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We briefly report on the recently proposed [1, 2] electron acceleration mechanism named “slingshot
effect”: under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against
the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial
electrons with high energy in the direction opposite to that of the pulse propagation; this is due to
the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation,
and the finite size of the laser spot.
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I. INTRODUCTION

Today ultra-intense laser-plasma interactions al-
low extremely compact acceleration mechanisms of
charged particles to relativistic regimes, with numer-
ous and extremely important potential applications
in nuclear medicine (cancer therapy, diagnostics), re-
search (particle physics, inertial nuclear fusion, op-
tycs, materials science, structural biology,...), food
sterilization, transmutation of nuclear wastes, etc.
A prominent mechanism for electrons is the Wake-
Field Acceleration (WFA) [3]: electrons are acceler-
ated “surfing” a plasma wake wave driven by a short
laser or charged particle beam within a low-density
plasma sample (or matter to be locally completely
ionized into a plasma by the beam, more precisely
a supersonic gas jet), and are expelled just after
the exit of the beam out of the plasma, behind and
in the same direction as the beam (forward expul-
sion). WFA has proved to be particularly effective
since 2004 in the socalled bubble (or blowout) regime;
it can produce electron bunches of very good colli-
mation, small energy spread and energies of up to
hundreds of MeVs [4–6] or more recently even GeVs
[7, 8].

In Ref. [1, 2] it has been claimed that the im-
pact of a very short and intense laser pulse in the
form of a pancake normally onto the surface of a
low-density plasma may induce also the acceleration
and expulsion of electrons backwards (slingshot ef-
fect), see fig. 1. A bunch of plasma electrons (in a
thin layer just beyond the vacuum-plasma interface)
first are displaced forward with respect to the ions by
the positive ponderomotive force Fp≡〈−e(v

c ×B)z〉
generated by the pulse (here 〈 〉 is the average over a
period of the laser carrier wave, E,B are the electric
and magnetic fields, v is the electron velocity, and ẑ
is the direction of propagation of the laser pulse; re-

call that Fp is positive, negative when the modulat-
ing amplitude εs of the pulse respectively increases,
decreases), then are pulled back by the electric force
−eEz due to this charge displacement. If the elec-
tron density ñ0 is carefully chosen in the range where
the plasma oscillation period TH is about twice the
pulse duration τ , then these electrons invert their
motion when they are reached by the maximum of
εs, so that the negative part of Fp adds to −eEz in
accelerating them backwards; equivalently, the to-
tal work W ≡

∫ τ
0
dt Fpv

z done by the ponderomotive
force is maximal. Also, the radius R of the laser spot
should be “small”, for the pulse intensity - as well as
the final energy of the expelled electrons escaping to
z→−∞ - to be “large”, but not so small that lateral
electrons obstruct them the way out backwards. If
τ�TH , which was the standard situation in labora-
tories until a couple of decades ago, Fpv

z oscillates
many times about 0, W '0, and the effect is washed
out.

The very short pulse duration τ and expulsion
time te, as well as huge nonlinearities, make approx-
imation schemes based on Fourier analysis and re-
lated methods unconvenient. But recourse to full
kinetic theory is not necessary: we show [2, 9] that
in the relevant space-time region a MagnetoHydro-
Dynamic (MHD) description of the impact is self-
consistent, simple and predictive. The set-up is
as follows. We describe the plasma as consisting
of a static background of ions and a fully rela-
tivistic, collisionless fluid of electrons, with the sys-
tem “plasma + electromagnetic field” fulfilling the
Lorentz-Maxwell and the continuity Partial Differ-
ential Equations (PDE). For brevity, below we re-
fer to the electrons’ fluid element initially located
at X ≡ (X,Y, Z) as to the “X electrons”, and to
the fluid elements with arbitrary X,Y and specified
Z as the “Z electrons”. We denote: as xe(t,X)
the position at time t of the X electrons, and
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FIG. 1. Schematic stages of the slingshot effect

