk + ηk
(
projD1

(2yk+1 − xk − γ∇f(yk+1))− yk+1
)
,(55b)

where y is an intermediate variable. As the projection to D1 is simple, we

discuss how to evaluate the projection to D2. Assume that a1 and a2 are

neither perpendicular nor co-linear, i.e., a⊤1 a2 6= 0 and a1 6= λa2 for any

scalar λ. In addition, a⊤1 a2 > 0 for simplicity. Let a3 = a2 − 1
a⊤

1 a2
a1, b3 =

b2− 1
a⊤

1 a2
b1, a4 = a1− 1

a⊤

1 a2
a2, and b4 = b1− 1

a⊤

1 a2
b2. Then we can partition the

whole space into four areas by the four hyperplanes a⊤i x = bi, i = 1, . . . , 4.

Let Pi = {x : a⊤i x ≤ bi, a
⊤
i+1x ≥ bi+1}, i = 1, 2, 3 and P4 = {x : a⊤4 x ≤

b4, a
⊤
1 x ≥ b1}. Then

projD2
(x) =







x, if x ∈ P1,
projD22

(x), if x ∈ P2,
projD21∩D22

(x), if x ∈ P3,
projD21

(x), if x ∈ P4

Let wi = a⊤i x, i = 1, 2, and maintain w1, w2. Let ã2 = a2−a1(a⊤

1 a2)
‖a2−a1(a⊤

1 a2)‖2
and

b̃2 =
b2−b1(a⊤

1 a2)
‖a2−a1(a⊤

1 a2)‖2
. Then Ã = [a1, ã2] is orthonormal, and D21 ∩D22 = {x :

Ã⊤x = b̃ = [b1; b̃2]}. Let x̃ = Ãb̃ ∈ D21 ∩D22. Then

projD21
(x) = (I − a1a

⊤
1 )(x− x̃) + x̃ = x− w1a1 + b1a1,

projD22
(x) = (I − a2a

⊤
2 )(x− x̃) + x̃ = x− w2a2 + b2a2,

projD21∩D22
(x) = (I − ÃÃ⊤)(x− x̃) + x̃ = x− w1a1 − w̃2ã2 + x̃,
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where w̃2 =
w2−w1(a⊤

1 a2)
‖a2−a1(a⊤

1 a2)‖2
. Hence, the coordinate update of (55) is

xk ∈ P1 : xk+1
i =(1− ηk)x

k
i + ηk max(0, xki − γq⊤i x

k),

(56a)

xk ∈ P2 : xk+1
i =(1− ηk)x

k
i + ηk(w

k
2ai2 − b2ai2) + ηk max

(

0, xki − γq⊤i x
k

−wk
2(2ai2 − γq⊤i a2) + b2(2ai2 − γq⊤i a2)

)

,(56b)

xk ∈ P3 : xk+1
i =(1− ηk)x

k
i + ηk

(

wk
1ai1 + w̃k

2 ãi2 − x̃i

)

+ ηk max
(

0, xki − γq⊤i x
k

−wk
1(2ai1 − γq⊤i a1)− w̃k

2(2ãi2 − γq⊤i ã2) + 2x̃i − γq⊤i x̃
)

,(56c)

xk ∈ P4 : xk+1
i =(1− ηk)x

k
i + ηk(w

k
1ai1 − b1ai1) + ηk max

(

0, xki − γq⊤i x
k

−wk
1(2ai1 − γq⊤i a1) + b1(2ai1 − γq⊤i a1)

)

(56d)

where qi is the ith column of Q. After updating xi, we renew wk+1
j = wk

j +

aij(x
k+1
i − xki ), j = 1, 2 and also w̃2. Note that checking xk in some Pj

requires only O(1) operation by using w1 and w2, so the coordinate update
in (56) is inexpensive.

