WEYL-EINSTEIN STRUCTURES ON K-CONTACT MANIFOLDS

PAUL GAUDUCHON AND ANDREI MOROIANU

ABSTRACT. We show that a compact K-contact manifold (M, g, ξ) has a closed Weyl-Einstein connection compatible with the conformal structure $[g]$ if and only if it is Sasaki-Einstein.

1. INTRODUCTION

K-contact structures — see the definition in Section 3 — can be viewed as the odddimensional counterparts of *almost Kähler* structure, in the same way as Sasakian structures are the odd-dimensional counterparts of Kähler structures. It has been shown in [\[4\]](#page-6-0), cf. also [\[1\]](#page-6-1), that compact Einstein K-contact structures are actually Sasakian, hence Sasaki-Einstein. In this note, we consider the more general situation of a compact K-contact manifold (M, g, ξ) carrying in addition a *Weyl-Einstein* connection D compatible with the conformal class $[q]$, already considered by a number of authors, in particular in [\[8\]](#page-6-2) and [\[10\]](#page-6-3). We show — Theorem [3.2](#page-4-0) and Corollary [3.1](#page-6-4) below — that g is then Einstein and D is the Levi-Civita connection of g, in particular that the K-contact structure is Sasaki-Einstein.

2. Conformal vector fields

Let (M, c) be a (positive definite) conformal manifold of dimension n. A vector field ξ on M is called *conformal Killing* with respect to c if it preserves c , meaning that for any metric g in c, the trace-free part $(\mathcal{L}_{\xi}g)_{0}$ of the Lie derivative $\mathcal{L}_{\xi}g$ of g along ξ is identically zero, hence that $\mathcal{L}_{\xi}g = f g$, for some function f, depending on ξ and g, and it is then easily checked that $f = -\frac{\delta^g \eta_g}{n}$ $\frac{d\eta_g}{d\eta}$, where η_g denotes the 1-form dual to ξ and $\delta^g \eta_g$ the co-differential of ξ with respect to g. In particular, a conformal Killing vector field ξ on M is Killing with respect to some metric g in c if and only if $\delta^g \eta_g = 0$. In this section, we present a number of facts concerning conformal Killing vector fields for further use in this note.

Proposition 2.1. Let (M, g) be a connected compact oriented Riemannian manifold of dimension n, $n \geq 2$, carrying a non-trivial parallel vector field T. Let ξ be any conformal Killing vector field on M with respect to the conformal class [g] of g. Then, ξ is Killing with respect to g; moreover, it commutes with T and the inner product $a := q(\xi, T)$ is constant.

Proof. Denote by $\eta = \xi^{\flat}$ the 1-form dual to ξ and by $\delta\eta$ the co-differential of η with respect to g; then, ξ is Killing if and only if $\delta \eta = 0$. Denote by ∇ the Levi-Civita connection of g and by \mathcal{L}_T the Lie derivative along T; then, $\nabla_T \xi = [T, \xi] = \mathcal{L}_T \xi$ is conformal Killing, and we have:

(2.1)
$$
\delta(\nabla_T \eta) = \delta(\mathcal{L}_T \eta) = \mathcal{L}_T(\delta \eta) = T(\delta \eta).
$$

Since T is non-trivial, we may assume $|T| \equiv 1$. Denote $a = g(\xi, T) = \eta(T)$. Since ξ is conformal Killing, $\nabla \xi = A - \frac{\delta \eta}{n}$ $\frac{p}{n}$ Id, where A is skew-symmetric and Id denotes the identity;

Date: January 6, 2016.

for any vector field X we then have: $da(X) = g(\nabla_X \xi, T) = -g(\nabla_T \xi, X) - \frac{2\delta\eta}{n}$ $\frac{\delta \eta}{n}(X,T)$. We thus get:

(2.2)
$$
\nabla_T \eta = -\mathrm{d}a - \frac{2\delta\eta}{n} \theta,
$$

where $\theta = T^{\flat}$ denotes the 1-form dual to T. By evaluating both members of [\(2.2\)](#page-1-0) at T, we get:

$$
\delta \eta = -n \, \mathrm{d} a(T),
$$

whereas, by considering their co-differential and by using [\(2.1\)](#page-0-0), we get:

(2.4)
$$
\Delta a = -\frac{(n-2)}{n}T(\delta \eta),
$$

where $\Delta a = \delta da$ denotes the Laplacian of a. Denote by v_a the volume form determined by g and the chosen orientation; from (2.3) and (2.4) , we then infer:

$$
\int_M a \Delta a \, v_g = \int_M |\mathrm{d}a|^2 \, v_g = -\frac{(n-2)}{n} \int_M \delta(a\theta) \, \delta(\eta) \, v_g
$$
\n
$$
= \frac{(n-2)}{n} \int_M \mathrm{d}a(T) \, \delta\eta \, v_g = -(n-2) \int_M (\delta\eta)^2 \, v_g,
$$

hence

(2.5)
$$
\int_M |da|^2 v_g = -(n-2) \int_M (\delta \eta)^2 v_g.
$$

This readily implies that da = 0 and, either by [\(2.5\)](#page-1-3) if $n > 2$ or by [\(2.3\)](#page-1-1) if $n = 2$, that $\delta \eta = 0$, i.e. that ξ is Killing. Finally, by [\(2.2\)](#page-1-0) we infer that $\nabla_T \xi = [T, \xi] = 0$.

Remark 2.1. Proposition [2.1](#page-0-1) can be viewed as a particular case of a more general statement (Theorem 2.1 in [\[11\]](#page-6-5)) concerning conformal Killing forms on Riemannian products.

Proposition 2.2. Assume that (M^n, g) is a compact oriented Einstein manifold carrying a conformal vector field which is not Killing. Then (M, g) is, up to constant rescaling, isometric to the round sphere \mathbb{S}^n .

Proof. We first recall the following lemma, due to A. Lichnerowicz, cf. [\[9,](#page-6-6) Paragarph 85]:

Lemma 2.1. Let (M, q) be a connected compact Einstein manifold of dimension $n > 2$. of positive (constant) scalar curvature Scal. Denote by λ_1 the smallest positive eigenvalue of the Riemannian Laplacian acting on functions. Then,

$$
\lambda_1 \ge \frac{\text{Scal}}{(n-1)},
$$

with equality if and only if $\text{grad}_a f$ is conformally Killing for each function f in the eigenspace of λ_1 .

Proof. As before denote by ∇ the Levi-Civita connection of the metric g and denote by Ric the Ricci tensor of g. For any vector field ξ on M, denote by $\eta = \xi^{\flat}$ the 1-form dual to ξ with respect to q. The covariant derivative $\nabla \eta$ of η then splits as follows:

(2.7)
$$
\nabla \eta = \frac{1}{2} \left(\mathcal{L}_{\xi} g \right)_0 + \frac{1}{2} d\eta - \frac{\delta \eta}{n} g,
$$

where $(\mathcal{L}_{\xi}g)_{0}$ denotes the trace-free part of $\mathcal{L}_{\xi}g$. By using [\(2.7\)](#page-1-4) the *Bochner identity*

(2.8)
$$
\Delta \eta = \delta \nabla \eta + \text{Ric}(\xi)
$$

can be rewritten as

(2.9) \t\t\t
$$
\operatorname{Ric}(\xi) = -\frac{1}{2}\delta \left(\mathcal{L}_{\xi}g \right)_0 + \frac{(n-1)}{n} \operatorname{d}\delta \xi + \frac{1}{2}\delta \operatorname{d}\xi.
$$

Let λ be any positive eigenvalue of Δ and f any non-zero element of the corresponding eigenspace, so that $\Delta f = \lambda f$. By substituting $\eta = df$ and Ric = $\frac{Scal}{n} g$ in [\(2.9\)](#page-2-1), we get

(2.10)
$$
\Delta \mathrm{d} f = \lambda \, \mathrm{d} f = \frac{\text{Scal}}{(n-1)} \, \mathrm{d} f + \frac{n}{2(n-1)} \, \delta \left(\mathcal{L}_{\text{grad}_g f} g \right)_0,
$$

where $\text{grad}_g f = (df)^{\sharp}$ denotes the gradient of f with respect to g. By contracting with df and integrating over M , we obtain

(2.11)
$$
\left(\lambda - \frac{\text{Scal}}{(n-1)}\right) \int_M |df|^2 v_g = \frac{n}{2(n-1)} \int_M \left| \left(\mathcal{L}_{\text{grad}_g f} g\right)_0\right|^2 v_g \ge 0,
$$

so that $\lambda \geq \frac{\text{Scal}}{(n-1)}$, with equality if and only if $(\mathcal{L}_{\text{grad}_g f} g)$ $\sigma_0 = 0$, hence if and only if $\text{grad}_g f$ is conformal Killing.

