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Abstract

Motivated by Tverberg-type problems in topological combinatorics and by classical results
about embeddings (maps without double points), we study the question whether a finite
simplicial complex K can be mapped into Rd without higher-multiplicity intersections. We
focus on conditions for the existence of almost r-embeddings, i.e., maps f : K → Rd such that
f(σ1) ∩ · · · ∩ f(σr) = ∅ whenever σ1, . . . , σr are pairwise disjoint simplices of K.

Generalizing the classical Haefliger-Weber embeddability criterion, we show that a well-
known necessary deleted product condition for the existence of almost r-embeddings is suf-
ficient in a suitable r-metastable range of dimensions: If rd ≥ (r + 1) dimK + 3, then
there exists an almost r-embedding K → Rd if and only if there exists an equivariant map
(K)r∆ →Sr S

d(r−1)−1, where (K)r∆ is the deleted r-fold product of K and Sr is the symmetric
group. This significantly extends one of the main results of our previous paper (which treated
the special case where d = rk and dimK = (r − 1)k for some k ≥ 3), and settles an open
question raised there.

Combining our result with a theorem of Čadek, Krčál, and Vokř́ınek on the homotopy
classification of equivariant maps, we obtain the following corollary: If r is prime, then in the
r-metastable range the existence of an r-almost embedding can be decided algorithmically (in
polynomial time if r and d are fixed).
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1 Introduction

Let K be a finite simplicial complex, and let f : K → Rd be a continuous map.1 Given an integer
r ≥ 2, we say that y ∈ Rd is an r-fold point or r-intersection point of f if it has r pairwise
distinct preimages, i.e., if there exist y1, . . . , yr ∈ K such that f(y1) = . . . = f(yr) = y and yi 6= yj

∗Research supported by the Swiss National Science Foundation (Project SNSF-PP00P2-138948).
We would like to thank Arkadiy Skopenkov as well as the anonymous referees of a previous version for many

helpful comments.
1For simplicity, throughout most of the paper we use the same notation for a simplicial complex K and its

underlying topological space, relying on context to distinguish between the two when necessary.
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for 1 ≤ i < j ≤ r. We will pay particular attention to r-fold points that are global2 in the sense
that their preimages lie in r pairwise disjoint simplices of K, i.e., y ∈ f(σ1) ∩ . . . ∩ f(σr), where
σi ∩ σj = ∅ for 1 ≤ i < j ≤ r.

We say that a map f : K → Rd is an r-embedding if it has no r-fold points, and we say that
f is an almost r-embedding if it has no global r-fold points.3

The most fundamental case r = 2 is that of embeddings (=2-embeddings), i.e., injective
continuous maps f : K → Rd. Finding conditions for a simplicial complex K to be embeddable
into Rd — a higher-dimensional generalization of graph planarity — is a classical problem in
topology (see [34, 42] for surveys) and has recently also become the subject of systematic study
from a viewpoint of algorithms and computational complexity (see [29, 28, 11]).

Here, we are interested in necessary and sufficient conditions for the existence of almost r-
embeddings. One motivation are Tverberg-type problems in topological combinatorics (see the
corresponding subsection below). Another motivation is that, in the classical case r = 2, embed-
dability is often proved in two steps: in the first step, the existence of an almost embedding
(=almost 2-embedding) is established; in the second step this almost embedding is transformed
into an honest embedding, by removing local self-intersections. Similarly, we expect the existence
of an almost r-embedding to be not only an obvious necessary condition but a useful stepping stone
towards the existence of r-embeddings and, in a further step, towards the existence of embeddings
in certain ranges of dimensions.

The Deleted Product Criterion for Almost r-Embeddings. There is a well-known neces-
sary condition for the existence of almost r-embeddings. Given a simplicial complex K and r ≥ 2,
the (combinatorial) deleted r-fold product4 of K is defined as

(K)
r
∆ := {(x1, . . . , xr) ∈ σ1 × · · · × σr | σi a simplex of K,σi ∩ σj = ∅ for 1 ≤ i < j ≤ r}.

The deleted product is a regular polytopal cell complex (a subcomplex of the cartesian product),
whose cells are products of r-tuples of pairwise disjoint simplices of K.

Lemma 1 (Necessity of the Deleted Product Criterion). Let K be a finite simplicial com-
plex, and let d ≥ 1 and r ≥ 2 be integers. If there exists an almost r-embedding f : K → Rd then
there exists an equivariant map5

f̃ : (K)
r
∆ →Sr S

d(r−1)−1,

where Sd(r−1)−1 =
{

(y1, . . . , yr) ∈ (Rd)r |∑r
i=1 yi = 0,

∑r
i=1 ‖yi‖22 = 1

}
, and the symmetric group

Sr acts on both spaces by permuting components.

Proof. Given f : K → Rd, define fr : (K)
r
∆ → (Rd)r by fr(x1, . . . , xr) := (f(x1), . . . f(xr)). Then

f is an almost r-embedding iff its image avoids the thin diagonal δr(Rd) := {(y, . . . , y) | y ∈ Rd} ⊂
(Rd)r. Moreover, Sd(r−1)−1 is the unit sphere in the orthogonal complement δr(Rd)⊥ ∼= Rd(r−1),
and there is a straightforward homotopy equivalence ρ : (Rd)r \ δr(Rd) ' Sd(r−1)−1. Both fr and

ρ are equivariant hence so is their composition f̃ := ρ ◦ fr : (K)
r
∆ →Sr S

d(r−1)−1.

Our main result is that the converse of Lemma 1 holds in a wide range of dimensions.

Theorem 2 (Sufficiency of the Deleted Product Criterion in the r-Metastable Range).
Let m, d ≥ 1 and r ≥ 2 be integers satisfying

rd ≥ (r + 1)m+ 3. (1)

2In our previous paper [24], we used the terminology “r-Tverberg point” instead of “global r-fold point.”
3We emphasize that the definitions of global r-fold points and of almost r-embeddings depend on the actual

simplicial complex K (the specific triangulation), not just the underlying topological space.
4For more background on deleted products and the broader configuration space/test map framework, see, e.g.,

[27] or [48, 49].
5Here and in what follows, if X and Y are spaces on which a finite group G acts (all group actions will be from the

right) then we will use the notation F : X →G Y for maps that are equivariant, i.e., that satisfy F (x ·g) = F (x) ·g
for all x ∈ X and g ∈ G).
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Suppose that K is a finite m-dimensional simplicial complex and that there exists an equivariant
map F : (K)

r
∆ →Sr S

d(r−1)−1. Then there exists an almost r-embedding f : K → Rd.

Remarks 3. (a) When studying almost r-embeddings, it suffices to consider maps f : K → Rd
that are piecewise-linear6 (PL) and in general position.7

(b) Theorem 2 is trivial for codimension d−m ≤ 2. Indeed, if r, d,m satisfy (1) and, additionally,
d−m ≤ 2 then a straightforward calculation shows that (r−1)d > rm, so that a map K → Rd
in general position has no r-fold points.

(c) The special case r = 2 of Theorem 2 corresponds to the classical Haefliger–Weber Theorem

[17, 46], which guarantees that for 2d ≥ 3m+3 the existence of an equivariant map (K)
2
∆ →S2

Sd−1 guarantees the existence of an almost embedding f : K → Rd. An almost embedding
can be then be turned into an embedding by a delicate construction of Skopenkov [41] or
Weber [46]. The condition 2d ≥ 3m + 3 is often referred to as the metastable range;
correspondingly, we call Condition (1) the r-metastable range8.

(d) Theorem 2 significantly extends one of the main results of our previous paper ([25, Thm. 7]
and [24, Thm. 3], which treated the special case (r − 1)d = rm, d −m ≥ 3), and settles one
of the open questions raised there.

In our previous paper, we consider the special case when all the global r-intersection points
are isolated (i.e., the r-intersections are 0-dimensional). The “elimination” of these isolated
r-intersections is achieved in two steps:

(1) First, we obtain the algebraic cancellation of the r-intersection points by “finger moves”:
we modify a given map f : Km → Rd such that for each r-tuples of pairwise disjoint
cells σ1, . . . , σr of K, the intersection fσ1 ∩ · · · ∩ fσr consists of pairs of points of opposite
intersection signs (hence, algebraically, they “cancel”).

(2) In a second step, we geometrically cancel each pair of r-intersection points of opposite
sign, and for this, we use an r-fold version of the Whitney Trick. Hence, we obtain
fσ1 ∩ · · · ∩ fσr = ∅.

In other words, for the special case consider in our previous paper, the proof decomposes
naturally into two steps: (1) first a “linking step” when we link cell together to introduce new
r-intersection points (and therefore obtain the “algebraic cancellation” of the r-intersection
points), (2) secondly, in an “unlinking step” we translate that algebraic cancellation into
geometry (i.e., from intersection = 0, we obtain intersection = ∅).
In the present paper, these two steps are not so disjoint anymore: multiple cases of global
r-intersection points can occur, resulting in singular set of various dimension (no only isolated
points). Therefore, we will have to merge the two steps (1) and (2): In our construction,
we will first “unlink” the r-intersection points of a given r-tuple of cells (i.e., remove their
r-intersection points), and immediately after we will “link” this r-tuple in order to permit the
unlinking of r-tuples of higher dimension. (See both parts of Lemma 11: Part 1 corresponds
to the “unlinking”, and Part 2 corresponds to the “linking”).