5.4. Distributed Computing

5.4.1. Network. Consider that m worker agents and one master agent
form a star-shaped network. The m + 1 agents collaboratively solve the
consensus problem:

minimize
xc

m∑

i=1

fi(xc),

where xc ∈ Rd is the common variable and each proximable function fi is
held privately by agent i. The problem can be reformulated as

minimize
x1,··· ,xm,y∈Rd

F (x) :=

m∑

i=1

fi(xi), subject to xi = y,(57)

which has the KKT condition:

(58) 0 ∈





∂F (x)
0
0





︸ ︷︷ ︸

operator A

+





0 0 I
0 0 −eT
I −e 0









x
y
s





︸ ︷︷ ︸

operator C
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Applying the FBFS scheme (18) to (58) yields the following full update:

xk+1
i = proxγfi(x

k
i − γski ) + γ2xki − γ2yk − 2γski(59a)

yk+1 = (1 +mγ2)yk + 3γ
∑

j

skj − γ2
∑

j

xkj ,(59b)

sk+1
i = ski − 2γxki − γproxγfi(x

k
i − γski ) + 3γyk + γ2

∑

j

skj ,(59c)

where (59a) and (59c) are applied to all i = 1, . . . ,m. Hence, for each i,
we group xi and si together and assign them on agent i. We let the master
agent maintain

∑

j sj and
∑

j xj . Therefore, in the FBFS coordinate update,
updating any (xi, si) needs only y and

∑

j sj from the master agent, and
updating y is done on the master node.

5.5. Dimension Reduction

5.5.1. Nonnegative Matrix Factorization. Nonnegative matrix fac-
torization (NMF) is an important dimension reduction method for nonneg-
ative data. It was proposed by Paatero and his coworkers in [45]. Given a
nonnegative matrix A ∈ R

p×n
+ , NMF aims at finding two nonnegative matri-

ces W ∈ R
p×r
+ and H ∈ R

n×r
+ such that WH⊤ ≈ A, where r is user-specified

depending on the applications, and usually r ≪ min(p, n). A widely used
model is

(60)
minimize

W,H
F (W,H) :=

1

2
‖WH⊤ −A‖2F ,

subject to W ∈ R
p×r
+ , H ∈ R

n×r
+ .

Applying the projected gradient method (21) to (60), we have

W k+1 = max
(
0,W k − ηk∇WF (W k,Hk)

)
,(61a)

Hk+1 = max
(
0,Hk − ηk∇HF (W k,Hk)

)
.(61b)

In general, we do not know the Lipschitz constant of ∇F , so we have to
choose ηk by line search such that the Armijo condition is satisfied.

Partitioning the variables into 2r block coordinates: (w1, . . . , wr, h1, . . . , hr),
we can apply the coordinate update based on projected-gradient method:

wk+1
ik

= max
(
0, wk

ik
− ηk∇wik

F (W k,Hk)
)
, if 1 ≤ ik ≤ r,(62a)

hk+1
ik−r = max

(
0, hkik−r − ηk∇hik−r

F (W k,Hk)
)
, if r + 1 ≤ ik ≤ 2r,(62b)
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where ik is the selected coordinate at the k-th iteration. It is easy to see
that ∇wi

F (W k,Hk) and ∇hi
F (W k,Hk) are both Lipschitz continuous with

constants ‖hki ‖22 and ‖wk
i ‖22 respectively. Hence, we can set

ηk =

{ 1
‖hk

ik
‖2
2

, if 1 ≤ ik ≤ r
1

‖wk
ik−r‖

2
2

, if r + 1 ≤ ik ≤ 2r.

However, it is possible to have wk
i = 0 or hki = 0 for some i and k, and

thus the setting in the above formula may have trouble of being divided
by zero. To overcome this problem, one can first modify the problem (60)
by restricting W to have unit-norm columns and then apply the coordinate
update method in (62). Note that the modification does not change the
optimal value sinceWH⊤ = (WD)(HD−1)⊤ for any r×r invertible diagonal
matrix D. We refer the readers to [73] for more details.

