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PARTITION ZETA FUNCTIONS

ROBERT SCHNEIDER

ABSTRACT. We exploit transformations relating generalized q-series, infinite products, sums over integer par-
titions, and continued fractions, to find partition-theoretic formulas to compute the values of constants such as
π, and to connect sums over partitions to the Riemann zeta function, multiple zeta values, and other number-
theoretic objects.

1. INTRODUCTION, NOTATIONS AND CENTRAL THEOREM

One marvels at the degree to which our contemporary understanding of q-series, integer partitions, and
what is now known as the Riemann zeta function ζ(s) emerged nearly fully-formed from Euler’s pioneering
work [And98, Dun99]. Euler discovered the magical-seeming generating function for the partition function
p(n)

1

(q; q)8
=

8
ÿ

n=0

p(n)qn, (1)

in which the q-Pochhammer symbol is defined as (z; q)0 := 1, (z; q)n :=
śn´1

k=0 (1 ´ zqk) for n ě 1, and

(z; q)8 = limnÑ8(z; q)n if the product converges, where we take z P C and q := ei2πτ with τ P H (the
upper half-plane). He also discovered the beautiful product formula relating the zeta function ζ(s) to the
set P of primes

1
ś

pPP

(

1 ´ 1
ps

) =
8
ÿ

n=1

1

ns
:= ζ(s), Re(s) ą 1. (2)

In this paper, we see (1) and (2) are special cases of a single partition-theoretic formula. Euler used another
product identity for the sine function

x
8
ź

n=1

(

1 ´ x2

π2n2

)

= sin x (3)

to solve the so-called Basel problem, finding the exact value of ζ(2); he went on to find an exact formula
for ζ(2k) for every k P Z+ [Dun99]. Euler’s approach to these problems, interweaving infinite products,
infinite sums and special functions, permeates number theory.

Very much in the spirit of Euler, here we consider certain series of the form
ř

λPP φ(λ), where the sum is
taken over the set P of integer partitions λ = (λ1, λ2, . . . , λr), λ1 ě λ2 ě ¨ ¨ ¨ ě λr ě 1, including the “empty
partition” H, and where φ : P Ñ C. We might sum instead over a subset of P , and will intend PX Ď P to
mean the set of partitions whose parts all lie in X Ď Z+.

A few other notations should be fixed and comments made. We call the number of parts of λ the length
l(λ) := r of the partition. We call the number being partitioned the size |λ| := λ1 + λ2 + ¨ ¨ ¨ + λr of λ. We
write λ $ n to indicate λ is a partition of n (i.e., |λ| = n), and we allow a slight abuse of notation to let
“λi P λ” indicate λi is one of the parts of λ (with multiplicity). Furthermore, for formal transparency, we
define the natural number nλ, which we call the integer of λ, to be the product of its parts, i.e., we take

nλ := λ1λ2 ¨ ¨ ¨ λr.

We assume the conventions l(H) := 0, |H| := 0, and nH := 1 (being an empty product), and take s P C,
Re(s) ą 1 and |q| ă 1 throughout, unless otherwise specified. Proofs are postponed until Section 3.

Sums of the form
ř

λPP φ(λ) obey many interesting transformations, and often reveal patterns that
are otherwise obscure, much as with sums over natural numbers. MacMahon appears to be the first to
have considered such summations explicitly, looking at sums over partitions of a given positive integer in
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[Mac84]. Fine gives a variety of beautiful results and techniques related to sums over partitions in [Fin88],
as do Andrews [And98], Alladi [All97], and other authors. More recent work of Bloch-Okounkov [BO00]
and Zagier [Zag15] relates sums over partitions to infinite families of quasi-modular forms via the q-bracket
operator, and Griffin-Ono-Warnaar [GOW14] use partition sums involving Hall-Littlewood polynomials to
produce modular functions. These series have deep connections. It is natural then to wonder, in what other
ways might sums over partitions connect to classical number-theoretic objects?

We need to introduce one more notation, in order to state the central theorem. Define ϕn( f ; q) by
ϕ0( f ; q) := 1 and

ϕn( f ; q) :=
n
ź

k=1

(1 ´ f (k)qk)

where n ě 1, for an arbitrary function f : N Ñ C. When the infinite product converges, let ϕ8( f ; q) :=
limnÑ8 ϕn( f ; q). We think of ϕ as a generalization of the q-Pochhammer symbol. Note that if we set
f equal to a constant z, then ϕ does specialize to the q-Pochhammer symbol, as ϕn(z; q) = (zq; q)n and
ϕ8(z; q) = (zq; q)8.

As in (1) and (2), it is the reciprocal 1/ϕ8( f ; q) that interests us. With the above notations, we have the
following system of identities.

Theorem 1.1. If the product converges, then 1/ϕ8( f ; q) =
ś8

n=1(1 ´ f (n)qn)´1 may be expressed in a number of
equivalent forms, viz.

1

ϕ8( f ; q)
=

ÿ

λPP

q|λ|
ź

λiPλ

f (λi) (4)

= 1 +
8
ÿ

n=1

qn f (n)

ϕn( f ; q)
(5)

= 1 +
1

ϕ8( f ; q)

8
ÿ

n=1

qn f (n)ϕn´1( f ; q) (6)

= 1 +
8
ÿ

n=1

(´1)n(q´1)
n(n´1)

2

ϕn

(

1
f ; q´1

)

śn´1
k=1 f (k)

(7)

= 1 +

ř

(6)

1 ´
ř

(5)

1 +

ř

(6)

1 ´
ř

(5)

1 + ¨ ¨ ¨

(8)

where
ř

(5),
ř

(6) in (8) denote the summations appearing in (5) and (6), respectively.

