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Abstract. Improved understanding of runaway-electron formation and decay

processes are of prime interest for the safe operation of large tokamaks, and the

dynamics of the runaway electrons during dynamical scenarios such as disruptions

are of particular concern. In this paper, we present kinetic modelling of scenarios

with time-dependent plasma parameters; in particular, we investigate hot-tail runaway

generation during a rapid drop in plasma temperature. With the goal of studying

runaway-electron generation with a self-consistent electric-field evolution, we also

discuss the implementation of a conservative collision operator and demonstrate its

properties. An operator for avalanche runaway-electron generation, which takes the

energy dependence of the scattering cross section and the runaway distribution into

account, is investigated. We show that the simpler avalanche model of Rosenbluth &

Putvinskii [1] can give very inaccurate results for the avalanche growth rate (either

lower or higher) for many parameters, especially when the average runaway energy

is modest, such as during the initial phase of the avalanche multiplication. The

developments presented pave the way for an improved modelling of runaway-electron

dynamics during disruptions or other dynamic events.

1. Introduction

Runaway electrons, a phenomenon made possible by the decrease of the collisional

friction with particle energy [2], are common in plasmas in the presence of strong external

electric fields or changing currents. The tightly focused beam of highly relativistic

particles can be a serious threat to the first wall of a fusion reactor, due to the possibility

of localized melting or halo current generation [3]. In the quest for avoidance or

mitigation of the harmful effects of runaway-electron losses, a greater understanding

of the runaway-electron phenomenon is required [4]. Improved knowledge of runaway-

electron formation mechanisms, dynamics and characteristics will benefit the fusion

community and contribute to a stable and reliable operation of reactor-scale tokamaks.

Kinetic simulation is the most accurate and useful method for investigating

runaway-electron dynamics, and we recently developed a new tool called CODE

http://arxiv.org/abs/1601.00898v1
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(COllisional Distribution of Electrons [5]) for fast and detailed study of these

processes. CODE solves the spatially homogeneous kinetic equation for electrons

in 2-D momentum space, including electric-field acceleration, collisions, avalanche

runaway generation and synchrotron-radiation-reaction losses [5, 6, 7]. In CODE,

momentum space is discretized using finite differences in momentum and a Legendre-

mode decomposition in pitch-angle cosine. Often, the time evolution of the distribution

is the desired output, but a (quasi-)steady-state solution can also be efficiently obtained

through the inversion of a single sparse system (in the absence of an avalanche source).

CODE has been used to study the spectrum of the synchrotron emission emitted by

runaways [5], the corresponding influence of the emission on the distribution function

[6, 7, 8], and the factors influencing the critical electric field for runaway-electron

generation [6, 9].

In this paper we describe improvements to CODE which enable us to investigate

the effect of hot-tail runaway generation on the distribution (Section 2). This process

can be the dominant mechanism in rapidly cooling plasmas. We also discuss the

implementation of a full linearized collision operator, and demonstrate its conservation

properties (Section 3). The use of this operator is necessary in cases where the correct

plasma conductivity is required, and our implementation indeed reproduces the Spitzer

conductivity [10] for weak electric fields. In addition, an improved model for the large-

angle (knock-on) Coulomb collisions leading to avalanche multiplication of the runaway

population [11], is described in Section 4. This model takes the energy dependence of

the runaway distribution into account, and uses the complete energy-dependent Møller

scattering cross section [12]. We find that its use can in some cases lead to significant

modifications to the avalanche growth rate, compared to a more simple model [1].

The improvements described in this work enable the detailed study of runaway

processes in dynamic situations such as disruptions, and the conservative collision

operator makes self-consistent calculations of the runaway population and current

evolution in such scenarios feasible [13].

2. Time-dependent plasma parameters

To be able to investigate the behavior of the electron population in dynamic scenarios

such as disruptions or sawtooth crashes, it is necessary to follow the distribution function

as the plasma parameters change. To this end, CODE has been modified to handle

time-dependent background-plasma parameters. Since the kinetic equation is treated in

linearized form, the actual temperature and density of the distribution are determined

by the background Maxwellian used in the formulation of the collision operator. This

allows for a scheme where the kinetic equation is normalized to a reference temperature

T̃ and number density ñ, so that the discretized equation can be expressed on a fixed

reference grid in momentum space. (Throughout this paper, we will use a tilde to denote

a reference quantity.) By changing the properties of the Maxwellian equilibrium around

which the collision operator is linearized, plasma-parameter evolution can be modelled
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on the reference grid without the need for repeated interpolation of the distribution

function to new grids.