Note that

∇WF (W,H) = (WH⊤ −A)H, ∇HF (W,H) = (WH⊤ −A)⊤W

and

∇wi
F (W,H) = (WH⊤ −A)hi, ∇hi

F (W,H) = (WH⊤ −A)⊤wi, ∀i.

Therefore, the coordinate updates given in (62) are computationally worthy
(by maintaining the residual W k(Hk)⊤ −A).

5.6. Stylized Optimization

5.6.1. Second-Order Cone Programming. SOCP extends LP by in-
corporating second-order cones. A second-order cone in Rn is

Q =
{
(x1, x2, . . . , xn) ∈ R

n : ‖(x2, . . . , xn)‖2 ≤ x1
}
.

Given a point v ∈ Rn, let ρv1 := ‖(v2, . . . , vn)‖2 and ρv2 := 1
2(v1 + ρv1). Then,

the projection of v to Q returns 0 if v1 < −ρ1, returns v if v1 ≥ ρ1, and
returns (ρv2,

ρv
2

ρv
1

· (v2, . . . , vn)) otherwise. Therefore, if we define the scalar
couple:

(ξv1 , ξ
v
2) =







(0, 0), v1 < −ρv2
(1, 1), v1 ≥ ρv2
(
ρv2,

ρv
2

ρv
1

)
, otherwise

then we have u = ProjQ(v) =
(
ξv1v1, ξ

v
2 · (v2, . . . , vn)

)
. Based on this, we

have
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Proposition 2. 1. Let v ∈ Rn and v+ := v+(ei)ν for any ν ∈ R. Then,
given ρv1, ρ

v
2, ξ

v
1 , ξ

v
2 defined above, it takes O(1) operations to obtain

ρv
+

1 , ρv
+

2 , ξv
+

1 , ξv
+

2 .
2. Let v ∈ Rn and A = [a1 A2] ∈ Rm×n, where a1 ∈ Rm, A2 ∈ Rm×(n−1).

Given ρv1, ρ
v
2, ξ

v
1 , ξ

v
2 , we have

A(2 · ProjQ(v)− I) = ((2ξv1 − 1)v1) · a1 + (2ξ2 − 1) ·A2(v2, . . . , vn)
T .

By the proposition, if T1 is an affine operator, then in the composi-
tion T1 ◦ ProjQ, the computation of ProjQ is cheap as long as we maintain
ρv1, ρ

v
2, ξ

v
1 , ξ2.

Given x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n, the standard-form SOCP is

minimize
x

c⊤x, subject to Ax = b(63a)

x ∈ X = Q1 × · · · ×Qn̄(63b)

where each Qi is a second-order cone, and n̄ 6= n in general. The problem
(63) is equivalent to

minimize
x

(
c⊤x+ ιA·=b(x)

)
+ ιX(x),

to which we can apply the DRS iteration zk+1 = TDRS(z
k) (see (16)), in

which T1 = ProjX and T2 is a linear operator given by

T2(x) = argmin
y

c⊤y +
1

2
y⊤Cy +

1

2γ
‖y − x‖2 subject to Ax = b.

Assume that the matrix A has full row-rank (otherwise, Ax = b has either
redundant rows or no solution). Then, in (16), we have RT2

(x) = Bx + d,
where B := I − 2A⊤(AA⊤)−1A and d := 2A⊤(AA⊤)−1(b+ γAc)− 2γc.

It is easy to apply coordinate updates to zk+1 = TDRS(z
k) following

Proposition 2. Specifically, by maintaining the scalars ρv1, ρ
v
2, ξ

v
1 , ξ

v
2 for each

v = xi ∈ Qi during coordinate updates, the computation of the projection
can be completely avoided. We pre-compute (AA⊤)−1 and cache the matrix
B and vector d. Then, TDRS is CF.