for each fixed t as Xe(t,x) the inverse of xe(t,X)
[x≡ (x, y, z)]; as c the velocity of light; as m and as
n,v,p the electrons’ mass and Eulerian density, ve-

locity, momentum. β≡v/c, u≡p/mc=β/
√

1−β2,

γ≡1/
√

1−β2 =
√

1+u2 are dimensionless. We as-
sume that the plasma is initially neutral, unmagne-
tized and at rest with electron (and proton) density
ñ0(z) depending only on z and equal to zero in the
region z<0. We schematize the laser pulse as a free
transverse EM plane travelling-wave multiplied by a
cylindrically symmetric “cutoff” function, e.g.

E⊥(t,x) = ε⊥(ct−z) θ(R−ρ), B⊥ = ẑ×E⊥ (1)

where ρ ≡
√
x2+y2 ≤ R, θ is the Heaviside step

function, and the ‘pump’ function ε⊥(ξ) vanishes
outside some finite interval 0 < ξ < l. Then, to
simplify the problem,

1. The R =∞ (i.e. plane-symmetric) version is
studied first (section II.1), carefully choosing
unknowns and independent variables. For suf-
ficiently small densities and short times we can
reduce the PDE’s to a collection of decoupled
systems of two first order autonomous nonlin-
ear ODE in Hamiltonian form, which we solve
numerically.

2. We determine (section II.2): R<∞, r > 0 so
that the plane version gives small errors for
the surface electrons with ρ≤ r ≤R; the cor-
responding final energy, spectrum, etc. of the
expelled electrons. For definiteness, we con-
sider the ñ0(z) of fig. 2.

We specialize our predictions to virtual experi-
ments at the FLAME facility (LNF, Frascati). We
invite for simulations (PIC, etc.) and experiments
testing them.

FIG. 2. The normalized ñ0 adopted here: step-shaped
(blue) and continuous ñ0(Z) = n0 θ(Z) tanh(Z/a), a =
20µm (purple); they respectively model the initial elec-
tron densities at the vacuum interfaces of an aerogel and
of a gas jet (just outside the nozzle).

II. THE MODEL

II.1. Plane wave idealization

Our plane wave Ansatz reads: Aµ,u, n−ñ0(z) de-
pend only on z, t and vanish if ct≤z; ∆xe≡xe−X
depends only on Z, t and vanishes if ct≤Z. Then:
B = B⊥ = ẑ∂z ∧A⊥, cE⊥ = −∂tA⊥; the trans-
verse component of the Lorentz equation implies
u⊥ = eA⊥/mc2; by the Maxwell equations Ez is
related to the longitudinal motion by

Ez(t,z)=4πe
{
Ñ(z)−Ñ [Ze(t,z)]

}
, Ñ(Z)≡

∫ Z

0

dη ñ0(η),

(2)
what yields a conservative force on the electrons.
For sufficiently small densities and short times the
laser pulse is not significantly affected by the inter-
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action with the plasma (the validity of this approxi-
mation is checked a posteriori [2]), and we can iden-
tify A⊥(t, z) = α(ξ), ξ ≡ ct− z, where α is the
transverse vector potential of the “pump” free laser
pulse. Hence also u⊥(t, z)=eα(ξ)/mc2 is explicitly
determined. For each fixed Z, the unknown ze(t, Z)
appears in place of z in the equations of motion of
the Z-electrons. But, as no particle can reach the
speed of light, the map t 7→ξ≡ct−ze(t, Z) is strictly
increasing, and we can use (ξ, Z) instead of (t,Z)
as independent variables. It is also convenient to use
the “electron s-factor” s≡γ−uz instead of uz as
an unknown, because it is insensitive to rapid oscil-
lations of α, and γ,u,β are rational functions of
u⊥, s:

γ=
1+u⊥2+s2

2s
, uz=

1+u⊥2−s2

2s
, β=

u

γ
. (3)

Then the remaining PDE to be solved are reduced
to the following collection of systems (parametrized
by Z) of first order ODE’s in the unknowns
∆(ξ, Z), s(ξ, Z):

