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Abstract

We provide the first extensive evaluation
of how using different types of context
to learn skip-gram word embeddings af-
fects performance on a wide range of in-
trinsic and extrinsic NLP tasks. Our re-
sults suggest that while intrinsic tasks tend
to exhibit a clear preference to particu-
lar types of contexts and higher dimen-
sionality, more careful tuning is required
for finding the optimal settings for most
of the extrinsic tasks that we considered.
Furthermore, for these extrinsic tasks, we
find that once the benefit from increasing
the embedding dimensionality is mostly
exhausted, simple concatenation of word
embeddings, learned with different con-
text types, can yield further performance
gains. As an additional contribution, we
propose a new variant of the skip-gram
model that learns word embeddings from
weighted contexts of substitute words.

1 Introduction

Word embeddings have become increasingly pop-
ular lately, proving to be valuable as a source of
features in a broad range of NLP tasks with lim-
ited supervision (Turian et al., 2010; Collobert et
al., 2011; Socher et al., 2013; Bansal et al., 2014).
word2vec1 skip-gram (Mikolov et al., 2013a)
and GloVe2 (Pennington et al., 2014) are among
the most widely used word embedding models to-
day. Their success is largely due to an efficient
and user-friendly implementation that learns high-
quality word embeddings from very large corpora.

1
http://code.google.com/p/word2vec/

2
http://nlp.stanford.edu/projects/glove/

Both word2vec and GloVe learn low-
dimensional continuous vector representations for
words by considering window-based contexts, i.e.,
context words within some fixed distance of each
side of the target word. However, the underlying
models are equally applicable to different choices
of context types. For example, Bansal et al. (2014)
and Levy and Goldberg (2014) showed that using
syntactic contexts rather than window contexts in
word2vec captures functional similarity (as in
lion:cat) rather than topical similarity or related-
ness (as in lion:zoo). Further, Bansal et al. (2014)
and Melamud et al. (2015b) showed the benefits of
such modified-context embeddings in dependency
parsing and lexical substitution tasks. However, to
the best of our knowledge, there has not been an
extensive evaluation of the effect of multiple, di-
verse context types on a wide range of NLP tasks.

Word embeddings are typically evaluated on in-
trinsic and extrinsic tasks. Intrinsic tasks mostly
include predicting human judgments of semantic
relations between words, e.g., as in WordSim-353
(Finkelstein et al., 2001), while extrinsic tasks in-
clude various ‘real’ downstream NLP tasks, such
as coreference resolution and sentiment analysis.
Recent works have shown that while intrinsic eval-
uations are easier to perform, their correlation with
results on extrinsic evaluations is not very reli-
able (Schnabel et al., 2015; Tsvetkov et al., 2015),
stressing the importance of the latter.

In this work, we provide the first extensive eval-
uation of word embeddings learned with different
types of context, on a wide range of intrinsic sim-
ilarity and relatedness tasks, and extrinsic NLP
tasks, namely dependency parsing, named entity
recognition, coreference resolution, and sentiment
analysis. We employ contexts based of different
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word window sizes, syntactic dependencies, and
a lesser-known substitute words approach (Yatbaz
et al., 2012). Finally, we experiment with combi-
nations of the above word embeddings, compar-
ing two approaches: (1) simple vector concatena-
tion that offers a wider variety of features for a
classifier to choose and learn weighted combina-
tions from, and (2) dimensionality reduction via
Canonical Correlation Analysis that tries to find a
smaller, correlated subset of features.

Our results suggest that it is worthwhile to care-
fully choose the right type of word embeddings for
an extrinsic NLP task, rather than rely on intrinsic
benchmark results. Specifically, picking the op-
timal context type and dimensionality is critical.
Furthermore, once the benefit from increasing the
embedding dimensionality is mostly exhausted,
concatenation of word embeddings learned with
different context types can yield further perfor-
mance gains.