Algorithms. By a result of Čadek, Krčál, and Vokř́ınek [11, Thm. 1.1] on the homotopy classifi-
cation of equivariant maps (extending alier work [10, 9] in the nonequivariant case) , the existence of
an equivariant map (K)

r
∆ →Sr S

d(r−1)−1 can be decided algorithmically if dim (K)
r
∆ ≤ 2d(r−1)−3

(a straightforward calculation shows that the former condition is satisfied in the nontrivial case
d−m ≥ 3 of the r-metastable range) and if Sr acts freely on Sd(r−1)−1 (which is the case if and
only if r is prime). Together with Theorem 2, this implies the following:

6Recall that f is PL if there is some subdivision K′ of K such that f |σ is affine for each simplex σ of K′.
7Every continuous map g : K → Rd can be approximated arbitrarily closely by PL maps in general position, and

if g is an almost r-embedding, then the same holds for any map sufficiently close to g.
8Our r-metastable range is not the same as the “k-metastable range” of Haefliger defined in Annex 9.1 of [18].
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Corollary 4. Suppose d,m ≥ 1 and r ≥ 2 satisfy (1) and that r is prime. Then there exists an
algorithm that, given a finite m-dimensional simplicial complex K, decides whether K admits an
almost r-embedding in Rd. Moreover, if d and r are fixed then the algorithm runs in polynomial
time (in the size of the input, measured in terms of the number of simplices of K).

Remark 5. In recent work, Filakovský and Vokř́ınek (personal communication) have extended
the algorithm of Čadek, Krčál, and Vokř́ınek to the setting of non-free actions. Theorem 2 together
with this more general algorithm implies that Corollary 4 holds without the assumption that r is
prime.

Background and Motivation: Topological Tverberg-Type Problems. Tverberg’s classi-
cal theorem [44] in convex geometry can be rephrased as follows: if N = (d + 1)(r − 1) then any
affine map from the N -dimensional simplex σN to Rd has a global r-fold point, i.e., there does
not exist an affine almost r-embedding of σN in Rd.

Bajmoczy and Bárány [2] and Tverberg [16, Problem 84] raised the question whether the
conclusion holds true, more generally, for arbitrary continuous maps:

Conjecture 6 (Topological Tverberg Conjecture). Let r ≥ 2, d ≥ 1, and N = (d + 1)(r − 1).
Then there is no almost r-embedding σN → Rd.

This was proved by Bajmoczy and Bárány [2] for r = 2, by Bárány, Shlosman, and Szűcs [5]
for all primes r, and by Özaydin [31] for prime powers r, but the case of arbitrary r remained
open and was considered a central unsolved problem of topological combinatorics.

There are numerous close relatives and other variants of (topological) Tverberg-type problems
and results. These can be seen as generalized nonembeddability results or problems and typically
state that a particular complex K (or family of complexes) does not admit an almost r-embedding
into Rd. Well-known examples are the Colored Tverberg Problem [3, 4, 50, 49, 7] and generalized
Van Kampen–Flores-type results [38, 45]. Theorem 2 provides a general necessary and sufficient
condition for topological Tverberg-type results in the r-metastable range.

The topological Tverberg conjecture and the subsequent developments played an important
role in the introduction and use of methods from equivariant topology in discrete and computational
geometry. The prime and prime power cases of Conjecture 6 were proved via Lemma 1, i.e., by
showing that there exists no equivariant map (σN )

r

∆ →Sr S
d(r−1)−1. However, this fails in the

remaining cases: Özaydin [31, Thm. 4.2] showed that if r is not a prime power then there exists
an equivariant map F : (∆N )

r

∆ →Sr S
d(r−1)−1.

In the extended abstract of our previous paper [24], we proposed a new approach to the
conjecture, based on the idea of combining Özaydin’s result with the sufficiency of the deleted
product product ([24, Thm 3]) to construct counterexamples, i.e., almost r-embeddings σN → Rd,
whenever r is not a prime power. At the time we suggested this in [24], there remained what
seemed a very serious obstacle to completing this approach: Our theory required the assumption
of codimension d− dimK ≥ 3, which is not satisfied for K = σN .

In a recent breakthrough, Frick [14] was the first to find a way to overcome this “codimen-
sion 3 barrier” and to construct counterexamples to the topological Tverberg conjecture for all
parameters (d, r) with d ≥ 3r + 1 and r not a prime power, by a clever reduction (using the
constraints method of Blagojević–Frick–Ziegler [6]) to a suitable lower-dimensional skeleton for
which the required almost r-embedding exists by Özaydin’s result and ours).

A different solution to the codimension 3 obstacle (based on the notion of prismatic maps) is
given in the full version of our paper [25], leading to counterexamples for d ≥ 3r. In joint work with
Avvakumov and Skopenkov [1], we recently improved this further and obtained counterexamples
for d ≥ 2r, using an extension (for r ≥ 3) of [25, Thm. 7] to codimension 2.

In conclusion, methods from equivariant topology and the general framework of configuration
spaces and test maps [48, 49] have been very successfully used in discrete and computational
geometry. In particular, equivariant obstruction theory and, more generally equivariant homotopy
theory, provide powerful tools for deciding whether suitable test maps exist. However in cases
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where the existence of a test map does not settle the problem (as with the topological Tverberg
conjecture), further geometric ideas are needed. The general philosophy and underlying idea here
and in the two companion papers [25, 1] is to complement equivariant methods by methods from
geometric topology, in particular piecewise-linear topology to discrete geometry, and we hope that
these will find further applications.

Remarks 7 (Further Questions and Future Research). (a) Beyond the r-Metastable Range.
Is condition (1) in Theorem 2 necessary? In the case r = 2, it is known that for d ≥ 3,
the Haefliger–Weber Theorem fails outside the metastable range: for every pair (m, d) with
2d < 3m + 3 and d ≥ 3, there are examples [26, 40, 13, 39, 15] of m-dimensional complexes

K such that (K)
2
∆ →S2

Sd−1 but K does not embed into Rd. Moreover, in the case r = 2,
m = 2 and d = 4, the examples do not even admit an almost embedding into R4, see [1].

On the other hand, as remarked above, in [1] the following extension of [25, Thm. 7] is proved:
if r ≥ 3 d = 2r, and m = 2(r − 1), then a finite m-dimensional complex K admits an almost
r-embedding if and only if there exists an equivariant map (K)

r
∆ →Sr S

d(r−1)−1.

It would be interesting to know whether there is analogous extension (for r ≥ 3) of Theorem 2
that is nontrivial in codimension d−m = 2.

(b) The Planar Case and Hanani–Tutte. In the classical setting (r = 2) of embeddings, the case
d = 2,m = 1 of graph planarity is somewhat exceptional: the parameters lie outside the (2-

fold) metastable range, but the existence of an equivariant map F : (K)
2
∆ →S2

S1 is sufficient
for a graph K to be planar, by the Hanani–Tutte Theorem9 [12, 43]. The classical proofs of
that theorem rely on Kuratowski’s Theorem, but recently [32, 33], more direct proofs have been
found that do not use forbidden minors. It would be interesting to know whether there is an
analogue of the Hanani–Tutte theorem for almost r-embeddings of 2-dimensional complexes
in R2, as an approach to constructing counterexamples to the topological Tverberg conjecture
in dimension d = 2. We plan to investigate this in a future paper.

Structure of the Paper. The remainder of the paper is devoted to the proof of Theorem 2. By
Lemma 1, we only need to show that the existence of an equivariant map (K)

r
∆ →Sr S

d(r−1)−1

implies the existence of an almost r-embedding K → Rd. Moreover, by Remarks 3 (b) and (d),
we may assume, in addition to the parameters being in the r-fold metastable range, that the
codimension d−m of the image of K in Rd is at least 3, and that the intersection multiplicity r
is also at least 3. Thus, we will work under the following hypothesis:

rd ≥ (r + 1)m+ 3, d−m ≥ 3, and r ≥ 3. (2)

The proof of Theorem 2 is based on two main lemmas: Lemma 9 (Reduction Lemma) reduces
the situation to a single r-tuple of pairwise disjoint simplices of K, and Lemma 11 (generalized
Weber–Whitney Trick) solves that reduced situation. In Section 2, we give the precise (and
somewhat technical) statements of these lemmas, along with some background, and prove the
Reduction Lemma 9. In Section 3, we show how to prove Theorem 3 using these lemmas, before
proving Lemma 11 (the core of the paper) in Section 4.

2 The Two Main Lemmas

In this section, we formulate the two main lemmas on which the proof of Theorem 2 rests.
We work in the piecewise-linear (PL) category (standard references are [47, 37]). All mani-

folds (possibly with boundary) are PL-manifolds (can be triangulated as locally finite simplicial
complexes such that the link of every nonempty face is either a PL-sphere or a PL-ball), and

9The existence of an equivariant map implies, via standard equivariant obstruction theory, that there exists a
map from the graph K into R2 such that the images of any two disjoint (independent) edges intersect an even
number of times, which is the hypothesis of the Hanani–Tutte Theorem.
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C1

σ1

(f−1fσ2) ∩ σ1

(f−1fσ3) ∩ σ1

Figure 1: For r = 3, the construction of C1 inside of σ1. The collapsible polyhedron C1 is a “cone”
over the triple intersection set S1 (which consists of four isolated points in the picture).

all maps between polyhedra (geometric realizations of simplicial complexes) are PL-maps (i.e.,
simplicial on sufficiently fine subdivisions).10 In particular, all balls are PL-ball and all spheres
are PL-spheres (PL-homeomorphic to a simplex and the boundary of a simplex, respectively). A
submanifold P of a manifold Q is properly embedded if ∂P = P ∩ ∂Q. The singular set of
a PL-map f defined on a polyhedron K is the closure in K of the set of points at which f is not
injective.

One basic fact that we will use for the proofs of both Lemmas 9 and 11 is the following version
of engulfing [47, Ch. VII]:

Theorem 8 (Engulfing, [47, Ch. VII, Thm. 20]). Let M be an m-dimensional k-connected man-
ifold with k ≤ m − 3. Let X a compact x-dimensional subpolyhedron in the interior of M . If
x ≤ k, then there exists a collapsible subpolyhedron C in the interior of M with X ⊆ C and
dim(C) ≤ x+ 1.

The collapsible polyhedron C can be thought of as an analogue of a “cone” over X.