Analogously to Ref. [5], the kinetic equation in 2D momentum space for the electron

distribution function f experiencing an electric field E (parallel to the magnetic field)

and collisions, can be expressed as

∂F

∂t̂
+ Ê

(

ξ
∂F

∂y
+

1− ξ2

y

∂F

∂ξ

)

= Ĉ {F}+ Ŝ {F} . (1)

Here we have introduced a convenient normalized momentum y = γv/ṽe – where

ṽe =
√

2T̃ /m is the reference electron thermal speed – and the cosine of the pitch

angle ξ = y‖/y. Using κ=m3ṽ3eπ
3/2/ñ, we have also defined the distribution function

F = F (y, ξ) = κf (normalized so that F (y = 0) = 1 for a Maxwellian with T = T̃ and

n = ñ), time t̂ = ν̃eet, and electric field Ê = −eE/mṽeν̃ee, as well as the normalized

operators Ĉ = C κ/ν̃ee and Ŝ = Sκ/ν̃ee, with ν̃ee = 16
√
πe4ñ ln Λ̃/3m2ṽ3e the reference

electron thermal collision time, −e, m and v the charge, rest mass and speed of the

electron, and γ the relativistic mass factor. Note that |Ê| = (3
√
π/4)E/ED, with

ED the Dreicer field [2]. C is the Fokker-Planck collision operator and S an operator

describing close (large-angle) Coulomb collisions. These operators will be discussed more

thoroughly in Sections 3 and 4, respectively; for now we just state the formulation of

the collision operator employed in Ref. [5] using the normalizations above:

Ĉtp = cC v̄
3
ey

−2

(

∂

∂y

[

y2Ψ

(

1

x

∂

∂y
+

2

v̄2e

)

F

]

+
cξ
2x

∂

∂ξ
(1− ξ2)

∂F

∂ξ

)

. (2)

Here (and throughout the rest of this paper), a bar denotes a quantity normalized

to its reference value (i.e, v̄e = ve/ṽe), x = y/γ = v/ṽe is the normalized speed,

cC = 3
√
πν̄ee/4, cξ = Zeff+Φ−Ψ+ v̄2e δ

4x2/2, Zeff is the effective ion charge, Φ = Φ(x/v̄e)

and Ψ = Ψ(x/v̄e) = v̄2e [Φ − v̄−1
e xdΦ/d(x/v̄e)]/2x

2 are the error and Chandrasekhar

functions, respectively, and δ = ṽe/c (with c the speed of light) is assumed to be a

small parameter (i.e the thermal population is assumed to be non-relativistic).

Changes to the plasma temperature manifest as shifts in the relative magnitude

of the various terms in Eq. (2) (through δ and the quantities with a bar), as well as a

change in the overall magnitude of the operator, whereas changes in density only have

the latter effect. In both cases, the distribution is effectively colliding with (and relaxing

towards) a Maxwellian different from the one native to the reference momentum grid.

Heat or particles are introduced to (or removed from) the bulk of the distribution when

using this scheme, as all changes to plasma parameters are described by changes to

the Maxwellian. This provides a powerful way of simulating rapid cooling, for instance

associated with a tokamak disruption.

2.1. Hot-tail runaway-electron generation

If the time scale of the initial thermal quench in a disruption event is short enough –

comparable to the collision time – the tail of the initial Maxwellian electron distribution
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Figure 1. a) Temperature and electric field evolution in Eqs. (3) and (4). b) Parallel

(ξ=1) electron distributions (solid) and corresponding Maxwellians (dashed) at several

times during the temperature drop in a). A momentum grid with a fixed reference

temperature T̃ = 100 eV was used and the distributions are normalized to F (y=0) in

the final time step to facilitate a comparison.

will not have time to equilibrate as the plasma cools. The particles in this supra-thermal

tail may constitute a powerful source of runaway electrons, should a sufficiently strong

electric field develop before they have time to reconnect with the bulk electrons. This

process is known as hot-tail generation, and can be the dominant source of runaways

under certain conditions [14, 15]. It has previously been investigated analytically or

using Monte-Carlo simulations [15, 16] or purpose-built finite-difference tools [16, 17].

Using CODE to model a temperature drop enables the efficient study of a wider range of

scenarios, and allows full use of other capabilities of CODE, such as avalanche generation

or synchrotron radiation reaction. Here, we restrict ourselves to a proof-of-principle

demonstration, and leave a more extensive investigation to future work.

To facilitate a comparison to the theoretical work by Smith and Verwichte [17], we

will model a rapid exponential temperature drop, described by

T (t) = Tf + (T0 − Tf)e
−t/t⋆ , (3)

with T0 = 3.1 keV the initial temperature, Tf = 31 eV the final temperature, and

t⋆ = 0.3ms the cooling time scale. We also include a time-dependent electric field

described by

E(t)

ED
=
(

E

ED

)

0

√

T0

T (t)
, (4)

with (E/ED)0=1/530 the initial normalized electric field. The temperature and electric-

field evolutions are shown in Fig. 1a and are the same as those used in Fig. 5 of Ref. [17],

as are all other parameters in this section.