The product on the right-hand side of identity (4) above is taken over the parts λi of λ. Note that the

summation in (7) converges for q´1 outside the unit circle (it may converge inside the circle as well). Note
also that, by L‘Hospital’s rule, any power series

ř8
n=1 f (n)qn with constant term zero can be written as the

limit
8
ÿ

n=1

f (n)qn = lim
zÑ0

z´1

(

1

ϕ8(z f ; q)
´ 1

)

.

It is obvious that if f is completely multiplicative, then
ś

λiPλ f (λi) = f (nλ), where nλ is the so-called

”integer” of λ defined above. We record one more, obvious consequence of Theorem 1.1, as we assume it
throughout this paper. As before, let X Ď Z+, and take PX Ď P to be the set of partitions into elements of
X. Then clearly by setting f (n) = 0 if n R X in Theorem 1.1, we see

1
ś

nPX(1 ´ f (n)qn)
=

ÿ

λPPX

q|λ|
ź

λiPλ

f (λi).
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The remaining summations in the theorem (aside from (7), which may not converge) are taken over n P X.
We see from Theorem 1.1 that we may pass freely between the shapes (4) – (8), which specialize to a

number of classical expressions. For example, taking f ” 1 in the theorem gives the following fact.

Corollary 1.2. The partition generating function (1) is true.

Assuming Re(s) ą 1, if we take q = 1, f (n) = 1/ns if n is prime and = 0 otherwise, then Theorem 1.1
yields another classical fact, plus a formula giving the zeta function as a sum over primes.

Corollary 1.3. The Euler product formula (2) for the zeta function is true. We also have the identity

ζ(s) = 1 +
ÿ

pPP

1

ps
ś

rPP, rďp

(

1 ´ 1
rs

) .

2. PARTITION-THEORETIC ZETA FUNCTIONS

A multitude of nice specializations of Theorem 1.1 may be obtained. We would like to focus on an
interesting class of partition sums arising from Euler’s sine function (3) combined with Theorem 1.1. Taking
q = 1 (as we have done in Corollary 1.3), we begin by noting an easy partition-theoretic formula that may
be used to compute the value of π.

Let PmZ Ď P denote the set of partitions into multiples of m. Recall from above that the “integer” nλ of
a partition λ is the product λ1λ2 ¨ ¨ ¨ λr of its parts.

Corollary 2.1. Summing over partitions into even parts, we have the formula

π

2
=

ÿ

λPP2Z

1

n2
λ

.

We notice that the form of the sum of the right-hand side resembles ζ(2). Based on this similarity,
we wonder if there exists a nice partition-theoretic analog of ζ(s) possessing something of a familiar zeta
function structure—perhaps Corollary 2.1 gives an example of such a function? However, in this case it is
not so: the above identity arises from different types of phenomena from those associated with ζ(s). We
have an infinite family of formulas of the following shapes.

Corollary 2.2. Summing over partitions into multiples of any whole number m ą 1, we have

ÿ

λPPmZ

1

n2
λ

=
π

m sin
(

π
m

) (9)

ÿ

λPPmZ

1

n4
λ

=
π2

m2 sin
(

π
m

)

sinh
(

π
m

) , (10)

and increasingly complicated formulas can be computed for
ř

λPPmZ
1/n2t

λ , t P Z+.

Examples like these are appealing, but their right-hand sides are not entirely reminiscent of the Riemann
zeta function, aside from the presence of π. Certainly they are not as tidy as expressions of the form

ζ(2k) = “π2k ˆ rational”. Based on the previous corollaries, a reasonable first guess at a partition-theoretic
analog of ζ(s) might be to define

ζP (s) :=
ÿ

λPP

1

ns
λ

=
1

ś8
n=1

(

1 ´ 1
ns

) , Re(s) ą 1.

Of course, neither side of this identity converges, but we do obtain convergent expressions if we omit the
first term and perhaps subsequent terms of the product to yield ζPěa

(s) :=
ř

λPPěa
1/ns

λ =
ś8

n=a(1 ´
1/ns)´1 (a ě 2), where Pěa Ă P denotes the set of partitions into parts greater than or equal to a. For
instance, we have the following formula.

3



Corollary 2.3. Summing over partitions into parts greater than or equal to 2, we have

ζPě2
(3) =

ÿ

λPPě2

1

n3
λ

=
3π

cosh
(

1
2 π

?
3
) .

While it is an interesting expression, stemming from an identity of Ramanujan [Ram00], once again this
formula does not seem to evoke the sort of structure we anticipate from a zeta function—of course, the
value of ζ(3) is not even known. We need to find the “right” subset of P to sum over, if we hope to find a
nice partition-theoretic zeta function. As it turns out, there are subsets of P that naturally produce analogs
of ζ(s) for certain values of s.

Definition. We define a partition-theoretic generalization ζP (tsuk) of the Riemann zeta function by the fol-
lowing sum over all partitions λ of fixed length l(λ) = k P Zě0 at argument s P C, Re(s) ą 1:

ζP (tsuk) :=
ÿ

l(λ)=k

1

ns
λ

. (11)

Remark. This is a fairly natural formation, being similar in shape (and notation) to the weight k multiple

zeta function ζ(tsuk), which is instead summed over length-k partitions into distinct parts; Hoffman gives

interesting formulas relating ζP (tsuk) (in different notation) to combinations of multiple zeta functions
[Hof92], which exhibit rich structure.