It trivial to extend this method for SOCPs with a quadratic objective:

minimize
x

c⊤x+
1

2
x⊤Cx, subject to Ax = b, x ∈ X = Q1 × · · · ×Qn̄

because T2 is still linear. Clearly, this method applies to linear programs as
they are special SOCPs.
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Note that many LPs and SOCPs have sparse matrices A, which deserve
further investigation. In particular, we may prefer not to form (AA⊤)−1 and
use the results in §4.2 instead.

6. Numerical Experiments

We illustrate the behavior of coordinate update algorithms for solving port-
folio optimization, image processing and machine learning problems. Our
primary goal is to show the efficiency of coordinate update compared to
the corresponding full update algorithms. We will also illustrate that asyn-
chronous parallel coordinate update algorithms are more scalable than their
synchronous parallel counterparts.

Our first two experiments run on Mac OSX 10.9 with 2.4 GHz Intel
Core i5 and 8 Gigabytes of RAM. The experiments were coded in Matlab.
The sparse logistic regression experiment run on 1 to 16 threads on a ma-
chine with two 2.5Ghz 10-core Intel Xeon E5-2670v2 (20 cores in total) and
64 Gigabytes of RAM. The experiment was coded in C++ with OpenMP
enabled. We use the Eigen library5 for sparse matrix operations.

6.1. Portfolio Optimization

In this subsection, we compare the performance of the 3S splitting scheme
(55) with the corresponding coordinate update algorithm (56) for solving
the portfolio optimization problem (54). In this problem, our goal is to
distribute our investment resources to all the assets so that the investment
risk is minimized and the expected return is greater than r. This test uses
two datasets, which are summarized in Table 3. The NASDAQ dataset is
collected through Yahoo! Finance. We collected one year (from 10/31/2014
to 10/31/2015) of historical closing prices for 2730 stocks.

Synthetic data NASDAQ data

Num. assets (N) 1000 2730
Expected return rate 0.02 0.02

Asset return rate 3 * rand(N, 1) - 1 mean of 30 days return rate
Risk covariance matrix + 0.01 · I positive definite matrix

Table 3: Two datasets for portfolio optimization

In our numerical experiments, for comparison purposes, we first obtain a
high accurate solution by solving (54) with an interior point solver. For both

5http://eigen.tuxfamily.org

http://eigen.tuxfamily.org
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(b) NASDAQ dataset

Figure 3: Compare the convergence of 3S full update with 3S coordinate
update algorithm.

full update and coordinate update, ηk is set to 0.8. However, we use different
γ. For 3S full update, we used the step size parameter γ1 =

2
‖Q‖2

, and for 3S

coordinate update, γ2 = 2
max{Q11,...,QNN} . In general, coordinate update can

benefit from more relaxed parameters. The results are reported in Figure 3.
We can observe that the coordinate update method converges much faster
than the 3S method for the synthetic data. This is due to the fact that γ2
is much larger than γ1. However, for the NASDAQ dataset, γ1 ≈ γ2, so 3S
coordinate update is only moderately faster than 3S full update.

6.2. Computed Tomography Image Reconstruction

We compare the performance of algorithm (52) and its corresponding coor-
dinate version on Computed Tomography (CT) image reconstruction. We
choose the standard Shepp-Logan phantom of size 256×256 as the input im-
age and apply the Siddon’s algorithm [59] to form the sinogram data. There
are 90 parallel beam projections and, for each projection, there are 362 mea-
surements. Then the sinogram data is corrupted with Gaussian noise. We
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formulate the image reconstruction problem in the form of (48). The primal-

dual full update corresponds to (52). For coordinate update, the block size

for x is set to 256, which corresponds to a column of the image. The dual

variables s, t are also partitioned into 256 blocks accordingly. A block of x

and the corresponding blocks of s and t are bundled together as a single

block. In each iteration, a bundled block is randomly chosen and updated.

