
ar
X

iv
:1

60
1.

00
88

4v
1 

 [
nl

in
.S

I]
  2

8 
D

ec
 2

01
5

Hamiltonization of Elementary

Nonholonomic Systems

Ivan A. Bizyaev1, Alexey V.Borisov2, Ivan S. Mamaev3

1 Udmurt State University, Universitetskaya 1, Izhevsk, 426034, Russia
2 Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina

ul. 8, 119991 Moscow, Russia,

Udmurt State University, Universitetskaya ul. 1, 426034 Izhevsk, Russia

Russia. E-mail: borisov@rcd.ru
3 Izhevsk State Technical University, Studencheskaya ul. 7, 426069 Izhevsk,

Russia

Abstract. In this paper, we develop the Chaplygin reducing multiplier
method; using this method, we obtain a conformally Hamiltonian
representation for three nonholonomic systems, namely, for the
nonholonomic oscillator, for the Heisenberg system, and for the Chaplygin
sleigh. Furthermore, in the case of an oscillator and the nonholonomic
Chaplygin sleigh, we show that the problem reduces to the study of motion
of a mass point (in a potential field) on a plane and, in the case of the
Heisenberg system, on the sphere. Moreover, we consider an example of
a nonholonomic system (suggested by Blackall) to which one cannot apply
the reducing multiplier method.
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1 Introduction

In the present paper, a few fairly simple (model) dynamical systems of
nonholonomic mechanics are considered in connection with the Hamiltonization
problem, that is, the problem of reducing these systems to Hamiltonian form.
For meaningful problems of the theory of nonholonomic systems (describing, as
a rule, the dynamics of systems with rolling), see the surveys [13, 17], and for
the general Hamiltonization problem (of general dynamical systems), see [7].

The paper discusses the problem of motion of a mass point on a three-
dimensional Riemannian manifold in the presence of a nonholonomic
(nonintegrable) constraint and a potential field. If the constraint is integrable
and the potential is absent, then the problem is reduced to the well-studied case
of motion along geodesics on a two-dimensional manifold. As is well known,
in this case, the behavior of geodesics is related to a variational problem, and
its global aspect is related to methods of the calculus of variations in general.
The case of nonzero potential can also be reduced to the problem of geodesics,
however, with a different metric, namely, the Maupertuis metric [42]. In this
connection we mention the work [31], in which an example is given of the
geodesic flow with integrals rational in the velocities.

In general, the nonintegrability of a constraint is incompatible with the
variational principle, which was already clear to Hertz, Poincaré and Hamel [24].
Nevertheless, in some cases, by a suitable reparameterization of time (depending
on the configuration variables only), the trajectories of the system can again be
obtained using the Hamilton variational principle, and the equations of motion
are represented in a conformally Hamiltonian form. The most natural methods
of Hamiltonization can be developed for Chaplygin systems by using his reducing
multiplier theory.

In this paper, we discuss three model problems (the nonholonomic oscillator,
the Heisenberg system, and the Chaplygin sleigh) for which the Hamiltonization
can be carried out explicitly and, moreover, we consider another system (which
was introduced by Blackall) for which there are essential obstacles to the
Hamiltonization (in the entire phase space) and, as a result of these obstacles,
the behavior of the system differs significantly from that for the variational
problem of geodesics.

2 Equations of motion

Consider a (mechanical) system with three degrees of freedom and generalized
coordinates q1, q2, q3.

Suppose that the coordinate q3 is cyclic, i.e., that it is not included explicitly
in the Lagrangian of the system L. Moreover, we assume that one can always
carry out a Legendre transform of the Lagrangian L.

Assume that the motion is subject to a nonholonomic constraint which is
linear, homogeneous in the velocities, and can be represented as

f = q̇3 − a1(q)q̇1 − a2(q)q̇2 = 0, q = (q1, q2). (1)
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Let us write the equations of motion in the form of the Euler–Lagrange
equations with the undetermined multiplier λ,

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= λ

∂f

∂q̇i
, i = 1, 2, 3. (2)

It follows from the last equation that

λ =
d

dt

(

∂L

∂q̇3

)

.

Denote by L∗(q, q̇) the Lagrangian of the system after substituting into it
the expression for q̇3 from the constraint equation. Using the standard rule of
indirect differentiation, we see that

∂L∗

∂q̇i
=

∂L

∂q̇i
+

∂L

∂q̇3
ai,

∂L∗

∂qi
=

∂L

∂qi
+

2
∑

k=1

∂L

∂q̇3

∂ak
∂qi

q̇k, i = 1, 2.