We have immediately that ζP (tsu0) = 1/ns
H = 1 and ζP (tsu1) = ζP (tsu) = ζ(s). Using Theorem 1.1

and proceeding (see Section 3) much as Euler did to find the value of ζ(2k) [Dun99], we are able to find

explicit values for ζP (t2uk) at every positive integer k ą 0. Somewhat surprisingly, we find that in these

cases ζP (t2uk) is a rational multiple of ζ(2k).

Corollary 2.4. For k ą 0, we have the identity

ζP (t2uk) =
ÿ

l(λ)=k

1

n2
λ

=
22k´1 ´ 1

22k´2
ζ(2k).

For example, we have the following values:

ζP (t2u) = ζ(2) =
π2

6
,

ζP (t2u2) =
7

4
ζ(4) =

7π4

360
,

ζP (t2u3) =
31

16
ζ(6) =

31π6

15120
, . . . ,

ζP (t2u13) =
33554431

16777216
ζ(26) =

22076500342261π26

93067260259985915904000000
, . . .

Corollary 2.4 reveals that ζP (t2uk) is indeed of the form “π2k ˆ rational” for all positive k, like the zeta
values ζ(2k) given by Euler (we note that ζ(26) is the highest zeta value Euler published) [Dun99]. We have

more: we can find ζP (
 

2t
(k
) explicitly for all t P Z+. These values are finite combinations of well-known

zeta values, and are also of the form “π2tk ˆ rational”.

Corollary 2.5. For k ą 0 we have the identity

ζP (t4uk) =
ÿ

l(λ)=k

1

n4
λ

=
1

16k´1

(

2k
ÿ

n=0

(´1)n(22n´1 ´ 1)(24k´2n´1 ´ 1)ζ(2n)ζ(4k ´ 2n)

)

,

and increasingly complicated formulas can be computed for ζP (
 

2t
(k
) for t P Z+.

Remark. The summation on the far right above may be shortened by noting the symmetry of the summands
around the n = k term.
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It would be desirable to understand the value of ζP (tsuk) at other arguments s; the proof we give below
(see Section 3) does not shed much light on this question, being based very closely on Euler’s formula
(1.3), which forces s be a power of 2. Also, if we solve Corollary 2.3 for ζ(0), we conclude that ζ(0) =

2´2

2´1´1
ζP (t2u0) = ´1/2, which is the value of ζ(0) under analytic continuation. Can ζP (tsuk) be extended

via analytic continuation for values of k ą 1? In a larger sense we wonder: do nice zeta function analogs
exist if we sum over other interesting subsets of P?

We do have a few general properties shared by convergent series
ř

1/ns
λ summed over large subclasses

of P . First we need to refine some of our previous notations.

Definition. Take any subset of partitions P 1 Ď P . Then for Re(s) ą 1, on analogy to classical zeta function
theory, when these expressions converge we define

ζP 1 :=
ÿ

λPP 1

1

ns
λ

, ηP 1(s) :=
ÿ

λPP 1

(´1)l(λ)

ns
λ

, ζP 1(tsuk) :=
ÿ

λ P P 1

l(λ) = k

1

ns
λ

. (12)

Remark. As important special cases, we have ζPP
(s) = ζ(s) and ζP

Z+ (tsuk) = ζP (tsuk). It is also easy to

see that ζP 1(s) =
ř8

k=0 ζP 1(tsuk) and ηP 1(s) =
ř8

k=0(´1)kζP 1(tsuk) if we assume absolute convergence.

Moreover, given absolute convergence, we may write ζP 1(s), ζP 1(tsuk) as classical Dirichlet series related

to multiplicative partitions: we have ζP 1(s) =
ř8

j=1 #tλ P P 1 | nλ = ju j´s and ζP 1(tsuk)(s) =
ř8

j=1 #tλ P
P 1 | l(λ) = k, nλ = ju j´s (see [CS13] for more about multiplicative partitions).

As previously, take X Ď Z+ and take PX Ď P to denote partitions into elements of X (thus PZ+ =

P). Note that ζPX
(s) =

ś

nPX

(

1 ´ 1
ns

)´1
is divergent if 1 P X and, when X is finite (thus there is no

restriction on the value of Re(s)), if s = iπj/ log n for any n P X and even integer j. Similarly, when X is

finite, ηPX
(s) =

ś

nPX

(

1 + 1
ns

)´1
is divergent if s = iπk/ log n for any n P X and odd integer k. Clearly

if Y Ď Z+, then from the product representations we also have ζPX
(s)ζPY

(s) = ζPXYY
(s)ζPXXY

(s) and
ηPX

(s)ηPY
(s) = ηPXYY

(s)ηPXXY
(s).

Many interesting subsets of partitions have the form PX , in particular those to which Theorem 1.1 most
readily applies. Note that such subsets PX are partition ideals of order 1, in the sense of Andrews [And98].
With the above notations, we have the following useful “doubling” formulas.