Lemma 9 (Reduction Lemma). Let m, d, r be three positive integers satisfying (2). Suppose
f : K → Rd is a map in general position, and σ1, . . . , σr be pairwise disjoint simplices of K of
dimension s1, . . . , sr ≤ m such that f−1(f(σ1) ∩ · · · ∩ f(σr)) is contained in the interior of each
simplex σi. Then there exists a ball Bd in Rd such that

1. Bd intersects each f(σi) in a ball that is properly embedded in Bd, and that avoids the image
of the singular set of f |σi , as well as f(∂σi);

2. Bd contains f(σ1) ∩ · · · ∩ f(σr) in its interior; and

3. Bd does not intersect any other parts of the image f(K).

Proof. Let us consider Si := f−1(f(σ1) ∩ · · · ∩ f(σr)) ∩ σi. By general position [37, Thm 5.4] this
is a polyhedron of dimension at most s1 + · · · + sr − (r − 1)d ≤ rm − (r − 1)d. By Theorem 8,
we find Ci ⊆ σi collapsible, containing Si, and of dimension at most rm− (r − 1)d+ 1. Figure 1
illustrates the case r = 3.

The dimension of the singular set of f |σi is at most 2si − d. Hence, Ci is disjoint from it since
(rm− (r− 1)d+ 1) + (2si− d)− si ≤ (r+ 1)m− rd+ 1, which is negative in the metastable range.
Thus, f is injective in a neighbourhood of Ci.

Again by Theorem 8, we find in Rd a collapsible polyhedron CRd of dimension at most rm −
(r − 1)d + 2 and containing f(C1) ∪ · · · ∪ f(Cr). Figure 2 illustrates the construction for r = 3.
By general position we have the following properties:

1. CRd intersects f(σi) exactly in f(Ci). Indeed, in the metastable range, rm− (r − 1)d+ 2 +
si − d ≤ (r + 1)m− rd+ 2 < 0.

2. CRd does not intersect any other part of f(K) (by a similar computation).

6



fC1

fC3

fC2

fσ1

fσ3

fσ2

Figure 2: For r = 3, the polyhedron CRd is a “cone” over fC1 ∪ fC2 ∪ fC3.

We take a small regular neighbourhood [37, Ch. 3] B of CRd , which still avoids the singular
set of each f |σi as well as other parts of f(K). This regular neighbourhood is a ball, since CRd
is collapsible. The intersection B ∩ f(σi) is a regular neighbourhood of f(Ci) which is also a
collapsible space, hence B ∩ f(σi) is a ball (properly contained in B).

An ambient isotopy H is of a PL-manifold X is a collection of homeomorphisms Ht : X → X
for t ∈ [0, 1], which vary continuously with t, and with H0 = id. We say that an ambient isotopy
H throws a subspace Y ⊆ X onto Z if H1(Y ) = Z, see [47, Ch. V].

We say that an ambient isotopy H of X is proper if Ht|∂X = id∂X for all t.

Definition 10. Let m, d, r be three positive integers satisfying (2). Let σ1, . . . , σr be balls of
dimensions s1, . . . , sr ≤ m. We define

s := s1 + . . .+ sr.

Let f be a continuous map, mapping the disjoint union of the σi to a d-dimensional ball Bd, i.e.,

f : σ1 t · · · t σr → Bd.

We define the Gauss map f̃ associated to f

f̃ : σ1 × · · · × σr → Bd × · · · ×Bd, by (x1, ..., xr) 7→ (fx1, ..., fxr),

If, for each i = 1, ..., r,
fσ1 ∩ · · · ∩ f∂σi ∩ · · · ∩ fσr = ∅.

then f̃∂(σ1× · · · × σr) ⊂ Bd× · · · ×Bd, avoids the thin diagonal δr(B
d) = {(x, . . . , x) | x ∈ Bd}

of Bd. Thus,
∂(σ1 × · · · × σr)→ (Bd × · · · ×Bd) \ δr(Bd). (3)

Observe that ∂(σ1 × · · · × σr) ∼= Ss−1, where s :=
∑
i si, and (Bd × · · · × Bd) \ δr(Bd) is

homotopy equivalent to Sd(r−1)−1. Therefore, the map (3) defines an element

α(f) ∈ πs−1(Sd(r−1)−1),

which we call intersection class of f .

Lemma 11 (Generalized Weber-Whitney Trick). Let m, d, r be three positive integers satisfying
(2).

Let σ1, . . . , σr be balls of dimensions s1, . . . , sr ≤ m properly contained in a d-dimensional ball
B and with σ1 ∩ · · · ∩ σr in the interior of B.

10The PL assumption is no loss of generality: if K is a finite simplicial complex and f : K → Rd is an almost
r-embedding then f can be slightly perturbed to a PL map with the same property.
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1. Let us denote by α the intersection class of the map σ1 t · · · t σr → Bd.

If α = 0, then there exists (r − 1) proper ambient isotopies of B that we can apply to
σ1, . . . , σr−1, respectively, to remove the r-intersection set; i.e., there exist (r − 1) proper
isotopies H1

t , . . . ,H
r−1
t of B throwing σi onto σ′i := Hi

1σi and such that

σ′1 ∩ · · · ∩ σ′r−1 ∩ σr = ∅.

2. Let us assume that σ1 ∩ · · · ∩ σr = ∅ and σ2 ∩ · · · ∩ σr 6= ∅, and let z ∈ πs(Sd(r−1)−1).

There exists Jt a proper ambient isotopy of B such that

• J1σ1 ∩ σ2 ∩ · · · ∩ σr−1 ∩ σr = ∅,
• The intersection class of f is z, where

f : (σ1 × I) t σ2 t · · · t σr → Bd

is defined as the inclusion on σi for i ≥ 2, and for (x, t) ∈ σ1 × I, f(x, t) = Jt(x).

Remark 12. • The proof of Lemma 11 is the technical core of the paper and will be given
in Section 4. For r = 2, Lemma 11 already appears in Section 4 of Weber’s thesis [46]. Our
contribution in the present paper is to show that the result holds for any r ≥ 3.

• Roughly speaking, Part 1 of Lemma 11 means that if the intersection class vanishes, then
one can solve the r-intersection set.

Part 2 means that each element of πs(S
d(r−1)−1) can be obtained by moving from a fixed

solution to a new solution.

3 Proof of Theorem 2

Here, we show how to use Lemmas 9 and 11 to prove the main theorem. The inductive argument
used in the proof mirrors that of Section 5 in Weber’s thesis [46], where Theorem 2 is proven for
r = 2.

Proof of Theorem 2. We are given F : (K)
r
∆ →Sr S

d(r−1)−1, and we want to construct f : K → Rd
without global r-intersection points.

We start with a map f : K → Rd in general position. Inductively, we will redefine f on the
skeleta of K as to get the desired property. There are two levels in the induction. To describe these,
let us fix a total ordering of the simplices of K that extends the partial ordering by dimension,
i.e.,

K = {τ1, . . . , τN}, dim τi ≤ dim τi+1 for 1 ≤ i ≤ N − 1.

First, we give a very informal plan of the “double induction” that we are going to use in the
proof: we go over the list of simplices τ1, ..., τN , and for each simplex τi we consider all the global
r-intersection of τi with all the simplices before τi in the list. More precisely, we consider the
list li of all r-tuple of pairwise disjoint simplices containing τi and simplices before τi in the list
τ1, ..., τN . For each r-tuple in li, we need to eliminate its global r-intersection points.

Therefore, once τi is fixed, we have a new list li. We are going to order li (by a notion of
dimension), and then inductively scan over it and remove the global r-intersections points for each
r-tuple in li.

For the first level of the inductive argument, it suffices to prove the following: Suppose we are
given a map f : K → Rd in general position with the following two properties:

1. Restricted to the subcomplex L = {τ1, . . . , τN−1} the map f |L does not have r-intersection
between disjoint r-tuples of simplices;
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2. f̃ restricted to (L)
r
∆ is Sr-equivariantly homotopic to F , where f̃ is the map defined in

Lemma 1.

Then we can redefine f as to have these two properties on the whole of K. This is the first
level of induction.

For the second level of the induction, let us define the dimension of a finite set of simplices as
the sum of their individual dimensions. For the the purposes of this proof, we use the terminology
k-collection for a set of cardinality k. Consider those (r− 1)-collections t of simplices of L that,
together with τN , form an r-collection of pairwise disjoint simplices. We fix a total ordering of
these (r− 1)-collections that extends the partial ordering given by dimension, i.e., we list them as

t1, . . . , tM ,

with dim ti ≤ dim ti+1 for 1 ≤ i < M. (Thus, each ti is an (r − 1)-collection of simplices of L,
and ti joined with τN is a r-collection of pairwise disjoint simplices.) Once again, inductively, it
suffices to prove the following: Assuming that f has the two properties

1. For each (r − 1)-collection ti in the list t1, . . . , tM−1, the map f does not have any r-
intersection with preimages in the r-collection formed by adjoining τN to ti.

2. the map f̃ is Sr-equivariantly homotopic to F on the complex

(L)
r
∆ ∪

⋃

i≤M−1

[ti ∪ {τN}] ⊆ (K)
r
∆,

where the operator [−] converts an unordered r-collection of pairwise disjoint simplices of
K into the set of its corresponding cells11 in (K)

r
∆.

Then we can modify f as to have these two properties on the list t1, . . . , tM .

In order to do so, let us consider the r-collection tM ∪ {τN}. We rename its elements as

tM ∪ {τN} = {σ1, . . . , σr}, (with τN = σr).

By the induction hypothesis (namely the order on the τi and the ti), for each i = 1, . . . , r,
f−1(fσ1 ∩ · · · ∩ fσr) ∩ σi is contained in the interior of σi (since the induction has already

“worked” on the simplices in ∂σi). Furthermore, the map f̃ : ∂(σ1 × · · · × σr) → Sd(r−1)−1 is
homotopic to F , this also follows from the ordering on the τi and the ti (the homotopy is already
defined on all the cells of ∂(σ1 × · · · × σr)).