∆′ =
1+v

2s2
− 1

2
, s′ =

4πe2

mc2

{
Ñ [∆+Z]−Ñ(Z)

}
(4)

∆(0,Z) = 0, s(0,Z) = 1. (5)

Here v(ξ)≡ [eα(ξ)/mc2]2, ∆≡ ze−Z, f ′= ∂f/∂ξ.
Eq.s (4) can be written also in the form [9] of Hamil-
ton equations q′ = ∂H/∂p, p′ = −∂H/∂q in 1
degree of freedom: ξ,−∆, s play the role of t, q, p.
Solving (4-5) numerically all unknowns are deter-
mined. For z>0 u(t, z), n(t, z), ... evolve as forward
travelling waves.

In particular, if ñ0(Z)=n0θ(Z) then by (2) the longi-
tudinal electric force acting on the Z-electrons is

F̃ z

e (t, Z)=

{
−4πn0e

2∆ze= elastic force if ze>0,
4πn0e

2Z = constant force if ze≤0;
(6)

hence as long as ze ≥ 0 each Z-layer of electrons is an
independent copy of the same relativistic harmonic
oscillator, (4-5) are Z-independent and reduce to a
single system of two first order ODE’s

∆′ =
1+v

2s2
− 1

2
, s′ = M∆, (7)

∆(0)=0, s(0)=1, (8)

(M ≡ 4πn0e
2/mc2). n0→0 implies s≡1, and the

equations are solved in closed form [10, 11]. In fig.
3 we plot a typical pump and the corresponding so-
lution of (7-8).

.

FIG. 3. Typical normalized pump amplitude u⊥ =
eα/mc2 (vanishing outside 0<ξ<l), corresponding solu-
tion of (7-8) for Ml2 =26 and normalized charge density
plot after 40 fs.
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FIG. 4. Rescaled longitudinal electric potential energies
in the idealized plane wave (up) and in the r = 16µm
(down) case, plotted as functions of ze for Z/ZM =
0, .2, .4, .6, .8, 1; the horizontal dashed lines are the left
asymptotes of ur for the same values of Z/ZM .

II.2. Finite R corrections and experimental
predictions

If R<∞ the potential energies (parametrized by
Z>0) U(ze, Z) associated to (2) - due to charge sep-
aration - are inaccurate as ze→−∞. We therefore
replace U 7→UR in the equations of motion, where
UR is a suitable effective potential differing from U

for ze < 0; this allows ze(t,Z)
t→∞−→ −∞ (backward

escape) for electrons in a suitable surface layer 0≤
Z≤ZM . If e.g. ñ0(Z)=n0θ(Z) then U,UR (plot in fig.
4) are given by U(ze, Z)=2πn0e

2[θ(ze)z
2
e−2zeZ+Z2]

and

UR(ze,Z)=πn0e
2
[
(ze−2Z)

√
(ze−2Z)2+R2−4Zze

+R2 sinh−1ze−2ZR −ze
√
z2e+R2−R2 sinh−1zeR

+2Z2+2Z
√

4Z2+R2+R2 sinh−12ZR
]
.

Solving the equations the map X 7→xe(t,X) turns
out to be one-to-one for all t and for sufficiently
small Z, showing the self-consistency of this MHD
treatment. Some typical electron trajectories are
shown in fig.’s 5, the animated versions are available
at the hyperlink people.na.infn.it/∼gfiore/slingshot-
videos. The interplay of the ponderomotive, electric

forces yield the longitudinal forward and backward
drifts at the basis of the slingshot effect. On the
contrary, transverse oscillations due to E⊥ average
to zero to yield vanishing final transverse drift and
momentum, if - as usual - the pump (1) has a slow
modulation εs in the support 0<ξ<l:

ε⊥(ξ)= x̂εs(ξ) cos kξ with |ε′s|�|kεs| (9)

(here the pump is polarized e.g. in the x-direction)
implies p⊥(ξ)'εs(ξ) |sin(kξ)e/kc|=0 for ξ≥ l, and
hence a good collimation of the expelled electrons. If
the plasma is created by the impact on a supersonic
gas jet (e.g. helium) of the pulse itself, then l <∞
is the length of the interval where the intensity is
sufficient to ionize the gas.

