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Abstract

The basic two-terminal common randomness (CR) or key generation model is considered, where the communi-

cation between the terminals may be limited, and in particular may not be enough to achieve the maximal CR/key

rate. We introduce a general framework of XY -absolutely continuous distributions and XY -concave function, and

characterize the first order CR/key-communication tradeoff in terms of the evaluation of the XY -concave envelope

of a functional defined on a set of distributions, which is simpler than the multi-letter characterization. Two extreme

cases are given special attention. First, in the regime of very small communication rates, the CR per bit of interaction

(CRBI) and key per bit of interaction (KBI) are expressed with a new “symmetrical strong data processing constant”,

defined as the minimum of a parameter such that a certain information-theoretic functional touches its XY -concave

envelope at a given source distribution. We also provide a computationally friendly strong converse bound for CRBI

and a similar (but not necessarily strong) one for KBI in terms of the supremum of the maximal correlation coefficient

over a set of distributions. The proof uses hypercontractivity and properties of the Rényi divergence. A criterion the

tightness of the bound is given with applications to the binary symmetric sources. Second, a new characterization

of the minimum interaction rate needed for achieving the maximal key rate (MIMK) is given, and we resolve a

conjecture by Tyagi and Narayan [45] regarding the MIMK for binary sources. We also propose a new conjecture

for the binary symmetric sources.

I. INTRODUCTION

C: Eavesdropper

A B

X Y

K K̂

W1,W2,W3, . . .

Figure 1: Terminals A and B observe sources with joint distribution QXY and interactive communication between A and B is

allowed.
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Generally speaking, common randomness (CR) generation [2][18] concerns the task of producing a common

piece of information by several terminals accessing correlated sources, possibly allowing communications among

the terminals. The related key generation problem [35][1][17] imposes an additional constrain that an eavesdropper,

knowing the law of the system and the communications but not these correlated sources, can learn almost nothing

about the common information generated. The importance of CR/key generation in cryptography and other areas of

information theory is well appreciated [41][35][1][2]. From the purely theoretical viewpoint, they are also fascinating

sources of problems because of the connections to various measures of correlation. Consider the case of two

correlated i.i.d. sources with per-letter distribution QXY . The maximal rate of key that can be produced without any

communication constraint equals the mutual information I(X;Y ) [1]. In the other extreme where the communication

rate vanishes, the key per bit of communication under the one-way protocol in [1] is a monotonic function of the

strong data processing constant [14][31]; and under the one-communicator protocol [32], a reflection of the dual

convex set of the set of hypercontractive coefficients [32]. The Gács-Körner common information [20] is the

maximal CR rate obtainable without any communication. The Wyner common information [48] characterizes an

extreme point in the intersection between a hyperplane and the rate region in the one-communicator CR generation

[2, Theorem 4.2] or key generation.

Despite the successes in those models mentioned above, which mainly consists of one directional communication

among terminals, many basic problems have remained open in settings involving interactive communications or

multi-terminals [19][18][17]. Most of the existing literature focused on achieving the maximal possible key rate.

Csiszár and Narayan [17] showed that the maximal key rate obtainable from multi-terminals having public interactive

communications equals the entropy rate of all sources minus the communication rate needed for communication

for omniscience [17], the latter related to the subject of interactive source coding studied by Kaspi [29]. Moreover,

Tyagi [45] showed that the minimum interactive communication rate needed for achieving the maximal key rate

(MIMK) between two terminals with interactions equals the interactive common information [45] minus the mutual

information rate of the sources, and provided a multi-letter characterization of MIMK. However, a complete

characterization of the tradeoff between the key rate and communication rate poses more challenge, because when

the communication rate is not large enough for the terminals to become omniscient, it not obvious what piece of

information they have to agree on. Indeed, as mentioned at the end of Section VII in [45], a characterization of the

key rate when the communication rate is less than MIMK, along with a single-letter characterization of MIMK,

“remains an interesting open problem”.

In this paper we consider the two-terminal interactive CR/key generation model shown in Figure 1, which is

similar to the setting of [45] mentioned above, but look at the tradeoff between the key rate and communication rate

rather than MIMK alone, and adopt completely different approaches. We first revisit Kaspi’s original idea of multi-

letter characterizations of the rate region of interactive source coding [29] where each round of communication

accounts for a new auxiliary random variable and adds in a new term to the rate expressions which resembles

the expressions in the one-way counterparts. In our interactive CR/key generation problem, we derive a similar

multi-letter characterization as the first step. In terms of the first order region, CR generation and key generation
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are essentially equivalent problems.

We then simplify the multi-letter characterization of the key-communication tradeoff region using XY -concave

envelopes, partially inspired by a similar characterization in the context of interactive source coding by Ma et al. [34],

who noticed that each auxiliary random variable in the multi-letter region, which corresponds to each round of the

public communications, amounts to convexifying the rate region with respect a marginal distribution. Hence in the

infinite-round limit, the minimum sum rate can be described in terms of a marginally convex envelope, i.e.,the

the greatest functional which is convex w.r.t. each marginal distribution and dominated by a given functional.

Expressing the role of an auxiliary random variable as taking the convex envelope is very common in information

theory [19][4][36][23]. At the first sight, this idea is easily overlooked as a mere restatement of the multi-letter

region. However, as demonstrated by Ma et al.’s work as well as the present paper, the conceptual simplification

opens the possibility of tackling specific open questions and making new connections. Moreover, we introduce

a notion of X-absolute continuity, so that the marginal concave envelope approach is applicable to general non-

discrete sources. In fact this framework may be applied to other problems involving convex/concave envelopes to

avoid the technical difficulty of defining a conditional distribution from a given joint distribution.

In the regime of very small communication rates, the CR per bit of interaction (CRBI) or key per bit of

interaction (KBI) is the fundamental limit on the maximal amount of CR or key bits that can be “unlocked”

by each communication bit, which is the most befitting for the scenario of a stringent communication constraint

and relatively abundant correlated resources. KBI is not completely implied by the rate region since the length

of the communication bits can be a vanishing fraction of the blocklength. The concave envelope characterization

implies that KBI is a monotonic function of a “symmetrical strong data processing constant” (SSDPI), defined as

the minimum of a parameter such that a certain information-theoretic functional touches its XY -concave envelope

at a given source distribution. It is interesting to compare SSDPI with the conventional strong data processing

constant [3], which has a similar (but only one-sided) convex envelope characterization [4] and is in a similar way

related to the key per bit of communication in the one-way protocol [14][31]. A more computationally friendly

strong converse bound on CRBI and a similar (but not necessarily strong) one for KBI are also given, which is a

monotonic function of the supremum of the maximal correlation coefficient over a set of distributions. The proof

of the upper bound uses hypercontractivity and properties of the Rényi divergence. A necessary condition on the

tightness is given, implying that for the binary symmetric source and the Gaussian source the KBI is not improved

by increasing the number of rounds of interactions.