We are in position to apply Lemma 9: we find a ball Bd in Rd with the three properties listed

in the Lemma. Let us call σ′i the sub-ball in σi properly embedded into Bd, i.e., σ′i
f
↪→ Bd , and

f∂σ′i = ∂Bd ∩ fσ′i.
By the Combinatorial Annulus Theorem [8, 3.10], there exists an isotopy of σi in itself that

progressively retracts σi to σ′i. I.e., there exists Git : σi → σi with Gi0 being the identity and Gi1
being an homeomorphism between σi and σ′i. We define a homotopy by

G : ∂(I × σ1 × · · · × σr) fG1×···×fGr−−−−−−−−−→ Rd × · · · × Rd \ δrRd
(t, x1, . . . , xr) 7−→ (fG1

tx1, . . . fG
r
txr).

(4)

By the induction hypothesis,

∂(σ1 × · · · × σr) f×···×f−−−−−→ Rd × · · · × Rd \ δrRd (5)

is homotopic to F , and F is defined over σ1 × · · · × σr. Therefore, the homotopy class of

∂(σ′1 × · · · × σ′r)
f×···×f−−−−−→ Bd × · · · ×Bd \ δrBd

11 E.g., [{α, β, γ}] = {α× β × γ, α× γ × β, β × α× γ, β × γ × α, γ × α× β, γ × β × α}.
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is trivial. Hence, we can use the first part of the Lemma 11 to find (r − 1) proper ambient
isotopies of B, say H1

t , . . . ,H
r−1
t , such that H1

1 (fσ′1)∩ · · ·∩Hr−1
1 (fσ′r−1)∩ fσ′r = ∅. This removes

the r-intersection set.
To finish the induction, we also need to extend the equivariant homotopy between f̃ and F on

the cell σ1 × · · · × σr, as the homotopy is already defined on ∂(σ1 × · · · × σr). This is when the
second part of Lemma 11 becomes useful.

We define a map on ∂(I × σ1 × · · · × σr)→ Rd × · · · × Rd \ δrRd in the following way:

1. on {0} × σ1 × · · · × σr, we use F ,

2. on [0, 1
3 ]× ∂(σ1 × · · · × σr), we use the homotopy from F to (5),

3. on [ 1
3 ,

2
3 ]× ∂(σ1 × · · · × σr), we use G,

4. on [ 2
3 , 1]× ∂(σ1 × · · · × σr), we use (H1

t × · · · ×Hr−1
t × id) ◦ (fG1

1 × · · · × fGr1),

5. {1} × σ1 × · · · × σr, we use (H1
1 × · · · ×Hr−1

1 × id) ◦ (fG1
1 × · · · × fGr1).

This defines a class θ ∈ π∑ dimσi(S
d(r−1)−1). To conclude, we need to have θ = 0 (this is the

condition to be able to extend to homotopy between f̃ and F ).
By the second part of Lemma 11, we can12 performs a “second move” on σ1 with an ambient

isotopy Jt of B such that

∂(I × σ1 × · · · × σr)
(Jt×id×···×id)◦(H1

1×···×Hr−1
1 ×id)◦(fG1

1×···×fGr1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rd × · · · × Rd \ δrRd

represents exactly −θ. Therefore, by using this last move, we can assume that θ = 0, i.e., we can
extend the equivariant homotopy between f̃ and F , as needed for the induction.

4 Proof of Lemma 11

Throughout this section, we assume that m, d, r are positive integers satisfying (2). Furthermore,
we will denote the sum of the dimensions si of the balls σi by

s := s1 + . . .+ sr.

The proof of Lemma 11 is essentially inductive: we reduce from r balls to (r − 1) balls. The
trick is to consider the intersection pattern of the first (r − 1) balls σ1, . . . , σr−1 on σr. If each of
the intersections σi ∩ σr, 1 ≤ i ≤ r − 1, were a ball properly embedded in σr, then we could solve
the situation first at the level of σr (i.e., remove the (r − 1)-intersections between the σi ∩ σr),
and then extend the solution to B, thus completing the induction.

However, the intersections σi ∩ σr need not be balls, so our first task is to move σ1, . . . , σr−1

inside B as to modify their intersection with σr. As it will turn out, if we manage to increase
sufficiently the connectedness of the intersections σi∩σr, then Theorem 8 becomes useful to reduce
the situation (as in the proof of Lemma 9) in such a way that the intersections σi ∩ σr do become
balls. For this to work, σi ∩ σr needs to be dim(σ1 ∩ · · · ∩ σr)-connected.

12 We can always obtain the assumption σ2 ∩ · · · ∩σr 6= ∅ by modifying the map f as follows [25, “Finger moves”
in the proof of Lemma 43]: we pick r− 1 spheres Ss2 , ..., Ssr in the interior of Bd of dimension s2, ..., sr in general
position and such that Ss2 ∩ · · · ∩ Ssr is a sphere S. Then, for i = 2, ..., r, we pipe σ′i to Ssi . The resulting map
has the desired property.

This “piping” change can be absorbed by a slight modification (and renumbering) of the Hi
t . The support of

these modifications is a collection of regular neighborhoods of 1-polyhedra (= paths used for piping).
Also, note that the cases when, by general position, dimS < 0 corresponds the trivial cases θ = 0. Indeed,

dimS < 0 corresponds to (d − s2) + · · · + (d − sr) > d, i.e., (r − 1)d + s1 − d >
∑
si, and since s1 − d ≤ −3, we

have (r − 1)d− 1 >
∑
si, and so π∑ dimσi

(Sd(r−1)−1) = 0.
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σr

σi

Sk

σi ∩ σr
Sk

σi ∩ σr

Figure 3: Sk represents a non-zero element
of the homotopy group πk(σi ∩ σr).

σr

σi

Sk

σi ∩ σr
Sk

Dk+1

Figure 4: By moving a sub-ball of σi inside
of B, we modify the intersection of σi and
σr as to “kill” by surgery the homotopy class
represented by Sr ⊆ σi ∩ σr.

σr SkNSk

Dk+1

T ∩ σr
Sk

σi

Figure 5: The different steps in the construction of the handle used for the ambient surgery.

4.1 Increasing the connectivity of the intersections

Proposition 13. With the same notations as in Lemma 11, for each i = 1, . . . , r − 1, there exists
a proper ambient isotopy Ht of B such that H1(σi)∩ σr is dim(σ1 ∩ · · · ∩ σr)-connected, and such
that

I × ∂(σ1 × · · · × σi × · · · × σr) incl×···×Ht×···×incl−−−−−−−−−−−−−→ (Bd × · · · ×Bd) \ δr(Bd) (6)

is well-defined, i.e., its image is disjoint from the diagonal δr(B
d).

Proof. Proposition 13 follows directly by inductively using the Lemma 14 (below), as in [30,
Lemma 2].

Lemma 14. (a) With the same notation as above, for all 1 ≤ k ≤ dim(σi ∩ · · · ∩ σr) and Sk →
σi ∩σr representing a homotopy class in πk(σi ∩σr), there exists a proper ambient isotopy Ht

of B such that, for j < k,
πj(H1(σi) ∩ σr) ∼= πj(σi ∩ σr),

and
πk(H1(σi) ∩ σr) ∼= πk(σi ∩ σr)/a subgroup containing [Sk].

(b) An analoguous statement holds for k = 0: If σi ∩ σr has more than one connected component,
then there exists a proper ambient isotopy Ht of B such that H1(σi)∩σr has one less connected
component.

In both cases (a) and (b) with have the following additional property of Ht: the map (6) defined
using Ht avoids the diagonal.
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Here, we only present the proof of the part (a), i.e., for k ≥ 1. For k = 0, the construction is
similar, and is aready presented in [25, Sec. 3.2] as piping and unpiping.

Our main technique in the proof is to use surgery (as presented by Milnor [30]) to increase
the connectivity of σi ∩ σr. The precise definition of surgery used in our situation is given later
(Definition 23).

Figure 3 illustrates the situation, and Figure 4 tries to illustrate how we intend to ‘kill’ a
homotopy class of Sk ∈ πl(σi ∩ σr) by surgery.

Remark 15. We decompose the proof of Lemma 14 into a series of Lemmas.
For the first two Lemmas, we need to use a PL analogous of vector bundles for smooth manifold.

In the PL category, this analogous notion is called block bundles. See [8] for a rapid introduction,
or the original [35]. In the present paper, we need to use results from [35, 36].

Since we only work in the PL category, we sometimes only say bundle instead of block bundle.

First we render, once and for all, the intersections transverse:

Lemma 16. With the same notations as in Lemma 11, we can assume that σr is unknotted in
Bd, i.e.,

Bd = σr × [−1, 1]d−sr ,

and we can also assume that σi intersects σr transversely in the sense of [36], i.e., for ε > 0 small
enough, σr × ε[−1, 1]d−sr is a normal block bundle to σr in Bd, and we have

σi ∩ (σr × ε[−1, 1]d−sr ) = (σi ∩ σr)× ε[−1, 1]d−sr .

Proof. The first statement follows from Zeeman’s Unknotting of balls. The second statement
follows by [36, Theorem 1.1 (a)]: there exists an ε-isotopy of B carrying σi locally transverse to
σr. Using a collar on ∂B, we can furthermore assume that this isotopy is fixed on ∂B.

Remark 17. In the sequence of lemmas that follows, Sk → σi ∩ σr represents an homotopy class
in πk(σi ∩ σr), which we want to “kill”.

Lemma 18. In the situation given by Lemma 16, let a : Sk → σi ∩ σr represents an homotopy
class in πk(σi ∩ σr). Then there exists an embedded copy of Sk ⊂ σi ∩ σr such that its inclusion
map is homotopic to a, and with the two additional properties:

(1) the normal block bundle of Sk ⊂ σi ∩ σr is trivial.