2 Word Embedding Context Types

2.1 Learning Corpus
We use a fixed learning corpus for a fair com-
parison of all embedding types: a concatenation
of three large, diverse English corpora: (1) En-
glish Wikipedia 2015, (2) UMBC web corpus
(Han et al., 2013), and (3) English Gigaword
(LDC2011T07) newswire corpus (Parker et al.,
2011). Our concatenated corpus comprises about
10B words. After extracting clean text from these
corpora, we used CoreNLP (Manning et al., 2014)
for sentence splitting, tokenization, part-of-speech
tagging and dependency parsing.3 Then, all to-
kens were lowercased, and sentences were shuf-
fled to prevent structured bias. When learning
word embeddings, we ignored words with corpus
frequency lower than 100, yielding a vocabulary
of about 500K words.4

2.2 Window-based Word Embeddings
We used word2vec’s skip-gram model with neg-
ative sampling to learn window-based word em-
beddings.5 This popular method embeds both
target words and contexts in the same low-
dimensional space, where the embeddings of a
target and context are pushed closer together the

3Parses follow the Universal Dependencies formalism and
were produced by Stanford CoreNLP, version 3.5.2

4We will make our word embeddings publicly available.
5We used negative sampling = 5 and iterations = 3 in all

of the experiments described in this paper.

more frequently they co-occur in a learning cor-
pus. Indirectly, this also results in similar embed-
dings for target words that co-occur with similar
contexts. More formally, this method optimizes
the following objective function:

(1)L =
∑

(t,c)∈PAIRS

Lt,c

(2)Lt,c = log σ(v′c · vt) +
∑

neg∈NEGS (t,c)

log σ(−v′neg · vt)

where vt and v′c are the vector representations of
target word t and context word c. PAIRS is the
set of window-based co-occurring target-context
pairs considered by the model that depends on the
window size, and NEGS (t,c) is a set of randomly
sampled context words used with the pair (t, c).6

We experimented with window sizes of 1, 5,
and 10, and various dimensionalities. We denote a
window-based word embedding with window size
of n and dimensionality of m with Wnm. For ex-
ample, W5300 is a word embedding learned using
a window size of 5 and dimensionality of 300.

2.3 Dependency-based Word Embeddings
We used word2vecf7 (Levy and Goldberg,
2014), to learn dependency-based word em-
beddings from the parsed version of our cor-
pus, similar to the approach of Bansal et al.
(2014). word2vecf accepts as its input ar-
bitrary target-context pairs. In the case of
dependency-based word embeddings, the context
elements are the syntactic contexts of the tar-
get word, rather than the words in a window
around it. Specifically, following Levy and Gold-
berg (2014), we first ‘collapsed’ prepositions (as
implemented in word2vecf). Then for a tar-
get word t with modifiers m1,...,mk and head h,
we paired the target word with the context el-
ements (m1, r1),...,(mk, rk),(h, r−1h ), where r is
the type of the dependency relation between the
head and the modifier (e.g., dobj, prep of ) and
r−1 denotes an inverse relation. We denote a
dependency-based word embedding with dimen-
sionality of m by DEPm. We note that under this
setting word2vecf optimizes the same objective
function described in Equation (1), with PAIRS
now comprising dependency-based pairs instead
of window-based ones.

6For more details refer to Mikolov et al. (2013b).
7
http://bitbucket.org/yoavgo/word2vecf

http://bitbucket.org/yoavgo/word2vecf


2.4 Substitute-based Word Embeddings
Substitute vectors are a recent approach to rep-
resenting contexts of target words, proposed in
Yatbaz et al. (2012). Instead of the neighbor-
ing words themselves, a substitute vector includes
the potential filler words for the target word slot,
weighted according to how ‘fit’ they are to fill the
target slot given the neighboring words. For ex-
ample, the substitute vector representing the con-
text of the word love in “I love my job”, could
look like: [quit 0.5, love 0.3, hate 0.1, lost 0.1].
Substitute-based contexts are generated using a
language model and were successfully used in dis-
tributional semantics models for part-of-speech in-
duction (Yatbaz et al., 2012), word sense induction
(Baskaya et al., 2013), functional semantic simi-
larity (Melamud et al., 2014) and lexical substitu-
tion tasks (Melamud et al., 2015a).

Similar to Yatbaz et al. (2012), we consider the
words in a substitute vector, as a weighted set of
contexts ‘co-occurring’ with the observed target
word. For example, the above substitute vector is
considered as the following set of weighted target-
context pairs: {(love, quit, 0.5), (love, love, 0.3),
(love, hate, 0.1), (love, lost, 0.1)}. To learn word
embeddings from such weighted target-context
pairs, we extended word2vecf by modifying the
objective function in Equation (1) as follows:

(3)L =
∑

(t,c)∈PAIRS

αt,c · Lt,c

where αt,c is the weight of the target-context
pair (t, c). With this simple modification, the effect
of target-context pairs on the learned word repre-
sentations becomes proportional to their weights.