Substituting the last relations into equations (2) and reducing similar terms, we
obtain a close system for the variables (q, q̇),

d

dt

(

∂L∗

∂q̇1

)

−
∂L∗

∂q1
= Sq̇2,

d

dt

(

∂L∗

∂q̇2

)

−
∂L∗

∂q2
= −Sq̇1,

S =

(

∂L

∂q̇3

)

∗
(

∂a1
∂q2

−
∂a2
∂q1

)

,

(3)

where the expression
(

∂L
∂q̇3

)

∗

means that the substitution q̇3 is made after the

differentiation.

Thus, the problem reduces to the study of the system (3) with two degrees of
freedom; according to [15], we refer to this system as the generalized Chaplygin
system. For known solutions q1(t) and q2(t), the law of modification of the
remaining variable q3 is obtained, according to (1), by a quadrature. Further,
we concentrate on the investigation of system (3). To study the integrability of
systems of this kind, one can use the results of [29, 30, 38].

Remark 1. The nonholonomicity of a constraint means that this constraint
cannot be represented in the form

F (q1, q2, q3) = 0, where
dF

dt
= f,

which implies the condition
∂a1
∂q2

6=
∂a2
∂q1

, (4)

which is assumed to be valid everywhere below.
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3 Invariant measure and the reducing multiplier

method

As is well known (see, e.g., [9, 28]), the equations of motion in nonholonomic
mechanics generally cannot be represented in Hamiltonian form. Nevertheless,
there are problems in which such a representation can be obtained only after
rescaling time, i.e., the equations of motion are represented in conformally
Hamiltonian form.

The reducing multiplier method is the most efficient to reduce the generalized
Chaplygin systems to conformally Hamiltonian form, and we proceed with
a presentation of the method (see also [8, 15]).

First of all, note that the homogeneity in the generalized velocities of the
constraint (1) results in the fact that the system (3) preserves the energy integral

E =

2
∑

i=1

∂L∗

∂q̇i
q̇i − L∗. (5)

Making the Legendre transform

Pi =
∂L∗

∂q̇i
, H =

2
∑

i=1

Piq̇i − L∗

∣

∣

∣

q̇i→Pi

, i = (1, 2),

we obtain the following system of equations:

q̇i =
∂H

∂Pi

, Ṗ1 = −
∂H

∂q1
+

∂H

∂P2
S, Ṗ2 = −

∂H

∂q2
−

∂H

∂P1
S. (6)

Here H stands for the integral (5), which, together with S, is expressed in terms
of the new variables.

Invariant measure. Let us find cases in which system (6) has an invariant
measure that can be represented as

N (q)dqdP. (7)

Recall that the function N (q) is called the density of the invariant measure
and satisfies the Liouville equation [44, 22]

div(Nv) = 0, (8)

where v is the vector field determined by (6).

Remark 2. As a rule, it is assumed that the density of the invariant measure
is a smooth and positive function on the entire phase space. Nevertheless, in
applications, one can face a situation in which N (q) has singularities in some
domain of the phase space. In this case, the system is said to admit a singular
invariant measure.
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Consider in more detail the Liouville equation (8), which in this case can be
represented as

(

∂

∂q
lnN (q) + ξ, q̇

)

= 0, ξ =

(

−
∂S

∂P2
,
∂S

∂P1

)

. (9)

Since the previous relation must hold for arbitrary q̇, it follows that

∂

∂q
lnN (q) + ξ = 0.

In this case, for the solution N (q) of (9) to exist, it is necessary that the vector
field ξ be potential. This condition leads to the relation

∂2S

∂q1∂P1
+

∂2S

∂q2∂P2
= 0. (10)

Thus, the following proposition holds.

Proposition 1. If system (6) has an invariant measure (7), then (10) holds.

Note that, for systems for which the nonholonomic model admits an invariant
measure, one should take into account the friction forces to describe the
asymptotic behavior [37].

Reducing multiplier method. Suppose we are given an invariant measure
N (q). Then we make the following change of variables

Pi =
pi

N (q)
, i = 1, 2.

Denote the functions in the new variables by H(q,p) = H(q,P(q,p)) and
S(q,p) = S(q,P(q,p)), respectively. Then the following relations hold for the
derivatives:

∂H

∂Pi

= N
∂H

∂pi
,

∂S

∂Pi

= N
∂S

∂pi
,

∂H

∂qi
=

∂H

∂qi
+

1

N

∂N

∂qi

(

∂H

∂p1
p1 +

∂H

∂p2
p2

)

.