Figure 1b, in which the additional parameters n = 2.8 ·1019m−3, and Zeff = 1

were used, illustrates the distribution-function evolution during the temperature drop.

The figure shows that as the temperature decreases, most of the electrons quickly

adapt. At any given time t, the bulk of the distribution remains close to a Maxwellian

corresponding to the current temperature T (t). The initially slightly more energetic
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electrons, although part of the original bulk population, thermalize less efficiently. On

the short cooling time-scale, they remain as a distinct tail, and as the thermal speed

decreases they become progressively less collisional. This process is evident in the first

three time steps shown (t=0.025–0.83ms). In the final time step, the electric field has

become strong enough to start to affect the distribution, and a substantial part of the

high-energy tail is now in the runaway region. This can be seen from the qualitative

change in the tail of the distribution, which now shows a positive slope associated with

a strong flow of particles to higher momenta.

For the temperature evolution in Eq. (3), analytical results for the hot-tail runaway

generation were obtained in Ref. [17]. Assuming the background density to be constant,

the runaway fraction at time t can be written as

nr,dir

n
=

4√
π

∫ ∞

uc

[

1− (u3
c − 3τ)2/3

(u3 − 3τ)2/3

]

e−u2

u2du, (5)

where τ(t)=(3
√
π/4)νee(t−t⋆)=(3

√
π/4)(t̂− t̂⋆) is a normalized time, u(t)=x[0]+3τ(t),

x[0] is the speed normalized to the initial thermal speed, and uc is related to the critical

speed for runaway generation: uc(t)=x[0]
c + 3τ(t). Equation (5), which corresponds to

Eq. (18) in Ref. [17], is only valid when a significant temperature drop has already taken

place (as manifested by the appearance of the cooling time scale t⋆ as a ”delay” in the

expression for τ , see [17]). Equation (5) is derived in the absence of an electric field;

only an exponential drop in the bulk temperature is assumed. The electric field shown

in Fig. 1a is only used to define a runaway region y > yc = 1/(δ
√

E/Ec − 1) (with

Ec = 4πe3n ln Λ/mc2 the critical electric field for runaway generation [18]), so that the

runaway fraction can be calculated. In other words, it is assumed that the electric field

does not have time to influence the distribution significantly during the temperature

drop.

The runaway fraction calculated using Eq. (5) includes only the electrons in the

proper runaway region, i.e. particles which experience a net acceleration towards higher

momenta. The temperature drop does however lead to an isotropic high-energy tail (in

the absence of an electric field). By including all particles with v > vc, Eq. (5) can be

simplified to

nr

n
=

2√
π
uce

−u2
c + erfc(uc), (6)

where erfc(x) is the complementary error function. Since CODE counts all particles

with v > vc as runaways, we expect our results to agree with Eq. (6) (Eq. 19 in [17]),

rather than Eq. (5).

Figure 2 compares the runaway density evolution computed with CODE to Eqs. (5)

and (6), for the hot-tail scenario shown in Fig. 1. No avalanche source was included in

the calculation. The collision operator used in Ref. [17] is the non-relativistic limit of

Eq. (2), with cξ=0 (since the distribution is isotropic in the absence of an electric field).

CODE results using both this operator (red, solid) and the full Eq. (2) (yellow, solid)

are plotted in Fig. 2, with the latter producing ∼ 50% more runaways in total. This
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Figure 2. Hot-tail runaway density obtained using CODE (solid) – with (black) and

without (red, yellow) an electric field included during the temperature drop – and

the analytical estimates Eqs. (5) and (6) (dashed), for the temperature and E-field

evolution in Fig. 1a. The collision operator (2) was used for the black and yellow solid

lines, whereas its non-relativistic limit was used for the red solid line.

difference can likely be explained by the relatively high initial temperature (3 keV) in

the scenario considered, in which case the non-relativistic operator is not strictly valid

for the highest energy particles. Good agreement between CODE results and Eq. (6) is

seen for the saturated values in the figure. A CODE calculation where the electric-field

evolution is properly included in the kinetic equation (corresponding to the distribution

evolution in Fig. 1b) is also shown in Fig. 2 (black, solid), showing increased runaway

production by less than a factor of 2. For the parameters used, neglecting the influence

of the electric field can thus be considered reasonable, at least for the purpose of gaining

qualitative understanding. To obtain accurate quantitative results, however, the electric

field should be properly included, and a relativistic collision operator should be used.

This is especially true when modelling ITER scenarios, where the initial temperature is

significantly higher than the 3 keV used here.