(2) Let NSk be a regular neighborhood of Sk inside σi ∩ σr. Then

NSk ∼= Sk × [−1, 1]si+sr−d−k,

containing Sk as Sk × 0.

Proof. The existence of the embedded copy of Sk follows by general position13.
The first property follows from [36]: By the previous Lemma, the normal bundle of σi∩σr in σi

is trivial. Hence its tangent bundle is stably trivial [36, Corollary 5.6], i.e., σi∩σr is a π-manifold,
in the sense of Milnor [30]. To complete the proof, we simply recast in the PL category the proof
of Theorem 2 from Milnor’s paper.

Using again [36, Corollary 5.6], the Whitney sum

(normal bundle of Sk in σi ∩ σr)⊕ (tangent bundle of Sk)

13Indeed, this is the case if

k ≤ s− (r − 1)d <
si + sr − d

2
,

and, after rearrangement and using si ≤ m, we get the sufficient condition

2(r − 1)m < (2r − 3)d, which is the case since
2(r − 1)

2r − 3
m ≤

r + 1

r
m < d,

where the first inequality is true for r ≥ 3, and the second follows from the metastable range.
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is equal to the tangent bundle of σi ∩ σr restricted to Sk, which is stably trivial. Hence there
exists j ≥ 0 such that

(normal bundle of Sk in σi ∩ σr)⊕ (tangent bundle of Sk)⊕ εj

is the trivial bundle over Sk. Since

(tangent bundle of Sk)⊕ ε1

is trivial, the normal bundle of Sk in σi∩σr is stably trivial. Finally, by [36, Corollaries 5.2 & 5.3],
this normal bundle must already be trivial.

The second property about NSk follows by the correspondence between regular neighborhoods
and normal block bundles [35, Theorems 4.3 & 4.4].

Lemma 19. In the situation given by Lemma 18, with Sk ⊂ σi ∩ σr and the two additional
properties. There exists a ball Dk+1 in σr with

Dk+1 ∩ σi = ∂Dk+1 = Sk,

and which avoids the other σj.
Furthermore, the trivialisation of NSk can be extended to Dk+1, i.e., there exists in σr

NDk+1
∼= Dk+1 × [−1, 1]si+sr−d−k (7)

containing Dk+1 as Dk+1 × 0 and with

NDk+1 ∩ σi = NSk ∼= Sk × [−1, 1]si+sr−d−k,

and this last homeomorphism is the restriction of (7).

Remark 20. For proving the second part of Lemma 19, we could use the PL-analogue of Stiefel
manifolds [36, p. 274]: the obstruction to extending the trivialisation of Sk is always trivial in the
metastable range. But, to avoid entering more deeply into the theory of block bundles, we rather
use the following unknotting theorem of Hudson:

Theorem 21 ([22, Unknotting Theorem Moving the Boundary, 10.2, p. 199]). If f, g : Mm → Qq

are proper PL embeddings between manifolds M and Q. Then f, g homotopic as maps of pairs
(M,∂M)→ (Q, ∂Q) implies that f, g are ambient isotopic provided that

• M is compact

• q −m ≥ 3

• (M,∂M) is (2m− q + 1)-connected

• (Q, ∂Q) is (2m− q + 2)-connected

Proof of Lemma 19. The first statement follows by general position and the metastable range
hypothesis.

We use Theorem 21 to prove the existence of NDk+1 .
First, we take a regular neighborhood V of Dk+1 in σr. We can assume that

V ∩ σi = NSk ∼= Sk × [−1, 1]si+sr−d−k.

If NSk unknots in V in the sense of Theorem 21, then the existence of NDk+1 is immediate: we
use an “standard” version of NSk to construct NDk+1 , and move it to our situation by the isotopy
given by the unknotting theorem.

So we are left with checking the connectivity hypothesis of Theorem 21. Trivially, (V, ∂V ) is
sufficiently connected. So we only need to analyse the connectivity of the pair

(Sk × [−1, 1]si+sr−d−k, Sk × Ssi+sr−d−k−1)
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which we need to be (2(si + sr − d) − sr + 1)-connected. Let us consider the exact sequence in
homotopy for this pair

· · · → πi(S
k × Ssi+sr−d−k−1

︸ ︷︷ ︸
:=∂X

)→ πi(S
k × [−1, 1]si+sr−d−k︸ ︷︷ ︸

:=X

)→ πi(X, ∂X)→ · · ·

Since si + sn − d− k > k (i.e., si + sr − d > 2k that we already used to assume Sk embedded in
σi ∩ σr), the above sequence can be rewritten for i < si + sr − d− k as

· · · → πi(S
k)→ πi(S

k)→ πi(X, ∂X)→ · · ·

Since the πi(S
k)→ πi(S

k) is an isomorphism, we get πi(X, ∂X) = 0 as long as i < si + sr− d− k.
So we are left with checking

si + sr − d− k − 1 > 2si + sr − 2d+ 1

which reduces to d− si − 2 > k, which is true if d− si − 2 > s− (r − 1)d, and this is implied by
rd ≥ (r + 1)m+ 3, i.e., the metastable range hypothesis.

Lemma 22 (Existence of the surgery-handle). In the situation given by Lemma 19, there exists
in B a handle

T := Dk+1 × [−1, 1]si+sr−d−k × [−1, 1]d−sr

such that

• T contains Dk+1 as Dk+1 × 0,

• T intersects σr as Dk+1 × [−1, 1]si+sr−d−k × 0,

• T intersects σi as Sk × [−1, 1]si+sr−d−k × [−1, 1]d−sr .

Figure 5 illustrates the handle T .

Proof. This follows from the construction of Dk+1 (Lemma 19) and the transversality of the
intersection of σi and σr (Lemma 16).

Definition 23 (Ambient surgery). Let Sk be an embedded sphere in (the interior of) σi with a
trivialized regular neighborhood Sk × [−1, 1]si−k, and let T is a handle based on Sk, i.e.,

T = Dk+1 × [−1, 1]si−k ⊆ Bd

for a ball Dk+1 with

T ∩ σi = ∂Dk+1 × [−1, 1]si−k = Sk+1 × [−1, 1]si−k.

Using T , we perform a ambient surgery on σi ⊂ Bd by constructing the new manifold

σ∗i := (σi \ (Sk × [−1, 1]si−k)) ∪ (Dk+1 × ∂[−1, 1]si−k) ⊂ Bd (8)

In order to attach the handle T we made choices on σi: the choice of Sk, its regular neigh-
borhood Sk × [−1, 1]si−k, the ‘core’ Dk+1, etc. In the next Lemma, we show that, up to isotopy,
there is only one way to attach a handle T to σi:

Lemma 24. If Sk and S̃k are embedded spheres in σi with a trivialized regular neighborhoods and
handles T and T̃ as in Definition 23.

Then performing a surgery on σi using T or T̃ produces two homeomorphic manifolds σ∗i and
σ̃∗i that are connected by a proper ambient isotopy of Bd.
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σi

Dk+2

Dk+1

Sk+1
S̃k

S̃k

cocore

Figure 6: We perform two complementary surgeries on σi such that the resulting manifold σ′i is a
ball homeomorphic to σi.

Proof. By Irwin’s Theorem [47, Ch. VIII, Theorem 24], there exists a proper isotopy of σi “throw-

ing” S̃k onto Sk, so we can assume Sk = S̃k (since this isotopy can be extended to Bd [21]).
Then, by the uniqueness of regular neighborhoods, we can assume that the trivialisation of the

normal block bundle are identical [35, Theorem 4.4].

We have reached the situation where T ∩ σi = T̃ ∩ σi.
Let us take a cone C in Bd over Dk+1 ∪ D̃k+1. By general position14, this cone avoids σi

(except on Sk = S̃k). Let us take a regular neighborhood V of the collapsible space C in Bd

relative to Sk = S̃k. Hence, V is a d-ball, and

V ∩ σi = Sk, [23, p. 719, (iii)].

Inside of V , we can find an ambient isotopy (fixed on the boundary) ‘throwing’ D̃k+1 to Dk+1,

hence, we can assume that Dk+1 = D̃k+1.
We have reached the situation where both T and T̃ are equal on σi and have the same ‘core’

Dk+1 = D̃k+1.
To conclude, let us take a regular neighborhood N of Dk+1. We can assume that

• N ∩ σi = Sk × [−1, 1]sr−k = T ∩ σi = T̃ ∩ σi, and

• T, T̃ ⊆ N (after, possibly, shrinking the handles).

We have that
σ∗i ∩N = Dk+1 × [−1, 1]si−k ∼= σ̃∗i ∩N

and
∂(σ∗i ∩N) = ∂(σ̃∗i ∩N) = Sk × ∂[−1, 1]si−k.

Hence, to conclude, we only have to check that Dk+1×∂[−1, 1]si−k unknots inside of N (keeping
the boundary fixed). First, we observe that two proper maps Dk+1×Ssi−k−1 → Bd that are equal
on the boundary are always homotopic (by a straight-line homotopy). Hence, by Irwin’s Theorem
[47, Ch. VIII, Theorem 24], we only need to check

2si − d+ 1 ≤ si − k + 1, i.e., k + 3 ≤ d− si

which is true if rm− (r−1)d+3 ≤ d−si, and this is implied by (r+1)m+3 ≤ rd (the metastable
range hypothesis).

14We have to check, e.g., (k+ 2) + sr − d < 0, i.e., k < d− sr − 2, which is true if s− (r− 1)d < d− sr − 2, and
this is implied by the metastable hypothesis (r + 1)m+ 3 ≤ rd.
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Lemma 25 (Existence of a complementary handle). Let Sk and T be as in Definition 23.
Then there exists an handle (see Figure 6)

T c = Dk+2 × [−1, 1]si−k−1 ⊆ Bd

with

• T c ∩ σ∗i = Sk+1 × [−1, 1]si−k−1 for a (k + 1)-sphere Sk+1 such that

• Sk+1 intersects the cocore of T

0k+1 × ∂[−1, 1]sr−k ⊆ ∂T

at exactly one point.

