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Abstract

We consider two separate atoms interacting with a single-mode optical resonator. When the

frequency of the resonator field is twice the atomic transition frequency, we show that there exists

a resonant coupling between one photon and two atoms, via intermediate virtual states connected

by counter-rotating processes. If the resonator is prepared in its one-photon state, the photon can

be jointly absorbed by the two atoms in their ground state which will both reach their excited state

with probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent

and reversible, so that two atoms in their excited state will undergo a downward transition jointly

emitting a single cavity photon. This joint absorption and emission processes can also occur

with three atoms. The parameters used to investigate this process correspond to experimentally

demonstrated values in circuit quantum electrodynamics systems.

PACS numbers: 42.50.Pq, 42.50.Ct, 85.25.Cp, 84.40.Az
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Multiphoton excitation and emission processes were predicted in 1931 by Maria Göppert-

Mayer in her doctoral dissertation on the theory of two-photon quantum transitions [1].

Two-photon absorption consists in the simultaneous absorption of two photons of identical

or different frequencies by an atom or a molecule. Two-photon excitation is now a powerful

spectroscopic and diagnostic tool [2, 3]. One may wonder if the reverse phenomenon, i.e.,

joint multiatom emission of one photon or multiatom excitation with a single photon, is

ever possible. We show that these processes, not only can be enabled by the strong corre-

lation between the states of the atoms and those of the field occurring in cavity quantum

electrodynamics (QED) [4], but they can even take place with probability approaching one.

Cavity QED investigates the interaction of confined electromagnetic field modes with

natural or artificial atoms under conditions where the quantum nature of light affects the

system dynamics [5, 6]. A high degree of manipulation and control of quantum systems can

be reached in the strong-coupling regime, where the atom-field coupling rate is dominant

with respect to the loss and decoherence rates. This paves the way for many interesting

physical applications [6–9]. Cavity QED is also very promising for the realization of quan-

tum gates [10–12] and quantum networks for quantum computational tasks [13–15]. Many

of the proposed concepts, pioneered with flying atoms, have been adapted and further de-

veloped using superconducting artificial atoms in the electromagnetic field of microwave

resonators, giving rise to the rapidly growing field of circuit QED which is very promising

for future quantum technologies [8, 9, 12, 16–19]. In these systems, coupling rates between

an individual qubit and a single electromagnetic mode of the order of 10% of the unper-

turbed frequency of the bare subsystems have been experimentally reached [20–23]. Such

a coupling rate is significantly higher than that obtained using natural atoms. Such an

ultrastrong coupling (USC) opens the door to the study of the physics of virtual processes

which do not conserve the number of excitations governed by the counter-rotating terms

in the interaction Hamiltonian [24–33]. Recently, it has been shown that these excitation-

number-nonconserving processes enable higher order atom-field resonant transitions, making

possible coherent and reversible multiphoton exchanges between the qubit and the resonator

[34–36].

Here we examine a quantum system constituted by two two-level atoms coupled to a

single-mode resonator in the regime where the field-atom detuning ∆ = ωc− ωq is large (ωc

and ωq are the resonance frequency of the cavity mode and the qubit transition frequency).
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We investigate the situation where the two qubits are initially in their ground state and

one photon is present in the resonator, corresponding to the initial state |g, g, 1〉. We find

that, if ωc ≈ 2ωq, a single cavity photon is able to excite simultaneously two independent

atoms. During this process no parametric down-conversion, splitting the initial photon into

observable pairs of photons at frequency ωc/2, occurs. The cavity photon is directly and

jointly absorbed by the two atoms. As shown in Fig. 1, the initial state |g, g, 1〉 goes to virtual

intermediate states that do not conserve the energy, but comes back to the real final state

|e, e, 0〉 that does conserve energy. If ωc ≈ 3ωq the simultaneous excitation of three atoms:

|g, g, g, 1〉 → |e, e, e, 0〉 is also possible. If the coupling is sufficiently strong, even a higher

number of atoms can be excited with a single photon. Owing to optical selection rules, the

two-atom process requires parity-symmetry breaking of the atomic potentials, which can

be easily achieved in superconducting artificial atoms [34, 37, 38]. On the contrary, the

three-atom process does not need broken symmetry.