3. Conservative linearized Fokker-Planck collision operator

Treating the runaway electrons as a small perturbation to a Maxwellian distribution

function, the Fokker-Planck operator for electron-electron collisions [19, 20] can be

linearized and written as C{f} ≃ C l{f}= Ctp+C fp. The so-called test-particle term,

Ctp = Cnl{f1, fM}, describes the perturbation colliding with the bulk of the plasma,

whereas the field-particle term, C fp = Cnl{fM, f1}, describes the reaction of the bulk to

the perturbation. Here Cnl is the non-linear Fokker-Planck-Landau operator, fM denotes

a Maxwellian, and f1=f−fM the perturbation to it (f1≪fM). Collisions described by

C{f1, f1} are neglected since they are second order in f1. The full linearized operator C l

conserves particles, momentum and energy. Since it is proportional to a factor exp(−y2),

the field-particle term mainly affects the bulk of the plasma, and is therefore commonly

neglected when studying runaway-electron kinetics. The test-particle term in Eq. (2)

only ensures the conservation of particles, however, not momentum or energy.
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Under certain circumstances, it is necessary to use a fully conservative treatment

also for the runaway problem, in particular when considering processes where the

conductivity of the plasma is important. In the study of runaway dynamics during

a tokamak disruption using a self-consistent treatment of the electrical field, accurate

plasma current evolution is essential, and the full linearized collision operator must be

used. A non-linear collision operator valid for arbitrary particle (and bulk) energy has

been formulated [21, 22]. The collision operator originally implemented in CODE is

the result of an asymptotic matching between the highly relativistic limit of the test-

particle term of the linearized version of that operator, with the usual non-relativistic

test-particle operator [23], and is given in Eq. (2). The relativistic field-particle term is

significantly more complicated, however, and its use would be computationally more

expensive. Here we instead implemented the non-relativistic field-particle term, as

formulated in Refs. [24, 25]. As will be shown, this operator (together with the non-

relativistic limit of Eq. 2) accurately reproduces the Spitzer conductivity for sufficiently

weak electric fields and temperatures where the bulk is non-relativistic. Using the

normalization in Section 2, the field-particle term is

Ĉ fp =
cC
π3/2

e−v̄−2

e x2

[

2x2

v̄4e

∂2G

∂x2
− 2

v̄2e
H + 4πF

]

, (7)

where G and H are the Rosenbluth potentials, obtained from the distribution using

ṽ2e∇2
v
H = −4πF, ṽ2e∇2

v
G = 2H. (8)

The system of equations composed of Eqs. (7-8), together with the non-relativistic limits

of Eqs. (1-2) (y→x and δ→0), is discretized (see Ref.[5]) and solved using an efficient

method described in Ref. [26]. The equations are combined into one linear system of

the form








M11 M12 M13

M21 M22 0

0 M31 M33

















F

G

H









=









Si

0

0









, (9)

where the first row describes the kinetic equation (1) (with Si representing any sinks or

sources), and the second and third rows correspond to Eq. (8). This approach makes

it possible to consistently solve for both the Rosenbluth potentials and the distribution

with a single matrix operation. Since there is no explicit need for the Rosenbluth

potentials, however, G andH can be eliminated by solving the block system analytically:
(

M11 −
[

M12 −M13M
−1
33 M32

]

M−1
22 M21

)

F ≡ MF = Si. (10)

If only the test-particle operator (Eq. 2) is used, M reduces toM11. Since the Rosenbluth

potentials are defined through integrals of the distribution, the field-particle term

introduces a full block for each Legendre mode into the normally sparse matrix describing

the system. However, the integral dependence on F also implies that significantly fewer

modes are required to accurately describe the potentials (compared to F ), and the

additional computational cost is modest. (The operator ∇2
v
is proportional to l2, with l

the Legendre mode index, and G and H therefore decay rapidly with increasing l.)
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Figure 3. a) Parallel momentum and b) energy moments of the distribution function

in CODE, using different collision operators. Initially, E=50 V/m and Zeff=1 were

used, but for t>t0, the electric field was turned off and the ion charge set to Zeff=0.

Using two Legendre modes for the field-particle term was sufficient to achieve good

conservation of energy and parallel momentum.

The conservation properties of the full non-relativistic collision operator (Eqs. 2

and 7), as well as the relativistic test-particle operator in Eq. (2), are shown in Fig. 3.

As an electric field is applied to supply some momentum and energy to the distribution,

the parallel momentum (Fig. 3a) quickly reaches a steady-state value corresponding to

the plasma conductivity, which differs by about a factor of two for the two operators

(see below). The electric field is turned off at t= t0 =100 collision times (and Zeff =0

is imposed to isolate the behavior of the electron-electron collision operator), at which

point the parallel momentum for the operator in Eq. (2) (blue, dashed) is lost on a

short time scale as the distribution relaxes back towards a Maxwellian. In contrast, the

full linearized operator (black, solid) conserves parallel momentum in a pure electron

plasma, as expected.