Returning to the MIMK problem considered by Tyagi [45], a different characterization of the minimum interaction

rate needed for achieving the key capacity is given by establishing several fundamental properties of XY -concave

functions. In [45] Tyagi conjectured that MIMK equals the minimum one round communication rate for achieving

the maximal key rate for binary sources. We use the new characterization to prove that the necessary and sufficient

condition for the conjecture to hold is that the joint distribution can be given by a binary symmetric channel with

an arbitrary input distribution. We also propose a new conjecture about the complete key-communication tradeoff

for binary symmetric sources.
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II. PREMILARIES

A. Problem Setup

In this paper we consider an interactive key generation model in Figure 1. Let QXY be the joint distribution of

the sources. the Terminals A and B observe X and Y , respectively. Terminal A computes an integer W1 = W1(X)

(possibly stochastically) and sends it to B. Then terminal B computes an integer W2 = W2(W1, Y ) and send it to

B, and so on, for a total of r rounds/times. Then, A and B calculate integers1 K = K(X,W r) and K̂ = K̂(Y,W r)

possibly stochastically as keys. Both terminals want K = K̂ with high probability, while keeping it (almost)

independent of the public messages W r which is observed by an eavesdropper.

In the case of stationary memoryless sources and block coding, we will substitute X ← Xn and Y ← Y n, where

n is the blocklength. The performance is measured by

δn :=
1

2
|QKK̂ − TKK̂ | (1)

in CR generation, or

∆n :=
1

2
|QKK̂W r − TKK̂QW r | (2)

in the case of key generation, where TKK̂ denotes the target distribution under which K = K̂ is equiprobable,

and the total variation | · | is defined as the `1 distance. Such performance measure are natural when the likelihood

encoder is used in the achievability proof, (c.f. [31]).

Definition 1. The tuple (R,R1, R2) is said to be r-achievable (r ∈ {1, 2, . . . ,∞}) if a sequence of generation

schemes in r rounds 2 can be designed to fulfill the following conditions:

lim inf
n→∞

1

n
log |K| ≥ R; (3)

lim sup
n→∞

1

n
log |Wl| ≤ Ri, i = 1, 2, (4)

and limn→∞ δn = 0 in CR generation or limn→∞∆n = 0 in key generation.

Remark 1. Some authors have considered other alternatives, say

εn := P[K 6= K̂], (5)

νn := D(QK|W r‖TK |QW r ), (6)

for the key generation problem. The relation to (2) is as follows. Clearly, ∆n → 0 implies that εn → 0. Also,

notice that for arbitrary P and Q on the same alphabet X , [16, Lemma 2.7] gives

|H(P )−H(Q)| ≤ |P −Q| log
|X |
|P −Q|

+ log |X |1
{
|P −Q| > 1

2

}
(7)

1Notation W j
i := (Wi,Wi+1, . . . ,Wj) denotes a vector and W r := W r

1 .
2As a convention, we shall say “in r rounds” or “r-round” if the number of rounds of communication less than r + 1 (or equivalently, not

exceeding r for an integer r or finite for r =∞). Therefore the term is not precise if r =∞.
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Thus by Jensen’s inequality and Markov inequality, we have

νn = H(TK)−H(QK|W r |QW r ) (8)

≤ 2∆n log
|X |
2∆n

+ 4∆n log |X |. (9)

Therefore exponentially vanishing ∆n (which is usually guaranteed by the likelihood encoder based proof, c.f. [31])

ensures νn → 0. On the other hand, by Pinsker-Csiszár inequality, νn → 0 implies |QKW r −TKQW r | → 0, which,

combined with εn → 0, implies that ∆n → 0.

In terms of the first order rate for the stationary memoryless sources, CR generation and key generation are

essentially equivalent problems and the achievable rate region for one is a linear transform of the other; see e.g. [45]

for the discussion. Essentially, the maximal CR rate is the maximum of the key rate plus the communication rates

(whether local randomization is allowed or not). For this reason we shall only discuss results for key generation

when the first order rates are concerned.

From the standard diagonalization argument [25], the achievable region is closed. The set of r-achievable tuples

for key generation is denoted by Rr(X,Y ). Clearly Rr(X,Y ) is “increasing” in r. We can also show that it is

“continuous” at r =∞, that is R∞(X,Y ) equals the closure of
⋃∞
r=1Rr(X,Y ). The “⊇” part is immediate from

the definitions. The “⊆” part, in essence, relies on the converse proof for R∞(X,Y ).

Inspired by Kaspi’s multi-letter characterization of the rate region for interactive source coding [29], we proved

that Rr(X,Y ) is the closure of the set of (R,R1, R2) satisfying

R ≤
odd∑

1≤i≤r

I(Ui;Y |U i−1) +

even∑
1≤i≤r

I(Ui;X|U i−1), (10)

R1 ≥
odd∑

1≤i≤r

I(Ui;X|U i−1)−
odd∑

1≤i≤r

I(Ui;Y |U i−1), (11)

R2 ≥
even∑

1≤i≤r

I(Ui;Y |U i−1)−
even∑

1≤i≤r

I(Ui;X|U i−1), (12)

where the auxiliary r.v.’s satisfy

Ui − (X,U i−1)− Y i ∈ {1, . . . , r} \ 2Z; (13)

X − (Y,U i−1)− Ui i ∈ {1, . . . , r} ∩ 2Z. (14)

The notation
∑odd

1≤i≤r is used as an abbreviation of
∑
i∈{1,...,r}\2Z, and similarly for

∑even
1≤i≤r.

This bound is quite intuitive: depending on whether i is odd or even, Ui corresponds to the messages sent by either

the terminal A or B. The first round of communication contributes to the term (I(U1;Y ), I(U1;X)− I(U1;Y ), 0)

in the rate tuple expressions, which is exactly the rates in one-round key generation [1]. The second round adds in

similar terms but all mutual information are now conditioned on U1, which is now shared publicly, and so on. A

formal proof of this multi-letter characterization will be given in a separate note [33] using the likelihood encoder

[43] and standard converse proof techniques.
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B. XY -Absolutely Continuity

Recall that a nonnegative finite measure ν is absolutely continuous with respect to another one µ on the same

measurable space (X ,F ), denoted as ν � µ, if there exists a measurable function f such that

ν(A) =

∫
A
f(x)dµ (15)

for all A ∈ F . We extend the idea to the following:

Definition 2. A nonnegative finite measure νXY is said to be X-absolutely continuous with respect to µXY , denoted

by

νXY �X µXY (16)

if there exists a measurable3 function f such that

νXY (A) =

∫
A
f(x)dµXY (x, y) (17)

for any A ∈ F . Moreover, ν is said to be XY -absolutely continuous with respect to µ, denoted simply as ν � µ,

if there exists a measurable function f and g such that

νXY (A) =

∫
A
f(x)g(y)dµXY (x, y). (18)

Note that (146) implies ν � µ, so an equivalent definition of (16) is that the Radon-Nikodym derivative dν
dµ (x, y)

depends only on x. Similarly, an equivalent definition of XY -marginal absolute continuity is that dν
dµ is a product

of a function depending on x and a function depending on y.

It is straightforward to see that ν � µ if there exists (θiXY )ti=1 for some odd integer t such that

ν �Y θt; (19)

θi �X θi−1, i ∈ {1, . . . , t} \ 2Z; (20)

θi �Y θi−1, i ∈ {1, . . . , t} ∩ 2Z; (21)

θ1 �X µ. (22)

In fact, the converse is also true, and one can choose t ≤ 3. In the case of finite alphabets, one can even improve the

bound to t = 1. The latter cannot always be achieved for general alphabet because
∫
f(x)dµX(x) can be infinite

even if
∫
f(x)g(y)dµ(x, y) is finite.

