WEYL-EINSTEIN STRUCTURES ON K-CONTACT MANIFOLDS

PAUL GAUDUCHON AND ANDREI MOROIANU

ABSTRACT. We show that a compact K-contact manifold (M, g, ξ) has a closed Weyl-Einstein connection compatible with the conformal structure [g] if and only if it is Sasaki-Einstein.

1. INTRODUCTION

K-contact structures — see the definition in Section 3 — can be viewed as the odddimensional counterparts of almost Kähler structure, in the same way as Sasakian structures are the odd-dimensional counterparts of Kähler structures. It has been shown in [4], cf. also [1], that compact Einstein K-contact structures are actually Sasakian, hence Sasaki-Einstein. In this note, we consider the more general situation of a compact K-contact manifold (M, g, ξ) carrying in addition a Weyl-Einstein connection D compatible with the conformal class [g], already considered by a number of authors, in particular in [8] and [10]. We show — Theorem 3.2 and Corollary 3.1 below — that g is then Einstein and D is the Levi-Civita connection of g, in particular that the K-contact structure is Sasaki-Einstein.

2. Conformal vector fields

Let (M, c) be a (positive definite) conformal manifold of dimension n. A vector field ξ on M is called *conformal Killing* with respect to c if it preserves c, meaning that for any metric g in c, the trace-free part $(\mathcal{L}_{\xi}g)_0$ of the Lie derivative $\mathcal{L}_{\xi}g$ of g along ξ is identically zero, hence that $\mathcal{L}_{\xi}g = f g$, for some function f, depending on ξ and g, and it is then easily checked that $f = -\frac{\delta^g \eta_g}{n}$, where η_g denotes the 1-form dual to ξ and $\delta^g \eta_g$ the co-differential of ξ with respect to g. In particular, a conformal Killing vector field ξ on M is Killing with respect to some metric g in c if and only if $\delta^g \eta_g = 0$. In this section, we present a number of facts concerning conformal Killing vector fields for further use in this note.

Proposition 2.1. Let (M,g) be a connected compact oriented Riemannian manifold of dimension $n, n \ge 2$, carrying a non-trivial parallel vector field T. Let ξ be any conformal Killing vector field on M with respect to the conformal class [g] of g. Then, ξ is Killing with respect to g; moreover, it commutes with T and the inner product $a := g(\xi, T)$ is constant.

Proof. Denote by $\eta = \xi^{\flat}$ the 1-form dual to ξ and by $\delta\eta$ the co-differential of η with respect to g; then, ξ is Killing if and only if $\delta\eta = 0$. Denote by ∇ the Levi-Civita connection of g and by \mathcal{L}_T the Lie derivative along T; then, $\nabla_T \xi = [T, \xi] = \mathcal{L}_T \xi$ is conformal Killing, and we have:

(2.1)
$$\delta(\nabla_T \eta) = \delta(\mathcal{L}_T \eta) = \mathcal{L}_T(\delta \eta) = T(\delta \eta).$$

Since T is non-trivial, we may assume $|T| \equiv 1$. Denote $a = g(\xi, T) = \eta(T)$. Since ξ is conformal Killing, $\nabla \xi = A - \frac{\delta \eta}{n}$ Id, where A is skew-symmetric and Id denotes the identity;

Date: January 6, 2016.

for any vector field X we then have: $da(X) = g(\nabla_X \xi, T) = -g(\nabla_T \xi, X) - \frac{2\delta \eta}{n}(X, T)$. We thus get:

(2.2)
$$\nabla_T \eta = -\mathrm{d}a - \frac{2\delta\eta}{n}\,\theta,$$

where $\theta = T^{\flat}$ denotes the 1-form dual to T. By evaluating both members of (2.2) at T, we get:

(2.3)
$$\delta \eta = -n \,\mathrm{d}a(T),$$

whereas, by considering their co-differential and by using (2.1), we get:

(2.4)
$$\Delta a = -\frac{(n-2)}{n} T(\delta \eta),$$

where $\Delta a = \delta da$ denotes the Laplacian of a. Denote by v_g the volume form determined by g and the chosen orientation; from (2.3) and (2.4), we then infer:

$$\int_M a \,\Delta a \,v_g = \int_M |\mathrm{d}a|^2 \,v_g = -\frac{(n-2)}{n} \int_M \delta(a\theta) \,\delta(\eta) \,v_g$$
$$= \frac{(n-2)}{n} \int_M \mathrm{d}a(T) \,\delta\eta \,v_g = -(n-2) \int_M (\delta\eta)^2 \,v_g,$$

hence

(2.5)
$$\int_{M} |\mathrm{d}a|^2 v_g = -(n-2) \int_{M} (\delta\eta)^2 v_g.$$

This readily implies that da = 0 and, either by (2.5) if n > 2 or by (2.3) if n = 2, that $\delta \eta = 0$, i.e. that ξ is Killing. Finally, by (2.2) we infer that $\nabla_T \xi = [T, \xi] = 0$.

Remark 2.1. Proposition 2.1 can be viewed as a particular case of a more general statement (Theorem 2.1 in [11]) concerning conformal Killing forms on Riemannian products.

Proposition 2.2. Assume that (M^n, g) is a compact oriented Einstein manifold carrying a conformal vector field which is not Killing. Then (M, g) is, up to constant rescaling, isometric to the round sphere \mathbb{S}^n .

Proof. We first recall the following lemma, due to A. Lichnerowicz, cf. [9, Paragarph 85]:

Lemma 2.1. Let (M,g) be a connected compact Einstein manifold of dimension $n \ge 2$. of positive (constant) scalar curvature Scal. Denote by λ_1 the smallest positive eigenvalue of the Riemannian Laplacian acting on functions. Then,

(2.6)
$$\lambda_1 \ge \frac{\text{Scal}}{(n-1)},$$

with equality if and only if $\operatorname{grad}_g f$ is conformally Killing for each function f in the eigenspace of λ_1 .

Proof. As before denote by ∇ the Levi-Civita connection of the metric g and denote by Ric the Ricci tensor of g. For any vector field ξ on M, denote by $\eta = \xi^{\flat}$ the 1-form dual to ξ with respect to g. The covariant derivative $\nabla \eta$ of η then splits as follows:

(2.7)
$$\nabla \eta = \frac{1}{2} \left(\mathcal{L}_{\xi} g \right)_0 + \frac{1}{2} \mathrm{d} \eta - \frac{\delta \eta}{n} g,$$

where $(\mathcal{L}_{\xi}g)_0$ denotes the trace-free part of $\mathcal{L}_{\xi}g$. By using (2.7) the Bochner identity

(2.8)
$$\Delta \eta = \delta \nabla \eta + \operatorname{Ric}(\xi)$$

can be rewritten as

(2.9)
$$\operatorname{Ric}(\xi) = -\frac{1}{2}\delta\left(\mathcal{L}_{\xi}g\right)_{0} + \frac{(n-1)}{n}\,\mathrm{d}\delta\xi + \frac{1}{2}\delta\mathrm{d}\xi.$$

Let λ be any positive eigenvalue of Δ and f any non-zero element of the corresponding eigenspace, so that $\Delta f = \lambda f$. By substituting $\eta = df$ and Ric = $\frac{\text{Scal}}{n}g$ in (2.9), we get

(2.10)
$$\Delta df = \lambda \, df = \frac{\mathrm{Scal}}{(n-1)} \, df + \frac{n}{2(n-1)} \, \delta \left(\mathcal{L}_{\mathrm{grad}_g f} g \right)_0,$$

where $\operatorname{grad}_g f = (df)^{\sharp}$ denotes the gradient of f with respect to g. By contracting with df and integrating over M, we obtain

(2.11)
$$\left(\lambda - \frac{\operatorname{Scal}}{(n-1)}\right) \int_{M} |\mathrm{d}f|^2 v_g = \frac{n}{2(n-1)} \int_{M} |\left(\mathcal{L}_{\operatorname{grad}_g f}g\right)_0|^2 v_g \ge 0,$$

so that $\lambda \geq \frac{\text{Scal}}{(n-1)}$, with equality if and only if $\left(\mathcal{L}_{\text{grad}_g f}g\right)_0 = 0$, hence if and only if $\text{grad}_g f$ is conformal Killing.