To generate the substitute vectors we followed
the methodology in (Yatbaz et al., 2012; Mela-
mud et al., 2015a). We learned a 4-gram Kneser-
Ney language model from our learning corpus us-
ing KenLM (Heafield et al., 2013). Then, we
used FASTSUBS (Yuret, 2012) with this language
model to efficiently generate substitute vectors,
where the weight of each substitute s is the con-
ditional probability p(s|C) for this substitute to
fill the target slot given the sentential context C.
For efficiency, we pruned the substitute vectors
to their top-10 substitutes and generated only up
to 20,000 substitute vectors for each target word
type. Finally, we converted each substitute vec-
tor into weighted target-substitute pairs and used
our extended version of word2vecf to learn

W10300 DEP300 SUB300

played play singing
play played rehearsing
plays understudying performing
professionally caddying composing
player plays running

Table 1: The top five words closest to target word playing in
different embedding spaces.

the substitute-based word embeddings, denoted
SUBm.

2.5 Qualitative Effect of Context Type

To motivate the rest of our work, we first qualita-
tively inspect the top most-similar words to some
target words, using cosine similarity of their re-
spective embeddings. As illustrated in Table 1, in
embeddings learned with large window contexts,
we see both functionally similar words and top-
ically similar words, sometimes with a different
part-of-speech. With small windows and depen-
dency contexts, we generally see much fewer topi-
cally similar words, which is consistent with previ-
ous findings (Bansal et al., 2014; Levy and Gold-
berg, 2014). Finally, with substitute-based con-
texts, there appears to be even a stronger prefer-
ence for functional similarity, with a tendency to
also strictly preserve verb tense.

3 Word Embedding Combinations

As different choices of context type yield word
embeddings with different properties, we hypoth-
esize that combinations of such embeddings could
be more informative for some extrinsic tasks.

3.1 Concatenation

Perhaps the simplest way to combine two differ-
ent sets of word embeddings (sharing the same
vocabulary) is to concatenate their word vectors
for every word type. We denote such a combi-
nation of word embedding set A with word em-
bedding set B using the symbol (+). For exam-
ple W10+DEP600 is the concatenation of W10300

with DEP300. Naturally, the dimensionality of the
concatenated embeddings is the sum of the dimen-
sionalities of the component embeddings. In our
experiments, we only ever combine word embed-
dings of equal dimensionality.

The motivation behind concatenation relates
primarily to supervised models in extrinsic tasks.



In such settings, we hypothesize that using con-
catenated word embeddings as input features to
a classifier could let it choose and combine (i.e.,
via learned weights) the most suitable features for
the task. Consider a situation where the concate-
nated embedding W10+DEP600 is used to repre-
sent the word inputs to a named entity recogni-
tion classifier. In this case, the classifier could
choose, for instance, to represent entity words
mostly with dependency-based embedding fea-
tures (reflecting functional semantics), and sur-
rounding words with large window-based embed-
ding features (reflecting topical semantics).

3.2 Canonical Correlation Analysis
Recent work used Canonical Correlation Analysis
(CCA) to derive an improved set of word embed-
dings. The main idea is that two distinct sets of
word embeddings, learned with different types of
input data, are considered as multi-views of the
same vocabulary. Then CCA is used to project
each onto a lower dimensional space, where cor-
relation between the two is maximized. The cor-
related information is presumably more reliable.
Dhillon et al. (2011) considered their two CCA
views as embeddings learned from the left and
from the right context of the target words, show-
ing improvements on chunking and named entity
recognition. Faruqui and Dyer (2014) and Lu et
al. (2015) considered multilingual views, show-
ing improvements in several intrinsic tasks, such
as word and phrase similarity.

Inspired by this prior work, we consider pairs of
word embedding sets, learned with different types
of context, as different views and correlate them
using linear CCA.8 We use either the SimLex-
999 or WordSim-353-R intrinsic benchmark (sec-
tion 4.1) to tune the CCA hyperparameters with
the Spearmint Bayesian optimization tool9 (Snoek
et al., 2012). This results in different projec-
tions for each of these tuning objectives, where
SimLex-999/WordSim-353-R is expected to give
some bias towards functional/topical similarity, re-
spectively.

