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Abstract The main objective of this work is to improve the energy-efficiency

(EE) of a multiple access channel (MAC) system, through power control, in a

distributed manner. In contrast with many existing works on energy-efficient

power control, which ignore the possible presence of a queue at the transmitter,

we consider a new generalized cross-layer EE metric. This approach is relevant

when the transmitters have a non-zero energy cost even when the radiated

power is zero and takes into account the presence of a finite packet buffer

and packet arrival at the transmitter. As the Nash equilibrium (NE) is an

energy-inefficient solution, the present work aims at overcoming this deficit
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by improving the global energy-efficiency. Indeed, as the considered system

has multiple agencies each with their own interest, the performance metric

reflecting the individual interest of each decision maker is the global energy-efficiency

defined then as the sum over individual energy-efficiencies. Repeated games

(RG) are investigated through the study of two dynamic games (finite RG

and discounted RG), whose equilibrium is defined when introducing a new

operating point (OP), Pareto-dominating the NE and relying only on individual

channel state information (CSI). Accordingly, closed-form expressions of the

minimum number of stages of the game for finite RG (FRG) and the maximum

discount factor of the discounted RG (DRG) were established. Our contributions

consist of improving the system performances in terms of powers and utilities

when using the new OP compared to the NE and the Nash bargaining (NB)

solution. Moreover, the cross-layer model in the RG formulation leads to

achieving a shorter minimum number of stages in the FRG even for higher

number of users. In addition, the social welfare (sum of utilities) in the DRG

decreases slightly with the cross-layermodel when the number of users increases

while it is reduced considerably with the Goodman model. Finally, we show

that in real systems with random packet arrivals, the cross-layer power control

algorithm outperforms the Goodman algorithm.

Keywords Distributed power control · Cross-layer energy-efficiency ·

Repeated games · Channel state information.

1 Introduction

1.1 Motivation

The design and management of green wireless networks [1,2,3] has become

increasingly important for modern wireless networks, in particular, to manage
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operating costs. Futuristic (beyond 5G) cellular networks face the dual challenges

of being able to respond to the explosion of data rates and also to manage

network energy consumption. Due to the limited spectrum and large number

of active users in modern networks, energy-efficient distributed power control

is an important issue. Sensor networks, which have multiple sensors sending

information to a common receiver with a limited energy, capacity have also

recently surged in popularity. Energy minimization in sensor networks has

been analysed in many recent works [4,5,6].

Several of the above described systems have some common features:

1. Multiple transmitters connected to a common receiver.

2. Lack of centralization or coordination, i.e., a distributed and de-centralized

network.

3. Relevance of minimizing energy consumption or maximizing energy-efficiency

(EE).

4. Transmitters that have arbitrary data transmission.

These features are present in many modern systems like a sensor network

which has multiple sensors with limited energy connected in a distributed

manner to a common receiver. These sensors don’t always have information to

transmit, resulting in sporadic data transmission. Another example would be

several mobile devices connected to a hot-spot (via wifi or even Bluetooth).

Due to these features of the network, inter-transmitter communication is not

possible and the transmitters are independent decision makers. Therefore,

implementing frequency or time division multiple access becomes harder and

a MAC protocol (with single carrier) is often the preferred or natural method

of channel access.
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1.2 Novelty

In many existing works, both network-centric and user-centric approaches

have been studied. In a network-centric approach, the global energy-efficiency

(GEE) is defined as the ratio between the system benefit (sum-throughput or

sum-rate) over the total cost in terms of consumed power [7,8]. However,

when targeting an efficient solution in an user-centric problem, the GEE

becomes not ideal as it has no significance to any of the decision makers. In

this case, other metrics are required to reflect the individual interest of each

decision maker. Therefore, we redefine the GEE to be the sum over individual

energy-efficiencies as a suitable metric of interest [9].

The major novelty of this work is in improving the sum of energy-efficiencies

for a communication system with all the listed features above. In such

a decentralized and distributed network, as each transmitter operates

independently, implementing a frequency division or a time division multiple

access is not trivial. Therefore, we are interested in looking at a MAC system

where all transmitters operate on the same band. Additionally, EE will be our

preferred metric due to its relevance. This metric has been defined in [10] as the

ratio between the average net data rate and the transmitted power. In [11,12],

the total power consumed by the transmitter was taken into account in the EE

expression to design distributed power control which is one of the most well

known techniques for improving EE. However, many of the works available

on energy-efficient power control consider the EE defined in [10] where the

possible presence of a queue at the transmitter is ignored. In contrast with

the existing works, we consider a new generalized EE based on a cross-layer

approach developed recently in [13,14]. This approach is important since it

takes into account: 1) a fixed cost in terms of power namely, a cost which does

not depend on the radiated power; and 2) the presence of a finite packet
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buffer and sporadic packet arrival at the transmitter (which corresponds

to including the 4th feature mentioned above). Although providing a more

general model, the distributed system in [14] may operate at a point which is

energy-inefficient. Indeed, the point at which the system operates is a Nash

equilibrium (NE) of a certain non-cooperative static game. The present work

aims at filling this gap by not only considering a cross-layer approach of

energy-efficient power control but also improving the system performance in

terms of sum of energy-efficiencies.

1.3 State of the art

Nash bargaining (NB) solution in a cooperative game can provide a possible

efficient solution concept for the problem of interest as it is Pareto-efficient.