In view of Lemma 2.1, the proof of Proposition 2.2 goes as follows. Let ξ be any conformal Killing vector field on M, with dual 1-form η . From (2.9), we get:

(2.12)
$$\operatorname{Ric}(\xi) \frac{\operatorname{Scal}}{n} \eta = \frac{(n-1)}{n} \,\mathrm{d}\delta\eta + \frac{1}{2} \delta \mathrm{d}\eta,$$

hence

(2.13)
$$\Delta(\delta\eta) = \frac{\mathrm{Scal}}{(n-1)}\,\delta\eta.$$

We then infer from Lemma 2.1 that $\operatorname{grad}_g(\delta\eta)$ is conformal Killing. It is a well-known theorem of M. Obata [14], previously proved in [12], [13] in the Einstein setting, that the only compact Riemannian manifold admitting a non trivial gradient as a conformal Killing vector field is the standard sphere \mathbb{S}^n . If $(M, g) \neq \mathbb{S}^n$, we then infer that $\delta\eta = 0$.

3. Weyl-Einstein connections on K-contact manifolds

Definition 3.1. A K-contact manifold is an oriented Riemannian manifold (M,g) of odd dimension n = 2m + 1, endowed with a unit Killing vector field ξ whose covariant derivative $\varphi := \nabla \xi$ satisfies

(3.1)
$$\varphi^2 = -\mathrm{Id} + \eta \otimes \xi,$$

where η is the metric dual 1-form of ξ .

Since ξ is Killing, we have $d\eta(X, Y) = 2g(\varphi(X), Y)$ for all vector fields X and Y. The kernel of the 2-form $d\eta$, equal to that of φ , is then spanned by ξ :

(3.2)
$$\ker(\mathrm{d}\eta) = \ker(\varphi) = \mathbb{R}\xi.$$

It follows that the restriction of $d\eta$ to $\mathcal{D} := \ker(\eta)$ is non-degenerate, hence that \mathcal{D} is a contact distribution on M. Moreover, since $\eta(\xi) = 1$ and $\xi \lrcorner d\eta = 0$, ξ is the Reeb vector field of the contact 1-form η .

Proposition 3.1 (cf. [3]). The Ricci tensor of a K-contact manifold satisfies $\operatorname{Ric}(\xi, \cdot) = 2m g(\xi, \cdot) = 2m \eta$.

Proof. Since ξ is Killing and $\nabla \xi = \varphi$, we have

(3.3)
$$\nabla_X \varphi = \mathbf{R}_{\xi,X},$$

from which we get:

(3.4)
$$\nabla_{\xi}\varphi = 0,$$

and

(3.5)
$$\delta \varphi = \operatorname{Ric}(\xi)$$

— here $\delta \varphi$ denotes the co-differential of φ and Ric is regarded as a field of endomorphisms of TM — whereas, from (3.1) we readily infer

(3.6)
$$\nabla_X \varphi \circ \varphi + \varphi \circ \nabla_X \varphi = \frac{1}{2} X \lrcorner \mathrm{d}\eta \otimes \xi + \eta \otimes \varphi(X),$$

hence

(3.7)
$$(\nabla_X \varphi)(\xi) = \mathbf{R}_{\xi, X} \xi = X - \eta(X)\xi,$$

for any vector field X, from which we get

(3.8)
$$\operatorname{Ric}(\xi,\xi) = n - 1 = 2m.$$

In view of (3.8) and (3.2), to prove Proposition 3.1 it is sufficient to check that $\varphi(\operatorname{Ric}(\xi)) = 0$, or else, by (3.5), that $\varphi(\delta\varphi) = 0$. In view of (3.4), we have

(3.9)
$$\delta\varphi = -\sum_{i=1}^{2m} (\nabla_{e_i}\varphi)(e_i),$$

for any auxiliary (local) orthonormal frame of \mathcal{D} ; from (3.6) we thus get

(3.10)
$$\varphi(\delta\varphi) = \sum_{i=1}^{2m} (\nabla_{e_i}\varphi) (\varphi(e_i)).$$

Since φ is associated to the *closed* 2-form $d\eta$, for any vector field X we have:

$$g\left(\sum_{i=1}^{2m} (\nabla_{e_i}\varphi)(\varphi(e_i)), X\right) = -\frac{1}{2}\sum_{i=1}^{2m} g((\nabla_X\varphi)(e_i), \varphi(e_i)) = -g(\nabla_X\varphi, \varphi),$$

which is equal to zero since the norm of φ is constant.