In view of Lemma [2.1,](#page-1-5) the proof of Proposition [2.2](#page-1-6) goes as follows. Let ξ be any conformal Killing vector field on M, with dual 1-form η . From [\(2.9\)](#page-2-1), we get:

(2.12)
$$
\operatorname{Ric}(\xi) \frac{\text{Scal}}{n} \eta = \frac{(n-1)}{n} d\delta \eta + \frac{1}{2} \delta d\eta,
$$

hence

(2.13)
$$
\Delta(\delta \eta) = \frac{\text{Scal}}{(n-1)} \delta \eta.
$$

We then infer from Lemma [2.1](#page-1-5) that $\text{grad}_g(\delta \eta)$ is conformal Killing. It is a well-known theorem of M. Obata [\[14\]](#page-6-7), previously proved in [\[12\]](#page-6-8), [\[13\]](#page-6-9) in the Einstein setting, that the only compact Riemannian manifold admitting a non trivial gradient as a conformal Killing vector field is the standard sphere \mathbb{S}^n . If $(M, g) \neq \mathbb{S}^n$, we then infer that $\delta \eta = 0$.

3. Weyl-Einstein connections on K-contact manifolds

Definition 3.1. A K-contact manifold is an oriented Riemannian manifold (M, q) of odd dimension $n = 2m + 1$, endowed with a unit Killing vector field ξ whose covariant derivative $\varphi := \nabla \xi$ satisfies

$$
\varphi^2 = -\mathrm{Id} + \eta \otimes \xi,
$$

where η is the metric dual 1-form of ξ .

Since ξ is Killing, we have $d\eta(X, Y) = 2g(\varphi(X), Y)$ for all vector fields X and Y. The kernel of the 2-form dη, equal to that of φ , is then spanned by ξ :

(3.2)
$$
\ker(\mathrm{d}\eta) = \ker(\varphi) = \mathbb{R}\xi.
$$

It follows that the restriction of d η to $\mathcal{D} := \text{ker}(\eta)$ is non-degenerate, hence that $\mathcal D$ is a contact distribution on M. Moreover, since $\eta(\xi) = 1$ and $\xi \Box \eta = 0$, ξ is the Reeb vector field of the contact 1-form n .

Proposition 3.1 (cf. [\[3\]](#page-6-10)). The Ricci tensor of a K-contact manifold satisfies Ric (ξ, \cdot) = $2m g(\xi, \cdot) = 2m \eta.$

Proof. Since ξ is Killing and $\nabla \xi = \varphi$, we have

$$
\nabla_X \varphi = \mathcal{R}_{\xi, X},
$$

from which we get:

$$
\nabla_{\xi}\varphi=0,
$$

and

$$
\delta \varphi = \text{Ric}(\xi)
$$

— here $\delta\varphi$ denotes the co-differential of φ and Ric is regarded as a field of endomorphisms of TM — whereas, from (3.1) we readily infer

(3.6)
$$
\nabla_X \varphi \circ \varphi + \varphi \circ \nabla_X \varphi = \frac{1}{2} X \Box \mathrm{d} \eta \otimes \xi + \eta \otimes \varphi(X),
$$

hence

(3.7)
$$
(\nabla_X \varphi)(\xi) = \mathcal{R}_{\xi,X} \xi = X - \eta(X)\xi,
$$

for any vector field X , from which we get

(3.8)
$$
Ric(\xi, \xi) = n - 1 = 2m.
$$

In view of [\(3.8\)](#page-3-0) and [\(3.2\)](#page-2-3), to prove Proposition [3.1](#page-3-1) it is sufficient to check that $\varphi(\text{Ric}(\xi)) = 0$, or else, by [\(3.5\)](#page-3-2), that $\varphi(\delta \varphi) = 0$. In view of [\(3.4\)](#page-3-3), we have

(3.9)
$$
\delta \varphi = -\sum_{i=1}^{2m} (\nabla_{e_i} \varphi)(e_i),
$$

for any auxiliary (local) orthonormal frame of \mathcal{D} ; from [\(3.6\)](#page-3-4) we thus get

(3.10)
$$
\varphi(\delta \varphi) = \sum_{i=1}^{2m} (\nabla_{e_i} \varphi) (\varphi(e_i)).
$$

Since φ is associated to the *closed* 2-form dn, for any vector field X we have:

$$
g\left(\sum_{i=1}^{2m}(\nabla_{e_i}\varphi)(\varphi(e_i)),X\right)=-\frac{1}{2}\sum_{i=1}^{2m}g\big((\nabla_X\varphi)(e_i),\varphi(e_i)\big)=-g(\nabla_X\varphi,\varphi),
$$

which is equal to zero since the norm of φ is constant.