Corollary 2.6. If ζPX
(s) converges over PX Ď P , then

ζPX
(2s) = ζPX

(s)ηPX
(s). (13)

Furthermore, for n P Zě0 we have the identity

ζPX

(

t2n+1suk
)

=
2nk
ÿ

j=0

(´1)jζPX

(

t2nsuj
)

ζPX

(

t2nsu2nk´j
)

. (14)

Remark. As in Corollary 2.5, the summation on the right-hand side of (14) may be shortened by symmetry.

If we take X = P, then (13) reduces to the classical identity ζ(2s) = ζ(s)
ř8

n=1 λ(n)/ns, where λ(n) is

Liouville’s function. Another specialization of Corollary 2.6 leads to new information about ζP (tsuk): we

may extend the domain of ζP (tsuk) to Re(s) ą 1 if we take X = Z+, n = 0, k = 2. We find ζP (tsu2) inherits
analytic continuation from the sum on the right-hand side below.

Corollary 2.7. For Re(s) ą 1, we have

ζP (tsu2) =
ζ(2s) + ζ(s)2

2
.

Remark. This resembles a well-known series shuffle product formula for multiple zeta values [BF06].
5



Another interesting subset of P is the set of partitions P˚ into distinct parts; also of interest is the set of
partitions P˚

X into distinct elements of X Ď Z+ (thus P˚
Z+ = P˚). However, partitions into distinct parts

are not immediately compatible with the identities in Theorem 1.1. Happily, we have a dual theorem that
leads us to zeta functions summed over P˚

X for any X Ď Z+.
Let us recall the infinite product ϕ8( f ; q) from Theorem 1.1.

Theorem 2.8. If the product converges, then ϕ8( f ; q) =
ś8

n=1(1 ´ f (n)qn) may be expressed in a number of
equivalent forms, viz.

ϕ8( f ; q) =
ÿ

λPP˚

(´1)l(λ)q|λ|
ź

λiPλ

f (λi) (15)

= 1 ´ř

(6) (16)

= 1 ´ ϕ8( f ; q)
ř

(5) (17)

= 1 ´
ř

(5)

1 +

ř

(6)

1 ´
ř

(5)

1 +

ř

(6)

1 ´ ¨ ¨ ¨

(18)

where
ř

(5),
ř

(6) are exactly as in Theorem 1.1, and the sum in (15) is taken over the partitions into distinct parts.

Remark. Note that there is not a nice “inverted” sum of the form (7) here.

Just as with Theorem 1.1, we may write arbitrary power series as limiting cases, and we have the obvious
identity

ź

nPX

(1 ´ f (n)qn) =
ÿ

λPP˚
X

(´1)l(λ)q|λ|
ź

λiPλ

f (λi),

with the remaining summations in Theorem 2.8 being taken over elements of X. For completeness, we
record another easy but useful consequence of Theorems 1.1 and 2.8. The following statement might be
viewed as a generalized eta quotient formula, with coefficients given explicitly by finite combinatorial
sums.

Corollary 2.9. For f j defined on Xj Ď Z
+, consider the double product

n
ź

j=1

ź

k jPXj

(

1 ˘ f j(kj)q
k j

)˘1
=

8
ÿ

k=0

ckqk,

where the ˘ sign is fixed for fixed j, but may vary as j varies. Then the coefficients ck are given by the (n ´ 1)-tuple
sum

ck =
k
ÿ

k2=0

k2
ÿ

k3=0

. . .

kn´1
ÿ

kn=0











ÿ

λ$kn

λPP˘
Xn

ź

λiPλ

fn(λi)























ÿ

λ$(kn´1´kn)

λPP˘
Xn´1

ź

λiPλ

fn´1(λi)













. . .













ÿ

λ$(k´k2)

λPP˘
X1

ź

λiPλ

f1(λi)













in which we have set P´
Xj

:= PXj
and P

+
Xj

:= P˚
Xj

with the ˘ sign as associated to each j above.

Remark. The + or ´ signs in the formula for ck indicate partitions arising from the numerator or denomi-
nator, respectively, of the double product. One may replace f j with ´ f j to effect further sign changes.

Analogous corollaries to those following Theorem 1.1 are available, but we wish right away to apply
this theorem to the problem at hand, the investigation of partition zeta functions. We have ζ

P
˚
X
(s) =

ś

nPX(1 + 1
ns ) as well as η

P
˚
X
(s) =

ś

nPX(1 ´ 1
ns ). It is immediate then from (15) that for Re(s) ą 1 we

6



also have the following relations, where the sum on the left-hand side of each equation is taken over the
partitions into distinct elements of X:

ζ
P

˚
X
(s) =

1

ηPX
(s)

, η
P

˚
X
(s) =

1

ζPX
(s)

(19)

Note that ζ
P

˚
X
(s) and η

P
˚
X
(s) are finite sums (and entire functions of s) if X is a finite set, unlike ζPX

(s)

and ηPX
(s). Note also that η

P
˚
X
(s) = 0 identically if 1 P X, with zeros when X is finite at the values

s = iπj/ log n for any n P X and j even. Unlike ζP (s), we can see from (19) that ζP˚(s) is well-defined
on Re(s) ą 1 (thus both ζ

P
˚
X

and η
P

˚
X

are well-defined over all subsets P˚
X of P˚); when X is finite, ζP˚(s)

has zeros at s = iπk/ log n for n P X and k odd. Morever, we have ζ
P

˚
X
(s)ζ

P
˚
Y
(s) = ζ

P
˚
XYY

(s)ζ
P

˚
XXY

(s) and

η
P

˚
X
(s)η

P
˚
Y
(s) = η

P
˚
XYY

(s)η
P

˚
XXY

(s). Here is an example of a zeta sum of this form.