Definition 3.2. A Weyl connection on a conformal manifold (M, c) is a torsion-free linear connection D which preserves the conformal class c.

The latter condition means that for any metric g in the conformal class c, there exists a real 1-form, θ^g , called the *Lee form* of D with respect to g, such that $Dg = -2\theta^g \otimes g$, and D is then related to the Levi-Civita connection, ∇^g , of g by

(3.11)
$$D_X Y = \nabla_X^g Y + \theta^g(X) Y + \theta^g(Y) X - g(X,Y) \left(\theta^g\right)^{\sharp_g},$$

cf. e.g. [5]. A Weyl connection D is said to be *closed* if it is locally the Levi-Civita connection of a (local) metric in c, *exact* if it is the Levi-Civita connection of a (globally defined) metric

4

in c; equivalently, D is closed, resp. exact, if its Lee form is closed, resp. exact, with respect to one, hence any, metric in c.

If M is compact, for any Weyl connection on (M, c) there exists a distinguished metric, say g_0 , in c, usually called the *Gauduchon metric* of D, unique up to scaling, whose Lee form θ^{g_0} is co-closed with respect to g_0 , [6]. If D is closed, θ^{g_0} is then g_0 -harmonic, identically zero if D is exact.

The Ricci tensor, Ric^D , of a Weyl connection D is the bilinear defined by $\operatorname{Ric}(X,Y) = \operatorname{trace}\{Z \mapsto \operatorname{R}^D_{X,Z}Y\} = \sum_{i=1}^n g(\operatorname{R}^D_{X,e_i}Y, e_i)$, for any metric g in c and any g-orthonormal basis $\{e_i\}_{i=1}^n$. The Ricci tensor Ric^D defined that way is symmetric if and only if D is closed.

A Weyl connection D is called *Weyl-Einstein* is the trace-free component of the symmetric part of Ric^D is identically zero. A closed Weyl-Einstein connection is locally the Levi-Civita connection of a (local) Einstein metric in c; an exact Weyl-Einstein connection is the Levi-Civita connection of a (globally defined) Einstein metric.

We here recall the following well-known result:

Theorem 3.1 ([15], [7]). Let D be a Weyl-Einstein connection defined on a compact connected oriented conformal manifold (M, c) and denote by g_0 denote its Gauduchon metric. Then the vector field T on M dual to the Lee form θ^{g_0} is Killing with respect to g_0 . If D is closed, T is parallel with respect to g_0 , identically zero if and only if D is exact.

The aim of this section is to prove the following:

Theorem 3.2. Let (M^{2m+1}, g, ξ) be a compact K-contact manifold carrying a closed Weyl-Einstein structure D compatible with the conformal class c = [g]. Then D is the Levi-Civita connection of g, which is then Einstein.

Proof. Let $g_0 := e^{2f}g$ denote the Gauduchon metric of D and let T denote the g_0 -dual of the Lee form of D with respect to g_0 . According to Theorem 3.1, T is ∇^{g_0} -parallel. We first show that $T \equiv 0$, i.e. that the closed Weyl-Einstein connection D is actually exact.

Assume, for a contradiction, that T is non-zero. By rescaling the Gauduchon metric g_0 if necessary, we may assume that $g_0(T,T) = 1$. Denote by η , resp. η_0 , the 1-form dual to ξ with respect to g, resp. g_0 . Both η and η_0 are contact 1-forms for the contact distribution \mathcal{D} , and, as already noticed, ξ is the Reeb vector field of η According to Proposition 2.1, ξ , which is Killing with respect to g, hence conformal Killing with respect to $[g] = [g_0]$, is Killing with respect to g_0 as well, commutes with T, and the inner product $a := g_0(\xi, T) = \eta_0(T)$ is constant; we then have: $\mathcal{L}_T \eta_0 = 0$, hence that $T \lrcorner d\eta_0 = \mathcal{L}_T \eta_0 - d(\eta_0(T)) = -da = 0$. Moreover, since $\eta_0(T) = a$ and $T \lrcorner d\eta_0$, a cannot be zero — otherwise, η_0 would not be a contact 1-form — and $\xi_0 := a^{-1}T$ is then the Reeb vector field of η_0 . Since $\eta_0 = e^{2f} \eta_0$, the Reeb vector fields ξ_0 and ξ are related by