4 Evaluation

4.1 Intrinsic Benchmarks
We employ several commonly used intrinsic
benchmarks for assessing how well word em-

8See Faruqui and Dyer (2014), Lu et al. (2015) for details.
9github.com/JasperSnoek/spearmint

beddings mimic human judgements of semantic
similarity of words. The popular WordSim-353
dataset (Finkelstein et al., 2001) includes 353
word pairs manually annotated with a degree of
similarity. For example, computer:keyboard is
annotated with 7.62, indicating a relatively high
degree of similarity. While WordSim-353 does
not make a distinction between different ‘fla-
vors’ of similarity, Agirre et al. (2009) proposed
two subsets of this dataset, WordSim-353-S and
WordSim-353-R, which focus on functional and
topical similarities, respectively. SimLex-999
(Hill et al., 2014) is a larger word pair similar-
ity dataset with 999 annotated pairs, purposely
built to focus on functional similarity. We evaluate
our embeddings on these datasets by computing a
score for each pair as the cosine similarity of two
word vectors. The Spearman’s correlation10 be-
tween the ranking of word pairs induced from the
human annotations and that from the embeddings
is reported.

The TOEFL task contains 80 synonym selec-
tion items, where a synonym of a target word is to
be selected out of four possible choices. We re-
port the overall accuracy of a system that uses co-
sine distance between the embeddings of the target
word and each of the choices to select the one most
similar to the target word as the answer.

4.2 Extrinsic Benchmarks

The following four diverse downstream NLP tasks
serve as our extrinsic benchmarks.11

1) Dependency Parsing (PARSE) The Stanford
Neural Network Dependency (NNDEP) parser
(Chen and Manning, 2014) uses dense continuous
representations of words, parts-of-speech and de-
pendency labels. While it can learn these represen-
tations entirely during the training on labeled data,
Chen and Manning (2014) show that initialization
with word embeddings, which were pre-trained
on unlabeled data, yields improved performance.
Hence, we used our different types of embeddings
to initialize the NNDEP parser and compared their
performance on a standard Penn Treebank bench-
mark. We used WSJ sections 2–21 for training
and 22 for development. We used predicted tags
produced via 20-fold jackknifing on sections 2–21
with the Stanford CoreNLP tagger.

10We used spearmanr, SciPy version 0.15.1.
11Since our goal is to explore performance trends, we

mostly experimented with the tasks’ development sets.

github.com/JasperSnoek/spearmint


2) Named Entity Recognition (NER) We used
the NER system of Turian et al. (2010), which
allows adding word embedding features (on top
of various other features) to a regularized aver-
aged perceptron classifier, and achieves near state-
of-the-art results using several off-the-shelf word
representations. We varied the type of word em-
beddings used as features when training the NER
model, to evaluate their effect on NER bench-
marks results. Following Turian et al. (2010), we
used the CoNLL-2003 shared task dataset (Tjong
Kim Sang and De Meulder, 2003) with 204K/51K
train/dev words, as our main benchmark. We
also performed an out-of-domain evaluation, us-
ing CoNLL-2003 as the train set and the MUC7
formal run (59K words) as the test set. 12

3) Coreference Resolution (COREF) We used
the Berkeley Coreference System (Durrett and
Klein, 2013), which achieves near state-of-the-art
results with a log-linear supervised model. Most
of the features in this model are associated with
pairs of current and antecedent reference men-
tions, for which a coreference decision needs to
be made. To evaluate the contribution of differ-
ent word embedding types to this model, we ex-
tended it to support the following additional fea-
tures: {ai}i=1..m, {ci}i=1..m and {ai · ci}i=1..m,
where ai or ci is the value of the ith dimension
in a word embedding vector representing the an-
tecedent or current mention, respectively. We con-
sidered two different word embedding represen-
tations for a mention: (1) the embedding of the
head word of the mention and (2) the average em-
bedding of all words in the mention. The fea-
tures of both types of representations were pre-
sented to the learning model as inputs at the same
time. They were added on top of Berkeley’s full
feature list (‘FINAL’) as described in Durrett and
Klein (2013). We evaluated our features on the
CoNLL-2012 coreference shared task (Pradhan et
al., 2012).

4) Sentiment Analysis (SENTI) Following
Faruqui et al. (2014), we used a sentence-level
binary decision version of the sentiment analysis
task from Socher et al. (2013). In this setting,
neutral sentences were discarded and all remain-
ing sentences were labeled coarsely as positive
or negative. Maintaining the original split into
train/dev results, we get a dataset containing

12See Turian et al. (2010) for more details on this setting.

6920/872 sentences. To evaluate different types
of word embeddings, we represented each sen-
tence as an average of its word embeddings and
then used an L2-regularized logistic regression
classifier trained on these features to predict the
sentiment labels.