• Furthermore, we can assume that Sk+1 is at positive distance of σr.

Proof. By the previous lemma, there exists, up to proper isotopy of Bd, an unique way to to
perform a surgery by the handle T on σi. From this fact, the existence of the complementary
handle T c is immediate.

For the last property, we need to shift Sk+1 to general position15.

Remark 26. We call T c the ‘complementary handle’ to T .

Lemma 27. Let α ∈ π(σi ∩ σr). Then there exists a sphere Sk ⊂ σi ∩ σr and a handle T as in
Defintion 23 such that performing a surgery on σi by the handle T , followed by a surgery by the
handle T c produces a manifold σ∗∗i which is a si-ball. Furthermore for j < k

πj(σ
∗∗
i ∩ σr) ∼= πj(σi ∩ σr)

and
πk(σ∗∗i ∩ σr) ∼= πk(σi ∩ σr)/a subgroup containing α.

Proof. The existence of Sk is given by Lemma 18. The existence of T is given by Lemma 22. The
existence of T c is given by Lemma 27.

To conclude, one notices

• By the first surgery using the handle T , we have ‘killed’ the homotopy class α = [Sk] ∈
πk(σi ∩ σr), i.e., by construction,

σ∗i ∩ σr = ((σi ∩ σr) \ (Sk × [−1, 1]si+sr−d−k × 0)) ∪ (Dk+1 × ∂[−1, 1]si+sr−d−k × 0)

and so we have killed [Sk] in the sense of [30, Lemma 2].

• The effect of two surgeries by complementary handles cancels, hence σ∗∗i is a si-ball [37,
Lemma 6.4].

Proof of Lemma 14. One combines Lemma 27 with Zeeman’s Unknotting of balls.

4.2 Proof for balls

Proposition 28. The first part of Lemma 11 is true if we add the following hypothesis: for each
i = 1, . . . , r − 1,

σi ∩ σr is a (si + sr − d)-ball properly contained in σr.

Before proving Proposition 28, we need two Definitions and two Lemmas.

15We want (k + 1) + (si + sr − d) − si < 0, i.e., k < d − sr − 1. But k ≤ s − (r − 1)d, so we only need
s− (r − 1)d < d− sr − 1, i.e., s+ sr + 1 < rd, and this is true in the metastable range (r + 1)m+ 3 ≤ rd.
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fσr

Bd
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fτi fσr gτi

Sd−sr−1

Bd = σr ∗ Sd−sr−1

σi = τi ∗ Sd−sr−1

−→

gσi

Figure 7: Using that σr unknots in Bd and that σi ∩ σr unknots in σr, we change the setting to a
suspension over σr.

Definition 29. Let g : σ1 t · · · t σr → Bd be balls properly mapped inside Bd, with the dimen-
sional restriction of Lemma 11.

We say that g is a suspended map if it has the following structure

• gσr is an embedded and unknotted ball inside Bd, hence we can assume that

Bd = (gσr) ∗ Sd−sr−1,

for some Sd−sr−1.

• For i = 1, ..., r − 1, the preimage by g|σi of gσr ⊂ Bd is a ball properly embedded and
unknotted inside σi. I.e.,

σi = g|−1
σi (gσr) ∗ Sd−sr−1,

for some Sd−sr−1.

Notation: τi := g|−1
σi (gσr) ⊂ σi.

• For i = 1, ..., r − 1, g is defined as follows:

– the sphere Sd−sr−1 ⊂ σi is mapped homeomorphically to Sd−sr−1 ⊂ Bd,
– the ball τi ⊂ σi is properly map to gσr.

– g is defined elsewhere on σi by interpolating in the obvious way between the two joins

σi = τi ∗ Sd−sr−1 and Bd = (gσr) ∗ Sd−sr−1.

Figure 7 shows on the right a suspended map.

Lemma 30 (Suspended maps, Figure 7). Let f : σ1 t · · · t σr → Bd be balls properly embedded
inside Bd in general position, with the dimensional restriction of Lemma 11, and with the addi-
tional hypothesis of Proposition 28, i.e., for each i = 1, . . . , r − 1, σi ∩ σr is a (si + sr − d)-ball
properly contained in σr.

Then there exists a suspended map g : σ1 t · · · t σr → Bd, such that

• the intersection classes of f and g are equal

• f |σr = g|σr
• For i = 1, ..., r − 1, we have f |−1

σi (σr) = g|−1
σi (σr) =: τi.

• f |τi = g|τi .

17



Proof. To simplify notation, during the proof we assume that f is an inclusion map, i.e., σi ⊂ Bd.
The existence of g will follow from the facts that

• σr unknots in Bd,

• σi ∩ σr unknots inside of σr,

• the modifications applied during the unknotting on σ1, . . . , σr−1 do not change the homotopy
class that we are interested into.

More precisely, since σi ∩ σr unknots inside of σr, we can represent σr as

σr = (σi ∩ σr) ∗ Sd−si−1, and so Bd = (σi ∩ σr) ∗ Sd−si−1 ∗ Sd−sr−1

Hence, we define a retraction from

Bd \ (∅ ∗ Sd−si−1 ∗ ∅) onto (σi ∩ σr) ∗ ∅ ∗ Sd−sr−1,

and, using this retraction on σi, we can assume that σi ⊆ (σi ∩ σr) ∗ Sd−sr−1.
If Bd−si is the “standard ball” in σr with boundary Sd−si−1, then σi ∩ σr intersects this ball

precisely once, and this translates into the fact that ∂σi is a generator of the homotopy group
πsi−1(∂(σi ∩ σr) ∗ Sd−sr−1) ∼= Z.

Hence, we can assume that σi = (σi ∩ σr) ∗ Sd−sr−1, after an homotopy of σi inside of (σi ∩
σr) ∗ Sd−sr−1 (keeping ∂σi on ∂Bd).

Lemma 31 (Commuting Square for Suspended Maps). Let f : σ1t · · · tσr → Bd be a suspended
map. Then there exists a diagram commuting up to homotopy

∂(σ1 × · · · × σr)

��

' // Σd(r−1)−sr(r−2)∂(τ1 × · · · × τr−1)

��
B × · · · ×B \ δr(B)

' // Σd(r−1)−sr(r−2)((σr × · · · × σr) \ δr−1(σr))

(9)

where

• the map on the left is the obvious one, representing an element α ∈ πs−1(Sd(r−1)−1),

• the map on the right is the suspension Σ applied (d(r − 1)− sr(r − 2)) times to the map

∂(τ1 × · · · × τr−1)→ (σr × · · · × σr) \ δr−1(σr),

and this map represents an element

β ∈ π(s1+sr−d)+···+(sr−1+sr−d)−1(Ssr(r−2)−1).

• The two horizontal maps are defined within the proof.

We defer the proof of Lemma 31 to Section 4.2.2.

Proof of Proposition 28. We apply Lemma 30, to get a suspended map f : σ1 t · · · t σr → Bd

with the same intersection class as our initial map.
From Diagram (9) in Lemma 31

Σd(r−1)−sr(r−2)β = α.

18



But α = 0, and we are in the stable range of the suspension homomorphism16, hence β = 0.
Therefore, using the third property in Lemma 30, we have reduced the problem to that of removing
the (r − 1)-intersection set between

σ1 ∩ σr, . . . , σr−1 ∩ σr ⊆ σr,

which are (r − 1) balls embedded in σr in the metastable range for r − 1.
Thus, we are in position to work inductively: since σr unknots in Bd, we have Bd = σr ∗

Sd−sr−1, so proper ambient isotopies of σr can be extended to Bd.
The beginning of the induction (for r = 3) reduces to the classical case of two balls intersecting

inside a third ball, and is solved in Weber [46, Prop. 1 & 2].

We are left with proving Lemma 31, this is what the rest of this section is devoted to. Before
starting the proof (that will be split into three Lemmas in Section 4.2.2), we introduce another
kind of configuration space that will be useful for us during that proof.

4.2.1 Deleted Joins

Let K be a simplicial complex. We define the k-fold k-wise topological deleted join of K

K∗r \ δ∗rK := K ∗ · · · ∗K \
{

1

r
x+ · · ·+ 1

r
x

∣∣∣∣ x ∈ K
}
,

and the k-fold k-wise simplicial deleted join of K

(K)
∗r
δ := {τ1 ∗ · · · ∗ τr | τi ∈ K and τ1 ∩ · · · ∩ τr = ∅}.

Both spaces K∗r \ δrK and (K)
∗r
δ have a natural Sr-action by permutation of the coordinates.

Lemma 32. K∗r \ δ∗rK can be Sr-equivariantly retracted onto (K)
∗r
δ .

Proof. Our proof is modelled on the deleted product case [20, Lemma 10.1].
Warm up. We first show the main trick on a very simple case. I.e., assuming ∆ is the simplex
on two vertices {x, y}, we construct an homeomorphism

∆ ∗∆ ∼= (∆)
∗2
δ ∗ δ∗2(∆), (see Figure 8).

Once we have this homeomorphism the conclusion is immediate.
First, we name the four vertices of ∆∗∆ as {x, y, x′, y′} (with {x, y} ∈ ∆∗∅ and {x′, y′} ∈ ∅∗∆).

Then every point of ∆ ∗∆ is represented as

x = ax+ by + a′x′ + b′y′ with a, a′, b, b′ ∈ [0, 1],

Assuming that a ≥ a′, b ≥ b′ and that a′ or b′ is non-zero, we rewrite x as

x = (a− a′ + b− b′)
(

a− a′
a− a′ + b− b′x+

b− b′
a− a′ + b− b′ y

)

︸ ︷︷ ︸
∈(∆)∗2δ

+

(2a′ + 2b′)

(
a′

2a′ + 2b′
(x+ x′) +

b′

2a′ + 2b′
(y + y′)

)

︸ ︷︷ ︸
∈δ∗2 (∆)

.