The relation �X is a preorder relation 4 on the set of nonnegative finite measures. We shall denote by

MX(µ) := {ν : ν �X µ} (23)

3More precisely, we have assumed σ-algebras F and G on X and Y , respectively, and the σ-algebra on X × Y is generated by A × B
where A ∈ F and B ∈ G , so here the measurability of f is w.r.t. F .

4A preorder relation satisfies reflexivity and transitivity, but not antisymmetry. The more familiar notion of partially ordered set is a preordered

set satisfying antisymmetry.
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the lower set of µ in the set of nonnegative finite measures. Similarly, M(µ) is defined as the lower set of µ with

respect to �. Both relations also make the set of probability distributions a preordered set. Denote by PX(QXY )

or P(QXY ) the corresponding lower sets.

Remark 2. The lower set P(QXY ) appears frequently information theory (with different notations and names).

Csiszár [15] showed that the I-projection of QXY onto the linear set of distributions having given marginal

distributions, if exists, must belong to P(QXY ). Due to this fact, P(QXY ) has emerged, e.g. in the context of

hypercontractivity [27] and multiterminal hypothesis testing [37]. In interactive source coding [34] the set P(QXY )

has been defined for discrete distributions, without introducing the preorder relation. In both [34] and the present

paper, the appearance of P(QXY ) is due to the conditioning on auxiliary random variables satisfying Markov

structures, c.f. (10)-(12).

Next, we introduce notions of concave functions and concave envelopes with respect to the marginal distributions,

the discrete case being defined in [34]. We refine those definitions using the XY -absolute continuity framework to

resolve the technicality of defining a conditional distribution from a joint distribution.

Definition 3. A functional σ on a set P of distributions is said to be X-concave if for any PXY ∈ P , (P iXY )i=0,1

and α ∈ [0, 1] satisfying 5

P iXY �X PXY , i = 0, 1; (24)

PXY = ᾱP 0
XY + αP 1

XY , (25)

it holds that

σ(PXY ) ≥ ᾱσ(P 0
XY ) + ασ(P 1

XY ). (26)

Moreover, σ is said to be XY -concave if it is both X-concave and Y -concave.

Definition 4. Given a functional σ on a set P of distributions, the functional σ′ is said to be the X-concave

envelope of σ, denoted as envX(σ), if σ′ is X-concave and is dominated by any other X-concave functional which

dominates σ. The XY -concave envelope, denoted by envXY(σ), is defined similarly.

The existence of X-concave envelope is immediate from the existence of the conventional concave envelope

for a function. For the existence of XY -concave envelope, we can take the X-concave envelope and Y -concave

envelope of the given functional alternatingly. The pointwise limit exists by the monotone convergence theorem

and satisfies the condition in Definition 4.

III. CONVEX GEOMETRIC CHARACTERIZATIONS OF THE RATE REGIONS

In this section we study the tradeoff between the key rate and the interactive communication rate, that is, the

set of achievable pair (R,R1 + R2) in key generation. The set of achievable tuple (R,R1, R2) clearly can be

5In this paper ᾱ := 1− α for α ∈ [0, 1].
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handled with the same approach. Moreover, corresponding results for CR generation will not be discussed since,

as mentioned before, the achievable rate region for CR generation is just a linear transformation of the one for key

generation.

R

R1 + R2

Ir(QXY )

I(X;Y )

Figure 2: Achievable region (below the curve) of the key rate R and the sum interactive communication rate R1 + R2. The

minimum interaction needed for maximal key rate is denoted as Ir(QXY ) (see Section V).

Define the total sum rate

S := R+R1 +R2, (27)

and we consider the problem of characterizing Sr(X,Y ), which is defined as the set of achievable (S,R). For any

QXY Ur where Ur satisfies the given Markov chains, denote by R(QXY Ur ) the right side of (10) and S(QXY Ur )

is defined similarly for the total sum rate. Observe that

R(QXY Ur ) =

odd∑
1≤i≤r

I(Ui;Y |U i−1) +

even∑
1≤i≤r

I(Ui;X|U i−1) (28)

=I(U1;Y ) +

even∑
2≤i≤r

I(Ui;X|U i−1) +

odd∑
1≤i≤r

I(Ui;Y |U i−1) (29)

=I(X;Y )− I(X;Y |U1) +

odd∑
1≤i≤r

I(Ui;X|U i−1) +

even∑
2≤i≤r

I(Ui;Y |U i−1), (30)

where the last step used the Markov condition U1 −X − Y . Hence by rearranging,

I(X;Y )−R(QXY Ur ) = I(Y ;X|U1)−
∫
R(QY XUr2 |U1=u)dQU1

(u) (31)

Now the key observation is that the right side above is similar to the left except that each term is conditioned on

U1, the role of X and Y are switched, and (conditioned on U1) there are r − 1 auxiliary random variables left.

Similarly, we also have

H(X,Y )− S(QXY Ur ) =H(Y,X|U1)−
∫
S(QY XUr2 |U1=u)dQU1(u), (32)

and similar observations can be made. In the case of non-discrete (X,Y ), we can choose a reference measure and

replace the entropy/conditional entropy terms above with relative entropy/conditional relative entropy, at the cost

of slightly more cumbersome notation, so there is no loss of generality with this approach.
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Given QXY , and s > 0, define a functional on P(QXY ) by

ωs0(PXY ) := sH(X̂, Ŷ )− I(X̂; Ŷ ). (33)

where PXY � QXY and (X̂, Ŷ ) ∼ PXY . For r ∈ {1, 2, . . . }, define

ωsr :=

 envX(ωsr−1) r is odd;

envY (ωsr−1) r is even,
(34)

and define ωs∞ as the XY -concave envelope of ωs0.

From (31), (32) and the fact that S(QXY ) = R(QXY ) = 0 when r = 0, we immediately obtain

Theorem 1.

ωsr(QXY ) := sup
Ur
{s[H(X,Y )− S(QXY Ur )]− [I(X;Y )−R(QXY Ur )]} (35)

= sH(X,Y )− I(X;Y ) + sup
Ur
{R(QXY Ur )− sS(QXY Ur )} (36)

= sH(X,Y )− I(X;Y ) + sup
(S,R)∈Sr(X,Y )

{R− sS} (37)

where Ur satisfies (13)-(14).

Because H(X,Y ) and I(X;Y ) are independent of Ur, characterizing the closed convex set Sr(X,Y ) is equivalent

to computing ωsr(QXY ) for each s > 0.

The significance of Theorem 1 is that we can sometimes come up with a XY -concave function that upper-bounds

ωs0. If, out of luck, the upper-bounding function evaluated at QXY can also be achieved by a known scheme, we

will be able to determine ωs∞(QXY ).

IV. CR/KEY PER BIT OF INTERACTION

Similar to the capacity per unit energy/cost [42][46] in the context of channel coding, in this section we consider

the following fundamental limit in interaction CR/key generation.