Further, substituting these relations into (6) and using (9), we obtain

q̇i = N
∂H

∂pi
, ṗ1 = N

(

−
∂H

∂q1
+K

∂H

∂p2

)

, ṗ2 = N

(

−
∂H

∂q2
−K

∂H

∂p1

)

,

K = N

(

S −
∂S

∂p1
p1 −

∂S

∂p2
p2

)

.

(11)
Write x = (p,q) and represent the system (11) as

ẋ = NJ
∂H

∂x
, J =









0 K 1 0
−K 0 0 1
−1 0 0 0
0 −1 0 0









.
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For the skew-symmetric matrix J to define the Poisson bracket

{qi, qj} = 0, {qi, pj} = δij , {p1, p2} = K, i = 1, 2,

and, thus, for the invariant measure N to be a reducing multiplier, it is necessary
that the Jacobi identity be valid, which in this case is reduced to the following
two equations for S:

p1
∂2S

∂p21
+ p2

∂2S

∂p1∂p2
= 0, p2

∂2S

∂p22
+ p1

∂2S

∂p1∂p2
= 0. (12)

If S is a linear function in p1 and p2, then the previous relation holds, and
thus the equations of motion (11) can be represented in conformally Hamiltonian
form.

Obviously, the linearity of S means that q̇1 and q̇2 enter the Lagrangian L∗

linearly and quadratically, which, as a rule, occurs in practice. We formulate the
result thus obtained more clearly in the form of the following theorem.

Theorem 1. (reducing multiplier method) If a system with a constraint of the
form (1) and the Lagrangian

L =
1

2

2
∑

i,j=1

gij(q)q̇iq̇j +
2

∑

i=1

ci(q)q̇i − U(q), (13)

where q = (q1, q2) and g = ‖gij(q)‖ is a symmetric matrix, admits a smooth
invariant measure with density N (q), then the equations of motion (on the entire
phase space) can be represented in conformally Hamiltonian form.

Proof. Indeed, if (10) holds, then, using the solution of the Liouville equation,
one can represent the equations of motion in the form (11), and, in this case,
K = K(q) (i.e., K is a function depending on q only).

In that case, it follows from (12) that J defines a Poisson bracket, and the
equations of motion are represented in conformally Hamiltonian form.

Remark 3. If a generalized Chaplygin system has a singular invariant measure
with density N (q) (depending on the configuration variables only), then the
equations of motion are represented in conformally Hamiltonian form, except
for the domain in the phase space in which the density of the invariant measure
either has a singularity or vanishes.

Below we illustrate Theorem 1 and the above arguments by considering
several problems of nonholonomic mechanics.

4 Motion of a mass point

Consider the motion of a mass point in Euclidean space R
3. In this case,

(q1, q2, q3) are the Cartesian coordinates of the point, and the Lagrangian function
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is of the form

L =
1

2
m(q̇21 + q̇22 + q̇23)− U(q), q = (q1, q2), (14)

where m is the mass of the particle and U(q) is the potential of the external
forces. In this case, condition (9) can be represented as

∂

∂q1

(

a1
1 + a21 + a22

(

∂a1
∂q2

−
∂a2
∂q1

))

+
∂

∂q2

(

a2
1 + a21 + a22

(

∂a1
∂q2

−
∂a2
∂q1

))

= 0.

(15)
Let us consider three examples in more detail.

4.1 Nonholonomic Oscillator

Let the nonholonomic constraint be of the form

q̇3 − q2q̇1 = 0. (16)

In accordance with [2], we refer to the system thus obtained as a nonholonomic
oscillator. It is usually associated with the book of Rosenberg [35], although it
was considered much earlier by Bottema [18] from the viewpoint of equilibrium
positions and their stability and by Hamel [25] (the potential field of this system
is usually assumed to be quadratic in q).

Remark 4. Note that in [45] an implementation of the constraint (16) using
a plate sliding on a knife edge was suggested. Here (q2, q3) are the coordinates
of the center of mass of the plate and q1 is the rotation angle of the plate (i.e.,
the configuration space in this case is R

2 × S1).

In the case under consideration, a1(q) = q2 and a2(q) = 0; then condition (15)
holds, and the density of the invariant measure is

N (q) = (1 + q22)
1

2 .

Hence, after rescaling time dτ = Ndt (as follows from Theorem 1), the
equations of motion of the nonholonomic oscillator are represented in Hamiltonian
form with the canonical Poisson bracket and the Hamiltonian

H =
p21
2m

+
(1 + q22)p

2
2

2m
+ U(q). (17)

For the case where there is no potential, this result was obtained in [36] and
for the case U(q) = q22/2 it was presented in [23].