Corollary 2.10. Summing over partitions into distinct parts, we have that

ζP˚(2) =
ÿ

λPP˚

1

n2
λ

=
sinh π

π
.

Zeta sums over partitions into distinct parts admit an important special case: as we remarked beneath

definition (11), the multiple zeta function ζ(tsuk) can be written

ζ(tsuk) :=
ÿ

λ1ąλ2ą¨¨¨ąλkě1

1

λs
1λs

2 ¨ ¨ ¨ λs
k

=
ÿ

λ P P˚

l(λ) = k

1

ns
λ

= ζP˚(tsuk). (20)

Using this notation, we can derive even simpler formulas for the multiple zeta values ζ(
 

2t
(k
) than those

found for ζP (
 

2t
(k
) in Corollaries 2.4 and 2.5. For instance, we have the following values.

Corollary 2.11. For k ą 0 we have the identities

ζ(t2uk) =
π2k

(2k + 1)!
,

ζ(t4uk) = π4k
2k
ÿ

n=0

(´1)n

(2n + 1)!(4k ´ 2n + 1)!
,

ζ(t8uk) = π8k
4k
ÿ

n=0

(´1)n

(

n
ÿ

i=0

(´1)i

(2i + 1)!(2n ´ 2i + 1)!

)(

4k´n
ÿ

i=0

(´1)i

(2i + 1)!(8k ´ 2n ´ 2i + 1)!

)

,

and increasingly complicated formulas of the shape “π2tk ˆ finite sum of fractions” can be computed for multiple zeta

values of the form ζ(
 

2t
(k
), t P Z+.

Remark. The first identity above is proved in [Hof92] by a different approach from that taken here (see
Section 3); it is possible the other identities in the corollary are also known.

The summations in Corollary 2.11 arise from quite general properties: we have these “doubling” formu-
las comparable to Corollary 2.6.

Corollary 2.12. If ζ
P

˚
X
(s) converges over P˚

X Ď P , then

η
P

˚
X
(2s) = η

P
˚
X
(s)ζ

P
˚
X
(s). (21)

Furthermore, for n P Zě0 we have

ζ
P

˚
X

(

t2n+1suk
)

=
2nk
ÿ

j=0

(´1)jζ
P

˚
X

(

t2nsuj
)

ζ
P

˚
X

(

t2nsu2nk´j
)

. (22)

Remark. Once again, the summation on the right-hand side of (22) may be be shortened by symmetry.
Equation (22) yields a family of multiple zeta function identities when we let X = Z+.
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We note that by recursive arguments, from (13) and (21) together with (8), we have these curious product
formulas connecting sums over partitions into distinct parts to their counterparts involving unrestricted
partitions:

ζ
P

˚
X
(s)ζ

P
˚
X
(2s)ζ

P
˚
X
(4s)ζ

P
˚
X
(8s) ¨ ¨ ¨ = ζPX

(s)

ηPX
(s)ηPX

(2s)ηPX
(4s)ηPX

(8s) ¨ ¨ ¨ = η
P

˚
X
(s)

Now, if we take X = P then (21) becomes the classical identity ζ(2s)´1 = ζ(s)´1
ř8

n=1 |µ(n)|/ns, where

µ(n) is the Möbius function. We might view the simple quantity (´1)l(λ) as a partition-theoretic general-
ization of µ; it specializes to the Möbius function (when considering partitions into distinct prime parts),
and also to Liouville’s function (considering unrestricted prime partitions), as we saw above. Alladi has ob-
served this correspondence as well [All15]. It is fascinating—and rather mysterious—that partitions (which
are defined additively, with no connection to multiplication) into parts that are prime numbers (defined
multiplicatively) should have significant number-theoretic connections.

The literature abounds with product formulas which, when fed through the machinery of the identities
noted here, produce nice partition zeta sum variants.

3. PROOFS OF THEOREMS AND COROLLARIES

Proof of Theorem 1.1. Identity (4) appears in a different form as [Fin88, Equation 22.16]. The proof proceeds
formally, much like the standard proof of (1.1); we expand 1/ϕ8( f ; q) as a product of geometric series

1

ϕ8( f ; q)
= (1 + f (1)q + f (1)2q2 + f (1)3q3 + . . . )(1 + f (2)q2 + f (2)2q4 + f (2)3q6 + . . . ) ¨ ¨ ¨

and multiply out all the terms (without collecting coefficients in the usual way). The result is the partition
sum in (4).

Identities (5) and (6) are proved using telescoping sums. Consider that

1

ϕ8( f ; q)
=

1

ϕ0( f ; q)
+

8
ÿ

n=1

(

1

ϕn( f ; q)
´ 1

ϕn´1( f ; q)

)

= 1 +
8
ÿ

n=1

1

ϕn´1( f ; q)

(

1

1 ´ f (n)qn
´ 1

)

= 1 +
8
ÿ

n=1

qn f (n)

ϕn( f ; q)
= 1 +

ř

(5) ,

recalling the notation
ř

(5) (as well as
ř

(6)) from the theorem, which is (5). Similarly, we can show

ϕ8( f ; q) = ϕ0( f ; q) +
8
ÿ

n=1

(ϕn( f ; q) ´ ϕn´1( f ; q))

= 1 ´
8
ÿ

n=1

qn f (n)ϕn´1( f ; q) = 1 ´ř

(6) .