Definition 5. For r ∈ {1, 2, . . . ,∞}, δ ∈ [0, 1], define the δ-CR per bit of r-round interaction γδr (X;Y ) as the

maximum real number γ ≥ 0 such that there exists a sequence (indexed by k) of r-round (possibly stochastic) CR

generation schemes which fulfill the following conditions:

lim inf
k→∞

log |K|
log |Wr|

≥ γ; (38)

lim
k→∞

log |K| =∞; (39)

lim sup
k→∞

δk ≤ δ. (40)

where δk is as in (2). The CR per bit of r-round interaction is defined as

γr(X;Y ) := inf
δ>0

γδr (X;Y ). (41)
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We shall use CR per bit of interaction (CRBI) as an abbreviation of γ∞(X;Y ). The key per bit of interaction

(KBI), denoted as Γ∞(X;Y ) is defined similarly with δk above replaced by ∆k.

Note that there is no constraint on the blocklength in Definition 5. In particular, the blocklength can grow

super-linearly in log |Wr|, in which case the rates are zero and the fraction in (38) cannot be written as R
R1+R2

.

Nevertheless, for stationary memoryless sources, one can still show the relation

Γr(X;Y ) := sup

{
R

R1 +R2
: (R,R1, R2) ∈ Rr(X,Y )

}
(42)

by a careful reexamination of the proof of the achievable rate region (c.f. a similar result in the context of channel

coding with costs [46]).

We shall provide compact formulas for γ∞ and Γ∞ by introducing a symmetrical data processing constant, and

also derive computational friendly upper-bounds on γδ∞ and Γ∞ (δ ∈ (0, 1)).

A. Symmetrical SDPI and the Exact Formulas

To begin with, recall that the key per bit of communication (c.f. [14][31]6) is the r = 1 special case of KBI, and

according to (10)-(12), has the formula

Γ1(X;Y ) = sup
U : U−X−Y

I(U ;Y )

I(U ;X)− I(U ;Y )
(43)

=
s∗(X;Y )

1− s∗(X;Y )
. (44)

where the strong data processing constant (c.f. [3][4][38]) is commonly defined as

s∗1(X;Y ) := sup
U : U−X−Y

I(U ;Y )

I(U ;X)
(45)

= sup

{
R

S
: (S,R) ∈ S1(X,Y )

}
(46)

and we always assume that the supremums are over auxiliary random variables such that the fraction is well-defined.

Conventionally, s∗1 is denoted as s∗ [3][4]. From (45), it is not hard to see that s∗(X;Y ) has the following equivalent

characterization. Recall (33) defined a functional on P(QXY ) by

ωs0(PXY ) = sH(X̂)−H(Ŷ ) + (s+ 1)H(Ŷ |X̂) (47)

where PXY � QXY and (X̂, Ŷ ) ∼ PXY .

Proposition 1. s∗(X;Y ) is the infimum of s > 0 such that

ωs(QXY ) := env
X
ωs0(QXY ) = ωs0(QXY ). (48)

If X or Y is non-discrete, we may choose an arbitrary reference measure and replace the entropies with (the

negative of) the relative entropies, so there is no loss of generality with the concave envelope characterization

6Incidentally, Ahlswede made pioneering contributions to both the strong data processing constant [3] and key generation [1], although it

appears that he never explicitly reported a connection between the two.
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approach. In the discrete case, the concave envelope characterization in Proposition 1 is essentially shown by

Anantharam et al. [4], noting that the third term in (47) is linear in PX for fixed QY |X . However, by using the

framework in Section II-B, our Proposition 1 avoids the challenge of defining a conditional distribution QY |X from

the possibly non-discrete joint distribution QXY .

Example 1. For the binary symmetric sources (BSS) with error probability ε, s∗(X;Y ) = (1 − 2ε)2. The scalar

Gaussian sources with correlation coefficient ρ has s∗(X;Y ) = ρ2. For an erasure channel with erasure probability

ε and equiprobable input distribution, we have s∗(X;Y ) = 1−ε and numerical simulation suggests that s∗(Y ;X) =

1
log 2

1−ε
for small enough 1−ε. Additional examples including the Z-channel or the binary symmetric channel (BSC)

with non-equiprobable inputs can be found in [5].

Returning to the key per bit of interaction, we can define a similar notion of data processing constant from a

multi-letter expression, or equivalently according to the analysis in Section III, with the following concave envelope

characterization:

Definition 6. Define the symmetrical data processing constant (SSDPI) s∗∞(X;Y ) as the infimum of s > 0 such

that

ωs∞(QXY ) := envXY ω
s
0(QXY ) = ωs0(QXY ). (49)

By the conventional data processing inequality, it is immediate to show that s∗∞(X;Y ) ∈ [0, 1]. Moreover from

(49), we clearly have the symmetric property s∗∞(X;Y ) = s∗∞(Y ;X), in contrast to s∗(·) [4]. It will certainly be

illuminating to list and compare the properties of s∗∞(X;Y ) and s(X;Y ) in the future work.

The symmetrical SDPI is related to the operational quantities by the following, whose proof follows from

Theorem 1 and (42).

Theorem 2.

s∗∞(X;Y ) = sup

{
R

S
: (S,R) ∈ S∞(X,Y )

}
(50)

γ∞(X;Y ) =
1

1− s∗∞(X;Y )
. (51)

Γ∞(X;Y ) =
s∗∞(X;Y )

1− s∗∞(X;Y )
. (52)

B. A Useful Upper-bound

For Ur satisfying (13)-(14), the following upper-bound follows from the definition (45) of SDPI:

I(Ui;Y |U i−1)

I(Ui;X|U i−1)
≤ sup
ui−1

s∗(X;Y |U i−1 = ui−1) (53)

≤ sup
PXY �QXY

s∗(X̂; Ŷ ) (54)

where the last inequality follows since it is trivial to check by induction that QXY |Ui−1=ui−1 for any ui−1.
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Definition 7. For (X,Y ) ∼ QXY , the maximal correlation coefficient [26][22][39] is defined as

ρ2
m(X;Y ) := sup

f,g
E[f(X)g(Y )] (55)

where the supremum is over measurable real valued functions f and g satisfying E[f(X)] = E[g(Y )] = 0 and

E[f2(X)] = E[g2(Y )] = 1.

Ahlswede and Gács [3, Theorem 8] (see also [12]) proved a useful relation between SDPI and the maximal

correlation coefficient, which, in the language of Section II-B, is that

sup
PXY �XQXY

s∗(X̂; Ŷ ) = sup
PXY �XQXY

ρ2
m(X̂; Ŷ ). (56)

From Definition 2 and (56), we have

sup
P : P�Q

s∗(X̂; Ŷ ) = sup
T : T�YQ

sup
P : P�XT

s∗(X̂; Ŷ ) (57)

= sup
T : T�YQ

sup
P : P�XT

ρ2
m(X̂; Ŷ ) (58)

= sup
P : P�Q

ρ2
m(X̂; Ŷ ) (59)

Theorem 3. Given QXY ,

γ∞(X;Y ) ≤ sup
PXY �QXY

1

1− ρ2
m(X̂; Ŷ )

(60)

Γ∞(X;Y ) ≤ sup
PXY �QXY

ρ2
m(X̂; Ŷ )

1− ρ2
m(X̂; Ŷ )

(61)

where (X̂, Ŷ ) ∼ PXY . Moreover, if PXY = QXY supremizes ρm(X̂; Ŷ ), than the equalities hold and in fact are

achieved by the one-way communication protocol (in either way).

Proof: By symmetry both I(Ui;Y |Ui−1)
I(Ui;X|Ui−1) and I(Ui;X|Ui−1)

I(Ui;Y |Ui−1) are bounded by (54). The inequality follows from

the rate region (10)-(12), the property (83) and the basic inequality
∑

i
ai∑
i
bi
≤ supi

ai
bi

for nonnegative (ai) and (bi)

such that the fractions are defined.

