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A number of recent studies has focused on the implications of new physics at the Planck

scale on the equilibrium of compact astrophysical objects such as white dwarf and neutron

stars. Here we analyze the modification of the equilibrium configurations induced by the

so-called Gravity’s Rainbow that account for Planck scale deformation of the space-time.

1. Introduction

Compact stars, exotic stars, wormholes and black holes are astrophysical objects

described by the Einstein’s Field equations. For a perfect fluid and in case of

spherical symmetry, these objects obey the Tolman-Oppenheimer-Volkoff (TOV)

equation (in c.g.s. units)1,2

dpr (r)

dr
= −

(

ρ (r) +
pr (r)

c2

)

4πGr3pr (r) /c
2 +Gm(r)

r2 [1− 2Gm(r)/rc2]
+

2

r
(pt (r)− pr (r)) (1)

and

dm

dr
= 4πρ (r) r2, (2)

where c is the velocity of light, G is the gravitational constant, ρ (r) is the macro-

scopic energy density measured in proper coordinates, pr (r) and pt (r) are respec-

tively the radial pressure and the transverse pressure and m(r) is an arbitrary

function of the radial coordinate, r. The function m(r) is the quasi-local mass, and

is denoted as the mass function. It is clear that the knowledge of ρ (r) allows to

understand the astrophysical structure under examination. If we fix our attention

on compact stars, ordinary General Relativity offers two kind of exact solutions for

the isotropic TOV equation:

a) the constant energy density solution,

b) the Misner-Zapolsky energy density solution3

or the combination of a) and b), namely the Dev-Gleiser energy density pro-

file4. Since compact stars are usually macroscopic objects, the Quantum Gravity

contribution is expected to become important when the inner core of the star is

considered, where the highest pressures and densities are reached. An attempt to
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include quantum gravitational effects in compact stars, besides those that are conse-

quences of the standard Fermi degeneracy pressure, can be found in5, where Planck

scale modifications of the energy/momentum dispersion relations have been taken

into the account, and in6, where the TOV equation and the equation of state of

zero temperature ultra-relativistic Fermi gas based on generalized uncertainty prin-

ciple (GUP) have been used to see the quantum gravitational effects on the cores

of compact stars. Gravity’s Rainbow offers another opportunity to probe quantum

gravitational effects into the core of a compact star. For simplicity we will fix our

attention only on the isotropic case.

2. Gravity’s Rainbow and the Equation of State

Basically, Gravity’s Rainbow is a distortion of space-time induced by two arbitrary

functions, g1 (E/EPl) and g2 (E/EPl), which have the following property

lim
E/EPl→0

g1 (E/EPl) = 1 and lim
E/EPl→0

g2 (E/EPl) = 1. (3)

It has been introduced for the first time by Magueijo and Smolin7, who proposed

that the energy-momentum tensor and the Einstein’s Field Equations were modified

with the introduction of a one parameter family of equationsa

Gµν (E/EPl) = 8πG (E/EPl)Tµν (E/EPl) + gµνΛ (E/EPl) , (4)

where G (E/EPl) is an energy dependent Newton’s constant and Λ (E/EPl) is an

energy dependent cosmological constant, defined so that G (0) is the low-energy

Newton’s constant and Λ (0) is the low-energy cosmological constant. For instance,

the rainbow version of the Schwarzschild line element is

ds2 = −

(

1−
2MG (0)

r

)

dt̃2

g21 (E/EPl)
+

dr̃2
(

1− 2MG(0)
r

)

g22 (E/EPl)
+

r̃2

g22 (E/EPl)
dΩ2,

(5)

where dΩ2 = dθ2 + sin2 θdφ2 is the line element of the unit sphere. It is immediate

to generalize the metric (5) for any spherically symmetric spacetime

ds2 = −
e2Φ(r)

g21(E/EPl)
c2dt2 +

dr2

g22(E/EPl)
(

1− 2Gm(r)
rc2

) +
r2

g22(E/EPl)
dΩ2, (6)

where m(r) is the mass of the star inside the radius r and Φ(r) is the redshift

function. Of course, the line element (6) has consequences on Eq.(1). To see what

are these consequences, we consider the energy-momentum stress tensor describing

a perfect-fluid of the form

Tµν =
(

ρ (r) c2 + pt
)

uµuν + ptgµν + (pr − pt)nµnν , (7)

aApplications and implications of Gravity’s Rainbow in Astrophysics and cosmology can be found

in8
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where uµ is the four-velocity normalized in such a way that gµνu
µuν = −1,

nµ is the unit spacelike vector in the radial direction, i.e. gµνn
µnν = 1 with

nµ =
√

1− 2Gm (r) /rc2δµr . ρ (r) is the energy density, pr (r) is the radial pres-

sure measured in the direction of nµ, and pt (r) is the transverse pressure measured

in the orthogonal direction to nµ. Because of Gravity’s Rainbow, the normalization

of uµ is modified and becomes

− 1 = −
e2Φ(r)

g21(E/EPl)
u0u0 → u0 = g1(E/EPl)e

−Φ(r), (8)

and for nµ, one gets

1 =
n1n1

g22(E/EPl) (1− 2Gm (r) /rc2)
→ n1 = g2(E/EPl)

√

1− 2Gm (r) /rc2. (9)

Fixing our attention on the isotropic case, the Stress-Energy tensor becomes

T00 =
ρ (r) c2e2Φ(r)

g21(E/EPl)
c2

T22 =
pr2

g22(E/EPl)

T11 =
p(r)

g22(E/EPl) [1− 2Gm (r) /rc2]

T33 =
pr2 sin2 θ

g22(E/EPl)
.

