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Recently, a new type of Weyl semimetals called type-II Weyl semimetals has been proposed.
Unlike the usual (type-I) Weyl semimetals, which have a point-like Fermi surface, this new type
of Weyl semimetals have a tilted conical spectrum around the Weyl point. Here we calculate the
anomalous Hall conductivity of a Weyl semimetal with a tilted conical spectrum for a pair of Weyl
points, using the Kubo formula. We find that the Hall conductivity is not universal and can change
sign as a function of the parameters quantifying the tilts. Our results suggest that even for the case
where the separation between the Weyl points vanishes, tilting of the conical spectrum could give
rise to a finite anomalous Hall effect, if the tilts of the two cones are not identical.
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I. INTRODUCTION

In recent years, condensed matter systems with topo-
logically nontrivial band structures have generated a lot
of interest. One particularly intriguing topological sys-
tem is the three-dimensional Weyl semimetal1. In the
simplest possible realization of a Weyl semimetal, there
are at least two distinct points in the Brillouin zone
(BZ), where the conduction and the valence bands touch.
These points are called Weyl points (WPs) and they al-
ways come in pairs. Usually these WPs are protected by
some crystalline symmetry and the two WPs forming a
pair represent a source and a sink of Berry curvature2–9.
Experimental realizations of WPs have been reported in
TaP,NbP,TaAs,NbAs10–16. The topological nature of
Weyl semimetals gives rise to Fermi arc surface states,
the quantum anomalous Hall effect, and chiral-anomaly
related negative magnetoresistance17–24.

Most recently, a new type of Weyl semimetal, with a
tilted conical spectrum, such that the WP transforms to a
Dirac line or a Fermi surface has been proposed25. These
Weyl semimetals are now called type-II Weyl semimet-
als (WSM2s) and WTe2 is a possible candidate for an
experimental realization of such a phase26. The various
transport and thermodynamic properties of these WSM2
are very different from those of the usual type-I Weyl
semimetal (WSM1), partially due to marked differences
in the density of states of the type-I and type-II Weyl
semimetals at the Fermi level. Ideal WSM1 has a coni-
cal spectrum and a point-like Fermi surface at the WP.
Imagine this conical spectrum getting tilted towards some
direction in the Brillouin zone (see Figs. 1 and 2). This
tilt can be attributed to strain or chemical doping of the
original WSM1. If this tilt is small enough such that
the Fermi surface remains point-like, the system is still
classified as WSM1. However, large tilting of the conical
spectrum results in a Lifshitz transition to a new phase
classified as WSM2, where the Fermi surface is no longer
point-like25,26. Instead, now the density of states at the
WP is finite. For a linearized model as shown in Figs. 1
and 2, the density of states at the Fermi level depends

upon the cutoff Λ in momentum space, beyond which a
linear description of the excitations around the WP is no
longer valid. As noted in Ref. 26, it is possible to have
a WSM2, where one WP is of type-I and its partner (of
opposite chirality) WP is of type-II.

Due to the tilted conical spectrum, the thermodynamic
and transport properties of WSM2 can be dramatically
different from their counterparts in WSM126. In partic-
ular, Ref. 26 points out the absence of a chiral-anomaly
in WSM2, if the external magnetic field is applied along
an axis perpendicular to the direction of tilt of the coni-
cal spectrum. In other words, the chiral-anomaly related
negative magnetoresistance in WSM2 is anisotropic.

In this article, we investigate the anomalous Hall effect
(AHE) in WSM2 and compare our results with the AHE
in WSM1. The AHE in WSM1 is fully determined by the
location of the WPs in BZ27. We find that in addition to
the location of the WPs in the BZ, the AHE in WSM2
depends crucially on the tilts of the conical spectrum
around the two WPs. We explore two distinct regimes,
one where the tilts are in the direction pointing along the
line separating the two WPs (see Fig. 1) and the other
where the tilts are in a direction perpendicular to the
line separating the two WPs (see Fig. 2). For each of
these regimes, we consider various possible tilting angles
for the two WPs.

The rest of this article is organized as follows. In the
next section (Sec. II) we describe our model and the cal-
culation of the AHE in WSM2. In Sec. III, we present a
discussion of our results, highlighting the key differences
between the AHE in WSM1 and WSM2, and finally in
Sec. IV, we present a summary of our main results before
presenting our concluding remarks.