The electric field continuously does work on the distribution, a large part of which

heats the bulk electron population, but the linearization of the collision operator breaks

down if the distribution deviates too far from the equilibrium solution. As long as a

non-vanishing electric field is used together with an energy conserving collision operator,

an adaptive sink term removing excess heat from the bulk of the distribution must be

included in Eq. (1) to guarantee a stable solution. Physically this accounts for loss

processes that are not included in the model, such as line radiation, bremsstrahlung and

radial heat transport. The magnitude of the black line in Fig. 3b therefore reflects the

energy content of the runaway population – not the total energy supplied by the electric

field – since a constant bulk energy is enforced. The energy sink is not included for t>t0
(since E = 0), however, and the energy conservation observed is due to the properties

of the collision operator itself. Again, the use of the collision operator in Eq. (2) is

associated with a quick loss of kinetic energy as soon as the electric field is removed.

The electrical conductivity of a fully ionized plasma subject to an electric field well
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Figure 4. a) Conductivity (normalized to the Spitzer value) and b) normalized

runaway density, as functions of time for different collision operators (non-relativistic

full linearized: solid, relativistic test-particle: dashed) and E-field strengths (E/ED=

1%: yellow, E/ED = 5%: red, E/ED = 6%: blue), considering only Dreicer runaway

generation. The parameters T =1 keV, n=5·1019m−3 and Zeff=1 were used.

below the Dreicer value – the Spitzer conductivity – can be expressed as

σS = L(Zeff)
ne2

Zeff mνee
, (11)

where L(Zeff) is a transport coefficient which takes the value L≃2 in a pure hydrogen

plasma [10]. Figure 4 demonstrates that the conductivity calculated with CODE

reproduces the Spitzer value for moderate electric field strengths, if the conservative

collision operator is used, and the initial Maxwellian adapts to the applied electric field

on a time scale of roughly 10 collision times. For field strengths significantly larger than

Ec, the conductivity starts to deviate from σS, as a runaway tail begins to form (Fig. 4b);

in this regime, the calculation in Ref. [10] is no longer valid. Using the collision operator

in Eq. (2) consistently leads to a conductivity which is lower by about a factor of 2,

as expected (see for instance Ref. [27]). The runaway growth is also affected, with the

conserving operator leading to a larger runaway growth rate.

4. Improved operator for knock-on collision

The Fokker-Planck collision operators discussed in Section 3 accurately describe grazing

collisions – small-angle deflections which make up the absolute majority of particle

interactions in the plasmas under consideration. Large-angle collisions are usually

neglected as their cross section is significantly smaller, but in the presence of runaway

electrons they can play an important role in the momentum space dynamics, as an

existing runaway can transfer enough momentum to a thermal electron in one collision

to render it a runaway, while still remaining in the runaway region itself. Such knock-

on collisions can therefore lead to an exponential growth of the runaway density – an

avalanche [28, 1].

In the absence of a complete solution to the Boltzmann equation, we model

avalanche runaway generation using an additional source term in the kinetic equation
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(1), evaluated for y > yc. A commonly used operator was derived by Rosenbluth and

Putvinski [1] and takes the form

ŜRP =
nr

n
n̄2

[

3πδ3

16 ln Λ̃
δD(ξ − ξ2)

1

y2
∂

∂y

(

1

1−
√
1 + δ2y2

)]

, (12)

where nr is the number density of runaway electrons, n̄ is the density normalized to

its reference value, and δD is the Dirac δ-function. In the derivation, the momentum

of the incoming particle is assumed to be very large (simplifying the scattering cross

section) and its pitch-angle vanishing (ξ = 1). It is also assumed that the incoming

particle is unaffected by the interaction. This implies that the generated secondary

particles are all created on the curve ξ=ξ2=δy/(1+
√
1 + δ2y2) (which is a parabola in

[y‖, y⊥]-space), and that all runaways (from the point of view of the avalanche source)

are assumed to have momentum p = γv/c = δy ≫ 1 (since ŜRP ∝ nr). They can

therefore contribute equally strongly to the avalanche process. This has the peculiar

and non-physical consequence that particles can be created with an energy higher than

that of any of the existing runaways. The δ-function in ξ is numerically ill-behaved,

as it produces significant oscillations (Gibbs phenomenon) when discretized using the

Legendre-mode decomposition employed in CODE (see Fig. 5a).

An operator that relaxes the assumption of very large runaway momentum has been

presented by Chiu et al. [11]. It has the form

ŜCh(y, ξ) = n̄
2πe4

m2c3
ñδ3

ν̃ee

x

y2ξ
(yin)

4 F ⋆(yin) Σ (γ, γin) , (13)

where

Σ(γ, γin) =
γ2
in

(γ2
in − 1)(γ − 1)2(γin − γ)2

[

(γin − 1)2

− (γ − 1)(γin − γ)

γ2
in

(

2γ2
in + 2γin − 1− (γ − 1)(γin − γ)

)

]

(14)

is the Møller scattering cross section [12] and F ⋆ is the pitch-angle-averaged distribution

of incoming runaways with properties yin and γin. All incoming particles are thus still

assumed to have zero pitch angle (ξ=1), but their energy distribution is properly taken

into account. In CODE, F ⋆ is computed from the 0th Legendre mode of F ; F ⋆=2F0.