However, it generally requires global channel state information (CSI) [15].

Therefore, we are interested in improving the average performance of the

system by considering long-term utilities. We focus then on repeated games

(RG) where repetition allows efficient equilibrium points to be implemented.

Unlike static games which are played in one shot, RG are a special case of

dynamic games which consider a cooperation plan and consist in repeating at

each step the same static game and the utilities result from averaging the static

game utilities over time [16]. There are two relevant dynamic RG models: finite

(FRG) and discounted (DRG). The FRG is defined when the number of stages

during which the players interact is finite. For the DRG model, the discount

factor is seen as the stopping probability at each stage [17]. The power control

problem using the classic EE developed by Goodman et al in [10] has been

solved with RG only in [18] where authors developed an operating point (OP)

relying on individual CSI and showed that RG lead to efficient distributed

solution. Here, we investigate the power control problem of a MAC system by
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referring to RG (finite and discounted) where the utility function is based on

a cross-layer approach. Accordingly, we contribute to:

1. determine the closed-form expressions of the minimum number of stages

for the FRG and the maximum discount factor for the DRG. These two

parameters identify the two considered RG.

2. determine a distributed solution Pareto-dominating the NE and improving

the system performances in terms of powers and utilities compared not

only to the NE but also to the NB solution even for high number of users.

3. show that the RG formulation when using the new EE and the new OP

leads to significant gains in terms of social welfare (sum of utilities of all

the users) compared to the NE.

4. show that the following aspects of the cross-layermodel improve considerably

the system performances when comparing to the Goodman model even for

large number of users:

– the minimum number of stages in the cross-layer EE model can always

be shorter than the minimum number of stages in the Goodman EE

formulation.

– the social welfare for the DRG in the cross-layermodel decreases slightly

when the number of users increases while it decreases considerably in

the Goodman model.

5. show that in real systems with random packet arrivals, the cross-layer

power control algorithm outperforms the Goodman algorithm and then

the new OP with the cross-layer approach is more efficient.

1.4 Structure

This paper is structured as follows. In section 2, we define the system model

under study, introduce the generalized EEmetric and define the non-cooperative
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static game. This is followed (section 3) by the study of the NB solution. In

section 4, we introduce the new OP, give the formulation of both RG models

(FRG and DRG) and determine the closed-form expressions of the minimum

number of stages and the maximum discount factor as well. Numerical results

are presented in section 5 and finally we draw several concluding remarks.

2 Problem statement

2.1 System model

We consider a MAC system composed of N small transmitters communicating

with a receiver. The ith transmitter transmits a signal xi with a power pi ∈

[0, Pmax
i ] where Pmax

i is the maximum transmit power assumed identical for

all users (Pmax
i = Pmax). The additive noise, which is the same for all users,

is an additive white Gaussian noise denoted as n with zero mean and variance

σ2. We assume that the users transmit their data over block fading channels.

The channel gain between user i and the receiver is given by gi. Thus, the

baseband signal received at the receiver is written as:

y =

N∑

i=1

xi|gi|
2 + n. (1)

Therefore, the resulting SINR γi corresponding to the ith transmitter is given

by [18,19]:

γi(p) =
pi|gi|2

σ2 +
∑

j 6=i pj|gj |
2
, (2)

where p = (p1, p2, . . . , pN ) defines the power vector of all users and can be

written as p = (pi,p−i) with p−i = (p1, . . . , pi−1, pi+1, . . . , pN ).

The purpose of this work is to determine how each user is going to control

its power in an optimum way. Game theory, as a powerful mathematical tool,
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helps to solve such an optimization problem where the utility function is the

EE which is a function of the users powers. Since the system under study

has multiple agencies each with individual interest, the sum over individual

energy-efficiencies will be considered as the performance metric reflecting the

individual interest of each decision maker.

2.2 Energy-efficiency metric

The EE is defined in [10] as a ratio of the net data rate to the transmit power

level and is given by:

χi(p) =
Rf(γi(p))

pi
, (3)

where R is the transmission rate (in bit/s) while f : [0,+∞) → [0, 1] denotes

the efficiency function which is sigmoidal and corresponds to the packet success

rate verifying f(0) = 0 and lim
x→+∞

f(x) = 1. Authors of [11] were the first to

consider a total transmission cost of the type radiated power (pi) + consumed

power (b) to design distributed power control strategies for multiple access

channels [13,14] as follows:

χi(p) =
Rf(γi(p))

b+ pi
. (4)

In [13,14], a more generalized EE metric has been developed by considering a

packet arrival process following a Bernoulli process with a constant probability

q and a finite memory buffer of size K. The new EE expression is given by:

χi(p) =
Rq(1− Φ(γi(p)))

b+
qpi(1− Φ(γi(p)))

f(γi(p))

, (5)
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where the function Φ identifies the packet loss due to both bad channel conditions

and the finiteness of the packet buffer and is expressed as follows:

Φ(γi) = (1− f(γi))ΠK(γi), (6)

where ΠK(γi) is the stationary probability that the buffer is full and is given

by:

ΠK(γi) =
ρK(γi)

1 + ρ(γi) + . . .+ ρK(γi)
, (7)

with:

ρ(γi) =
q(1− f(γi))

(1− q)f(γi)
. (8)

It is important to highlight that this new generalized EE given by (5) includes

the conventional case of (4) when making q → 1.