Definition 3.2. A Weyl connection on a conformal manifold (M, c) is a torsion-free linear connection D which preserves the conformal class c.

 \Box

The latter condition means that for any metric g in the conformal class c , there exists a real 1-form, θ^g , called the Lee form of D with respect to g, such that $Dg = -2\theta^g \otimes g$, and D is then related to the Levi-Civita connection, ∇^g , of g by

(3.11)
$$
D_X Y = \nabla^g_X Y + \theta^g(X) Y + \theta^g(Y) X - g(X, Y) \left(\theta^g\right)^{\sharp_g},
$$

cf. e.g. [\[5\]](#page-6-11). A Weyl connection D is said to be *closed* if it is locally the Levi-Civita connection of a (local) metric in c, exact if it is the Levi-Civita connection of a (globally defined) metric in c; equivalently, D is closed, resp. exact, if its Lee form is closed, resp. exact, with respect to one, hence any, metric in c.

If M is compact, for any Weyl connection on (M, c) there exists a distinguished metric, say g_0 , in c, usually called the *Gauduchon metric* of D, unique up to scaling, whose Lee form θ^{g_0} is co-closed with respect to g_0 , [\[6\]](#page-6-12). If D is closed, θ^{g_0} is then g_0 -harmonic, identically zero if D is exact.

The Ricci tensor, Ric^D, of a Weyl connection D is the bilinear defined by Ric (X, Y) = trace $\{Z \mapsto \mathrm{R}^{\mathrm{D}}_{X,Z}Y\} = \sum_{i=1}^n g(\mathrm{R}_{X,e_i}^D Y, e_i)$, for any metric g in c and any g-orthonormal basis ${e_i}_{i=1}^n$. The Ricci tensor Ric^D defined that way is symmetric if and only if D is closed.

A Weyl connection D is called *Weyl-Einstein* is the trace-free component of the symmetric \tilde{A} part of Ric^D is identically zero. A closed Weyl-Einstein connection is locally the Levi-Civita connection of a (local) Einstein metric in c; an exact Weyl-Einstein connection is the Levi-Civita connection of a (globally defined) Einstein metric.

We here recall the following well-known result:

Theorem 3.1 ([\[15\]](#page-6-13), [\[7\]](#page-6-14)). Let D be a Weyl-Einstein connection defined on a compact connected oriented conformal manifold (M, c) and denote by g_0 denote its Gauduchon metric. Then the vector field T on M dual to the Lee form θ^{g_0} is Killing with respect to g_0 . If D is closed, T is parallel with respect to g_0 , identically zero if and only if D is exact.

The aim of this section is to prove the following:

Theorem 3.2. Let (M^{2m+1}, q, ξ) be a compact K-contact manifold carrying a closed Weyl-Einstein structure D compatible with the conformal class $c = [g]$. Then D is the Levi-Civita connection of g, which is then Einstein.

Proof. Let $g_0 := e^{2f}g$ denote the Gauduchon metric of D and let T denote the g_0 -dual of the Lee form of D with respect to g_0 . According to Theorem [3.1,](#page-4-1) T is ∇^{g_0} -parallel. We first show that $T \equiv 0$, i.e. that the closed Weyl-Einstein connection D is actually exact.

Assume, for a contradiction, that T is non-zero. By rescaling the Gauduchon metric g_0 if necessary, we may assume that $g_0(T, T) = 1$. Denote by η , resp. η_0 , the 1-form dual to ξ with respect to g, resp. g_0 . Both η and η_0 are contact 1-forms for the contact distribution D, and, as already noticed, ξ is the Reeb vector field of η According to Proposition [2.1,](#page-0-1) ξ , which is Killing with respect to g, hence conformal Killing with respect to $[g] = [g_0]$, is Killing with respect to g_0 as well, commutes with T, and the inner product $a := g_0(\xi, T) = \eta_0(T)$ is constant; we then have: $\mathcal{L}_T \eta_0 = 0$, hence that $T \Box d\eta_0 = \mathcal{L}_T \eta_0 - d(\eta_0(T)) = -da = 0$. Moreover, since $\eta_0(T) = a$ and $T \Box d\eta_0$, a cannot be zero — otherwise, η_0 would not be a contact 1-form – and $\xi_0 := a^{-1}T$ is then the Reeb vector field of η_0 . Since $\eta_0 = e^{2f} \eta_0$, the Reeb vector fields ξ_0 and ξ are related by