The EM energy E carried by a pulse (1), (9) is

E ' R
2

8

∫ l

0

dξ ε2s(ξ). (10)

E is fixed and depends on the laser; reducing R
(focalization) increases the intensity I, the electron
penetration ζ and the slingshot force. But we need
to tune R so that UR be justified, i.e. the “informa-
tion about the finite R” (contained in the retarded
fields generated by charge separation) reach the ~z-
axis around expulsion time te (neither much earlier,
nor much later). Moreover, R must be sufficiently
large for the Forward Boosted Electrons (FBE) in
an inner cylinder ρ ≤ r ≤ R to be expelled before
Lateral Electrons (LE), which are initially located
outside the surface of the hole CR created by the
pulse and are attracted towards the ~z-axis, obstruct
their way out. These conditions amount to [1, 2]

[te− t̄]c
R

∼ 1, r ≡ R− ζ(te−l/c)
2(te− t̄)

θ(cte−l) > 0,

(11)
which can be fulfilled also with a rather small R
(here t̄ is the time resp. of maximal penetration of
the FBE).

We adopt a gaussian modulating amplitude

εgs(ξ)=bg exp

[
− (ξ−l/2)2

2σ

]
θ(ξ)θ(l−ξ); (12)

the parameters bg, σ, l, ... are determined by E , R and
the full width at half maximum l′ of the pulse. We
report in table I and fig. 6 sample results of exten-
sive numerical simulations performed using as inputs
the parameters available [12] in virtual experiments
at the FLAME facility of the Laboratori Nazion-
ali di Frascati: l′ ' 7.5µm (corresponding to a
time τ ′ = 25fs), wavelength λ ' 0.8µm, E = 5J,
R tunable in the range 10−4÷1cm; a supersonic
helium jet or an aerogel (if ñ0(Z) = n0 θ(Z) with
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FIG. 5. Trajectories (after about 150 fs) of electrons initially located at Z/ZM = 0, 0.25, 0.5, 0.75, 1 under the same
conditions as in fig. 3.

FIG. 6. Spectra of the expelled electrons for average
pulse intensitiy I=1019 W/cm2 and step-shaped (up) or
continuous (down) ñ0.

n0&48×1018cm−3) as targets. The energy spectrum,
or equivalently the distribution ν(γf ) of the expelled
electrons as a function of their final relativistic fac-
tor, depends dramatically on ñ0, R; pleasantly, in
the case ñ0(Z)=n0 θ(Z) tanh(Z/a) it is peaked (al-

most monochromatic) around γM , the maximal γf .

Summarizing, this new laser-induced “slingshot”
acceleration mechanism should yield well-collimated
bunches of electrons of energies up to few tens MeV.
It is easily tunable and testable with present equip-
ments.
pulse energy E '5J, wavelength λ' .8µm, duration τ ′=25fs

pulse spot radius R (µm) 16 8 4 2 2

average intensity I (1019 W/cm2) 1 4 16 64 64

asymptotic density n0(1019cm−3) 0.8 2 13 80 20

maximal relativistic factor γM 2.6 6 8.5 14 21

maximal expulsion energy(MeV) 1.3 3 4.4 7.2 11

pulse spot radius R (µm) 2 1

average intensity I (1019 W/cm2) 64 255

initial density n0(1019cm−3) 12 40

maximal relativistic factor γM 12.4 22.6

maximal expulsion energy(MeV) 6.4 11.5

TABLE I. Sample inputs and corresponding outputs if
the target is: a supersonic helium jet (up) or an aerogel
(down) with initial densities profiles as in fig. 2. The
expelled charge is in all cases a few 10−10C
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