2.3 Static cross-layer power control game

The static cross-layer power control game is a non-cooperative game which

can be defined as a strategic form game [17].

Definition 1 The game is defined by the ordered triplet G =
(
N , (Si)i∈N ,

(ui)i∈N

)
where N is the set of players (the N transmitters), S1, . . . ,SN are

the corresponding sets of strategies with Si = [0, Pmax
i ] and u1, . . . , uN are the

utility functions given by:

ui(p) = χi(p), (9)

where χi(p) is given by equation (5).

In a non-cooperative game, each user (player) seeks to maximize selfishly

its individual utility function. The optimum solution results then by setting
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∂ui/∂pi to zero as follows:

bγ′
iΦ

′(γi) + q

(
1− Φ(γi)

f(γi)

)2

[f(γi)− piγ
′
if

′(γi)] = 0, (10)

where γ′
i =

dγi
dpi

=
γi
pi
, f ′ =

df

dγi
and Φ′ =

dΦ

dγi
.

Authors in [13,14] proved that such equation has a unique best response.

In the game G, this best response defines the NE and is denoted as p∗ =

(p∗1, p
∗
2, . . . , p

∗
N). However, the NE solution is not always Pareto-efficient for

many scenarios. We highlight in Fig. 1 that the NE is not on the Pareto

frontier (the outer boundary of the achievable utilities region). Therefore, we

are motivated to design a more efficient solution than the NE. For this, as a

first step we investigate the NB solution.

3 Nash bargaining solution

Due to the inefficiency of the NE, a Pareto-efficient solution can be achieved

by introducing the cooperation between the players. The resulting solution is

called NB solution whose determination requires two elements [20]:

– the region of achievable utilities formed by the set of the feasible utilities

of all the players should be compact and convex [21];

– the threat point is defined by the NE of the one-shot game [22].

3.1 Compactness and convexity of the achievable utilities region

We denote R the achievable utilities region defined as follows:

R = {(u1, u2, . . . , uN ) | (p1, p2, . . . , pN) ∈ [0, Pmax
i ]

N}. (11)
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As the strategies sets S1, . . . ,SN are compact since Si = [0, Pmax
i ] and the

utility function ui is continuous, the region R is compact for a given channel

configuration [22]. Since it is generally not convex, time-sharing has been a

solution to convexify it. In order to illustrate the main idea of this technique

applied to our problem, let us consider a system of 2 users [22]. During a time

fraction τ , the users use the powers (p1, p2) to have utilities (u1, u2). During

a time fraction (1 − τ), they use another combination of powers (p′1, p
′
2) to

have (u′
1, u

′
2) [15,22]. Thus, the new achievable utilities region (for the 2-users

system) is:

R̄ ={(τu1 + (1− τ)u′
1, τu2 + (1− τ)u′

2)

|0 ≤ τ ≤ 1, (u1, u2) ∈ R, (u′
1, u

′
2) ∈ R}.

(12)

We define R̄∗ the Pareto boundary (the outer frontier) of the convex hull of

R̄. Fig. 1 shows the convexified achievable utilities region with the NE point,

the NB solution and the Nash curve (both will be defined next).
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Fig. 1: Pareto-efficiency of the NB solution vs the NE.
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3.2 Existence and uniqueness of the NB solution

Let RNB define the improvement region of utilities versus the NE and it is

given by:

RNB = {ui ≥ uNE
i |i ∈ [1, . . . , N ]}. (13)

The NB solution belongs to the region RNB . Here, in the power control game

G, there exists a unique NB solution denoted as uNB = (uNB
1 , uNB

2 , . . . , uNB
N )

and is given by [21]:

uNB = max
ui∈RNB

i∈[1,...,N ]

N∏

i=1

(ui − uNE
i ), (14)

Since the NE can always be reached and the achievable utility region is a

compact convex set, the NB solution exists. It is unique since it verifies certain

axioms: individual rationality and feasibility, independence of irrelevant alternatives,

symmetry, Pareto optimality (efficiency) and independence of linear transformations

[21]. The NB solution results from the intersection of the Pareto boundary

(R̄∗) with the Nash curve whose form is m =
∏N

i=1(ui − uNE
i ) where m is a

constant chosen such that there is precisely one intersection point [22] (see Fig.

1). Although the NB solution is Pareto-efficient, it generally requires global

CSI at the transmitters due to the Nash product (m) introducing all the

users utilities [15]. For this reason, we are looking for another efficient solution

through the study of the dynamic RG.

4 Repeated games formulation

RG consist in their standard formulation, in repeating the same static game

at every time instance and the players seek to maximize their utility averaged

over the whole game duration [16]. Repetition allows efficient equilibrium
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points to be implemented and which can be predicted from the one-shot static

game according to the Folk theorem, which provides the set of possible Nash

equilibria of the repeated game [18,23]. In a repeated game, certain agreements

between players on a common cooperation plan and a punishment policy can

be implemented to punish the deviators [16]. In what follows, we introduce

the new OP and characterize the two RG models.