(10)

and the component of the Einstein tensor G00 reduces to

G00 = 2G
e2Φ(r)

r2
g22(E/EPl)

g21(E/EPl)
m′(r). (11)

With the help of the first component of the Stress-Energy tensor (10) and Eq.(11),

we can write the first Einstein’s Field Equation, namely G00 = κT00 which assumes

the form

m′(r) =
κρ(r)r2

c2g22(E/EPl)
, (12)

while for the second one, namely G11 = κT11, we get

Φ′(r) =
κr3pr/g

2
2(E/EPl)c

4 + 2Gm(r)/c2

2r2 [1− 2Gm(r)/rc2]
. (13)

It is important to say that the equilibrium equation

dp

dr
+ (ǫ+ p)Φ′(r) = 0 (14)

is not affected by Gravity’s Rainbow. From Eq.(14), it follows that

dpr
dr

= −
(

ρ+
pr
c2

) κr3pr/g
2
2(E/EPl)c

4 + 2Gm(r)/c2

2r2 [1− 2Gm(r)/rc2]
, (15)

and

dm

dr
=

4πρ(r)r2

g22(E/EPl)
, (16)

where ρ is the mass density. Eq.(15) represents the TOV equation modified by

Gravity’s Rainbow. We will fix our attention on the constant energy density case

and to the variable case of the Misner-Zapolsky type.
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2.1. Isotropic pressure and the constant energy density case

The constant energy density case, represents the simplest case to consider. With

this assumption, equation (15) becomes

dpr
dr

= −

(

ρ+
pr(r)

c2

)

4πGr3pr(r)/c
2g22(E/EPl) +Gm(r)

r2 [1− 2Gm(r)/rc2]
, (17)

while Eq.(16) can be easily solved to give

m(r) =
4πρ

3g22(E/EPl)
r3, (18)

where we have used the boundary condition m(0) = 0. It is important to observe

that the mass density is constant in r, but it is not constant in E. It is also

important to observe that Eqs.(17) and (18) work for the whole star included the

external boundary R, where we can assume that the effects of Gravity’s Rainbow

have vanished. To this purpose, we analyze the problem into two fundamental

regions9:

a) The boundary R ≫ αlPl, namely the boundary is very large compared to

the size of the inner core.

b) The boundary R ≃ αlPl, that it means that we are exploring the possibility

of the existence of stars of Planckian size. It is interesting to note that both

cases respect the Buchdahl-Bondi bound which states that10

M <
4

9

c2

G
R. (19)

The case b) can be interpreted as a star forming close to the Planck scale and

stabilized by Gravity’s Rainbow. This means that it is the distorted space-time

which supports the existence of a star of Planckian size.

2.2. Isotropic pressure and the variable energy density case

The variable energy density case is represented by the Misner-Zapolsky solution3.

To discuss the modification induced by Gravity’s Rainbow, we consider a density

energy profile of the following form

ρ = Arα, (20)

where A is a constant with dimensions of an energy density divided by a (length)α

with α ∈ R to be determined. Solving Eq.(16) leads to

m(r) =

∫ r

0

4πA

g22(E/EPl)
r′2+αdr′ =

4πA

g22(E/EPl) (3 + α)
r3+α. (21)
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Plugging (21) into Eq.(15), one finds

ω
dρ (r)

dr
= −ρ (r)

(

c2 + ω

c2

)

4πGr3ωρ(r) +Gm(r)c2g22(E/EPl)

r2 [1− 2Gm(r)/rc2] c2g22(E/EPl)

⇓ (22)

α = −

(

c2 + ω

ωc2

)

4πGAr2+α
(

(3 + α)ω + c2
)

[c2g22(E/EPl) (3 + α) − 8πGAr2+α]
, (23)

where we have used the following Equation of State pr(r) = ωρ (r). It is immediate

to see that ∀α 6= −2, there is a singularity into the TOV equation and a dependence

on r still persists. Therefore fixing α = −2 one gets the relationship

1 =
3
(

c2 + ω
)2

4ω [7c2g22(E/EPl)− 3]
, (24)

where we have set A = 3c2/ (56πG). We find an identity when ω = 1/3, ω = 3, c = 1

and g2(E/EPl) = 1, namely we get the ordinary GR solution of the undeformed

TOV Equation. In particular for ω = 1/3

pr = ωρ (r) = ω
3c2

56πGr2
=

c2

56πGr2
(25)

and

m(r) =
3πc2r

14G
, (26)

we reproduce the Misner-Zapolsky solution. On the other hand, when Gravity’s

Rainbow is switched on and g2(E/EPl) 6= 1, it is immediate to see that from Eq.(24)

follows that ω is no longer a constant but it becomes a function of E/EPl.

3. Summary and further comment

In this work, we have considered the possibility that a compact star is affected by

Gravity’s Rainbow. Since the action of Gravity’s Rainbow is prevalently at Planck-

ian length scales, we find that in case of isotropic pressure and constant energy

density, a star of Planckian size if it is formed, and satisfies the usual Buchdahl-

Bondi bound, is also stable. On the other hand, when the variable energy density

case is considered and an equation of state is introduced, one finds that, from the

relation pr = ωρ (r), ω becomes a function of E/EPl, necessarily. It is interesting

to note that the constant energy density and the Misner-Zapolsky energy density

are two particular cases of the Dev-Gleiser potential which is of the form4

ρ (r) = ρ0 +
A

r2
, (27)

where ρ0 is the parameter of the constant energy density case and A = 3c2/ (56πG).

Note that in both cases, namely the constant and variable energy density case, also

the mass becomes a function of E/EPl. Here we have considered the simple case

where E/EPl is not dependent on the radius r. Of course, other than introducing
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an anisotropy, the case in which E/EPl becomes E (r) /EPl will be a subject of a

future investigation as well as the full examination of the Dev-Gleiser potential.
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