The sufficient condition for the equality can be seem from (44) and the fact that ρ2
m(X̂; Ŷ ) ≤ s∗(X;Y ) for any

PXY .

In general, the maximal correlation coefficient is much easier to compute than the strong data processing constant.

Let us use boldface to denote a matrix corresponding to a discrete joint distribution. e.g.

PXY := [PXY (x, y)]xy , (62)

with the marginal distributions always thought of as a column vector. Define

A := diag(PX)−
1
2PXY diag(PY )−

1
2 (63)

and let M := A>A. Then ρ2
m(X̂; Ŷ ) is the second largest eigenvalue value of M (c.f. [4]). See also [30] for an

extension to non-discrete distributions.
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Using the calculus of variation, we show next a necessary condition that the discrete distribution PXY = QXY

achieves the supremum in (61), whose proof is deferred to Appendix C.

Definition 8. The graph of a discrete distribution distribution QXY is defined as the bipartite graph whose adjacency

matrix is the sign of QXY . We say QXY is indecomposable [47] if its graph is connected.

Theorem 4. If PXY = QXY achieves the supremum in (61), then

u◦2 = QX|Y v
◦2; (64)

v◦2 = QY |Xu◦2. (65)

Moreover, if QXY is indecomposable and both QX and QY are fully supported, then

u◦2 = QX ; (66)

v◦2 = QY . (67)

Remark 3. The conditions (66) and (67) need not be satisfied when QXY is not indecomposable (e.g. consider

X = Y binary but not equiprobable under PXY ).

Applying Theorem 4 to BSS, we have the following result, which may also be proved directly without invoking

Theorem 4 (omitted here).

Theorem 5. If QXY is a BSS with error probability ε ∈ [0, 1], then

sup
PXY �QXY

ρ2
m(X̂; Ŷ ) = (1− 2ε)2. (68)

As a consequence, interaction does not increase CRBI or KBI for BSS:

γr(X;Y ) =
1

1− (1− 2ε)2
; (69)

Γr(X;Y ) =
(1− 2ε)2

1− (1− 2ε)2
. (70)

where r ∈ {1, 2, . . . ,∞}.

Proof: We may assume without loss of generality that ε ∈ (0, 1). Then by [28], the maximal correlation

coefficient is continuous at any PXY with fully supported marginal distribution. It is also elementary to show

that ρ2
m(X̂; Ŷ ) vanishes as either PX or PY tends to a deterministic distribution. Therefore, the supremum in the

definition of ρ̄m is achieved. By from Theorem 4, only PXY = QXY can possibly achieve the supremum.

Direct proof of Theorem 5: We only need to show that ρ2
m(X̂; Ŷ ) ≤ (1 − 2ε)2 for any PXY ∈ P(QXY ).

Suppose

M =

 x γ

β y

 (71)
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is the matrix such that PXY equals the Hadamard product ε̄ ε

ε ε̄

 ◦M (72)

Although M is parameterized by 4 scalars, it only has two degrees of freedom because PXY ∈ QXY implies M

is rank-one, and the sum of the coordinates of PXY equals one. In fact, given the sum s = β + γ and product

p = βγ of the two parameters, we can express the sum and product of x and y:

xy =p, (73)

x+ y =
1− εs
ε̄

. (74)

We know ρm(X̂; Ŷ ) is the second largest singular value of
[

1√
PX̂(x)PŶ (y)

PX̂Ŷ (x, y)

]
x,y

. After some systematic

calculations, we can express it in terms of s and p:

ρ2
m(X̂; Ŷ ) =

(1− 2ε)2p

(1− 2ε)2p+ ε(1− 2ε)s+ ε2
. (75)

For PX̂Ŷ ∈ P(QXY ), the admissible s and p satisfy

0 ≤ s ≤1

ε
, (76)

0 ≤ p ≤1

4
min

{(
1− εs
ε̄

)2

, s2

}
. (77)

Under the above conditions, it’s elementary to show that (75) is maximized when p = 1
4 and s = 1.

Remark 4. A celebrate central limit theorem argument by Gross [24] showed that Gaussian hypercontractivity

can be obtained by BSS hypercontractivity. A similar argument for the key generation problem, c.f. [31] applied

Theorem 5 implies that one-round communication is optimal for KBI for Gaussian sources as well. Moreover, we

may define the key per unit cost if the communication costs in the two directions differ, and it is easy to from

Theorem 5 that one-round communication is also optimal for achieving this quantity in the case of BSS or Gaussian

sources.

C. Strong Converse Property of the Upper-bound for CRBI

The simple analysis in the previous section, essentially based on the Fano’s inequality, gives a maximal correlation

based upper-bound only for γr but not γδr . Proving strong converses for problems whose rate region involves auxiliary

random variables is generally hard [44]. In this section, however, we prove that the maximal correlation bound also

applies to γδr . The proof mainly draws on four ideas.

• The one-way communication model (r = 1) is viewed as a limiting degenerate case of the omniscient helper

introduced in our previous paper [32]. Moreover, SDPI can be obtained as a limiting degenerate case of the

hypercontractivity region [3, Theorem 5a]. In fact, we shall prove a clean one-shot converse for interactive CR

generation where blocklength plays no role.
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• For the last round of communication, we use the bounding technique for the omniscient helper problem in

[32].

• The contribution from the previous rounds of communication is upper-bounded using certain chain rule

properties of the Rényi divergence.

Consider the CR generation model in Figure 3, which is a special case of the omniscient helper CR generation

problem in [32] where the helper (Terminal H) does not send any message to A. The only difference between the

model in Figure 3 and the one-way model is that the helper knows (X,Y ), whereas A only knows X . Hence the

performance of the model in Figure 3 clearly dominates that of the one-way model. It turns out, however, that

asymptotically they are equivalent [32].

A B

H(X,Y )

K K̂

X Y

W

Figure 3: CR generation with an omniscient helper

The strong converse in [32] for CR per bit of communication uses the equivalence of the following two inequalities,

which were proved independently by [11] and [36] using different methods.

Proposition 2 (Equivalent characterizations of hypercontractivity). Fix QXY and b, c ∈ (0,∞). Then

E[f(X)g(Y )] ≤ ‖f‖1/b‖g‖1/c (78)

for all nonnegative f and g if and only if

D(SXY ‖PXY ) ≥ bD(SX‖PX) + cD(SY ‖PY ) (79)

for all SXY � PXY .

While (79) appears more connected to the single-letter solutions of the first order rate region, the functional

characterization (78) provides a powerful tool in proving strong converses.

Definition 9. Given PXY , define G(PXY ) as the set of (b, c) for which (79) holds.
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Now fix (b, c) ∈ G(PXY ). If PXY is not indecomposable, then Γ1(X;Y ) =∞ and the problem is trivial. Below

we assume that PXY is indecomposable in which case for each c ∈ (0, 1) it is always possible to choose b such

that b + c > 1 [4]. From the proof of [32, Theorem 10], we have the following bound for the model in Figure 3

(for possibly stochastic decoders):

1

|K|
∑
k

P[K = K̂ = k]
1
b+c ≤ 1

|K|
|W|

c
b+c (80)

Letting T be the correct distribution under which K = K̂ is equiprobability distributed on K. Then (80) can

represented equivalently in terms of Rényi divergence:

Dα(PKK̂‖T ) = log |K| − 1

1− α
log

(∑
k

P[K = K̂ = k]
1
b+c

)
(81)

≥ log |K| − 1

1− α
· c

b+ c
log |W| (82)

= − c

b+ c− 1
log |W|+ log |K| (83)

where α := 1
b+c < 1.