4.1 New OP

The new OP consists in setting pi|gi|2 to a constant α which is unique when

maximizing the expected sum utility over all the channel states. It is given by

[19]:

α̃ = argmax
α

Eg

[
N∑

i=1

ui(p)

]
. (15)

The power of the ith player is then deduced as follows:

p̃i =
α̃

|gi|2
. (16)

The new OP Pareto-dominates the NE and relies on individual CSI at the

transmitter. In order to implement a cooperation plan between the players, we

assume in addition to the individual CSI assumption, that every player is able

to know the power of the received signal at each game stage, which is denoted

by [18]:

Py = σ2 +

N∑

i=1

pi|gi|
2. (17)

When assuming that pi|gi|2 is set to the constant α, the received signal power

can be written as:

Py = α
γi + 1

γi
. (18)
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Accordingly, each transmitter needs only its individual SINR and the constant

α (depending only on pi and |gi|
2) to establish the received signal power Py.

We assume that the data transmission is over block fading channels and that

channel gains |gi|2 lie in a compact set [νmin
i , νmax

i ] [18]. Thus, the interval to

which the received signal power belongs, is ∆ =

[
σ2, σ2 +

N∑

i=1

piν
max
i

]
. Since

the players detect a variation of the received signal power, a deviation from

the cooperation plan has occurred. Indeed, when playing at the new OP, the

received signal power is constant and equal to
σ2(γ̃ + 1)

1− (N − 1)γ̃
. Consequently,

when any player deviates from the new OP, the latter quantity changes and

the deviation is then detected [18].

4.2 Repeated games characterization

A RG is a long-term interaction game where players react to past experience by

taking into account what happened in all previous stages and make decisions

about their future choices [24,25]. The resulting payoff is an average over all the

stage payoffs. We denote by t, the game stage which corresponds to the instant

in which all players choose their actions. Accordingly, a profile of actions can

be defined for all players as p(t) = (p1(t), p2(t), . . . , pN (t)). A history h(t) of

player i at time t is the pair of vectors (Py,t, pi,t) = (Py(1), Py(2), . . . , Py(t −

1), pi(1), pi(2), . . . , pi(t− 1)) and which lies in the set Ht = (∆t−1,Pt−1
i ) with

Pi = [0, Pmax
i ] = [0, Pmax] (as all the users have the same maximum power)

[18]. Histories are fundamental in RG as they allow players to coordinate their

behavior at each stage so that previous histories are known by all the players

[25]. We denote δi,t the pure strategy of the ith player. It defines the action to
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select after each history [18,25]:

δi,t =

∣∣∣∣∣∣∣

Ht → [0, Pmax
i ]

h(t) 7→ pi(t)
(19)

In RG literature, there are two important models [17]:

– the finite RG where the number of stages of the game (denoted as T ≥ 1)

during which the players interact is finite;

– the discounted RG where the discount factor (denoted as λ ∈]0, 1[) is seen

as the stopping probability at each stage.

The utility function of each player results from averaging over the instantaneous

utilities over all the game stages in the FRG while it is a geometric average of

the instantaneous utilities during the game stages in the DRG [18,25,26]. We

denote δ = (δ1, δ2, . . . , δN ) the joint strategy of all players.

Definition 2 A joint strategy δ satisfies the equilibrium condition for the

repeated game defined by
(
N , (Si)i∈N , (vi)i∈N

)
if ∀i ∈ N , ∀δ′i, vi(δ) ≥ vi(δ

′
i, δ−i)

with vi = vTi for the FRG or vi = vλi for the DRG such that:

vTi (δ) =
1

T

T∑

t=1

ui(p(t)) for the FRG (20)

vλi (δ) =
+∞∑

t=1

λ(1 − λ)t−1ui(p(t)) for the DRG (21)

In RG with complete information and full monitoring, the Folk theorem

characterizes the set of possible equilibrium utilities. It ensures that the set of

NE in a RG is precisely the set of feasible and individually rational outcomes

of the one-shot game [24,25]. A cooperation/punishment plan is established

between the players before playing [18]. The players cooperate by always

transmitting at the new OP with powers p̃i. When the power of the received

signal changes, a deviation is then detected and the players punish the deviator
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by transmitting with their maximum transmit power Pmax
i in the FRG and

by playing at the one-shot game in the DRG. In what follows, we give the

equilibrium solution of each repeated game model and mention the corresponding

algorithm [27,28,29]. It is important to note that in contrast with iterative

algorithms (e.g., iterative water-filling type algorithms), there is no convergence

problem in repeated games (FRG and DRG). Indeed, the transmitters implement

an equilibrium strategy (referred to as the operating point) at every stage of

the repeated game.

4.2.1 Finite RG

The FRG is characterized by the minimum number of stages (Tmin). If the

number of stages in the game T verifies T > Tmin, a more efficient equilibrium

point can be reached. However, if it is less than Tmin, the NE is then played.

Assuming that channel gains |gi|2 lie in a compact set [νmin
i , νmax

i ] [18], we

have the following proposition [19]:

Proposition 1 (FRG equilibrium) : When supposing the following condition

is met: T ≥ Tmin with:

Tmin =

⌈
Θ

Λ−Ω

⌉
, (22)

such that:

Θ =
Aνmax

i

bνmin
i + γ̄iσ2B

−
Gνmax

i

bνmin
i + α̃H

Λ =
Eνmin

i

bνmax
i + γ∗

i

(
σ2 +

∑
j 6=i p

∗
jν

max
i

)
F

Ω =
Cνmin

i

bνmax
i + γ̂i

(
σ2 +

∑
j 6=i p

max
j νmax

i

)
D
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Then, the NE corresponding to the T -stage FRG is given by the following

action plan for any (T, Tmin) and ∀t ≥ 1:

δi,t :

∣∣∣∣∣∣∣∣∣∣

p̃i for t ∈ {1, 2, . . . , T − Tmin}

p∗i for t ∈ {T − Tmin + 1, . . . , T }

Pmax
i for any deviation detection

(23)

The quantities A, B, C, D, E, F , G and H are defined in App. A and γ∗
i

is the SINR at the NE while γ̄i and γ̂i are the SINRs related to the maximal

utility and the utility min-max respectively (the proof of this proposition is

detailed in [19]). The corresponding algorithm is as follows.