16The suspension πi(S
n)→ πi+l(S

n+l) is an isomorphism if i < 2n−1 [19, Corollary 4.24]. For us this translates
into

s+ (r − 2)sr − d(r − 1)− 1 < 2(sr(r − 2)− 1)− 1, i.e.,

i.e.,

(s1 − sr) + · · ·+ (sr−2 − sr) + sr−1 + 2 < d(r − 1),

which is trivially true if m ≤ d− 3.
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∆

∆

{ 12x+ 1
2x | x ∈ ∆} = δ∗2(∆)

(∆)∗2δ

∆ ∗∆ ∼= (∆)∗2δ ∗ δ2(∆)

x

y

y′

x′

Figure 8: The k-fold k-wise topological deleted join can be retracted to the k-fold k-wise simplicial
deleted join.

The other possible orders on a, b, a′, b′ can be worked on in a similar way, and will correspond to
other faces of (∆)

∗2
δ .

The general case. Let K be a simplicial complex. We can write any simplex of K∗r as

(∆1 ∗ ω1)︸ ︷︷ ︸
∈K

∗ · · · ∗ (∆r ∗ ωr)︸ ︷︷ ︸
∈K

for some simplices ∆i, ωi ∈ K,

with the condition
∆1 = · · · = ∆r and ω1 ∩ · · · ∩ ωr = ∅.

Our goal is to build an homeomorphism

(∆1 ∗ ω1) ∗ · · · ∗ (∆r ∗ ωr) ∼= (∆)
∗r
δ ∗ δ∗r (∆) ∗ (ω1 ∗ · · · ∗ ωr).

where ∆ is any of the ∆i. Once we have this homeomorphism the conclusion is immediate.
Let us name pij the vertices spanning ∆i, and qij the vertices spanning ωi. Then, any x ∈

(∆1 ∗ ω1) ∗ · · · ∗ (∆r ∗ ωr) can be written as

x =
∑

i,j

pij(x)pij +
∑

i,j

qij(x)qij , with pij(x), qij(x) ≥ 0 and
∑

i,j

pij(x) +
∑

ij

qij(x) = 1.

We assume that at least one of the qij(x) is non-zero (otherwise nothing has to be done). Then,
we write x as

x =
∑

pij(x)

(
1∑
pij(x)

∑
pij(x)pij

)
+
∑

qij(x)

(
1∑
qij(x)

∑
qij(x)qij

)

The first term lies in ∆1 ∗ · · · ∗∆r, and the second in ω1 ∗ · · · ∗ωr. To further decompose the first
term, we name pj the minimum of {p1

j (x), . . . , prj(x)}, then

∑

i,j

pij(x)pij =
∑

i,j

(pij(x)− pj)pij +
∑

i

(p1p
i
1 + · · ·+ prp

i
r)

Hence, we can write
∑
i,j p

i
j(x)pij as a point in the join of (∆)

∗r
δ and δ∗r∆.

4.2.2 Proof of Lemma 31

We split the proof of Lemma 31 in three steps.

Lemma 33 (A First square). Let σ1, ..., σr be balls properly mapped to Bd by f : σ1t· · ·tσr → Bd,
with the dimensional restrictions of Lemma 11.
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0

∂(I × I × I)

δ3(I)

∂I ∗ ∂I ∗ ∂I

Figure 9: For r = 3 and d = 1: the cube I × I × I contains the join ∂I ∗ ∂I ∗ ∂I.

Then the diagram

∂(σ1 × · · · × σr)

��

∼= // ∂σ1 ∗ · · · ∗ ∂σr

��
∂(B × · · · ×B) \ δr(B)

∼= // ∂B ∗ · · · ∗ ∂B \ δr(B)

(10)

commutes up to homotopy.
The map on the left is defined as before17. The map on the right maps

∅ ∗ · · · ∗ ∂σi ∗ · · · ∗ ∅ → ∅ ∗ · · · ∗ ∂B ∗ · · · ∗ ∅

and extends linearly. The two horizontal homeomorphisms are obtained in the following way: we
represent Bd as Id = [−1, 1]d, then ∂B ∗ · · · ∗ ∂B can be formed inside of the cube B × · · · × B,
i.e.,

∂B ∗ · · · ∗ ∂B ⊆ B × · · · ×B (Figure 9)

and by radial projection from the center of the cube, we get that ∂(B × · · · ×B) is homeomorphic
with ∂B ∗ · · · ∗∂B. This defines the bottom horizontal arrow, and the same construction work with
the top horizontal arrow.

Proof. The top left-to-right arrow is defined as (where |.| is the infinity-norm)

(x1, . . . , xr) 7→
|x1|∑ |xi|

x1

|x1|︸︷︷︸
∈∂σ1

⊕ · · · ⊕ |xr|∑ |xi|
xr
|xr|︸︷︷︸
∈∂σr

⊂ ∂σ1 ∗ · · · ∗ ∂σr

17It is easy to see that ∂(σ1 × · · · × σr) maps into

∂(B × · · · ×B) \ δr(B) ⊆ B × · · · ×B \ δr(B)

since the σi are properly mapped in Bd. Also, if B is represented as a cube Id = [−1, 1]d, then

B × · · · ×B \ {(0, . . . , 0)}

can be retracted onto its boundary, and this defines a retraction from

B × · · · ×B \ δr(B) to ∂(B × · · · ×B) \ δr(B).
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with the convention that, if |xi| = 0, then xi
|xi| is undefined (but since its coefficient in the join is

0, this is not a problem). The inverse application divides a point p ∈ ∂σ1 ∗ · · · ∗∂σr ⊂ σ1×· · ·×σr
by its |.|-norm (as a point in σ1 × · · · × σr) to project the point on the boundary ∂(σ1 × · · · × σr).

Starting from the top-left corner of Diagram (10), we follow the directions: right, down, left.
We obtain a map ∂(σ1 × · · · × σr)→ ∂(B × · · · ×B) \ δr(B) defined as

(x1, . . . , xr) 7→
( |x1|∑ |xi|f x1

|x1| , · · · ,
|xr|∑ |xi|f xr

|xr|
)

∣∣( |x1|∑ |xi|f x1

|x1| , · · · ,
|xr|∑ |xi|f xr

|xr|
)∣∣ . (11)

To conclude, we must show that (11) is homotopic to (x1, . . . , xr) 7→ (fx1, . . . , fxr).

Let us assume, without loss of generality, that x1 ∈ ∂σ1. Then, |x1| = 1, hence
∣∣ |x1|∑ |xi|f x1

|x1|
∣∣ =

|fx1|∑ |xi| = 1∑ |xi| . Therefore, the denominator in (11) must be 1∑ |xi| , and so (11) becomes

(
|x1|f

x1

|x1|
, ..., |xr|f

xr
|xr|

)
(12)

which is homotopic to (x1, . . . , xr) 7→ (fx1, . . . , fxr) by a straight-line homotopy. Indeed, by
contradiction, let us assume that for a given (x1, ..., xr) ∈ ∂(σ1 × · · · × σr) and a given t ∈ (0, 1),
the straight-line homotopy intersects the diagonal δr(B). Without loss of generality, x1 ∈ ∂σ1.
But then, we must have fx2, ..., fxr ∈ ∂B, which implies that x2 ∈ ∂σ2, ..., xr ∈ ∂σr. But (12) is
the identify on such an r-tuple (x1, ..., xr), so it cannot intersect the diagonal.

Remark 34. • We define L := d(r − 1)− sr(r − 2) to shorten the exponent in Σd(r−1)−sr(r−2).

• Recall that for g a suspended map (Definition 29), we define τi := g|−1
σi σr.

Lemma 35 (Second square.). Let σ1 t · · · t σr → Bd be a suspended map. Then the diagram

∂σ1 ∗ · · · ∗ ∂σr

��

∼= // ΣL(∂τ1 ∗ · · · ∗ ∂τr−1)

��
∂B ∗ · · · ∗ ∂B \ δr(B) ΣL(∂σr ∗ · · · ∗ ∂σr \ δr−1(σr))? _oo

(13)

commutes. The map on the left is the obvious one, and the map on the right is the (d(r − 1) −
sr(r − 2))-suspension of the map

∂τ1 ∗ · · · ∗ ∂τr−1 → ∂σr ∗ · · · ∗ ∂σr \ δr−1(σr).

The horizontal maps are obtained as rearrangements using

Bd = σr ∗ Sd−sr−1 and σi = τi ∗ Sd−sr−1, for i 6= r.

More precisely, the top-horizontal homeomorphism is obtained in the following way

∂σ1 ∗ · · · ∗ ∂σr =
(
∂τ1 ∗ Sd−sr−1

)
︸ ︷︷ ︸

∂σ1

∗ · · · ∗
(
∂τr−1 ∗ Sd−sr−1

)
︸ ︷︷ ︸

∂σr

∗∂σr

∼= (∂σr ∗ S(r−1)(d−sr)−1)︸ ︷︷ ︸
S(r−1)d−sr(r−2)−1

∗∂τ1 ∗ · · · ∗ ∂τr−1,

and this last expression is the suspension applied ((r− 1)d− sr(r− 2))-times on ∂τ1 ∗ · · · ∗ ∂τr−1.
The bottom horizontal inclusion is derived, in a very similar fashion, as

S(r−1)d−sr(r−2)−1 ∗ (∂σr ∗ · · · ∗ ∂σr)
∼=
(
∂σr ∗ Sd−sr−1

)
∗ · · · ∗

(
∂σr ∗ Sd−sr−1

)
∗ (Ssr−1 ∗ ∅)

∼= ∂B ∗ · · · ∗ ∂B ∗ (∂σr ∗ ∅)
⊆ ∂B ∗ · · · ∗ ∂B ∗ ∂B.

(14)
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Proof. It follows easily that (13) commutes. We show in the next step that the bottom horizontal
inclusion is an homotopy equivalence, using Diagram (15).