(3.12)
$$
\xi_0 = e^{-2f} \xi + Z_f,
$$

where Z_f is the section of D defined by

$$
(3.13)\t\t Z_f \lrcorner d\eta = 2e^{-2f} df_{|\mathcal{D}}.
$$

Since M is compact, f has critical points and for each of them, say x, it follows from (3.13) that $Z_f(x) = 0$, hence $\xi_0(x) = a^{-1}T(x) = e^{-2f(x)}\xi(x)$. Since, $g_0(T(x), T(x)) = 1$ and $g_0(\xi(x), T(x)) = a$ for any x, we infer that $e^{2f(x)} = a^2$ for any critical point x of f, in particular for points where f takes its minimal or its maximal value. It follows that f is constant, with $e^{2f} \equiv a^2$, that $g_0 = a^2 g$ and $\xi = aT$. In particular, η and $\eta_0 = a^2 \eta$ are parallel, with respect to g and g_0 , hence closed. This contradicts the fact that they are contact 1-forms.

In view of the above, T must be identically zero. This means that D is the Levi-Civita connection of the Gauduchon metric g_0 , which is thus Einstein. Since ξ is conformal with respect to g_0 , from Proposition [2.2,](#page-1-6) either ξ is Killing with respect to g_0 , or (M, g_0) is homothetic to \mathbb{S}^{2m+1} (in which case one can rescale g_0 in order to have $(M, g_0) = \mathbb{S}^{2m+1}$).

Case 1. ξ is Killing with respect to g_0 . Since ξ is Killing with respect to $g = e^{-2f}g_0$, this means that $\xi(f) = 0$, or equivalently

$$
(3.14) \t\t g(\xi, \text{grad}_g f) = 0.
$$

Let λ denote the Einstein constant of (M, g_0) , so that Ric⁰ = $\lambda g_0 = e^{2f} \lambda g$. The classical formula relating the Ricci tensors Ric and \widetilde{Ric}^0 of g and g_0 reads (cf. [\[2\]](#page-6-15), p. 59):

(3.15) \t\t\t
$$
\text{Ric}^0 = \text{Ric} - (2m - 1)(\nabla^g \mathrm{d}f - \mathrm{d}f \otimes \mathrm{d}f) + (\Delta^g f - (2m - 1)|\mathrm{d}f|_g^2)g.
$$

Contracting (3.15) with ξ and using Proposition [3.1](#page-3-1) we get

$$
\lambda e^{2f}\eta = 2m\eta - (2m-1)\nabla_{\xi}^{g} df + (\Delta^{g} f - (2m-1)|df|_{g}^{2})\eta.
$$

Taking the metric duals with respect to g this equation reads

(3.16)
$$
\nabla_{\xi}^{g}(\text{grad}_{g}f) = h\xi, \quad \text{with } h := \frac{1}{2m-1} \left(\Delta^{g}f - (2m-1)|df|_{g}^{2} + 2m - \lambda e^{2f} \right).
$$

On the other hand, we have $0 = d\mathcal{L}_{\xi}f = \mathcal{L}_{\xi}df$, thus $\mathcal{L}_{\xi}(\text{grad}_{g}f) = 0$ and therefore

$$
\nabla^g_{\xi}({\rm grad}_g f) = \nabla^g_{{\rm grad}_g f} \xi = \varphi({\rm grad}_g f).
$$

Since the image of φ is orthogonal to ξ , [\(3.16\)](#page-5-1) implies that $\varphi(\text{grad}_a f) = 0$, thus by [\(3.2\)](#page-2-3), $\text{grad}_g f$ is proportional to ξ . From [\(3.14\)](#page-5-2) we thus get $\text{grad}_g f = 0$, so f is constant and D is the Levi-Civita connection of g , and hence g is Einstein.

Case 2. (M, g_0) is isometric to \mathbb{S}^{2m+1} . The vector field ξ is a conformal vector field of the round sphere, thus it is a sum $\xi = K + G$ where K is Killing and G is a gradient conformal vector field, i.e. $G = \text{grad}_{g_0} h$ where h is a first spherical harmonic. More precisely, there exists a skew-symmetric matrix $A \in \mathfrak{so}_{2m+2}$ and a vector $v \in \mathbb{R}^{2m+2}$ such that $K_x = Ax$ and $h(x) = \langle x, v \rangle$ for every $x \in \mathbb{S}^{2m+1} \subset \mathbb{R}^{2m+2}$.