The Hamiltonian describing the system consisting of a single cavity mode interacting with

two or more identical qubits with possible symmetry-broken potentials is given by [20, 31]

Ĥ0 = Ĥq + Ĥc + λX̂
∑
i

(cos θ σ̂(i)
x + sin θ σ̂(i)

z ) , (1)

where Ĥq = (ωq/2)
∑

i σ̂
(i)
z and Ĥc = ωcâ

†â, describe the qubit and cavity Hamiltonians

in the absence of interaction, X̂ = â + â†, σ̂
(i)
x and σ̂

(i)
z are Pauli operators for the ith

qubit, and λ is the coupling rate of each qubit to the cavity mode. For θ = 0 parity

is conserved. For flux qubits, this angle, as well as the transition frequency ωq, can be

continuously tuned by changing the external flux bias [20, 37]. For the sake of simplicity,

Eq. (1) describes identical qubits, but this is not an essential point. In contrast to the Jaynes-

Cummings (JC) model, the Hamiltonian in Eq. (1) explicitly contains counter-rotating terms

of the form σ̂
(i)
+ â†, σ̂

(i)
− â, σ̂

(i)
z â†, and σ̂

(i)
z â. The first (second) term creates (destroys) two

excitations while the third (fourth) term creates (destroy) one excitation. The presence of

counter-rotating terms in the interaction Hamiltonian enables four different paths which,

starting from the initial state |g, g, 1〉, reach the final state |e, e, 0〉. Each path includes three

virtual transitions involving out-of-resonance intermediate states as shown in Fig. 1. Higher-

order processes, depending on the atom-field interaction strength, can also contribute. By

applying standard third-order perturbation theory, we obtain the following effective coupling

rate, Ωeff/ωq ≡ (8/3)(λ/ωq)3 sin θ cos2 θ. Already at a coupling rate λ/ωq = 0.1, an effective
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(two qubits)-(one photon) coupling rate Ωeff/ωq ∼ 10−3 can be obtained.

FIG. 1. Coupling between bare states, |g, g, 1〉 and |e, e, 0〉, via intermediate virtual transitions.

Here, the excitation-number nonconserving processes are represented by arrowed dashed line. The

transition matrix elements are also shown.

We diagonalize numerically the Hamiltonian in Eq. (1) for the case of two qubits and

indicate the resulting energy eigenvalues and eigenstates as h̄ωi and |i〉 with i = 0, 1, . . . ,

choosing the labelling of the states such that ωk > ωj for k > j. We use a normalized
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coupling rate λ/ωq = 0.1 and an angle θ = π/6. Figure 2a shows the frequency differences

ωi,0 = ωi−ω0 for the lowest energy states as a function of the resonator frequency. Starting

from the lowest excited states of the spectrum, a large splitting anticrossing around ωc/ωq =

1 can be observed. It corresponds to the standard vacuum Rabi splitting, which appears

also when neglecting the counter-rotating terms. The straight line at E/ωq = 1 corresponds

to the dark antisymmetric state (|g, e, 0〉 − |e, g, 0〉)/
√

2. Even larger splitting anticrossings

around ωc/ωq = 1 can be observed at higher E values. These correspond to the second and

third rung of the JC ladder. We are interested in the region around ωc/ωq = 2, where the

levels 3 and 4 display an apparent crossing at E/ωq ≈ 2. Actually, what appears as a crossing

on this scale, it turns out to be a splitting anticrossing on an enlarged view as in Fig. 2b.

Observing that just outside this avoided-crossing region one level remains flat as a function of

ωc with energy ω ≈ 2ωq, while the other grows as ωc, this splitting clearly originates from the

hybridization of the states |e, e, 0〉 and |g, g, 1〉. The resulting states are well approximated

by the states (|e, e, 0〉 ± |g, g, 1〉)/
√

2. This splitting is not present in the rotating-wave

approximation (RWA), where the coherent coupling between states with a different number

of excitations is not allowed, nor does it occur in the absence of symmetry breaking (θ = 0).

The normalized splitting has a value 2 Ωeff/ωq = 1.97×10−3, which is in good agreement with

2×10−3 obtained within perturbation theory. This observed hybridization opens the way to

the observation of weird effects as the simultaneous excitations of two qubits with only one

cavity photon. Such a coupling between the states |e, e, 0〉 and |g, g, 1〉 can be analytically

described by the effective interaction Hamiltonian Heff = Ωeff(|e, e, 0〉〈g, g, 1|+ H.c.).