Remark that the Rényi divergence may be regarded as a natural performance measure itself, and it will of interest

to investigate its properties, e.g. universal composability in the future work. Here we only point out that it is related

to the total variation distance via the following basic result, which was essentially presented in [32, Theorem 10]:

Proposition 3. Suppose Q is the equiprobable on {1, . . . ,M} and P is an arbitrary distribution on the same

alphabet. For any α ∈ (0, 1),

Dα(P‖Q) ≤ 1

1− α
log

1

1− 1
M −

1
2 |P −Q|

. (84)

Now return to the interactive CR generation model, and let QXYW r be the joint distribution of the source and

the messages. Assume without loss of generality that r is an odd number, that is, the last round of communication

is from A to B. It is trivial to show by induction that for any (w1, . . . , wr−1), we have

QXY |W r−1=wr−1 � QXY . (85)

In the last round of the communication, we can apply the bound in (83) with PXY ← QXY |W r−1=wr−1 . Suppose

(b, c) ∈ G(PXY |W r−1=wr−1) then (83) we obtain

D 1
b+c

(QKK̂|W r−1=wr−1‖T ) ≥ − c

b+ c− 1
log |Wr|+ log |K|. (86)

This above analysis takes care of the contribution to CR from the last round of communication. Next, we handle

the contribution from the previous rounds.

Proposition 4 (Chain rule for Rényi divergence).

Dα(PXY ‖QXY ) = Dα(PY |X‖QY |X |P
(α)
X ) +Dα(PX‖QX) (87)
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where

P
(α)
X :=

PαXQ
1−α
X∫

dPαXdQ1−α
X

. (88)

Using the monotonicity of the norm, we can show that

Proposition 5. For discrete X ,

Dα(PY ‖QY ) +Hα(PX) ≥ Dα(PY |X‖QY |P
(α)
X ) (89)

where P (α)
X :=

PαX∫
dPα

X

.

From Proposition 4, using (86) and letting QW r−1 be the equiprobable distribution,

D 1
b+c

(QKK̂‖TKK̂) ≥ min
wr−1

D 1
b+c

(QKK̂|W r−1=wr−1‖TKK̂)−H 1
b+c

(QW r−1) (90)

≥ − c

b+ c− 1
log |Wr|+ log |K| − log |Wr−1| (91)

≥ log |K| − c

b+ c− 1
log |Wr|. (92)

Denote by W :=Wr the alphabet of total communications. We have the following one-shot converse bound

Theorem 6. If (b, c) ∈
⋂
PXY �QXY G(PXY ) and b+ c > 1, then for CR generation

D 1
b+c

(QKK̂‖TKK̂) ≥ log |K| − c

b+ c− 1
log |W|. (93)

The connection to the maximal correlation bound is seen through the following result, whose proof is follows

from (56) and the argument in the proof of [3, Theorem 5a] regarding a relation between hypercontractivity and

SDI for finite-alphabet distributions.

Proposition 6. For any indecomposable finite-alphabet source QXY and ε > 0, there exists (b, c) such that

(b, c) ∈
⋂
PXY �QXY G(PXY ), b+ c > 1, b ≤ 1 and that

1− b
c
≤ sup
PXY �QXY

ρ2
m(X̂; Ŷ ) + ε. (94)

Combining Theorem 6 Proposition 3 and Theorem 6, we obtain the following asymptotic result:

Corollary 1. For any finite-alphabet stationary memoryless source with per-letter distribution QXY , if the ratio

log |K|
log |W|

>
1

1− supPXY�QXY
ρ2
m(X̂; Ŷ )

(95)

is fixed where (X̂, Ŷ ) ∼ PXY , then, for CR generation (allowing local randomization), regardless of the blocklength,

we have the following as |K| → ∞:

1) There is some 0 ≤ α < 1 such that Dα(QKK̂‖TKK̂) grows at least linearly with a strictly positive slope in

log |K|.

2) 1− 1
2 |QKK̂ − TKK̂ | vanishes at least polynomially in |K|.
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In particular,

γδ∞(X;Y ) ≤ sup
PXY �QXY

1

1− ρ2
m(X̂; Ŷ )

(96)

holds for any δ ∈ (0, 1).

V. MINIMUM INTERACTION FOR MAXIMAL KEY RATE

Define Ir(QXY ) as the minimal interactive communication rate needed for maximal key rate in r rounds, starting

from A to B. More precisely, it can be defined in the following ways from the rate region or the multi-letter

characterization of the rate region:

Ir(QXY ) = inf{r1, r2 : (r, r1, r2) ∈ Rr(X,Y ), ∃r} (97)

= inf{d− I(X;Y ) : (d, r) ∈ Sr(X,Y ), ∃r} (98)

= inf

{
d : sup

Ur : S(QXYUr )−I(X;Y )≤d
R(QXY Ur ) = I(X;Y )

}
(99)

where S(QXY Ur ) and R(QXY Ur ) were defined in Section III. We then have the following general concave envelope

characterization. Its proof is essentially based on a very simple geometric fact about the supporting hyperplane of

a convex set (see Figure 4), which should be applicable to other similar problems as well.

Theorem 7. For a stationary memoryless source with per-letter distribution QXY,

Ir(QXY ) = H(X|Y ) +H(Y |X)− lim
s↓0

1

s
ωsr(QXY). (100)

where ωsr is as in (34).

Again, for non-discrete distributions we may choose a reference measure and replace the entropy with the relative

entropy in the analysis, so a similar result holds, mutatis mutandis. However, it should be pointed out that Ir(QXY )

is usually infinite for non-discrete sources, such as the Gaussian source.

Proof: From (36), the right side of (100) equals

lim
s↓0

inf
Ur

{
S(QXY Ur )− I(X;Y ) +

1

s
[I(X;Y )−R(QXY Ur )]

}
(101)

= sup
s>0

inf
Ur

{
S(QXY Ur )− I(X;Y ) +

1

s
[I(X;Y )−R(QXY Ur )]

}
. (102)

From (99), the infimum in (102) is upper-bounded by Ir(QXY ) for any s, establishing the ≥ part of (100). For

the other direction, choose an arbitrary ε > 0. Here, note that Sr(X,Y ) is a closed convex subsect of [0,∞) ×

[0, I(X;Y )], and it contains the line [I(X;Y ) + Ir(QXY )] × {I(X;Y )}. It is easy to check that (I(X;Y ) +

Ir(QXY )− ε, I(X;Y )) /∈ Sr(X,Y ), so by the Hahn-Banach theorem (hyperplane separation theorem), there exists

an s > 0 such that for all Ur,

R(QXY Ur ) ≤ s(S(QXY Ur )− I(X;Y )− Ir(QXY Ur ) + ε) + I(X;Y ). (103)

For such an s, the infimum in (102) is lower-bounded by Ir(QXY )− ε, as desired.
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Next we shall provide a even simpler characterization of the MIMK. Define

σ0(PXY ) :=

 H(X̂, Ŷ ) I(X̂; Ŷ ) = 0;

−∞ otherwise.
(104)

For r ∈ {1, 2, . . . }, define

σr :=

 envX(σr−1) r is odd;

envY (σr−1) r is even,
(105)

and define σ∞ as the XY -concave envelope of σ0. In view of (31) and (32), we can express σr(QXY ) in a form

similar to (102).