Algorithm 1: FRG Algorithm

1) Each user transmits at the new OP with power p̃i during the first phase

of the game t ∈ {1, 2, . . . , T − Tmin}.

2) In the second phase t ∈ {T − Tmin + 1, . . . , T }, each user plays the NE.

As the FRG has a finite number of stages, this phase ensures the

punishment of the deviator for two reasons [18]:

⋄ if it deviates at the last stage, it cannot therefore be punished;

⋄ if it deviates earlier, the punishment can be not sufficiently severe.

3) The power of the received signal is assumed to be constant during the

first phase. When it changes, a deviation is then detected.

4) The deviator is punished by other transmitters by playing at their

maximum transmit power Pmax
i .

4.2.2 Discounted RG

In the DRG, the probability that the game stops at stage t is λ(1 − λ)t−1

with λ ∈]0, 1[ defines the discount factor [17]. Accordingly, we can express the
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analytic form of the maximum discount factor in a DRG when assuming that

channel gains |gi|
2 lie in a compact set [νmin

i , νmax
i ] [18].

Proposition 2 (DRG equilibrium) : When assuming the following condition

is met:

λ ≤
Ψ

Γ + Ψ
, (24)

with:

Γ =
Aνmax

i

bνmin
i + γ̄iσ2B

−
Gνmax

i

bνmin
i + α̃H

Ψ =
Gνmin

i

bνmax
i + α̃H

−
Eνmin

i

bνmax
i + γ∗

i

(
σ2 +

∑
j 6=i p

∗
jν

max
i

)
F

Then, the NE corresponding to the DRG is given by the following action plan

∀t ≥ 1:

δi,t =

∣∣∣∣∣∣∣

p̃i when all other players play p̃−i

p∗i else
(25)

For the proof, see App. A. The corresponding algorithm is as follows.

Algorithm 2: DRG Algorithm

1) Each user transmits at the new OP with power p̃i.

2) When the power of the received signal changes, a deviation is detected.

3) The other transmitters punish the deviator by transmitting at the one-shot

game with power p∗i .

5 Numerical results

In this section, we consider the efficiency function f(x) = e−c/x with c =

2
R
R0 − 1. It has be proven in [30,31] that such a function is sigmoidal as it is

convex on the open interval (0, c/2] and concave on (c/2,+∞). The throughput

R and the used bandwidth R0 are equal to 1 Mbps and 1 MHz respectively.

The maximum power Pmax is set to 0.1 Watt while the noise variance is set

to 10−3 Watt. The buffer size K, the packet arrival rate q and the consumed
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power b are fixed to 10, 0.5 and 5 × 10−3 Watt respectively. We consider

Rayleigh fading channels and a spreading factor L introducing an interference

processing (1/L) in the interference term of the SINR.

In Fig. 2, we present the achievable utility region, the new OP, the NE and

the NB solution. We stress that the new OP and the NB solution dominate

both the NE in the sense of Pareto. The region between the Pareto frontier

and the min-max level is the possible set of equilibrium utilities of the RG

according to the Folk theorem.
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Fig. 2: Pareto-dominance of the new OP and the NB solution vs the NE
(L = 2).

In order to study the efficiency of the new OP versus the NB solution

and the NE, we are interested in comparing powers and utilities of the three

equilibria by averaging over channel gains for different scenarios (different

number of users N in the system). In Fig. 3, we plot the power and the utility

that a user (in a system of N users) can reach for each equilibrium. Thus,

we highlight that the new OP and the NB solution have better performances

than the NE as they Pareto-dominate it. When N = 2, we notice that the
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new OP and the NB solution are more efficient than the NE. It is clear that

the NB solution requires less power and provides higher utility compared to

the new OP, but it is important to stress that values, in terms of powers and

utilities, are slightly different for both equilibria (new OP and NB solution).

When N > 2, we highlight that lower powers are provided with the new OP

which leads also to higher values of the utilities. Thus, we notice that the new

OP gives better performances than the NE and the NB solution. Therefore,

the new OP contributes not only to improve the system performances better

than the NE for any given scenario but also enables important gains in terms

of powers and utilities when compared to the NB solution for a system with a

large number of users (N > 2).
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Fig. 3: Better performances in terms of power and utility with the new OP
for different number of users N .