II. AHE IN WSM2

Consider the simplest kind of Weyl semimetal state
with only two WPs. To be classified as WSM2, at least
one of these WPs should have a tilt in some direction in
the BZ, such that the Fermi surface around that WP is
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FIG. 1. (color online) The tilted conical spectrum around
the Weyl points (WPs). (a) Two WPs of type-I. The WPs
are located at ±Qez and the low-energy excitations around
these WPs are described by the Hamiltonians in Eq.(1), where
C1 = C2 = 0. (b) Tilting the original WPs towards kz, where
the tilts for both WPs are in the same direction. The low-
energy excitations around these WPs are described by the
Hamiltonians in Eq.(1), where C1 = C2 = v. (c) Tilting the
original WPs towards kz, where the tilts for both WPs are
in the opposite direction. The low-energy excitations around
these WPs are described by the Hamiltonians in Eq.(1), where
C1 = −C2 = v. (d) By increasing the tilts in (b) further, we
can reach a situation, where the axis of both cones is along ez
(corresponding to C1 = C2 →∞). (e) By increasing the tilts
in (c) further, we can reach a situation, where the axis of both
cones is along ±ez (corresponding to C1 = −C2 → ∞). The
grey plane corresponds to the chemical potential µ, measured
from the WPs, which are located at ε = 0. For (a) µ = 0,
while in (b), (c), (d), and (e) µ > 0.

no longer point-like. We analyze the AHE in two differ-
ent regimes, the first where the direction of tilt is along
the direction in which the two WPs are separated and
the second where the direction of tilt is orthogonal to
the direction in which the two WPs are separated. In
both regimes the Hall conductivity is calculated using
the Kubo formula.

A. Splitting of Weyl points along the direction of
tilt

The low-energy model of two WPs of opposite chiral-
ity, at the same energy, and separated in the momentum
space is described by the Hamiltonian

H1(k) = ~C1(kz −Q) + ~vσ · (k−Qez),

H2(k) = ~C2(kz +Q)− ~vσ · (k +Qez), (1)

FIG. 2. (color online) The tilted conical spectrum around
the Weyl points (WPs). (a) Two WPs of type-I. The WPs
are located at ±Qez and the low-energy excitations around
these WPs are described by the Hamiltonians in Eq.(9), where
C1 = C2 = 0. (b) Tilting the original WPs towards kx, where
the tilts for both WPs are in the same direction. The low-
energy excitations around these WPs are described by the
Hamiltonians in Eq.(9), where C1 = C2 = v. (c) Tilting the
original WPs towards kx, where the tilts for both WPs are
in the opposite direction. The low-energy excitations around
these WPs are described by the Hamiltonians in Eq.(9), where
C1 = −C2 = v. (d) By increasing the tilts in (b) further, we
can reach a situation, where the axis of both cones is along ex
(corresponding to C1 = C2 →∞). (e) By increasing the tilts
in (c) further, we can reach a situation, where the axis of both
cones is along ±ex (corresponding to C1 = −C2 → ∞). The
grey plane corresponds to the chemical potential µ, measured
from the WPs, which are located at ε = 0. For (a) µ = 0,
while in (b), (c), (d), and (e) µ > 0

where 2Q is the distance between the WPs in momentum
space along ez, v is the Fermi velocity when C1 = C2 = 0,
and σ is a vector composed of the three Pauli matrices.
We set ~ = 1 throughout the intermediate steps of our
calculation and restore it in the final expressions. The
type of the WP is defined by the parameter Cχ, χ ∈
{1, 2}. WP is of so-called type-II if |Cχ| > v. In this
case the WP coexists with the electron and hole Fermi
pockets25,26. The one-particle Green functions have the
following form

G1(ωn,k) =
∑
s=±1

(1− sσ ·Nk−Qez
)/2

iωn + µ− C1(kz −Q) + sv|k−Qez|
,

G2(ωn,k) =
∑
s=±1

(1 + sσ ·Nk+Qez )/2

iωn + µ− C2(kz +Q) + sv|k +Qez|
,

(2)
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where ωn is the fermionic Matsubara frequency, µ is the
chemical potential, and Nk = k/k is the unit vector in
the direction of wave-vector k. In what follows we assume
for concreteness that µ > 0.