σr(QXY ) = inf
Ur

sup
s>0

{
S(QXY Ur )− I(X;Y ) +

1

s
[I(X;Y )−R(QXY Ur )]

}
. (106)

The result below shows that in the finite alphabet case, we can indeed switched the order of the supremum and the

infimum. As is often the case, compactness guarantees such saddle point properties. The proof is rather simple for

fully supported QXY , but much more ideas are needed for general discrete alphabets; see Appendix A.

Lemma 1. Fix a QXY on a finite alphabet. For any PXY ∈ P(QXY ) and r ∈ {0, 1, 2, 3, . . . ,∞},

σr(PXY ) = lim
s↓0

1

s
ωsr(PXY ). (107)

Proof: The pointwise convergence (107) trivially holds when r = 0, in view of the definition (104). For

other values of r, the proof follows by induction, using the fact that ωsr(PXY ) monotonically decreases in s and

Proposition 7. Note that the nonnegativity assumption in Proposition 7 because 1
sω

s
r(PXY ) = H(PXY ) > 0 when

either X̂ or Ŷ is constant.

Theorem 8. If QXY is a distribution on a finite alphabet, then for r ∈ {1, . . . ,∞}

Ir(QXY ) = H(Y |X) +H(X|Y )− σr(QXY ). (108)

Proof: Immediate from Lemma 1 and Theorem 7.

Corollary 2. If X and Y are both binary under QXY , then the necessary and sufficient condition for

min{I1(QXY ), I1(QY X)} = I∞(QY X) (109)

is either QY |X or QX|Y is a binary symmetric channel (QX -almost surely or QY almost surely).

Remark 5. Tyagi [45] introduced a concept called “interactive common randomness” and showed its relation to the

minimum rate of interactive communication needed to generate the maximal amount of key. Then by drawing an

elegant connection to sufficient statistics, Tyagi [45, Theorem 9] proved Corollary 2 above in the case of binary

symmetric QXY , and conjectured that (109) holds for all binary sources. Here we have provided the necessary and

sufficient condition for the conjecture to hold with an entirely different approach.
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Proof: The sufficiency is convenient to check. Suppose without loss of generality that QY |X is a BSC with

crossover probability ε, and consider only the nontrivial case that QX is fully supported. There exists ε ∈ [0, 1]

such that P(QXY ) can be parameterized by f and g as

PXY =
1

Z

 ε̄f̄ ḡ εf̄g

εf ḡ ε̄fg

 (110)

where the normalization constant

Z := f ∗ ḡ ∗ ε. (111)

That is, there exists a one to one correspondence from (f, g) to PXY ∈ P(QXY ). Let π be such a bijection, and

πX(f, g) (resp. πY (f, g)) be the X-marginal (resp. Y -marginal) of π(f, g). To to avoid cumbersome notations, we

will sometimes write functionals like σr(f, g) instead of σr(π(f, g)), but keep in mind that concavity are always

w.r.t. to the probability distributions rather than (f, g).

There exists a real number c such that

h

(
εg

ḡ ∗ ε

)
≤ h(ε)− c

2
·
g − 1

2

ḡ ∗ ε
(112)

= h(ε)− c

4ε
+

c

4εε̄
· ḡε̄

ḡ ∗ ε
(113)

for all g, since the function on the right hand side is linear and the function on the left hand side is concave (both

viewed as functions of the binary distribution
(
εg
ḡ∗ε ,

ε̄ḡ
ḡ∗ε

)
), and for any c both functions have the same evaluation

at the equiprobable distribution ( 1
2 ,

1
2 ). On the other hand, σ0(f, g) = −∞ if fgf̄ ḡ > 0, and σ0(f, g) = h

(
εg
ḡ∗ε

)
when f = 0 (and similar expressions for f = 1, g = 0, or g = 1 cases). These imply that the XY -concave function

`(f, g) : P(QXY )→ R, (114)

(f, g) 7→ h(ε) +
c(f − 1

2 )(g − 1
2 )

f ∗ ḡ ∗ ε
(115)

upper bounds σ0, hence upper bounds σ∞. Then we have, noting that g = 1
2 for QXY ,

h(ε) = σ1(QXY ) ≤ σ∞(QXY ) ≤ `
(
f,

1

2

)
= h(ε) (116)

Thus σ1(QXY ) = σ∞(QXY ), which, by Theorem 8, implies that (109) holds.

To show the necessity, notice first that if either X or Y is deterministic, the key capacity is zero hence both

sides of (109) are zero. There are two cases remaining regarding the support of QXY :

1) QXY is fully supported. In this case there exists ε ∈ (0, 1) such that P(QXY ) can again be parameterized

as (110). Observe that

πX(f, g) =

(
1− g(ε ∗ f)

f ∗ ε̄ ∗ g
,
g(ε ∗ f)

f ∗ ε̄ ∗ g

)
(117)

so it is straightforward to check that the solution of λ ∈ [0, 1] to

λπX(1, g) + λ̄πX(0, g) = πX
(

1

2
, g

)
(118)
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is given by

λ = ε ∗ g. (119)

Then by definition,

σ1

(
1

2
, g

)
= λ̄σ0(0, g) + λσ0(1, g) (120)

= λ̄h

(
εg

ε̄ ∗ g

)
+ λh

(
εḡ

ε ∗ g

)
(121)

= −h(ε ∗ g) + h(ε) + h(g) (122)

≤ h(ε) (123)

= σ2

(
1

2
, g

)
(124)

where the inequality in (123) is strict unless g = 1
2 , and (124) follows along the same line as (116). Note

that for g ∈ (0, 1), σ1(·, g) is X-linear and σ3(·, g) is X-concave. If, additionally, g 6= 1
2 , then (124) shows

that σ3

(
1
2 , g
)
> σ1

(
1
2 , g
)
, which implies that

σ3(·, g) > σ1(·, g) (125)

except possibly at the endpoints (i.e. when f ∈ {0, 1}). In sum, we have shown

σ3(f, g) > σ1(f, g) (126)

except when f ∈
{

0, 1
2 , 1
}

or g ∈
{

0, 1
2 , 1
}

. In other words, if neither QY |X or QX|Y is a BSC, then

σ∞(QXY ) ≥ σ3(QXY ) > σ1(QXY ), (127)

and by symmetry, we also have

σ∞(QXY ) ≥ σ3(QY X) > σ1(QY X) (128)

which implies that the left of (109) is strictly larger than the right.