From the conservation of 4-momentum in a collision, the momentum-space

coordinates are related through

ξ =

√

√

√

√

(γ − 1)(γin + 1)

(γ + 1)(γin − 1)
, (15)

which restricts the region where the source is non-vanishing. (This relation is analogous

to the parabola ξ2 in the case of the operator in Eq. 12.) Since the electrons

participating in a collision are indistinguishable, it is sufficient to consider only the

cases where the energy of the created secondary runaway is less than half of the primary

energy, (γ− 1) ≤ (γin− 1)/2, which with the above equation leads to the condition

ξ ≤ ξmax =
√

γ/(γ + 1). By the same argument, the maximum attainable runaway
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Figure 5. Contour plots of the magnitude of the source in a) Eq. (12) and b) Eq. (13)

in (y‖,y⊥) momentum space, given the same electron distribution. The plotted quantity

is log
10

Ŝ and yc defines the lower bound of the runaway region. The angle-averaged

source magnitudes are shown in c). The parameters T = 1 keV, n = 5 × 1019 m−3,

Zeff = 1 and E = 1 V/m, with max(y) = 70, were used to obtain the distribution, and

the simulation was run for 300 collision times with primary generation only.

energy in the simulation (the maximum of the momentum grid) leads to the condition

ξ ≥ ξmin =
√

(γ − 1)(γmax + 1)/(γ + 1)(γmax − 1).

The magnitudes of the two sources (12) and (13) are computed from a given typical

runaway distribution function, and shown in Fig. 5a and b. Curves corresponding to

the ellipse ξ2, as well as the limits ξmin and ξmax are also included. Note that the

amount of numerical noise is significantly reduced for the source in Eq. (13). In order to

avoid double-counting the small-angle collisions described by the Fokker-Planck-Landau

collision operator C, the knock-on source must be cut off at some value of momentum

sufficiently far from the thermal bulk. As can be seen from the figure, however, the

magnitude of both sources increases with decreasing momenta, and the avalanche growth

rate is therefore sensitive to the specific choice of momentum cut-off. Since our particular

interest is the generation of runaway electrons, we choose to place the cut-off at y=yc,

so that the sources are non-vanishing only in the runaway region [5, 14]. Secondary

particles deposited just below the threshold – although not technically runaways – could

eventually diffuse into the runaway region, thereby potentially increasing the Dreicer

growth rate. In Ref. [29], such effects were however shown to be negligible for the

operator in Eq. (12), indicating that the vast majority of particles deposited at y < yc
are slowed down rather than accelerated (as expected). This reduces the sensitivity of

the avalanche growth rate to the choice of momentum cut-off (as long as ycut-off ≤ yc),

and reaffirms our choice ycut-off=yc.

Fig. 5c shows the source magnitudes integrated over pitch-angle, and as expected,

the source in Eq. (13) extends only up to y ≃ ymax/2, whereas the source in Eq. (12) is

non-vanishing also for larger momenta. The amount of secondary runaways generated
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by the two sources agree well at low energies, but less so further away from the bulk.

In this particular case, the total source magnitude
∫

Ŝ y2dydξ agrees to within 25%, as

most of the secondaries are created close to the boundary of the runaway region.

4.1. Avalanche growth rates for the different operators

In general, the avalanche growth rate produced by the two sources can differ

substantially. We will illustrate this point by considering the Møller cross section in

more detail. We choose to quantify the source magnitude for an arbitrary distribution

by computing the cross section, integrated over the energy of the outgoing (secondary)

particle and normalized to r20, with r0 the classical electron radius. In other words, we

look at the total normalized cross section for an incoming particle with γin to participate

in a knock-on collision resulting in avalanche [30]:

KCh(γin) =
∫ (γin−1)/2+1

γc
Σ(γ, γin)dγ

= (γ2
in − 1)−1

[

γ2
in

γc − 1
+

γ2
in

γc − γin

+
2γin − 1

γin − 1
ln

(

γc − 1

γin − γc

)

+
γin + 1

2
− γc

]

, (16)

where γc =
√

(E/Ec)/(E/Ec − 1) corresponds to the critical momentum for runaway

generation and the upper integration boundary stems from the condition leading to

ξmax. This expression is relevant to the source in Eq. (13), which uses the complete

cross section (14), whereas for the more simple source in Eq. (12), only the leading

order term in γin in the scattering cross section is taken into account. This corresponds

to taking the high-energy limit of the above equation, so that

KRP =
1

γc − 1
(17)

becomes a simple constant.