The anomalous Hall conductivity is given by the zero
frequency and zero wave-vector limit of the current-
current correlation function

Πij(Ω,q) = T
∑
ωn

∑
χ=1,2

∫
d3k

(2π)3
J

(χ)
i Gχ(ωn + Ωm,k + q)

× J (χ)
j Gχ(ωn,k)

∣∣∣∣
iΩm→Ω+iδ

, (3)

where T is the temperature (the Boltzmann constant is
set to unity), as:

σxy = − lim
Ω→0

Πxy(Ω, 0)

iΩ
. (4)

The current operators are defined as follows

J
(1,2)
i = e (C1,2δiz ± vσi) . (5)

Performing the summation over the fermionic frequen-
cies and taking the zero temperature limit we obtain the

anomalous Hall conductivity σxy = σ
(1)
xy + σ

(2)
xy , where

σ(1,2)
xy = ∓ e2

8π2

∫ Λ∓Q

−Λ∓Q
dkz

{
sign(kz)Θ(v2k2

z − (C1,2kz − µ)2)

+
vkz

|C1,2kz − µ|
(1−Θ(v2k2

z − (C1,2kz − µ)2))

}
. (6)

Here we have introduced a momentum cut-off Λ along the
z-axis. This cut-off is necessary for correct evaluation of
the AHE for Weyl semimetals within the linear dispersion
model28. For the WSM2, the momentum cut-off Λ is a
measure of the density of states due to electron and hole
Fermi pockets. In the limit when the Fermi energy is at
the charge neutrality point, µ = 0, we find that the Hall
conductivity is a non-analytic function of C1,2:

σxy =
e2Q

2π2~

[
min

(
1,

v

|C1|

)
+ min

(
1,

v

|C2|

)]
1

2
. (7)

Here, we have restored the Planck constant ~. Note that
σxy does not depend on C1,2 for |C1,2| < v, while it be-
comes non universal at |C1,2| > v and decreases with an
increase of |C1| or |C2|. In both limits σxy is propor-
tional to the distance between the WPs3. The condition
|Cχ| = v describes the case when the Weyl cone touches
the Fermi level. Thus the non analytic behaviour of the
anomalous Hall conductivity is related to the van-Hove
singularity in the density of states at the Fermi level.

The dependence of the Hall conductivity on C1,2 at a
finite chemical potential is shown in Fig. 3 . We observe
that the Hall conductivity has a peak or a dip at |C1,2| =
v depending on the sign of C1,2. The height of the peak
or dip diverges logarithmically with the cut-off Λ as

σxy =
e2

2π2~

[
Q+

µ

4~

(
1

C 2
− 1

C1

)(
ln

∣∣∣∣2~vΛ

µ

∣∣∣∣−1

)]
. (8)

4 2 0 2 4
C1 /v

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

σ
x
y/

(e
2
Q

2
π

2
)

µ/( vQ) =0

µ/( vQ) =0.05

µ/( vQ) =0.1

µ/( vQ) =0.2

µ/( vQ) =0.3

FIG. 3. (color online) Normalized anomalous Hall conduc-

tivity σxy/(
e2Q
2π2~ ) as a function of the parameter C1/v for dif-

ferent values of the normalized chemical potential µ/(~vQ),
and fixed C2 = −C1. Fig. 1(c) and Fig. 1(e) show the spec-
trum for this situation corresponding to C1 = v and C1 =∞
respectively.

Thus, there is a peak in the Hall conductivity when C2 =
v and C1 = −v and a dip when C2 = −v and C1 = v.
Interestingly, σxy is finite at µ > 0 even if the separation
between WPs vanishes, Q = 0. This observation im-
plies that for a finite µ even a Dirac semimetal (Q = 0)
with a tilted conical spectrum such that C1 6= C2, will
show a finite AHE. It is the contribution from the states
at the Fermi surface which gives rise to a finite value
of anomalous Hall conductivity at µ > 0. We find that
the anomalous Hall conductivity diverges logarithmically
with the cutoff. This divergence arises due to the pres-
ence of unbounded electron - hole pockets at the Fermi
surface, for |Cχ| ≥ v.

B. Splitting of Weyl points orthogonal to the
direction of tilt

The low-energy model of two WPs in the case when
the direction of tilt is orthogonal to the splitting of the
WPs is described by the Hamiltonians

H1(k) = ~C1kx + ~vσ · (k−Qez)

H2(k) = ~C2kx − ~vσ · (k +Qez) (9)

A calculation similar to the one performed in the previous

section gives σxy = σ
(1)
xy + σ

(2)
xy , where

σ(1,2)
xy = ± e2

16π3

∫ Λ∓Q

−Λ∓Q
dkzkz

∫ ∞
−∞

dkxdky
k3

×
[
Θ

(
µ

− C1,2kx − vk
)
−Θ

(
µ− C1,2kx + vk

)]
. (10)

In the limit Λ � µ we recover the expression in Eq.(7),
which is independent on the Fermi energy. Thus, in
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the case |Cχ| < v the anomalous Hall conductivity does
not depend on the parameters Cχ and is given by the

σxy = e2Q
2π2~ , while in the case |Cχ| > v the conductivity

is not universal and decays with an increase of |Cχ|. In-
terestingly, the integral in Eq. (10) vanishes if Q = 0 even
at finite values of the Fermi energy, resulting in a vanish-
ing AHE, which is in contrast to the case when the Weyl
cones are tilted along the z-axis. Tilting the Weyl cone
in the x-direction does not break either time reversal or
inversion along the z-direction symmetries, thus we get
no additional contribution in the σxy.