We are interested in studying the performances of the social welfare (
∑

i ui)

according to the FRG versus the NE in a multi-users system. The corresponding
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expression is given by:

wFRG

wNE
=

∑N
i=1(

∑T−Tmin

t=1 ũi(p(t)) +
∑T

t=T−Tmin+1 u
∗
i (p(t)))∑N

i=1

∑T
t=1 u

∗
i (p(t))

. (26)

In Fig. 4, we present the ratio of the social welfare corresponding to the

FRG (ωFRG) vs the NE social welfare (ωNE). We proceed by averaging over

channel gains lying in a compact set such that 10 log10(ν
max/νmin) = 20. We

highlight that the social welfare of the FRG reaches higher values than the NE

(ωFRG > ωNE). In addition, we notice that the social welfare ratio increases

with the number of users for both models (Goodman and cross-layer). The

minimum number of stages Tmin according to the cross-layer model is much

lower compared to the one related to the Goodman model. To illustrate this,

when N = 3, Tmin for the Goodman model is equal to 4600 while it is 3700 for

the cross-layer model. This difference becomes considerable with the increase

of the number of users. Indeed, when N = 4, the minimum number of stages

for the Goodman EE is 14300 while it is equal to 10900 for the cross-layer

approach.

We are interested in plotting the minimum number of stages as a function

of the consumed power b and the packet arrival rate q according to both EE

models. Results, obtained by averaging over channel realizations, are drawn

in figures 5 and 6. According to Fig. 5, we stress that Tmin increases with the

number of users while it decreases with the spreading factor. It is clear that for

any values of N and L, it exists a consumed power b 6= 0 for which Tmin is less

than Tmin when b = 0. Thus, a good choice of the fixed consumed power leads

to a lower minimum number of stages for the cross-layer model compared to

the Goodman model.

In Fig. 6, we highlight that the minimum number of stages is an increasing

function of the packet arrival rate q according to the cross-layer model while
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Fig. 4: Improvement of the social welfare in FRG vs the NE as a function of
the number of stages of the game T (L = 5).
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Fig. 5: Existence of Tmin for the cross-layer model (b 6= 0) lower than Tmin of
Goodman model (b = 0).

it is a constant function for the Goodman model since the latter does not take

into account the packet arrival process. One can confirm that the minimum

number of stages is an increase function of the number of users as deduced

previously. Simulations show that it exists a packet arrival rate q0 before which
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Tmin of the cross-layer model is much lower than Tmin of the Goodman model

for different number of users. Simulations show that q0 ≈ 0.6 and for q ≥ q0,

Tmin of the cross-layer model converges to Tmin corresponding to the Goodman

model. It is important to highlight that when N = 3 and q ≥ q0, Tmin of the

cross-layer model takes higher values than Tmin corresponding to the Goodman

model but values are quite similar. With the increase of the number of users,

the difference between the minimum number of stages for both models becomes

noticeable. According to figures 5 and 6, one can conclude that the cross-layer

model can be exploited for short games.

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

q

T
m

i
n

 

 

N=3 (Goodman)

N=3 (Cross-Layer)

N=4 (Goodman)

N=4 (Cross-Layer)

N=5 (Goodman)

N=5 (Cross-Layer)

Fig. 6: Lower values of Tmin of the cross-layer model when comparing to
Goodman model (L = 5).

For the DRG model, we plot in a first step the improvement of the social

welfare (ωDRG) versus the one-shot game (ωNE) for Goodman and cross-layer

models (b = 0 and b = 5 × 10−3 respectively) as a function of the spectral

efficiency η = N/L. We simulated our algorithm by averaging over channel

gains for different number of users. Results are given in Fig. 7. It is important

to highlight that the DRG social welfare reaches higher values than the NE
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social welfare (ωDRG > ωNE). For low values of the spectral efficiency, the

social welfare ratio is quite similar for both models while the difference becomes

noticeable when the spectral efficiency takes higher values. The social welfare

ratio increases with the number of users for both EE models. For each model,

when N takes high values, the social welfare ratios become closer (for the

cross-layer model, the curves corresponding to N = 3 and N = 4 are closer

than with the curve of N = 2).
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Fig. 7: Improvement of the social welfare in DRG vs the NE for Goodman
and cross-layer models as a function of the spectral efficiency η for different

number of users N .

For this reason, we studied the variation of λmax as a function of η and

q for both EE models and for different number of users. Results are given in

figures 8 and 9. According to Fig. 8, we deduce how λmax decreases with the

number of users for both EE models. In addition, we stress that the values

reached by λmax becomes closer when N takes higher values. This can explain

Fig. 7.
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Fig. 8: Variation of λmax for Goodman and cross-layer models as a function
of the spectral efficiency η with different number of users N .

The study of the variation of λmax versus the packet arrival rate q (in Fig.

9) shows that the maximum discount factor λmax decreases with the number

of users and with the packet arrival rate q as well. Simulations show that

it exists a packet arrival rate q1 before which the λmax corresponding to the

cross-layer model takes higher values than the maximum discount factor of the

Goodman model for different number of users. We notice that starting from

q1, the maximum discount factor of the cross-layer model converges to λmax

corresponding to the Goodman model.

In a second step, we plotted in Fig. 10 the variation of the DRG social

welfare as a function of λ ≤ λmax. We notice that ωDRG is an increase function

of λ. Thus, when λ = λmax, ωDRG reaches highest value. However, we stress

that ωDRG decreases with the number of users especially for the Goodman

model while it is quite similar for the cross-layer model. This confirms that

the proposed new OP is still quite efficient and can be utilized for games with

high number of users.
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Fig. 9: Variation of λmax as a function of the packet arrival rate q (L = 2).
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Fig. 10: Increase of ωDRG as a function of λ (L = 2).