To systematically explore the relative magnitude of the two sources, the ratio

KCh/KRP is plotted in Fig. 6a. As expected, the two expressions agree very well at

high primary momenta. At somewhat lower momenta, of the order γ ≈ p > 5, two

distinct regions are discernible. For E/Ec>10 (the orange region), the simplified cross

section is larger than the full expression, and the Rosenbluth-Putvinski operator (12)

is likely to overestimate the avalanche generation. For E/Ec ?10, the opposite is true,

and the operator in Eq. (13) has a significantly larger cross section for E/Ec ?30 (the

blue region). The more accurate operator (13) should thus be expected to produce more

runaways when the runaway population is at predominantly low energies, and E/Ec is

large. For both of these conditions to be fulfilled simultaneously (and at the same time

avoid a slide-away scenario), the temperature must be low so that E/ED ≪ 1 even for

large E/Ec. The effect is also likely to be most apparent at relatively early times, before

the runaway tail has extended to multi-MeV energies.
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Figure 6. a) Contours (black, white) of the ratio of total cross-sections (KCh/KRP)

for an electron with pin to contribute to the avalanche process, as a function

of pin = γinvin/c =
√

γ2

in − 1 and E/Ec. b) Ratio of avalanche growth rates

([ΓCh−ΓD]/[ΓRP−ΓD]) in CODE simulations. The parameters T ∈ [0.1 eV, 5 keV],

E/Ec∈ [1.1, 1000], n=5·1019m−3 and Zeff=1 were used.

CODE simulations support the above conclusions and show excellent qualitative

agreement, as shown in Fig. 6b. The figure shows the ratio of final avalanche growth

rates (ΓCh−ΓD)/(ΓRP−ΓD), with Γi=n−1
r (dnr/dt̂) the growth rate obtained in a CODE

run using source i (here the subscript D denotes pure Dreicer generation). Each marker

in the figure is thus computed from three separate CODE runs. As a proxy for pin, the

average runaway momentum pr,av in the final time step tf of the simulation without a

source was used. The simulations were run for tmax=5000 collision times, and tf was set

to either tmax, the first time step for which nr>5%, or the the first time step in which the

growth rate started to become affected by the proximity of the runaway tail to the end of

the simulation grid, whichever occurred first. The parameters of the scan where chosen

to focus on the most interesting region of Fig. 6a – by performing longer simulations

on larger momentum grids, the upper part of the figure could also be studied. Exact

agreement between Figs. 6a and b can not be expected, since the source, in addition to

the cross section, depends on the details of the runaway distribution. Figure 6a should

thus be viewed as a simplified analytical estimate for Fig. 6b. The different regions

identified in Fig. 6a are still apparent in Fig. 6b, however they are somewhat shifted

in parameter space. In particular, the region where the Rosenbluth-Putvinski operator

produces a higher growth rate is larger, whereas the opposite region – where the operator

in Eq. (13) dominates – is smaller, or at least shifted to higher values of E/Ec.

Figure 7 shows all the data points in Fig. 6b, as a function of temperature. The

figure confirms that the region where the more accurate operator produces a significantly

higher growth rate is only accessible at temperatures T < 100 eV (in the domain of

validity of a linearized treatment). As is evident in the figure, however, regions where

the Rosenbluth-Putvinski operator significantly overestimates the avalanche growth rate

(points below 1 on the vertical axis) are present at all temperatures. The operator in

Eq. (13) is thus of general interest.
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simulations, as a function of temperature. The same parameters as in Fig. 6 were

used.

Since the electric field spike responsible for the acceleration of runaways during a

tokamak disruption is induced by the temperature drop, and therefore occurs slightly

later than the drop itself, the temperature is low during the majority of the acceleration

process. For significant runaway acceleration, E/Ec≫1 is therefore required, and during

the initial part of the acceleration process, parameters are likely those corresponding to

the blue region of Fig. 6a, where the improved avalanche source produces a significantly

higher growth rate than the Rosenbluth-Putvinski operator. Post-thermal-quench

temperatures in ITER are expected be as low as 10 eV and peak electric fields in

disruptions can reach 80 V/m or more [31]. Towards the end of the thermal quench,

the normalized electric field is then E/Ec ≈ 1300 (with E = 80V/m, T = 50 eV and

n = 1 ·1020m−3). A typical ITER disruption would thus (at least initially) be firmly

in the blue region of Fig. 6b, and the avalanche growth should be significantly higher

than what the Rosenbluth-Putvinski source predicts. As the temperature is low, the

runaways will also spend a comparatively long time at low momenta (p ≪ 1), where

the disagreement between the operators is most pronounced. Since the electric field

changes rapidly, however, the runaways may experience parameters corresponding to

both the orange and blue regions in Fig. 6b, and once the runaways reach high energies,

the difference between the operators decreases. Further work is therefore needed to

assess the overall impact on the avalanche growth of using the improved operator (13),

although it is clear that its use is essential for accurate analysis.