Since ξ has unit length with respect to $g = e^{-2f}g_0$, the conformal factor satisfies e^{2f} = $g_0(\xi, \xi)$. Consider as before the metric duals η and $\eta_0 = e^{2f} \eta$ of ξ with respect to g and g_0 . Since $\eta_0 = K^{\flat} + G^{\flat} = K^{\flat} + dh$, we have

$$
d\eta_0 = dK^{\flat} = A,
$$

where A is the restriction to \mathbb{S}^{2m+1} of the constant 2-form $A \in \mathfrak{so}_{2m+2} = \Lambda^2 \mathbb{R}^{2m+2}$. Since $d\eta = e^{-2f}(-2df \wedge \eta_0 + d\eta_0)$, by [\(3.17\)](#page-5-3), at any critical point x of f the 2-form $d\eta$ reads

$$
\mathrm{d}\eta_x = e^{-2f(x)} \mathrm{d}\eta_0 = e^{-2f(x)} A.
$$

From [\(3.1\)](#page-2-2) it follows that the symmetric endomorphism $e^{-4f(x)}A^2$ of \mathbb{R}^{2m+2} has two eigenvalues, 0 and -1 , (the 0-eigenspace being generated by x and ξ_x). Using this at a minimum and maximum points x_m and x_M of f, we get $e^{-4f(x_m)} = e^{-4f(x_M)}$, thus f is constant, and like before, g is homothetic to g_0 and thus Einstein. This concludes the proof of the theorem. \Box

As a direct corollary of Theorem [3.2](#page-4-0) above together with Theorem 1.1 in [\[1\]](#page-6-1) (see also [\[4\]](#page-6-0)), we obtain the following result:

Corollary 3.1. If (M^{2m+1}, q, ξ) is a compact K-contact manifold carrying a closed Weyl-Einstein structure compatible with g, then M is Sasaki-Einstein.

Remark 3.1. In [\[10\]](#page-6-3) it is claimed that if (M^{2m+1}, q, ξ) is a compact K-contact manifold carrying a compatible closed Weyl-Einstein structure, then M is Sasakian if and only if it is η -Einstein. Our above result show that the hypotheses in [\[10\]](#page-6-3) already imply both conditions.

REFERENCES

- [1] V. Apostolov, T. Draghici, A. Moroianu, The odd-dimensional Goldberg conjecture, Math. Nachr. 279 (2006), 948–952.
- [2] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 10, Springer Verlag (1987).
- [3] D. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, 2002.
- [4] C. Boyer, K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), 2419–2430.
- [5] D. M. J. Calderbank, H. Pedersen, Einstein-Weyl geometry. Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA (1999), 387–423.
- [6] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495– 518.
- [7] P. Gauduchon, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type $S^1 \times S^3$, J. reine angew. Math. 469 (1995), 1–50.
- [8] A. Gosh, Einstein-Weyl structures on contact metric manifolds, Annals Global Analysis geom. 35 (2009), 431–441.
- [9] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et recherches mathématiques 3, Dunod (1958).
- [10] P. Matzeu, Closed Einstein-Weyl structures on compact Sasakian and cosymplectic manifolds, Proc. Edinb. Math. Soc. 54 (2011), 149–160.
- [11] A. Moroianu, U. Semmelmann, Twistor forms on Riemannian products, J. Geom. Phys. 58 (2008), 134– 1345.
- [12] T. Nagano, The conformal transformation on a space with parallel Ricci tensor, J. Math. Soc. Japan 11 (1959), 10–14.
- [13] T. Nagano, K. Yano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. 69 (1959), 451–461.
- [14] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (72) (1971), 247–258.
- [15] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, L. London Math. Soc. (2) 45 (1992), 341– 351.
- [16] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003) 503–527.

PAUL GAUDUCHON, CMLS, ÉCOLE POLYTECHNIQUE, CNRS, UNIVERSITÉ PARIS-SACLAY, 91128 PALAISEAU, France

E-mail address: paul.gauduchon@polytechnique.edu

ANDREI MOROIANU, LABORATOIRE DE MATHÉMATIQUES DE VERSAILLES, UVSQ, CNRS, UNIVERSITÉ Paris-Saclay, 78035 Versailles, France

E-mail address: andrei.moroianu@math.cnrs.fr