5 Results

5.1 Intrinsic Results for Context Types

The results on the intrinsic tasks are illustrated in
Figure 1. First, we see that the performance on
all tasks generally increases with the number of
dimensions, reaching near-optimal performance at
around 300 dimensions, for all types of contexts.
This is in line with similar observations on skip-
gram word embeddings (Mikolov et al., 2013a).

Looking further, we observe that there are sig-
nificant differences in the results when using dif-
ferent types of contexts. The effect of context
choice is perhaps most evident in the WordSim-
353-R task, which captures topical similarity. As
might be expected, in this benchmark, the largest-
window word embeddings perform best. The per-
formance decreases with the decrease in window
size and then reaches significantly lower levels
for dependency (DEP) and substitute-based (SUB)
embeddings. Conversely, in WordSim-353-S and
SimLex-999, both of which capture a more func-
tional similarity, the DEP embeddings are the ones
that perform best, strengthening similar observa-
tions in Levy and Goldberg (2014). Finally, in the
TOEFL benchmark, all contexts except for SUB,
perform comparably.

5.2 Extrinsic Results for Context Types

The extrinsic tasks results are illustrated in Fig-
ure 2. A first observation is that optimal extrinsic
results may be reached with as few as 50 dimen-
sions. Furthermore, performance may even de-
grade when using too many dimensions, as is most
evident in the NER task. This behavior presumably
depends on various factors, such as the size of the
labeled training data or the type of classifier used,
and highlights the importance of tuning the dimen-
sionality of word embeddings in extrinsic tasks.
This is in contrast to intrinsic tasks, where higher
dimensionality typically yields better results.

Next, comparing the results of different types
of contexts, we see, as might be expected, that
dependency embeddings work best in the PARSE

task. More generally, embeddings that do well



Figure 1: Intrinsic tasks’ results for embeddings learned with different types of contexts.

Context type F1 x 100
DEP 79.8
W1 79.3
SUB 79.0
W10 78.1
W5 77.4
None 71.8

Table 2: NER MUC out-of-domain results for different em-
beddings with dimensionality = 25.

in functional similarity intrinsic benchmarks and
badly in topical ones (DEP, SUB and W1) work
best for PARSE, while large window contexts per-
form worst, similar to observations in Bansal et al.
(2014).

In the rest of the tasks it’s difficult to say which
context works best for what. One possible expla-
nation to this in the case of NER and COREF is that
the embedding features are used as add-ons to an
already competitive learning system. Therefore,
the total improvement on top of a ‘no embedding’
baseline is relatively small, leaving little room for
significant differences between different contexts.

We did find a more notable contribution of word
embedding features to the overall system perfor-

mance in the out-of-domain NER MUC evalua-
tion, described in Table 2. In this out-of-domain
setting, all types of contexts achieve at least five
points improvement over the baseline. Presum-
ably, this is because continuous word embedding
features are more robust to differences between
train and test data, such as the typical vocabulary
used. However, a detailed investigation of out-of-
domain settings is out of scope for this paper and
left for future work.

5.3 Extrinsic Results for Combinations

A comparison of the results obtained on the ex-
trinsic tasks using the word embedding concatena-
tions (concats), described in section 3.1, versus the
original single context word embeddings (singles),
appears in Table 3. To control for dimensionality,
concats are always compared against singles with
identical dimensionality. For example, the 200-
dimensional concat W10+DEP200, which is a con-
catenation of W10100 and DEP100, is compared
against 200-dimensional singles, such as W10200.

Looking at the results, it seems like the benefit
from concatenation depends on the dimensional-
ity and task at hand, as also illustrated in Figure 3.
Given task X and dimensionality d, if d

2 is in the



Figure 2: Extrinsic tasks’ development set results for embeddings learned with different types of contexts. ‘base’ denotes the
results with no word embedding features. Due to computational limitations we tested NER and PARSE with only up to 300
dimensions embeddings, and COREF with up to 100.

range where increasing the dimensionality yields
significant improvement on taskX , then it’s better
to simply increase dimensionality of singles from
d
2 to d rather than concatenate. The most evident
example for this are the results on the SENTI task
with d = 50. In this case, the benefit from con-
catenating two 25-dimensional singles is notably
lower than that of using a single 50-dimensional
word embedding. On the other hand, if d

2 is in the
range where near-optimal performance is reached
on task X , then concatenation seems to pay off.
This can be seen in SENTI with d = 600, PARSE

with d = 200, and NER with d = 50. More con-
cretely, looking at the best performing concate-
nations, it seems like combinations of the topical
W10 embedding with one of the more functional
ones, SUB, DEP or W1, typically perform best,
suggesting that there is added value in combining
embeddings of different nature.