Thus we have
ř

(5) =
1

ϕ8( f ; q)
´ 1 =

1 ´ ϕ8( f ; q)

ϕ8( f ; q)
=

ř

(6)

ϕ8( f ; q)
,

which leads to (6).
The proof of (7) is similar to the proof we gave of [RS13, Theorem 1.1(1)]. Substitute the identity

ϕn( f ; q) =
n
ź

k=1

(1 ´ f (k)qk) = (´1)nqn(n+1)/2ϕn(1/ f ; q´1)
n
ź

k=1

f (k)

term-by-term into the sum (5) and simplify to find the desired expression.
8



The proof of (8) is inspired by the standard proof of the continued fraction representation of the golden
ratio. It follows from the proof above of (5) and (6) that

1

ϕ8( f ; q)
= 1 +

ř

(6)

ϕ8( f ; q)

= 1 +

ř

(6)

1 ´ ϕ8( f ; q)
ř

(5)

= 1 +

ř

(6)

1 ´
ř

(5)

1/ϕ8( f ; q)

.

We notice that the expression on the left-hand side is also present on the far right in the denominator. We
replace this term 1/ϕ8( f ; q) in the denominator with the entire right-hand side of the equation; reiterating
this process indefinitely gives (8). �

Remark. The series
ř

(5),
ř

(6) enjoy other nice relationships. For instance, because

(1 +
ř

(5))(1 ´ř

(6)) = 1 ,

it is easy to see that
ř

(5) ´ř

(6) =
ř

(5)

ř

(6),

which resembles the formula φ ´ 1/φ = φ ¨ 1/φ involving the golden ratio φ and its reciprocal.

Proof of Corollary 1.2. This is immediate upon letting f ” 1 in (4), as

ÿ

λPP

q|λ|
ź

λiPλ

f (λi) = 1 +
8
ÿ

n=1

qn
ÿ

λ$n

ź

λiPλ

f (λi).

�

Proof of Corollary 1.3. As noted above, we assume Re(s) ą 1. Let q = 1, f (n) = 1/ns if n is prime and = 0
otherwise; then by (4)

1
ś

pPP

(

1 ´ 1
ps

) =
ÿ

λPPP

1

ns
λ

.

Consider the prime decomposition of a positive integer n = pa1
1 pa2

2 ¨ ¨ ¨ par
r , p1 ą p2 ą ¨ ¨ ¨ ą pr. We will asso-

ciate this decomposition to the unique partition into prime parts λ = (p1, . . . , p1, p2, . . . , p2, . . . , pr, . . . , pr) P
P , where pk P P is repeated ak times (thus n is equal to nλ). Every positive integer n ě 1 is associated to
exactly one partition into prime parts (with n = 1 associated to H P PP), and conversely: there is a bijective
correspondence between Z+ and PP (Alladi and Erdős give an interesting study [AE77] along these lines).
Therefore we see by absolute convergence that

ÿ

ně1

1

ns
=

ÿ

λPPP

1

ns
λ

.

Equating the left-hand sides of the above two identities gives Euler’s product formula (2). The series given
for ζ(s) follows immediately from Theorem (5) with the above definition of f . �

Proof of Corollary 2.1. This is actually a special case of the subsequent Corollary 2.2, setting m = 2 in the first
equation (see below). �

Proof of Corollary 2.2. We begin with an identity equivalent to (3) and its “+” companion:

πz

sin(πz)
=

1
ś8

n=1

(

1 ´ z2

n2

) ,
πz

sinh(πz)
=

1
ś8

n=1

(

1 + z2

n2

)

9



If ωk := e2πi/k, then ω2
2k = ωk and we have, by multiplying the above two identities, the pair

π2z2

sin(πz) sinh(πz)
=

1
ś8

n=1

(

1 ´ z4

n4

) ,
ω4π2z2

sin(ω8πz) sinh(ω8πz)
=

1
ś8

n=1

(

1 + z4

n4

) .

Multiplying these two equations, and repeating this procedure indefinitely, we find identities like

ω4π4z4

sin(πz) sinh(πz) sin(ω8πz) sinh(ω8πz)
=

1
ś8

n=1

(

1 ´ z8

n8

) ,

ω2
4π8z8

sin(πz) sinh(πz) sin(ω8πz) sinh(ω8πz) sin(ω16πz) sinh(ω16πz) sin(ω8ω16πz) sinh(ω8ω16πz)

=
1

ś8
n=1

(

1 ´ z16

n16

) ,

as well as their “+” companions, and so on. On the other hand, it follows from (4) that

1
ś8

n=1

(

1 ´ zqn

ns

) =
ÿ

λPP

q|λ|
ź

λiPλ

z

λs
i

=
ÿ

λPP

zl(λ)q|λ|

ns
λ

.

Replacing z with ˘z2t
and taking q = 1 in the above expression, it is easy to see that we have

1
ś8

n=1

(

1 ´ z2t

n2t

) =
ÿ

λPP

z2tl(λ)

n2t

λ

,
1

ś8
n=1

(

1 + z2t

n2t

) =
ÿ

λPP

(´1)l(λ)z2tl(λ)

n2t

λ

.