Finally, we plot for both RG models (FRG and DRG) the social welfare

when using the cross-layer approach against the constant power b for two

different values of the packet arrival rate q (0.5 and 0.7). The considered system

is composed of 2 users and the spreading factor L is fixed to 4. The idea consists

in studying the efficiency of the cross-layer approach regarding the Goodman



Cross-layer distributed power control: A RG formulation to improve the sum EE 27

power control algorithm. Accordingly, for each packet arrival rate, we plot

the social welfare with the cross-layer approach (powers at the equilibrium are

determined normally according to q) and the social welfare with the cross-layer

power control but when powers at the equilibrium are determined by the

Goodman algorithm (p[q → 1]). Indeed, the packet arrival rate is assumed

constant in the Goodman model and equal to 1 (packets arrive with probability

q = 1). For both RG models, we stress that the cross-layer power control

approach outperforms the Goodman algorithm for both values of the packet

arrival rate q. Important (relative) gains are reached. To illustrate this, for

q = 0.5 and b = 0.045 Watt the relative gain is higher than 50% in the FRG

and the DRG as well. Therefore, we conclude that the OP with the cross-layer

approach provides better performances and is more efficient than the OP with

the Goodman power control approach.
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Fig. 11: Variations of the FRG social welfare against b for q = 0.5 and
q = 0.7: the cross-layer power control approach outperforms the Goodman

algorithm.
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Fig. 12: Plotting the DRG social welfare against b for q = 0.5 and q = 0.7:
the cross-layer approach improves the power control when compared to the

Goodman algorithm.

6 Conclusion

In this paper, we have investigated RG for distributed power control in a MAC

system. As the NE is not always energy-efficient, the NB solution might be

a possible efficient solution since it is Pareto-efficient. However, the latter, in

general, requires global CSI at each transmitter node. Thus, we were motivated

to investigate using the repeated game formulation and develop a new OP, that

simultaneously is both more efficient than the NE and achievable with only

individual CSI being required at the transmitter. Also, we consider a new EE

metric taking into account the presence of a queue at the transmitter with an

arbitrary packet arrivals.

Cooperation plans are proposed where the new OP is considered and

closed-form expressions of the minimum number of stages for the FRG and the

maximum discount factor for the DRG have been established. The study of the

social welfare (sum of utilities of all the users) shows that considerable gains
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are reached compared to the NE (for the FRG and DRG). Moreover, our model

proves that even with a high number of users, the FRG can always be played

with a minimum number of stages shorter than when using the Goodman

model. In addition, the social welfare in the DRG decreases slightly with the

number of users with the cross-layer approach while it decreases considerably

with the Goodman model. Finally, the comparison of the cross-layer algorithm

versus the Goodman algorithm, shows that in real systems with random packet

arrivals, the cross-layer power control algorithm outperforms the Goodman

algorithm. Thus, the new OP with the cross-layer approach is more efficient.

An interesting extension to this work would be to consider the interference

channel instead of the MAC channel and generalize the framework applied

here. Another possible extension would be to consider the multi-carrier case

and the resulting repeated game.

Appendix A (Proof of λmax)

A.1 Determination of the maximal utility

Let us determine the maximal utility that a player can get and which is denoted

as follows:

ūi = max
p−i

max
pi

ui(pi,p−i). (27)

We denote ṗi the power maximizing the utility function ui and which is

the solution of the following equation:

b
γi
pi
Φ′(γi) + q

(
1− Φ(γi)

f(γi)

)2

[f(γi)− γif
′(γi)] = 0, (28)
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with γ′
i =

dγi
dpi

=
γi
pi
, f ′ =

df

dγi
and Φ′ =

dΦ

dγi
. Therefore, the expression of the

maximum utility function writes as:

u̇i(ṗi,p−i) =
Rq(1− φ(γ̇i))

b+
ṗiq(1 − φ(γ̇i))

f(γ̇i)

, (29)

with:

γ̇i =
ṗi|gi|

2

σ2 +
∑

j 6=i pj |gj|
2
. (30)

We have to study then the behavior of u̇i(ṗi,p−i) regarding pj for j 6= i

and then we determine the sign of
∂u̇i(ṗi,p−i)

∂pj
which is given by:

∂u̇i(ṗi,p−i)

∂pj
= Rq

−b∂φ(γ̇i)

∂pj
+ ṗiq

(
(1− φ(γ̇i))

f(γ̇i)

)2
∂f(γ̇i)

∂pj(
b+

ṗiq(1− φ(γ̇i))

f(γ̇i)

)2 . (31)

We are interested to study the sign of the numerator:

−b∂φ(γ̇i)

∂pj
+ ṗiq

(
(1− φ(γ̇i))

f(γ̇i)

)2
∂f(γ̇i)

∂pj
=

(
−b∂φ(γ̇i)

∂γ̇i
+ ṗiq

(
(1− φ(γ̇i))

f(γ̇i)

)2
∂f(γ̇i)

∂γ̇i

)
∂γ̇i
∂pj

, (32)

with:

∂γ̇i
∂pj

=
−ṗi|gi|2|gj|2(

σ2 +
∑

j 6=i pj|gj |
2

)2 < 0. (33)

The next step would be to determine the sign of the expression

−b∂φ(γ̇i)

∂γ̇i
+ ṗiq

(
(1 − φ(γ̇i))

f(γ̇i)

)2
∂f(γ̇i)

∂γ̇i
. It is obvious that ṗiq

(
(1− φ(γ̇i))

f(γ̇i)

)2
∂f(γ̇i)

∂γ̇i
> 0

since f is an increasing function of the SINR. Therefore, we need to determine
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the sign of
∂φ(γ̇i)

∂γ̇i
. We have:

∂φ(γi)

∂γi
=

∂((1− f(γi))Π(γi))

∂γi

= −
∂f(γi)

∂γi
Π(γi) + (1− f(γi))

∂Π(γi)

∂γi
.