Lemma 36 (Third square). Let σ1 t · · · t σr → Bd be a suspended map. Then the diagram

∂B ∗ · · · ∗ ∂B \ δr(B) ΣL(∂σr ∗ · · · ∗ ∂σr \ δr−1(σr))? _oo

(∂B)
∗r
δ

� ?

'

OO

ΣL(∂σr)
∗r−1
δ

? _'oo
� ?

'

OO

(15)

commutes, and the three arrows with the symbol ‘'’ are homotopy equivalences.

Proof. Here, (−)
∗k
δ is the k-fold k-wise (simplicial) deleted join. The definition is given in Sec-

tion 4.2.1, where we also prove that both left and right vertical arrows are homotopy equivalences
(Lemma 32). Hence, we are left with the bottom-horizontal map.

We are going to use the two following facts that are easy to check:

1. for any simplicial complexes L1, . . . , Ln, (L1 ∗ · · · ∗ Ln)
∗k
δ
∼= (L1)

∗k
δ ∗ · · · ∗ (Ln)

∗k
δ ,

2. (∂I)
∗k
δ collapses simplicially onto ∂I ∗ · · · ∗ ∂I ∗ ∅ ∗ ∂I ∗ · · · ∗ ∂I (i.e., the k-join of ∂I where

one of the factor is replaced by ∅).
Therefore, if we represent σr as Isr , we have

(∂σr)
∗r−1
δ

∼= (∂I ∗ · · · ∗ ∂I)
∗r−1
δ = (∂I)

∗r−1
δ ∗ · · · ∗ (∂I)

∗r−1
δ .

We collapse each of the (∂I)
∗r−1
δ to ∂I ∗ · · · ∗∂I ∗∅ , hence (∂σr)

∗r−1
δ collapses to ∂σr ∗ · · · ∗∂σr ∗∅.

The suspension of this space in (∂B)
∗r
δ is, by equation (14),

(
∂σr ∗ Sd−sr−1

)
∗ · · · ∗

(
∂σr ∗ Sd−sr−1

)
∗
(
∅ ∗ Sd−sr−1

)
∗ (Ssr−1 ∗ ∅),

We can collapse (∂B)
∗r
δ onto this last space. Indeed,

(∂B)
∗r
δ = (∂σr ∗ Sd−sr−1)

∗r
δ = (∂σr)

∗r
δ ∗ (Sd−sr−1)

∗r
δ .

The first term (∂σr)
∗r
δ can be factors into terms (∂I)

∗r
δ , that we all collapse onto ∂I ∗· · ·∗∂I ∗∅∗∂I.

For the second term (Sd−sr−1)
∗r
δ , we collapse onto ∂I ∗ · · · ∗ ∂I ∗ ∅.

Then, since both (∂B)
∗r
δ and ΣL(∂σr)

∗r−1
δ can be collapsed onto the same sub-sphere, it follows

that the bottom inclusion in (15) is an homotopy equivalence.

Proof of Lemma 31. Combining the all the previous Lemmas in this section, we get the following
commuting diagram

∂(σ1 × · · · × σr)

��

' // ΣL(∂τ1 ∗ · · · ∗ ∂τr−1)

��
∂(B × · · · ×B) \ δr(B)

' // ΣL(∂σr ∗ · · · ∗ ∂σr \ δr−1(σr))

Reusing the first square (10) on
∂τ1, · · · , ∂τr−1,

we form

ΣL(∂τ1 ∗ · · · ∗ ∂τr−1)

��

' // ΣL(∂τ1 × · · · × ∂τr−1)

��
ΣL(∂σr ∗ · · · ∗ ∂σr \ δr−1(σr))

' // ΣL(∂(σr × · · · × σr) \ δr−1(σr))

Combining the last two diagrams, we get the diagram (9), as wanted.
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4.3 The complete proof

Proof of Lemma 11. First Part. We apply Proposition 13 to make each of the σi ∩ σr (s− d(r−
1))-connected. Then there exists, by Theorem 8, for each i = 1, . . . , r − 1, a collapsible subspace
Ci of σi ∩ σr of dimension at most s− d(r − 1) + 1 such that Ci ⊇ σ1 ∩ · · · ∩ σr.

In σr there exists a collapsible space C of dimension at most s − d(r − 1) + 2 containing
C1, . . . , Cr. Furthermore, by general position, C intersects σi ∩ σr only on Ci. We take a regular
neighbourhood N of C in Bd. By construction, N intersects σi ∩ σr in a regular neighbourhood
of Ci, which must be a ball (Ci is disjoint for the other σj for j 6= i, r by general position). Hence,
“retracting” from Bd to the ball N (as we did in the proof of Theorem 2, equation 4), we are
reduced to the situation of Proposition 28, which we can then directly apply.

Second Part. For r = 2, the result already appeared in Weber [46, Proposition 3 & proof of
Lemma 1]. I.e., if σs and τ t are two balls properly contained in Bd in the metastable range
(m ≥ s, t with d ≥ 3

2m+ 3) and without intersection. Then for every α ∈ πs+t(Sd−1) there exists
a proper isotopy Jt of B such that J1σ ∩ τ = ∅, and the homotopy class defined by

∂(I × σ × τ)
Jtinclσ×inclτ−−−−−−−−−→ Bd ×Bd \ δ2Bd

represents α (after identifications).
Hence, we can work inductively: we assume that the part 2 of the Lemma is already true for

(r − 1) balls, and we show how construct the isotopy Jt : Bd → Bd for r balls.
Let σ1, ..., σr be the r balls properly contained in Bd as in the hypothesis of part 2 of the

Lemma. In particular,
σ1 ∩ · · · ∩ σr = ∅ and σ2 ∩ · · · ∩ σr 6= ∅,

and we can assume that σr is unknotted in Bd, i.e., Bd = σr ∗ Sd−sr−1.

Claim 37. We can assume that for i = 1, ..., (r − 1), σi ∩ σr are balls properly contained inside
σr. Furthermore, we can assume that σ2 ∩ · · · ∩ σr is also a ball properly contained in σr.

Proof. Let us pick x ∈ σ1∩σr and y ∈ σ2∩· · ·∩σr, that we join by a path λ ⊆ σr in general position.
We take a regular neighborhood of λ in Bd, and restrict ourselves to this neighborood.

By the induction hypothesis applied on

σ1 ∩ σr, ..., σr−1 ∩ σr ⊆ σr,

for every homotopy class α ∈ πs+(r−2)sr−(r−1)d+1(S(r−2)sr−1), there exists an isotopy Jt of σr
such that Jt applied to the ball σ1 ∩ σr ⊆ σr represents α.

The isotopy Jt can be extended to Bd (we still denote it by Jt), hence this isotopy applied to
the ball σ1 ⊆ Bd represents an homotopy class β ∈ πs(Sd(r−1)−1). We are done if we can show
that β is a suspension of α (we are in the stable range of the suspension isomorphism).

The problem is similar to Lemma 31. Indeed we have r balls

J(σ1 × [−1, 1]), σ2, ..., σr

that are mapped into Bd, and we would like to form a diagram as in (9) with the ball ‘σ1× [−1, 1]’
instead of σ1.

Hence, to conclude, we only need to prove a version of the Suspended Map Lemma 30 for our
present situation.

Note that σ1 × [−1, 1] is not embedded inside Bd, and is not even properly mapped (the
boundary is not mapped to the boundary).
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σ2 ∩ · · · ∩ σr
σr

σ1 ∩ σr

J1σ1 ∩ σr
x

Figure 10: Retraction of the sphere (B1 ∩ σr) ∪ (B2 ∩ σr) on the boundary of σr.

Claim 38. Let σ̃1 be a (s1 + 1)-ball mapped into Bd with its boundary mapped as follows: ∂σ̃1 is
decomposed into two balls B1 and B2 such that B1 is mapped onto J0σ1 and B2 is mapped onto
J1σ1 (and ∂B1 = ∂B2 mapped onto J0∂σ1 = J1∂σ1), then

J(σ1 × [−1, 1])× σ2 × · · · × σr and σ̃1 × σ2 × · · · × σr

define the same element β ∈ πs(Sd(r−1)−1).

Proof. This is immediate by using a straight line homotopy between J(σ1 × [−1, 1]) and σ̃1

So we are reduced with working with a (s1 + 1)-ball σ̃1 instead of J(σ1× [−1, 1]), and the way
that we ‘fill’ this ball does not matter (only the boundary decides of the homotopy class β).

We can decompose ∂σ̃1 as two balls B1 and B2 both homeomorphic with (σ1 ∩ σr) ∗ Sd−sr−1,
and with B1 ∩B2 ' ∂(σ1 ∩ σr) ∗ Sd−s−r.
Claim 39. We can assume that B1 is mapped to (σ1 ∩ σr) ∗ Sd−sr−1 and that B2 is mapped to
(J1σ1 ∩ σr) ∗ Sd−sr−1.

Proof. This follows by an argument identical to that of Lemma 30 (we work with the two balls
seperately).

Claim 40. We can assume that B1 = (σ1 ∩ σr) ∗ Sd−sr−1 and B2 = (J1σ1 ∩ σr) ∗ Sd−sr−1 are
mapped onto the boundary of Bd, and that σ̃1 = (σ̃1 ∩ σr) ∗ Sd−sr−1.

Proof. Figure 10 illustrate the construction inside σr.
We pick a point x in the interior of the ball σ2 ∩ · · · ∩ σr. Since this ball unknots in σr, there

exists a retraction rt of σr \ x to ∂σr such that r−1
1 ∂(σ2 ∩ · · · ∩ σr) = σ2 ∩ · · · ∩ σr.

Using that Bd = σr ∗Sd−sr−1, we extend rt to Bd (which now retract Bd \ x to ∂Bd). We can
then use rt to conclude. (Note that B1 and B2 stop to be embedded, but this is not a problem
for us).

We can now apply Lemma 31 to the balls σ̃1, σ2, ..., σr, and thus conclude.
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