(3.12)
$$\xi_0 = e^{-2f} \xi + Z_f,$$

where Z_f is the section of \mathcal{D} defined by

Since *M* is compact, *f* has critical points and for each of them, say *x*, it follows from (3.13) that $Z_f(x) = 0$, hence $\xi_0(x) = a^{-1}T(x) = e^{-2f(x)}\xi(x)$. Since, $g_0(T(x), T(x)) = 1$ and $g_0(\xi(x), T(x)) = a$ for any *x*, we infer that $e^{2f(x)} = a^2$ for any critical point *x* of *f*, in particular for points where *f* takes its minimal or its maximal value. It follows that *f* is

constant, with $e^{2f} \equiv a^2$, that $g_0 = a^2 g$ and $\xi = a T$. In particular, η and $\eta_0 = a^2 \eta$ are parallel, with respect to g and g_0 , hence closed. This contradicts the fact that they are contact 1-forms.

In view of the above, T must be identically zero. This means that D is the Levi-Civita connection of the Gauduchon metric g_0 , which is thus Einstein. Since ξ is conformal with respect to g_0 , from Proposition 2.2, either ξ is Killing with respect to g_0 , or (M, g_0) is homothetic to \mathbb{S}^{2m+1} (in which case one can rescale g_0 in order to have $(M, g_0) = \mathbb{S}^{2m+1}$).

Case 1. ξ is Killing with respect to g_0 . Since ξ is Killing with respect to $g = e^{-2f}g_0$, this means that $\xi(f) = 0$, or equivalently

(3.14)
$$g(\xi, \operatorname{grad}_{q} f) = 0.$$

Let λ denote the Einstein constant of (M, g_0) , so that $\operatorname{Ric}^0 = \lambda g_0 = e^{2f} \lambda g$. The classical formula relating the Ricci tensors Ric and Ric⁰ of g and g_0 reads (cf. [2], p. 59):

(3.15)
$$\operatorname{Ric}^{0} = \operatorname{Ric} - (2m-1)(\nabla^{g} \mathrm{d}f - \mathrm{d}f \otimes \mathrm{d}f) + (\Delta^{g}f - (2m-1)|\mathrm{d}f|_{g}^{2})g.$$

Contracting (3.15) with ξ and using Proposition 3.1 we get

$$\lambda e^{2f}\eta = 2m\eta - (2m-1)\nabla_{\xi}^{g}\mathrm{d}f + (\Delta^{g}f - (2m-1)|\mathrm{d}f|_{g}^{2})\eta.$$

Taking the metric duals with respect to g this equation reads

(3.16)
$$\nabla_{\xi}^{g}(\operatorname{grad}_{g}f) = h\xi, \quad \text{with } h := \frac{1}{2m-1} \left(\Delta^{g}f - (2m-1)|\mathrm{d}f|_{g}^{2} + 2m - \lambda e^{2f} \right).$$

On the other hand, we have $0 = d\mathcal{L}_{\xi}f = \mathcal{L}_{\xi}df$, thus $\mathcal{L}_{\xi}(\operatorname{grad}_{g}f) = 0$ and therefore

$$\nabla^g_{\xi}(\operatorname{grad}_g f) = \nabla^g_{\operatorname{grad}_g f} \xi = \varphi(\operatorname{grad}_g f).$$

Since the image of φ is orthogonal to ξ , (3.16) implies that $\varphi(\operatorname{grad}_g f) = 0$, thus by (3.2), $\operatorname{grad}_g f$ is proportional to ξ . From (3.14) we thus get $\operatorname{grad}_g f = 0$, so f is constant and D is the Levi-Civita connection of g, and hence g is Einstein.

Case 2. (M, g_0) is isometric to \mathbb{S}^{2m+1} . The vector field ξ is a conformal vector field of the round sphere, thus it is a sum $\xi = K + G$ where K is Killing and G is a gradient conformal vector field, i.e. $G = \operatorname{grad}_{g_0} h$ where h is a first spherical harmonic. More precisely, there exists a skew-symmetric matrix $A \in \mathfrak{so}_{2m+2}$ and a vector $v \in \mathbb{R}^{2m+2}$ such that $K_x = Ax$ and $h(x) = \langle x, v \rangle$ for every $x \in \mathbb{S}^{2m+1} \subset \mathbb{R}^{2m+2}$.