(34)

The sign of the first term is negative while the sign of the second term is

the same as ∂Π(γi)/∂γi since (1 − f(γi)) > 0 and we have:

∂Π(γi)

∂γi
=

∂ρ(γi)

∂γi

∂Π(γi))

∂ρ
. (35)

However ρ(γi) =
q(1 − f(γi))

(1 − q)f(γi)
and then:

∂ρ(γi)

∂γi
=

−q

(1− q)f2(γi)

∂f(γi)

∂γi
< 0. (36)

As shown in [13], we have:

Π(γi) =
ρK

1 + ρ+ ρ2 + . . .+ ρK
. (37)

The latter quantity can be expressed as:

1

Π(γi)
= 1 +

1

ρ
+

1

ρ2
+ . . .+

1

ρK
. (38)

Consequently, we have:

∂Π(γi)

∂ρ
= Π2(γi)

[
1

ρ2
+

2

ρ3
+ . . .+

K

ρK+1

]
> 0. (39)

Therefore,
∂Π(γi)

∂γi
< 0 and hence

∂φ(γi)

∂γi
< 0. In particular, we have

∂φ(γ̇i)

∂γ̇i
<

0. Thus, we have

(
−b∂φ(γ̇i)

∂γ̇i
+ ṗiq

(
(1− φ(γ̇i))

f(γ̇i)

)2
∂f(γ̇i)

∂γ̇i

)
> 0 and finally

∂u̇i(ṗi,p−i)

∂pj
< 0. We deduce then that u̇i is a decreasing function of pj . It
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reaches its maximum when pj = 0 and it is minimum when pj = pmax
j (for

all j 6= i). When substituting pj = 0 in the SINR expression, this allows the

determination of the optimal power:

b
|gi|2

σ2
Φ′(γi(pi)) + q

(
(1 − Φ(γi(pi)))

f(γi(pi))

)2[
f(γi(pi))− γif

′(γi(pi))

]
= 0, (40)

with: γi =
pi|gi|2

σ2
.

The latter equation is a function of the SINR. We determine then the solution

in terms of SINR which we denote γ̄i and for which the optimal power is

p̄i =
γ̄iσ

2

|gi|2
. This SINR exists due to the quasi-concavity of ui in (pi,p−i) [13,

14]. Then, we have:

ūi = max
p

ui(p) =
Rq(1− φ(γ̄i))

b+
γ̄iσ

2

|gi|2
q(1− φ(γ̄i))

f(γ̄i)

. (41)

A.2 Determination of λmax

The SINR γ̃i refers to the SINR when playing the new OP while γ∗
i , γ̄i and γ̂i

are the SINRs at the NE, at the maximal utility and at the utility min-max

respectively. In order to simplify expressions, we define the following notations:

A = Rq(1− φ(γ̄i))

B =
q(1− φ(γ̄i))

f(γ̄i)

C = Rq(1− φ(γ̂i))

D =
q(1− φ(γ̂i))

f(γ̂i)

E = Rq(1− φ(γ∗
i ))

F =
q(1− φ(γ∗

i ))

f(γ∗
i )

G = Rq(1− φ(γ̃i))

H =
q(1− φ(γ̃i))

f(γ̃i)
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At a stage t, the equilibrium condition is [18]:

λūi(p(t)) +
∑

s≥t+1 λ(1− λ)s−t
Eg[u

∗
i (p(s))]

≤ λũi(p(t)) +
∑

s≥t+1 λ(1 − λ)s−t
Eg[ũi(p(s))]

(42)

Knowing that
∑

s≥t+1 (1− λ)s−t = (1− λ)/λ, we have:

λūi + (1− λ)Eg [u
∗
i ] ≤ λũi + (1− λ)Eg [ũi] (43)

⇐⇒ λ A|gi|
2

b|gi|2+γ̄iσ2B + (1− λ)Eg

[
E|gi|

2

b|gi|2+γ∗
i (σ2+

∑
j 6=i p

∗
j
|gj |2)F

]

≤ λ G|gi|
2

b|gi|2+α̃H + (1− λ)Eg

[
G|gi|

2

b|gi|2+α̃H

] (44)

⇒ λ
[

Aνmax

i

bνmin

i
+γ̄iσ2B

− Gνmax

i

bνmin

i
+α̃H

]

≤ (1 − λ)

[
Gνmin

i

bνmax

i
+α̃H − Eνmin

i

bνmax

i
+γ∗

i (σ2+
∑

j 6=i p
∗
j
νmax

i )F

]
.

(45)

Let Ψ and Γ define the following quantities :

Γ =
Aνmax

i

bνmin
i + γ̄iσ2B

−
Gνmax

i

bνmin
i + α̃H

Ψ =
Gνmin

i

bνmax
i + α̃H

−
Eνmin

i

bνmax
i + γ∗

i

(
σ2 +

∑
j 6=i p

∗
jν

max
i

)
F

Thus:

λmax =
Ψ

Γ + Ψ
. (46)
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