5. Summary

Runaway electrons are intimately linked to dynamic scenarios, as they predominantly

occur during disruptions and sawtooth events in tokamaks. An accurate description of

their dynamics in such scenarios requires kinetic modelling of rapidly changing plasma

conditions, and mechanisms such as hot-tail runaway generation add to the already

interesting set of phenomena of importance to the evolution of the runaway population.

In this paper we have described the modelling of several such processes, using
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the numerical tool CODE to calculate the momentum space distribution of runaway

electrons. In particular, we have investigated rapid-cooling scenarios where hot-tail

runaway-electron generation is dominant. Good agreement with previous theoretical

work was observed, but CODE simulations also allow for flexible study of a variety of

parameter regimes not readily accessible in analytical treatments, and involving other

processes such as avalanche generation or synchrotron radiation.

Furthermore, the full linearized non-relativistic Fokker-Planck-Landau collision

operator was discussed, and its implementation described. The operator was found

to reproduce the expected Spitzer conductivity in the relevant parameter regime and

showed excellent conservation properties. The use of such an operator is essential

for the correct current evolution in self-consistent modelling, and in particular when

studying the interplay between current and electric field evolution and runaway-electron

generation during a disruption.

The process of avalanche multiplication of the runaway population via close

Coulomb collisions was also considered, and an improved operator, relaxing some of the

approximations of the commonly used Rosenbluth-Putvinski operator, was discussed.

It was found that the avalanche growth rate can be significantly affected – increased

for low temperatures and high E/Ec and decreased for low E/Ec – by the use of the

new operator. The change to the growth rate can be especially large during the early

stages of the runaway acceleration process, thus potentially affecting the likelihood of a

given runaway seed transforming into a serious runaway beam, and use of the improved

operator is of particular relevance in disruption scenarios.

The work presented in this paper paves the way for a better understanding of

runaway electron dynamics in rapidly changing scenarios, for instance during tokamak

disruptions. It enables more accurate assessment of the risks posed by runaway electrons

in situations of experimental interest, particularly in view of future tokamaks such as

ITER.

Acknowledgments

The authors are grateful to I. Pusztai and E. Hirvijoki for fruitful discussions. This

work has been carried out within the framework of the EUROfusion Consortium and

has received funding from the Euratom research and training programme 2014-2018

under grant agreement No 633053. The views and opinions expressed herein do not

necessarily reflect those of the European Commission. The authors also acknowledge

support from Vetenskapsr̊adet, the Knut and Alice Wallenberg Foundation and the

European Research Council (ERC-2014-CoG grant 647121).

References

[1] M. N. Rosenbluth and S. V. Putvinski, Nucl. Fusion 37, 1355 (1997).

[2] H. Dreicer, Phys. Rev. 115, 238 1959; H. Dreicer, Phys. Rev. 117, 329 1960

http://dx.doi.org/10.1088/0029-5515/37/10/I03
http://dx.doi.org/10.1103/PhysRev.115.238
http://dx.doi.org/10.1103/PhysRev.117.329


Kinetic modelling of runaway electrons in dynamic scenarios 16
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[17] H. M. Smith and E. Verwichte, Phys. Plasmas 15, 072502 (2008).

[18] J.W. Connor and R.J. Hastie, Nucl. Fusion 15, 415 (1975)

[19] L. D. Landau, Phys. Z. Sowjetunion 10, 154 (1936).

[20] M. N. Rosenbluth, W. M. MacDonald and D. L. Judd, Phys. Rev. 107, 1 (1957).

[21] S. T. Beliaev and G. I. Budker, Sov. Phys. Dokl. 1, 218 (1956).

[22] B. J. Braams and C. F. F. Karney, Phys. Fluids B 1, 1355 (1989).

[23] G. Papp, M. Drevlak, T. Fülöp and P. Helander, Nucl. Fusion 51, 043004 (2011).

[24] P. J. Catto and K. T. Tsang, Phys. Fluids 20, 396 (1977).

[25] B. Li and D. R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).

[26] M. Landreman and D. R. Ernst, J. Comput. Phys. 243, 130 (2013).

[27] P. Helander and D. Sigmar, ”Collisional Transport in Magnetized Plasmas”,

Cambridge University Press (2002).

[28] R. Jayakumar, H. H. Fleischmann and S. Zweben, Phys. Lett. A 172, 447 (1993).

[29] E. Nilsson, J. Decker, Y. Peysson, R. S. Granetz, F. Saint-Laurent and M. Vlainic,

Plasma Phys. Control. Fusion 57, 095006 (2015).

[30] P. Aleynikov and B. N. Breizman, Phys. Rev. Lett. 114, 155001 (2015).
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