A key theoretical issue of the USC regime is the distinction between bare (unobservable)

excitations and physical particles that can be detected [28, 39]. For example, when the

counter-rotating terms are taken into account, the mean photon number in the system

ground state becomes different from zero: 〈0|â†â|0〉 6= 0. However, these photons are actually

virtual since they do not correspond to real particles that can be detected in a photon-

counting experiment[39]. The same problem holds for the excited states. According to these

analyses, the presence of an n-photon contribution in a specific eigenstate of the system

does not imply that the system can emit n photons when prepared in this state. In order to

fully understand and characterize this anomalous avoided crossing not present in the RWA,

a more quantitative analysis is required. In the following, we therefore calculate the output

signals and correlations which can be measured in a photodetection experiment. We fix the

5



FIG. 2. (a) Frequency differences ωi,0 = ωi−ω0 for the lowest energy eigenstates of Hamiltonian (1)

as a function of ωc/ωq. Here we consider a normalized coupling rate λ/ωq = 0.1 between the

resonator and each of the qubits. We used θ = π/6. (b) Enlarged view of the spectral region

delimited by a square in panel a. This shows an avoided level crossing, demonstrating the coupling

between the states |g, g, 1〉 and |e, e, 0〉 due to the presence of counter-rotating terms in the system

Hamiltonian.

cavity frequency at the value where the splitting between level 3 and 4 is minimum. Instead

of starting from the ideal initial state (|3〉−|4〉)/
√

2 ≈ |g, g, 1〉, more realistically we consider

the system initially in its ground state |0〉 ≈ |g, g, 0〉 and consider the direct excitation of

the cavity by an electromagnetic Gaussian pulse with central frequency ωd = (ω4,0 +ω3,0)/2.

In this strongly-dispersive regime, the resonator displays very low anharmonicity so that

for a strong system excitation as that induced by a π-pulse, higher-energy states of the

resonator (as the state |8〉 ' |g, g, 2〉) can be resonantly populated. This problem can be

avoided by feeding the system with a single photon input or by probing the system in the

weak-excitation regime. However, in order to achieve a deterministic transition |g, g, 1〉 →

|e, e, 0〉, a useful route can be to introduce a Kerr nonlinearity into the resonator, able to
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activate photon blockade. In circuit QED this can be realized by introducing some additional

Josephson junction or coupling the resonator with weakly-detuned artificial atoms [40]. This

additional nonlinearity can be described by the Hamiltonian term ĤK = µ â† 2 â2. The

driving Hamiltonian, describing the system excitation by a coherent electromagnetic pulse

is Ĥd(t) = E(t) cos(ωt)X̂, where E(t) = A exp [−(t− t0)2/(2τ 2)]/(τ
√

2π). Here, A and τ are

the amplitude and the standard deviation of the Gaussian pulse, respectively. A includes

the factor
√
κ, where κ is the loss rate through the cavity port. The system is thus under

the influence of the total Hamiltonian Ĥ = Ĥ0 + ĤK + Ĥd(t).

The output photon flux emitted by a resonator can be expressed as Φout = κ〈X̂−X̂+〉,

where X̂+ =
∑

j,k>j Xjk|j〉〈k| and X̂− = (X̂+)† with Xjk ≡ 〈j|(â† + â)|k〉 are the positive

and negative frequency cavity-photon operators [30, 36]. Neglecting the counter-rotating

terms, or in the limit of negligible coupling rates, they coincide with â and â† respectively.

The signal directly emitted from the qubit is proportional to the qubit mean excitation

number 〈Ĉ−Ĉ+〉, where Ĉ± are the qubit positive and negative frequency operators, defined

as Ĉ+ =
∑

j,k>j Cjk|j〉〈k| and Ĉ− = (Ĉ+)†, with Cjk ≡ 〈j|(σ̂−+ σ̂+)|k〉 [30, 36]. Neglecting

the counter-rootating terms or in the limit of negligible coupling rates they coincide with

σ̂− and σ̂+, respectively. In circuit QED systems, this emission can be detected by coupling

the qubit to an additional microwave antenna [8].

Thanks to the photon-blockade effect, induced by the Kerr interaction ĤK, it is possible to

resonantly excite the split states |3〉 and |4〉 with a π-pulse, so that after the pulse arrival the

population is completely transferred from the ground state to only these two energy levels.

We use a pulse width τ = 1/(4ω43). Figure 3a displays the numerically calculated dynamics

of the photon number 〈X̂−X̂+〉, of the mean excitation number 〈Ĉ−1 Ĉ+
1 〉 for qubit 1 (which of

course coincides with that of qubit 2), and of the two-qubit correlationG
(2)
q ≡ 〈Ĉ−1 Ĉ−2 Ĉ+

2 Ĉ
+
1 〉.