III. DISCUSSION

Our results indicate that the AHE in WSM2 depends
crucially on the parameters C1 and C2, and can be used
to measure these parameters. The total Hall conductivity
of the Weyl semimetal is a sum of the Hall conductivity

due to both WPs (σxy = σ
(1)
xy +σ

(2)
xy ). First we discuss the

case, where the tilt is in ez. If both WPs are of type-I,
(|C1| < v and |C2| < v) the Hall conductivity for µ = 0 is
universal (independent of the parameters C1 and C2) and

is given by σxy = e2Q
2π2~ . If one of the WPs is of type-I and

the other of type-II, for e.g., |C1| > v and |C2| < v, the
total Hall conductivity for µ = 0 is independent of C2 but

depends upon C1, and is given by σxy = e2Q
4π2~ (1 + v

|C1| ).

The decreasing contribution from the WP of type-II can
be understood as follows. Due to the tilting of the coni-
cal spectrum of the WP of type-II the Hall conductivity
now has a contribution from both electron and hole like
carriers. In fact the contribution of this type-II WP van-
ishes completely in the limit |C1| → ∞ and the total

Hall conductivity becomes σxy = e2Q
4π2~ . If both WPs are

of type-II, the Hall conductivity in general depends upon
both parameters |C1| > v and |C2| > v. A particularly
interesting situation is reached if the tilts of the two WPs
are opposite to each other. Fig. 3 shows the anomalous
Hall conductivity in this situation for various values of µ
and C2 = −C1. Note that when we have a WSM2, the
Hall conductivity changes sign as a function of C1 (in
the right half C1 > v) for large values of µ. The decreas-
ing contribution from the WP of type-II is also observed
when the tilt is in ex [see Eq.(10)].

It is important to stress that our calculations are per-
formed using a linear dispersion model of the excitations
around the WPs. An unbounded linear dispersion is not
realistic for a solid state realization of WSM2. In a realis-
tic case the linear dispersion will have a cut-off (Λ) in mo-
mentum space, beyond which the excitations in WSM2

are no longer described by a linearized model. This cut-
off Λ is also a measure of the density of states at the WP
for a WSM2. The contribution of these large momen-
tum (> Λ) states is ignored in our calculation. Another
crucial point to note is that the conduction and the va-
lence bands for the two distinct WPs are connected in
the BZ by these large momentum states. Figs. 1 and 2
suggest that the electronic band-structure of the WSM2
can be drastically modified for large values of the param-
eters C1 and C2. Thus, in general the contribution of the
large momentum states to the AHE will depend upon
the details of the electronic band-structure of a specific
realization of WSM2 and will not be universal.

Finally, we estimate the value of the anomalous Hall
conductivity considering WTe2 as a possible WSM2. As-
suming the splitting between the two WPs to be Q =

(0.01)Å
−1

, we obtain σxy = e2Q
2π2~ ≈ 10 per Ohm per cm,

which is of the same order as the anomalous Hall con-
ductivity in magnetic conductors29. The dependence of

σxy/(
e2Q
2π2~ ) on the Fermi energy is shown in Fig.3.

IV. SUMMARY

We have investigated the anomalous Hall effect in type-
II Weyl semimetal within a linear dispersion model using
the Kubo formula. Our findings suggest that unlike in
type-I Weyl semimetal, the anomalous Hall effect in type-
II Weyl semimetal is not universal and in general depends
on the parameters quantifying the tilt of the conical spec-
trum around the Weyl points. So far there has been no
experimental evidence for the existence of type-II Weyl
semimetal. Thus, a measurement of the anomalous Hall
effect can help in categorizing the two different types of
Weyl semimetals. If the Weyl semimetal is of type-II,
the measurement of anomalous Hall effect can provide
information about the tilt parameters associated with
these type-II Weyl semimetals. By applying strain and
thereby changing the lattice constant for materials such
as HgTe30, one can potentially measure the anomalous
Hall effect as a function of the tilt parameters and verify
our predictions.
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