Moreover, it turns out that, after the canonical change of variables

q1 = x, p1 = px, q2 = ln((1 + y2)
1

2 + y), p2 = (1 + y2)
1

2 py,

the Hamiltonian H becomes

H(p) =
p2x + p2y
2m

+ V (x, y), (18)

where V (x, y) = U(q1, q2(y)).
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Thus, the problem reduces to the investigation of the motion of a mass point
with (Cartesian) coordinates (x, y) on a plane, in the potential field V (x, y). The
isomorphisms found (for a nonholonomic oscillator and the Heisenberg system)
provide a natural explanation of the possibility of adding integrable potentials
presented in [39].

4.2 Heisenberg System

Consider another example, namely, the Heisenberg system, for which the
nonholonomic constraint is represented as

q̇3 − q2q̇1 + q1q̇2 = 0, (19)

and which apparently first appeared in the book [20] in connection with control
problems. Other nonholonomic systems (involving rolling motion) were
considered in [11, 27, 41] in connection with control problems.

The authors of [33] consider the motion of a point in a potential field of the
form

U(q) =
1

2
(α1q

2
1 + α2q

2
2)

and prove, using the Poincaré mapping, that in this case the system exhibits
chaotic behavior. It can be seen from the Poincaré map that the behavior of the
trajectories of this system is similar to that of the trajectories of nonintegrable
two-degree-of-freedom Hamiltonian systems.

It turns out that this similarity is not accidental and is due to the fact that
in this case Theorem 1 applies for an (arbitrary) potential field U(q).

Indeed, in this case, condition (15) holds identically, and the density of the
invariant measure is of the form

N (q) = (q21 + q22 + 1)−1.

Thus, the equations of motion are represented in conformally Hamiltonian form
with Hamiltonian

H =
1 + q21 + q22

2m
((q1p1 + q2p2)

2 + p21 + p22) + U(q) (20)

and a canonical Poisson bracket.
It turns out that, in this case, the system (20) reduces to the investigation

of the motion of a mass point on the sphere S2 in a potential field. Indeed, let
us carry out the central projection (for details, see, e.g., [4]),

q1 = tan θ cosϕ, q2 = tan θ sinϕ,

where θ ∈ (0, π) and ϕ = [0, 2π), and pass to the (canonically conjugate)
momenta

pθ = −
1 + q21 + q22
√

q21 + q22
(q1p1 + q2p2), pϕ = q2p1 − q1p2.
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As a result, the Hamiltonian (20) becomes

H(s) =
p2θ
2m

+
p2ϕ

2m sin2 θ
+ V (θ, ϕ),

where V (θ, ϕ) = U(q1(θ, ϕ), q2(θ, ϕ)).
Because of the ambiguity of the central projection (taking two points on

a sphere into one on a plane), the above isomorphism is defined only on half the
hemisphere, and all the trajectories crossing the equator (θ = π

2 ) are transformed
into infinite trajectories on the plane.

4.3 Blackall Nonholonomic Constraint

In conclusion of the present section, consider the constraint q̇3 − q1q2q̇1 = 0
(suggested in [5]), for which condition (15) does not hold. In other words, in
this case there is no invariant measure with density N (q) (depending on the
configuration variables only), and hence, Theorem 1 does not apply.

In this case, the equations of motion (6) become

Ṗ1 =
q1q2P1

m(1 + q21q
2
2)

(

q2P1

1 + q12q22
− q1P2

)

, Ṗ2 =
2q21q2P

2
1

m(1 + q21q
2
2)

2

q̇1 =
P1

m(1 + q21q
2
2)
, q̇2 =

P2

m
.

(21)

It turns out that system (21) has a singular invariant measure (depending on
phase variables)

(1 + q21q
2
2)

1

4 |P1|
1

2 dqdP.

Note that system (21) has the following family of particular solutions:

P1 = 0, P2 = const, q1 = const, q2 =
P2

m
t, (22)

in which the density of the invariant measure has a singularity.
Numerical experiments show that system (21) exhibits asymptotic behavior

on the time interval t ∈ (−∞,+∞), i.e., as t → −∞, the motion begins
with an unstable solution (22) and, as t → +∞, tends to a stable solution.
Thus, system (21) exhibits a behavior that differs substantially from that in the
Hamiltonian case; see also [32] and [34].

5 Chaplygin sleigh on a plane

In this section, we consider the motion of a Chaplygin sleigh on a horizontal
fixed plane. As a rule, by the Chaplygin sleigh one means a rigid body in the
plane supported at two (or more) absolutely smooth legs and a sharp weightless
wheel (disk or knife edge), which prevents its contact point P from slipping in
the direction perpendicular to the plane of the wheel (see Fig. 1).
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Fig. 1: Chaplygin sleigh on a plane

Note that, as an example illustrating the reducing multiplier method,
Chaplygin [48] considered the motion of the Chaplygin sleigh. However, his
considerations use substantially the quasi-coordinate introduced by him (which
gave rise to a debate concerning the correctness of the method [46]).