The reconstruction results are shown in Figure 4. After 100 epochs, the

image recovered by the coordinate version is better than that by (52). As

shown in Figure 4d, the coordinate version converges faster than (52).

(a) Phantom image (b) Recovered by PDS

(c) Recovered by PDS coord
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f
k

PDS full update

PDS coordinate update

(d) Objective function value

Figure 4: CT image reconstruction.
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6.3. ℓ1 Regularized Logistic Regression

In this subsection, we compare the performance of sync-parallel coordinate
update with the async-parallel coordinate update for solving the sparse lo-
gistic regression problem

(64) minimize
x∈Rn

λ‖x‖1 +
1

N

N∑

i=1

log
(
1 + exp(−bi · a⊤i x)

)
,

where {(ai, bi)}Ni=1 is the set of sample-label pairs with bi ∈ {1,−1}, λ =
0.0001, and n and N represent the numbers of features and samples, respec-
tively. This test uses the datasets6: real-sim and news20, which are summa-
rized in Table 4.

Table 4: Two datasets for sparse logistic regression

Name # samples # features
real-sim 72, 309 20, 958
news20 19,996 1,355,191

We let each coordinate hold roughly 50 features. Since the total number
of features is not divisible by 50, some coordinates have 51 features. We let
each thread draw a coordinate uniformly at random at each iteration. We
stop all the tests after 10 epochs since they have nearly identical progress
per iteration. The step size is set to ηk = 0.9, ∀k. Let A = [a1, . . . , aN ]⊤

and b = [b1, ..., bN ]⊤. In global memory, we store A, b and x. We also store
the product Ax in global memory so that the forward step can be efficiently
computed. Whenever a coordinate of x gets updated, Ax is immediately
updated at a low cost. Note that if Ax is not stored in global memory, every
coordinate update will have to compute Ax from scratch, which involves the
entire x and will be very expensive.

Table 5 gives the running times of the sync-parallel and async-parallel
implementations on the two datasets. We can observe that async-parallel
achieves almost-linear speedup, but sync-parallel scales very poorly as we
explain below.

In the sync-parallel implementation, all the running cores have to wait
for the last core to finish an iteration, and therefore if a core has a large load,
it slows down the iteration. Although every core is (randomly) assigned to
roughly the same number of features (either 50 or 51 components of x)

6http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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at each iteration, their ai’s have very different numbers of nonzeros, and
the core with the largest number of nonzeros is the slowest. (Sparse matrix
computation is used for both datasets, which are very large.) As more cores
are used, despite that they altogether do more work at each iteration, the
per-iteration time reduces as the slowest core tends to be slower. On the
other hand, async-parallel coordinate update does not suffer from the load
imbalance. Its performance grows nearly linear with the number of cores.

Finally, we have observed that the progress toward solving (64) is mainly
a function of the number of epochs and does not change appreciably when
the number of cores increases or between sync-parallel and async-parallel.
Therefore, we always stop at 10 epochs.

# cores
real-sim news20

time (s) speedup time (s) speedup
async sync async sync async sync async sync

1 81.6 82.1 1.0 1.0 591.1 591.3 1.0 1.0
2 45.9 80.6 1.8 1.0 304.2 590.1 1.9 1.0
4 21.6 63.0 3.8 1.3 150.4 557.0 3.9 1.1
8 16.1 61.4 5.1 1.3 78.3 525.1 7.5 1.1
16 7.1 46.4 11.5 1.8 41.6 493.2 14.2 1.2

Table 5: Running times of async-parallel and sync-parallel FBS implemen-
tations for ℓ1 regularized logistic regression on two datasets. Sync-parallel
has very poor speedup due to the large distribution of coordinate sparsity
and thus the large load imbalance across cores.