Finally, our experiments with CCA projections,
yielded degraded performance compared to single
word embeddings for all extrinsic tasks and there-
fore are not reported for brevity. We also tried
to reduce the dimensionality of concatenated word
embeddings by half using SVD, hoping to capture

the important information in a more compact rep-
resentation. However, this also degraded perfor-
mance. These results seem to further strengthen
the hypothesis that the information captured with
varied types of context is different and comple-
mentary, and therefore it is beneficial to pre-
serve these differences as in our concatenation ap-
proach.

6 Related Work

There are a number of recent works whose goal is
a broad evaluation of the performance of different
word embeddings on a range of tasks. However,
to the best of our knowledge, none of them focus
on embeddings learned with diverse context types
as we do. Levy et al. (2015), Lapesa and Evert
(2014), and Lai et al. (2015) evaluate several de-
sign choices when learning word representations.
However, Levy et al. (2015) and Lapesa and Ev-
ert (2014) perform only intrinsic evaluations and
restrict context representation to word windows,
while Lai et al. (2015) do perform extrinsic eval-
uations, but restrict their context representation to
a word window with the default size of 5. Schn-
abel et al. (2015) and Tsvetkov et al. (2015) report



Dimensions Result SENTI PARSE NER COREF

50

best+ 74.3 (W10+W1) 88.7 (W10+SUB) 93.6 (W1+DEP) 62.4 (W10+W1)
best 77.3 (SUB) 88.9 (W1) 93.3 (W1) 62.3 (DEP)
mean+ 72.7 88.3 93.3 62.1
mean 74.7 88.4 93.1 62.2

200

best+ 81.0 (W10+SUB) 89.1 (W1+DEP) 93.1 (W10+DEP)
best 80.2 (W10) 88.8 (SUB) 92.8 (W10)
mean+ 79.1 88.9 92.8
mean 79.9 88.6 92.4

600

best+ 82.6 (W10+SUB)
best 82.3 (W1)
mean+ 82.0
mean 81.5

Table 3: Extrinsic tasks development set results obtained with word embeddings concatenations. ‘best’ and ‘best+’ are the best
results achieved across all single context types and context concatenations, respectively (best performing embedding indicated
in parenthesis). ‘mean’ and ‘mean+’ are the mean results for the same. Due to computational limitations of the employed
systems, some of the evaluations were not performed.

Figure 3: Mean development set results for the tasks PARSE
and SENTI. ‘mean’ and ’mean+’ stand for mean results across
all single context types and context concatenations, respec-
tively.

low correlation between intrinsic and extrinsic re-
sults with different word embeddings (they did not
evaluate different context types), which is consis-
tent with differences we found between intrinsic
and extrinsic performance patterns in all tasks, ex-
cept parsing. Bansal et al. (2014) show that func-
tional (dependency-based and small-window) em-
beddings yield higher parsing improvements than
topical (large-window) embeddings, which is con-
sistent with our findings.

Several works focus on particular types of con-
texts for learning word embeddings. Cirik and
Yuret (2014) investigates S-CODE word embed-
dings based on substitute word contexts. Ling et
al. (2015b) and Ling et al. (2015a) propose exten-
sions to the standard window-based context mod-
eling. Alternatively, another recent popular line
of work (Faruqui et al., 2014; Kiela et al., 2015)
attempts to improve word embeddings by using
manually-constructed resources, such as Word-
Net. These techniques could be complementary
to our work. Finally, Yin and Schütze (2015) pro-
pose word embeddings ensembles (including con-
catenation) but evaluate mostly on intrinsic tasks
and do not consider different types of contexts.

7 Conclusions

In this paper we evaluated skip-gram word em-
beddings on multiple intrinsic and extrinsic NLP
tasks, varying dimensionality and type of con-
text. We show that while the best practices for
setting skip-gram hyperparameters typically yield
good results on intrinsic tasks, success on extrinsic
tasks requires more careful thought. Specifically,
we suggest that picking the optimal dimensional-
ity and context type are critical for obtaining the
best accuracy on extrinsic tasks and are typically
task-specific. Further improvements can often be
achieved by combining complementary word em-
beddings of different context types with the right
dimensionality.
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