Remark 5. It is of interest that the reducing multiplier method has allowed
the equations of motion to be represented in conformally Hamiltonian form in
another well-known problem, due to Chaplygin [47], on the rolling motion of
a dynamically asymmetric ball on a horizontal plane (for various generalizations
of this problem, see [3, 6, 12, 14]). A qualitative and topological analysis of the
motion of the contact point of the Chaplygin ball has been made recently in [10].

In what follows we prove that the reducing multiplier method is applicable
only in the case a = 0, i.e., if the center of mass, C, is placed on the perpendicular
to the plane of the knife edge passing through the contact point P .

As a historical remark, we note that, although the Chaplygin sleigh is
customarily associated with the works of Chaplygin [48] and Carathéodory [21],
it was considered somewhat earlier by Brill in the book [19], as an example of
the mechanism of a nonholonomic planimeter.

Remark 6. Diverse generalizations (variations) of the problem of motion of the
Chaplygin sleigh were considered in [43, 16]. For example, in [43], the motion
of the Chaplygin sleigh with torque and on an inclined plane in a gravitational
field was considered, and in [16] the equations of motion were obtained and the
equilibrium positions were studied for the Chaplygin sleigh on a rotating plane.

Introduce two coordinate systems: an inertial (fixed) one, Oxy, and
a noninertial coordinate system O1x1x2 attached to the Chaplygin sleigh
(see Fig. 1).

The configuration space in this case coincides with the motion group of the
plane SE(2). To parameterize this space, we choose the angle q1 of rotation of
the axes of Oxy with respect to Ox1x2 and the Cartesian coordinates (q2, q3)
of point O1 in the coordinate system Oxy. Then the constraint equation in the
chosen variables can be represented as

q̇3 −
cos q1
sin q1

q̇2 = 0.

10



The Lagrangian function is

L =
1

2
m(q̇22 + q̇23) +

1

2
Iq21 +maq̇1(−q̇2 sin q1 + q̇3 cos q1)− U(q),

where U(q) is the potential, and m and I are, respectively, the mass of the body
and its moment of inertia relative to point O1. As a result, we obtain

S =
cos q1
sin q1

(

2maP1 sin q1 −ma2P2 cos 2q1 + IP2

I −ma2 cos2 2q1

)

.

A straightforward verification shows that relation (10) holds only for a = 0. In
this case, we find a singular invariant measure (a reducing multiplier) in the
form N = sin q1.

Note that, for a 6= 0, the dynamics of the system is of asymptotic nature,
which is why there is no (smooth) invariant measure with density of the form N (q).

Remark 7. Nevertheless, for U(q) = 0, but a 6= 0, one can represent the
equations of motion in Hamiltonian form [43] using the method developed in [26].

Applying Theorem 1 (for a = 0), we find the Hamiltonian

H =
p21

2I sin2 q1
+

p22
2m

+ U(q),

which, after the change of variables

x =

√

I

m
cos q1, px =

√

m

I

p1
sin q1

, y = q2, py = p2,

reduces to the Hamiltonian (18), i.e., in this case, the problem reduces to
investigating the motion of a mass point on a plane.

Remark 8. In this example, in the constraint equation the singularity
at q1 = 0, π is related to the choice of local coordinates. For this reason, in
some cases, it is more convenient to study the equations of motion in quasi-
coordinates.

6 Conclusion

In conclusion, we discuss some open problems.
Above we have obtained equation (15) for Euclidean metric R3; this equation

describes nonholonomic constraints of Chaplygin type for which the system
admits a conformally Hamiltonian representation. Moreover, for the two examples
of constraints, (16) and (19), in the absence of an external field, the system turns
out to be integrable. In this connection, it would be of interest to find a general
parameterization of constraints satisfying (15) and to find out in the general
case whether the system is integrable without potential. We also note that,
for holonomic systems, there are projective transformations [1] preserving the
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trajectories of the metrics on the plane and on the sphere. The existence of such
transformations for the systems considered remains an open problem.

As was shown above, by combining different constraints and potentials, one
can obtain diverse systems that exhibit various effects typical of nonholonomic
mechanics. It would be of interest to choose the simplest of these systems,
which (for different parameter values) would possess all unusual properties of
nonholonomic systems, such as limit cycles, strange attractors, etc. (a similar
problem statement was considered in [40]).
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