7. Conclusions

We have presented a coordinate update method for fixed-point iterations,
which update one coordinate (or a few variables) at every iteration and can
be applied to solve linear systems, optimization problems, saddle point prob-
lems, variational inequalities, and so on. We proposed a new concept called
CF operator. When an operator is CF, its coordinate update is computation-
ally worthy and often preferable over the full update method, in particular in
a parallel computing setting. We gave examples of CF operators and also dis-
cussed how the properties can be preserved by composing two or more such
operators such as in operator splitting and primal-dual splitting schemes. In
addition, we have developed CF algorithms for problems arising in several
different areas including machine learning, imaging, finance, and distributed
computing. Numerical experiments on portfolio optimization, logistic regres-
sion, and CT imaging have been provided to demonstrate the superiority of
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CF methods over their counterparts that updates all coordinates at every
iteration.
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Appendix A. Some Key Concepts of Operator

In this section, we go over a few key concepts in monotone operator theory

and operator splitting theory.

Definition 8 (monotone operator). A set-valued operator T : H ⇒ H is

monotone if 〈x− y, u− v〉 ≥ 0, ∀x, y ∈ H, u ∈ T x, v ∈ T y. Furthermore, T
is maximally monotone if its graph Grph(T ) = {(x, u) ∈ H × H : u ∈ T x}
is not strictly contained in the graph of any other monotone operator.

Example 18. An important maximally monotone operator is the subdiffer-
ential ∂f of a closed proper convex function f .

Definition 9 (nonexpansive operator). An operator T : H → H is non-
expansive if ‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H. We say T is averaged,

or α-averaged, if there is one nonexpansive operator R such that T =
(1 − α)I + αR for some 0 < α < 1. A 1

2-averaged operator T is also called

firmly-nonexpansive.

By definition, a nonexpansive operator is single-valued. Let T be aver-

aged. If T has a fixed point, the iteration (2) converges to a fixed point;
otherwise, the iteration diverges unboundedly. Now let T be nonexpansive.

The convergence is guaranteed [34] after damping: xk+1 = xk−η(xk−T xk),
for any 0 < η < 1.

Example 19. A common firmly-nonexpansive operator is the resolvent of

a maximally monotone map T , written as

(65) JT := (I + T )−1.
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Given x ∈ H, JT (x) = {y : x ∈ y + T y}. (By monotonicity of T , JT is a

singleton, and by maximality of T , JT (x) is well defined for all x ∈ H. ) A

reflective resolvent is

(66) RJ := 2JT − I.

Definition 10 (proximal map). The proximal map for function f is a spe-

cial resolvent and defined as:

(67) proxγf (y) = argmin
x

{
f(x) +

1

2γ
‖x− y‖2

}
,

where γ > 0. The first-order variational condition of the minimization yields

proxγf (y) = (I + γ∂f)−1; hence, proxγf is firmly-nonexpansive. When

x ∈ Rm and proxγf can be computed in O(m) or O(m logm), we call f

proximable.

Examples of proximal functions include ℓ1, ℓ2, ℓ∞-norms, several matrix

norms, the owl-norm [21], (piece-wise) linear functions, certain quadratic

functions, and many more.

Example 20. A special proximal map is the projection map. Let X be a

nonempty closed convex set, and ιS be its indicator function. Minimizing

ιS(x) enforces x ∈ S, so proxγιS reduces to the projection map projS for

any γ > 0. Therefore, projS is also firmly nonexpansive.

Definition 11 (β-cocoercive operator). An operator T : H → H is β-

cocoercive if 〈x− y,T x− T y〉 ≥ β‖T x− T y‖2, ∀x, y ∈ H.

Example 21. A special example of cocoercive operator is the gradient of a

smooth function. Let f be a differentiable function. Then ∇f is β-Lipschitz

continuous if and only if ∇f is 1
β
-cocoercive [5, Corollary 18.16].