Since ξ has unit length with respect to $g = e^{-2f}g_0$, the conformal factor satisfies $e^{2f} = g_0(\xi,\xi)$. Consider as before the metric duals η and $\eta_0 = e^{2f}\eta$ of ξ with respect to g and g_0 . Since $\eta_0 = K^{\flat} + G^{\flat} = K^{\flat} + dh$, we have

(3.17)
$$\mathrm{d}\eta_0 = \mathrm{d}K^\flat = A,$$

where A is the restriction to \mathbb{S}^{2m+1} of the constant 2-form $A \in \mathfrak{so}_{2m+2} = \Lambda^2 \mathbb{R}^{2m+2}$. Since $\mathrm{d}\eta = e^{-2f} \left(-2df \wedge \eta_0 + \mathrm{d}\eta_0 \right)$, by (3.17), at any critical point x of f the 2-form $\mathrm{d}\eta$ reads

$$\mathrm{d}\eta_x = e^{-2f(x)}\mathrm{d}\eta_0 = e^{-2f(x)}A.$$

From (3.1) it follows that the symmetric endomorphism $e^{-4f(x)}A^2$ of \mathbb{R}^{2m+2} has two eigenvalues, 0 and -1, (the 0-eigenspace being generated by x and ξ_x). Using this at a minimum and maximum points x_m and x_M of f, we get $e^{-4f(x_m)} = e^{-4f(x_M)}$, thus f is constant, and like before, g is homothetic to g_0 and thus Einstein. This concludes the proof of the theorem. \Box

As a direct corollary of Theorem 3.2 above together with Theorem 1.1 in [1] (see also [4]), we obtain the following result:

Corollary 3.1. If (M^{2m+1}, g, ξ) is a compact K-contact manifold carrying a closed Weyl-Einstein structure compatible with g, then M is Sasaki-Einstein.

Remark 3.1. In [10] it is claimed that if (M^{2m+1}, g, ξ) is a compact K-contact manifold carrying a compatible closed Weyl-Einstein structure, then M is Sasakian if and only if it is η -Einstein. Our above result show that the hypotheses in [10] already imply both conditions.

References

- V. Apostolov, T. Draghici, A. Moroianu, The odd-dimensional Goldberg conjecture, Math. Nachr. 279 (2006), 948–952.
- [2] A. L. Besse, *Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete 10, Springer Verlag (1987).
- [3] D. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, 2002.
- [4] C. Boyer, K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), 2419–2430.
- [5] D. M. J. Calderbank, H. Pedersen, Einstein-Weyl geometry. Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA (1999), 387–423.
- [6] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495– 518.
- [7] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type $S^1 \times S^3$, J. reine angew. Math. **469** (1995), 1–50.
- [8] A. Gosh, Einstein-Weyl structures on contact metric manifolds, Annals Global Analysis geom. 35 (2009), 431–441.
- [9] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et recherches mathématiques 3, Dunod (1958).
- [10] P. Matzeu, Closed Einstein-Weyl structures on compact Sasakian and cosymplectic manifolds, Proc. Edinb. Math. Soc. 54 (2011), 149–160.
- [11] A. Moroianu, U. Semmelmann, Twistor forms on Riemannian products, J. Geom. Phys. 58 (2008), 134– 1345.
- [12] T. Nagano, The conformal transformation on a space with parallel Ricci tensor, J. Math. Soc. Japan 11 (1959), 10–14.
- [13] T. Nagano, K. Yano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959), 451–461.
- [14] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (72) (1971), 247–258.
- [15] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, L. London Math. Soc. (2) 45 (1992), 341– 351.
- [16] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003) 503–527.

PAUL GAUDUCHON, CMLS, ÉCOLE POLYTECHNIQUE, CNRS, UNIVERSITÉ PARIS-SACLAY, 91128 PALAISEAU, FRANCE

E-mail address: paul.gauduchon@polytechnique.edu

Andrei Moroianu, Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France

E-mail address: andrei.moroianu@math.cnrs.fr