Vacuum Rabi oscillations showing the reversible excitation exchange between the qubits and

the resonator are clearly visible. We observe that, after a half Rabi period Ωeff t = π/2

the excitation is fully transferred to the two qubits which reach an excitation probability

approaching one. Hence, not only multiatom absorption of a single photon is possible, but

it can essentially be deterministic. We observe that the single qubit excitation 〈Ĉ−i Ĉ+
i 〉

and G
(2)
q almost coincide at any time. This almost perfect two-qubit correlation is a clear

signature of the joint excitation: if one qubit gets excited, the probability that also the

other one is excited is very close to one. In summary, an electromagnetic pulse is able,
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FIG. 3. (a) Time evolution of the cavity mean photon number 〈X̂−X̂+〉 (dotted blue curve), qubit 1

mean excitation number 〈Ĉ−1 Ĉ
+
1 〉 (continuous black curve), and the zero-delay two-qubit correlation

function G
(2)
q = 〈Ĉ−1 Ĉ

−
2 Ĉ

+
2 Ĉ

+
1 〉 (dashed red curve) after the arrival of a π-like Gaussian pulse

initially exciting the resonator. After the arrival of the pulse, the system undergoes vacuum Rabi

oscillations showing the reversible joint absorption and re-emission of one photon by two qubits.

〈Ĉ−1 Ĉ
+
1 〉 andG

(2)
q (t) are almost coincident. This perfect two-qubit correlation is a signature that the

two qubits are jointly excited. (b) Time evolution of the cavity mean photon number (dotted blue

curve), the qubit mean excitation number, and the two-qubit correlation as in (a), but including

the effect of cavity damping and atomic decay. The corresponding rates are κ = γ = 4× 10−5ωq.

thanks to the photon blockade effect, to generate a single cavity-photon, which then gets

jointly absorbed by a couple of qubits. The resonant coupling can be stopped at this time,

e.g., by changing the resonance frequency of the qubits. If not, the reverse process starts,

where two qubits jointly emit a photon: |e, e, 0〉 → |g, g, 1〉. We observe that 〈X̂−X̂+〉 is

not ideally zero at the photon minima. This occurs because the two-qubit excited state,

owing to the same processes inducing its coupling with the one-photon state, acquires a

dipole transition matrix element, so that this state is able to emit photons. We find that
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(not shown here) this effects increase when increasing the atom-field coupling strength λ.

In order to exclude that this joint qubit excitation does not occur via more conventional

paths, involving the creation of photon pairs and/or a 1-qubit-1-photon excitation, we have

also calculted the photonic second-order correlation function G
(2)
c ≡ 〈(X̂−)2(X̂+)2〉 and the

qubit-cavity correlation G
(2)
qc ≡ 〈Ĉ−i X̂−X̂+Ĉ+

i 〉. We find that their value is more than two

orders of magnitude lower than that of the two-qubit correlation G
(2)
q .

Figure 1a has been obtained without including loss effects. The influence of cavity field

damping and atomic decay on the process can be studied by the master equation approach.

We consider the system interaction with zero-temperature baths. By using the Born-Markov

approximation without the post-trace RWA [35], the resulting master equation for the re-

duced density matrix of the system is

˙̂ρ = i[ρ̂(t), Ĥ] + κD [X̂+]ρ̂+ γ
∑
i

D[Ĉ+
i ] ρ̂ , (2)

where the superoperator D is defined as D[Ô]ρ̂ = 1
2
(2Ô ρ̂ Ô† − ρ̂ Ô† Ô − Ô† Ô ρ̂). We use

κ = γ = 3 × 10−5 ωq. Figure 3b shows how the cavity losses and the atomic decay affects

the system dynamics. As expected, the vacuum Rabi oscillations undergo damping and, as

expected, the two-qubit correlation results to be more fragile to losses. Finally, we have

considered the case where the two qubits display different coupling rates with the resonator

field. We used λ1/ωq = 8 × 10−2 and λ2/ωq = 1.2 × 10−1. We found that also in this case

〈Ĉ−1 Ĉ+
1 〉 = 〈Ĉ−2 Ĉ+

2 〉 ' G
(2)
q . This result further confirms the simultaneous and joint nature

of this multiatom process.

The process described here can find useful applications for the development of novel

quantum technologies. Conditioned quantum-state transfer is a first possible application:

the quantum information stored in one of the two qubits can be transferred to the resonator

conditioned by the state of the second qubit. We also observe that the quantum Rabi oscil-

lations displayed in Fig. 3 imply that a hybrid entangled GHZ state, (|g, g, 1〉+ |e, e, 0〉)/
√

2,

can be obtained by an elementary quantum Rabi process after a time t = π/(4Ωeff). This

state can be stored just by changing the transition frequency of one of the two qubits. Be-

sides possible applications, the puzzling results presented here, showing that one photon can

divide its energy into two spatially-separated atoms and that vacuum fluctuations [41] can

induce separate atoms to behave as a single quantum entity (as testified by the one-photon

transition matrix element acquired by the transition |g, g〉 → |e, e〉), provide new insights
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into quantum aspects of the interaction between light and matter. We hope that this pro-

posal for the simultaneous excitation of two or three atoms with a single photon, might

be effective in producing the simultaneous excitation of two or three referees with a single

manuscript.
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