Appendix B. Derivation of ADMM from the DRS update

We derive the ADMM update in (23) from the DRS update

sk = JηB(tk),(68a)

tk+1 =

(
1

2
(2JηA − I) ◦ (2JηB − I) +

1

2
I
)

(tk),(68b)

where A = −∂f∗(−·) and B = ∂g∗.
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Note (68a) is equivalent to tk ∈ sk + η∂g∗(sk), i.e., there is yk ∈ ∂g∗(sk)

such that tk = sk + ηyk, so

(69) tk − ηyk = sk ∈ ∂g(yk).

In addition, (68b) can be written as

tk+1 = JηA(2sk − tk) + tk − sk

= sk + (JηA − I)(2sk − tk)

= sk + (I − (I + η∂f∗)−1)(tk − 2sk)

= sk + η(ηI + ∂f)−1(tk − 2sk)

= sk + η(ηI + ∂f)−1(ηyk − sk),(70)

where in the fourth equality, we have used Moreau’s Identity [56]: (I +

∂h)−1 + (I + ∂h∗)−1 = I for any closed convex function h. Let

(71) xk+1 = (ηI + ∂f)−1(ηyk − sk) = (I + 1

η
∂f)−1(yk − 1

η
sk).

Then (70) becomes

tk+1 = sk + ηxk+1,

and

(72) sk+1 (69)
= tk+1 − ηyk+1 = sk + ηxk+1 − ηyk+1,

which together with sk+1 ∈ ∂g(yk+1) gives

(73) yk+1 = (ηI + ∂g)−1(tk + ηxk+1) = (I + 1

η
∂g)−1(xk+1 +

1

η
sk).

Hence, from (71), (72), and (73), the ADMM update in (23) is equivalent

to the DRS update in (68) with η = 1
γ
.
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Appendix C. Representing the Condat-Vũ Algorithm as a

Nonexpansive Operator

We show how to derive the Condat-Vũ algorithm (28) by applying a forward-
backward operator to the optimality condition (27):

(74) 0 ∈
[
∇f(x)

0

]

︸ ︷︷ ︸

operator A

+

[
∂g(x)
∂h∗(s)

]

+

[
0 A⊤

−A 0

] [
x
s

]

︸ ︷︷ ︸

operator B

.

It can be written as 0 ∈ Az + Bz after we define z =

[
x
s

]

. Let M be a

symmetric positive definite matrix, we have

0 ∈ Az + Bz
⇔Mz −Az ∈Mz + Bz
⇔z −M−1Az ∈ z +M−1Bz
⇔z = (I +M−1B)−1 ◦ (I −M−1A)z.

Convergence and other results can be found in [20]. The last equivalent
relation is due to M−1B being a maximally monotone operator. We let

M =

[
1
η
I A⊤

A 1
γ
I

]

≻ 0

and iterate

zk+1 = T zk = (I +M−1B)−1 ◦ (I −M−1A)zk.

We have Mzk+1 + B̃zk+1 = Mzk −Azk:
{

1
η
xk+A⊤sk −∇f(xk) ∈ 1

η
xk+1+A⊤sk+1 +A⊤sk+1 +∇g(xk+1),

1
γ
sk+A xk ∈ 1

γ
sk+1+A xk+1 −A xk+1 +∇h∗(sk+1),

which is equivalent to

{
sk+1 = proxγh∗(sk + γAxk)
xk+1 = proxηg(x

k − η(∇f(xk) +A⊤(2sk+1 − sk)))

Now we derived the Condat-Vũ algorithm. With proper choice of η and γ,
the forward-backward operator T = (I + M−1B)−1 ◦ (I −M−1A) can be
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shown to be α-averaged if we use the inner product 〈z1, z2〉M = z⊤1 Mz2 and

norm ‖z‖M =
√
z⊤Mz on the space of z =

[
x
s

]

. More details can be found

in [20].

If we change the matrix M to

[
1
η
I −A⊤

−A 1
γ
I

]

, the other algorithm (29)

can be derived in the same way.
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