These series have closed forms given by complicated trigonometric and hyperbolic expressions such as the
ones above. Setting z = 1/m in such expressions yields the explicit values advertised in the corollary for

1
ś8

n=1

(

1 ´ 1

m2t
n2t

) =
1

ś8
n=1

(

1 ´ 1

(mn)2t

) =
1

ś

n”0 (mod m)

(

1 ´ 1

n2t

) =
ÿ

λPPmZ

1

n2t

λ

.

�

Remark. More generally, let Pa(m) denote the set of partitions into parts ” a (mod m) (so PmZ is P0(m) in

this notation). It is clear that if λ P Pa(m) then ns
λ ” as (mod m), thus we find

1
ś

n”a (mod m)(1 ´ nsqn)
=

ÿ

λPPa(m)

ns
λq|λ| ” 1

(asqa; qm)8
(mod m).

Of course, these expressions diverge as q Ñ 1 so ζPa(m)
(´s) does not make sense, but we wonder: do there

exist similarly nice relations that involve ζPa(m)
(s) or a related form?

Proof of Corollary 2.3. We apply (4) to the following formula submitted by Ramanujan as a problem to the
Journal of the Indian Mathematical Society, reprinted as [Ram00, Question 261]:

8
ź

n=2

(

1 ´ 1

n3

)

=
cosh

(

1
2 π

?
3
)

3π
.

Take q = 1, f (n) = 1/n3 if n ą 1 and = 0 otherwise in (4). Comparing the result with the above formula
gives the corollary. �

Remark. Ramanujan provides a companion formula
ś8

n=1

(

1 + 1
n3

)

= cosh
(

1
2 π

?
3
)

/π in the same prob-

lem [Ram00]. Multiplying this infinite product by the one above and using (4) yields a closed form for
ř

λPPě2
1/n6

λ as well.
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Proof of Corollary 2.4. Consider the sequence βk of coefficients of the expansion

z

sinh z
=

1
ś8

n=1

(

1 + z2

π2n2

) =
8
ÿ

k=0

β2kz2k. (23)

From the Maclaurin series for the hyperbolic cosecant and Euler’s work relating the zeta function to the
Bernoulli numbers, it follows that

β2k =
4(´1)k(22k´1 ´ 1)ζ(2k)

(2π)2k
. (24)

On the other hand, from (4) we have

1
ś8

n=1

(

1 + z2

π2n2

) =
ÿ

λPP

(´1)l(λ)z2l(λ)

π2l(λ)n2
λ

=
8
ÿ

k=0

(´1)kz2k

π2k

ÿ

l(λ)=k

1

n2
λ

,

thus

β2k =
(´1)k

π2k
ζP (t2uk).

The corollary is immediate by comparing the two expressions for β2k above. �

Proof of Corollary 2.5. Much as in the proof of Corollary 2.4 above, we have from (3) that

z

sin z
=

8
ÿ

k=0

z2k

π2k

ÿ

l(λ)=k

1

n2
λ

=
8
ÿ

k=0

α2kz2k

with

α2k =
4(22k´1 ´ 1)ζ(2k)

(2π)2k
= (´1)kβ2k. (25)

Using the Cauchy product
(

8
ÿ

k=0

akzk

)(

8
ÿ

k=0

bkzk

)

=
8
ÿ

k=0

zk
k
ÿ

n=0

anbk´n, (26)

we see after some arithmetic

z2

sin z sinh z
=

(

8
ÿ

k=0

α2kz2k

)(

8
ÿ

k=0

β2kz2k

)

=
8
ÿ

k=0

γ4kz4k,

where

γ4k =
2k
ÿ

n=0

α2nβ4k´2n,

with α˚, β˚ as in (25),(26) respectively. On the other hand, the proof of Corollary 2.2 implies

z2

sin z sinh z
=

1
ś8

n=1

(

1 ´ z4

π4n4

) =
8
ÿ

k=0

z4k

π4k

ÿ

l(λ)=k

1

n4
λ

,

thus

γ4k =
1

π4k
ζP (t4uk).

Comparing the two expressions for γ4k above, the theorem follows, just as in the previous proof.

We can carry this approach further to find ζP (
 

2t
(k
) for t ą 2, much as in the proof of Corollary 2.2. For

instance, to find ζP (t8uk) we begin by noting
(

8
ÿ

k=0

z4k

π4k
ζP (t4uk)

)(

8
ÿ

k=0

(´1)kz4k

π4k
ζP (t4uk)

)

=
1

ś

8

n=1

(

1 ´ z4

π4n4

) (

1 + z4

π4n4

) =
8
ÿ

k=0

z8k

π8k
ζP (t8uk).

11



We compare the coefficients on the left-and right-hand sides, using (26) to compute the coefficients on the

left. Likewise, for ζP (t16uk) we compare the coefficients on both sides of the equation
(

8
ÿ

k=0

z8k

π8k
ζP (t8uk)

)(

8
ÿ

k=0

(´1)kz8k

π8k
ζP (t8uk)

)

=
8
ÿ

k=0

z16k

π16k
ζP (t16uk),

and so on, recursively, to find ζP (
 

2t
(k
) as t increases. It is clear from induction that ζP (

 

2t
(k
) is of the

form “π2t ˆ rational” for all t P Z
+. �

Proof of Corollary 2.6. We have already seen these principles at work in the proofs of Corollaries 2.2 and 2.5.
We have





ÿ

λPPX

zl(λ)

ns
λ









ÿ

λPPX

(´1)l(λ)zl(λ)

ns
λ



 =
1

ś

nPX

(

1 ´ z
ns

) (

1 + z
ns

) =
ÿ

λPPX

z2l(λ)

n2s
λ

.

Letting z = 1 gives (13). If we replace z with zs we may rewrite the above equation in the form
(

8
ÿ

k=0

zskζPX
(tsuk)

)(

8
ÿ

k=0

(´1)kzskζPX
(tsuk)

)

=
8
ÿ

k=0

z2skζPX
(t2suk).

Using (26) on the left and comparing coefficients on both sides gives the n = 0 case of (14); the general
formula follows from the n = 0 case by induction. �

Proof of comments following Corollary 2.6. Taking X = P we see (´1)l(λ) specializes to Liouville’s function

λ(nλ) = (´1)Ω(nλ) (here we are using “λ” in two different ways), where Ω(N) is the number of prime fac-
tors of N with multiplicity. That (13) therefore becomes ζ(s)

ř8
n=1 λ(n)/ns = ζ(2s) follows from arguments

similar to the proof of Corollary 1.3. �

Proof of Corollary 2.7. This identity follows immediately by taking PX = P , n = 0, k = 2 in (14) and simpli-
fying. �

Proof of Theorem 2.8. The proof of (15) is similar to Euler’s proof that the number of partitions of n into
distinct parts is equal to the number of partitions into odd parts [Ber06]. We expand the product

ϕ8( f ; q) = (1 ´ f (1)q)(1 ´ f (2)q2)(1 ´ f (3)q3) ¨ ¨ ¨ ,

which results in (15).
Identities (16) and (17) follow directly from the proof of (5),(6) above. Moreover, the proof of (18) is much

like the proof of (8). We note that

1

ϕ8( f ; q)
= 1 ´ ϕ8( f ; q)

ř

(5)

= 1 ´
ř

(5)

1/ϕ8( f ; q)
,

and replace the term 1/ϕ8( f ; q) in the denominator on the right with the continued fraction in (8). �

Proof of Corollary 2.9. The formula follows easily from the leading identities in Theorems 1.1 and 2.8. We
note that

n
ź

j=1

ź

k jPXj

(

1 ˘ f j(kj)q
k j

)˘1
=

n
ź

j=1









ÿ

λPP˘
Xj

q|λ|
ź

λiPλ

f j(λi)









=
n
ź

j=1















8
ÿ

k j=0

qk j
ÿ

λ$k j

λPP˘
Xj

ź

λiPλ

f j(λi)















and repeatedly apply Equation 26 on the right. �
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Proof of Corollary 2.10. The identity is immediate from Theorem 2.8 by letting z = 1 in

sinh(πz)

πz
=

8
ź

n=1

(

1 +
z2

n2

)

=
ÿ

λPP˚

zl(λ)

n2
λ

.

�

Proof of Corollary 2.11. This proof proceeds much like the proofs of Corollaries 2.2, 2.4, 2.5 above, only more
easily. We have from (3) and Theorem 2.8, together with the Maclaurin expansion of the sine function, that

sin z

z
=

8
ÿ

k=0

(´1)kz2k

π2k
ζ(t2uk) =

8
ÿ

k=0

(´1)kz2k

(2k + 1)!
.

Comparing the coefficients of the two summations above gives ζ(t2uk). We carry this approach further to

find ζ(
 

2t
(k
) for t ą 1. We proceed inductively from the case above. Take the identity
(

8
ÿ

k=0

z2t´1k

π2t´1k
ζ

(

!

2t´1
)k
)

)(

8
ÿ

k=0

(´1)kz2t´1k

π2t´1k
ζ

(

!

2t´1
)k
)

)

=
8
ÿ

k=0

z2tk

π2tk
ζ(
 

2t
(k
)

and compare coefficients on the left- and right-hand sides, using (26) to compute the coefficients on the left;
expressions such as the remaining ones in the statement of the corollary result. It is clear from induction

that ζ(
 

2t
(k
) always has the form “π2tk ˆ finite sum of fractions”. �

Proof of Corollary 2.12. This proof is nearly identical to the proof of Corollary 2.6. From the associated prod-
uct representations it is clear that





ÿ

λPP˚
X

zl(λ)

ns
λ









ÿ

λPP˚
X

(´1)l(λ)zl(λ)

ns
λ



 =
ÿ

λPP˚
X

(´1)l(λ)z2l(λ)

n2s
λ

.

Letting z = 1 gives (24). If we replace z with zs we may rewrite the above equation as
(

8
ÿ

k=0

zskζ
P

˚
X
(tsuk)

)(

8
ÿ

k=0

(´1)kzskζ
P

˚
X
(tsuk)

)

=
8
ÿ

k=0

(´1)kz2skζ
P

˚
X
(t2suk).

Again using (26) on the left and comparing coefficients on both sides gives the n = 0 case of (22); the general
formula follows by induction. �

Proof of comments following Corollary 2.12. Taking X = P in Theorem 2.8 and noting that λ P P˚
P

implies nλ

is squarefree, we see (´1)l(λ) = µ(nλ), where µ denotes the classical Möbius function; therefore, we have
the identity

8
ÿ

n=1

µ(n)

ns
=

ÿ

λPP˚
P

µ(nλ)

ns
λ

= η
P

˚
P

(s) =
1

ζPP(s)
=

1

ζ(s)
.

On the other hand, we have ζ
P

˚
P

(s) =
ř

n squarefree 1/ns =
ř8

n=1 |µ(n)|/ns. �
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