2) | supp(QXY )| = 3. Assume without loss of generality that QXY (0, 0) = 0. We can parameterize P(QXY )

with f, g via the map

π : [0, 1]2 \ {(0, 0)} → ∆(X × Y) (129)

(f, g) 7→ 1

f + f̄g

 0 f̄g

f ḡ fg

 . (130)

Observe that

πX(f, g) =

(
1− f

f + f̄g
,

f

f + f̄g

)
, (131)

so it is straightforward to check that the solution of λ ∈ [0, 1] to

λπX(1, g) + λ̄πX(0, g) = πX (f, g) (132)
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is given by

λ =
f

f + f̄g
. (133)

Thus,

σ1(f, g) = λσ0(1, g) + λ̄ · 0 (134)

= λσ0(1, g) (135)

=
f

f + f̄g
h(g). (136)

Next, for fixed f 6= 0 put g = gf (x) := xf
1−f̄x . Then

σ1(f, gf (x)) = (1− f̄x)h

(
fx

1− f̄x

)
. (137)

A short computation shows

d2

dx2
σ1(f, gf (x)) = − f

x(1− x)(1− f̄x)
< 0. (138)

Noticing that πY (f, g) = (1− x, x), this implies that σ0(f, ·) is strictly Y -concave for f 6= 0. Now suppose

there exist some (f0, g0), (f0g0f̄0ḡ0 6= 0) such that

σ1(f0, g0) = σ∞(f0, g0). (139)

Since σ0(·, g0) is linear (caution: in the distribution rather than in f ), σ∞(·, g0) is concave, and both functions

agree on the endpoints, (139) implies that, actually,

σ1(·, g0) = σ∞(·, g0), (140)

and in particular σ∞(·, g0) is linear. By symmetry, σ∞(g0, ·) is also linear. This is a contradiction since

σ∞(g0, ·) and σ1(g0, ·) agree at two points g = 0, g0 but the former linear functions dominates the latter

strictly concave function. Thus (139) is impossible, and in particular, we conclude by symmetry that

σ1(QXY ) < σ∞(QXY ); (141)

σ1(QY X) < σ∞(QY X) = σ∞(QXY ), (142)

as desired.

VI. DISCUSSION

Theorem 5 and Corollary 2 each says that allowing interaction does not improve one-way communication scheme

for BSS either when the communication rate is very low or high enough to achieve the maximal key rate. These

two pieces of facts naturally lead to:

Conjecture 1. For an i.i.d. symmetric Bernoulli source QXY , S1(X,Y ) = S∞(X,Y ).
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For a BSS (X,Y ) and under the protocol of one way communication from A to B, the optimal key-rate–

communication rate is (I(U ;Y ), I(U ;X)− I(U ;Y )), parameterized by the symmetric Bernoulli auxiliary random

variable U satisfying U−X−Y . The optimality of such auxiliary random variables can be shown using the concavity

of the function x 7→ h(ε∗h−1(x)); see also the proof of Proposition 5.3 in [13] for the case involving an eavesdropper.

What is less obvious is that such a scheme is also optimal among protocols allowing interactions, as Conjecture 1

postulates. If Conjecture 1 holds, we will also be able to conclude that S1(X ′, Y ′) = S∞(X ′, Y ′) for any QX′Y ′

such that QY ′|X′ is a BSC, and in fact S∞(X ′, Y ′) will be the intersection between a translation of Sr(X,Y ) and

the first quadrant. In Appendix D, we argue that Conjecture 1 will be implied by a conjectured inequality involving

four parameters, whose validity has been supported by reasonably extensive numerical computations. From the

numerical results, the inequality is close to failure only in the regime of very small communication rates and very

noisy BSS, but in former case, Theorem 5 has guaranteed the validity of the conjecture, while in the latter case,

we proved the inequality using Taylor expansion in Appendix E.

Beyond the scope of CR/key generation problem in this paper, we hope some of our methods to become useful

in other areas. For example, we have already seen that the XY -absolute continuity framework allows us to define

the strong data processing constant directly from a joint distribution without worrying about the technical difficulty

of determining the conditional distribution from the joint. The newly introduced symmetrical strong data processing

constant (Definition 6) has a concave envelope definition very similar to the conventional strong data processing

constant, and it worth exploring its significance in other contexts as well as its mathematical properties. The Rényi

divergence based performance measure for CR generation in Section IV-C seems new, and this as well as the

hypercontractivity based converse proof techniques opens a direction of future research. Moreover, techniques used

for analyzing the concave envelope characterization, such as expressing the MIMK as a limit as the slope of

the supporting line vanishes in Theorem 7 and the minimax result for finite-alphabet distributions in Lemma 1

(based on fundamental properties of XY -concave envelopes in Appendix A-B) are likely to be useful in the related

interactive source coding problem or the broader area of interactive function computation originally studied in

computer science [49], which has gained increasing popularity through some recent works in the CS community

including [7][8][10][21] (see also the ISIT tutorial [9]).

APPENDIX A

SEMICONTINUITY OF XY -CONCAVE FUNCTIONS

Recall that a concave function on a simplex which is lower bounded (or more or less equivalently, nonnegative)

on the vertices is necessarily lower semicontinuous (c.f. [40, Theorem 10.2]). For XY -concave functions, we prove

a similar basic result, which will be used in the proof of Proposition 7.

Lemma 2. Given a distribution QXY where QX and QY are fully supported and X = {1, . . . ,m}, Y = {1, . . . , n}.

1) If QXY is indecomposable, then there exists unique (f ,g) ∈ Rm × Rn such that

fg> ◦QXY = QXY (143)
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and the first coordinate f1 = 1.

2) Fix an SXY ∈ P(QXY ). For any δ ∈ (0, 1), there exists an ε > 0 such that for any (possibly unnormalized)

µXY � SXY satisfying |µXY − SXY | ≤ ε, we can find TXY satisfying

SXY �X TXY ; (144)

TXY �Y µXY ; (145)

|S − T | ≤ δ; (146)

|T − µ| ≤ δ. (147)

Note that (144) and (145) imply that, actually, S ∼ T ∼ µ.

3) A XY -concave function on P(QXY ) which is nonnegative when either X or Y is deterministic is necessarily

lower semicontinuous.

Proof:

1) Since the graph of QXY is connected, we can start from f1 and visit all vertices of the bipartite graph to see

that all the coordinates of f and g are uniquely determined.

2) It is without loss of generality to only prove the case of SXY = QXY . Suppose the graph of QXY has

k connected components, and assume without loss of generality that 1, . . . , k are X-vertices belonging to

different connected components. Consider

π : Rm−k × Rn → Rmn (148)

(f̄ ,g) 7→ f g> ◦QXY (149)

where f is an m-vector whose first k coordinates are 1 and last (m− k)-coordinates are f̄ . Denote by el the

l-vector (l ≥ 1) whose coordinates are all 1. Then π is an embedding from a neighborhood of em+n−k to Rmn

(c.f. [6]), because it is standard to check that the rank of the differential of π at em+n−k is m− k + n (full

rank), where the calculation is essentially reduced to the case of an indecomposable distribution and property

1) can be used. Thus there is an open neighborhood O of em+n−k homeomorphic to its image under π, and in

particular π has a continuous inverse on π(O). Consequently, there exists ε ∈ (0, 1) such that if µXY � QXY
and |µ−Q| ≤ ε, then µ ∈ π(O) and, with M defined as the matrix of µXY , (f̄ ,g) = (π|O)−1(P) satisfies

‖f − em‖∞ < δ/2; (150)

‖g − en‖∞ < δ/4, (151)

where f = (ek, f̄) as before. Put νXY (x, y) = f(x)QXY (x, y), and observe that (144)-(145) are satisfied
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because f and g have strictly positive coordinates. Also,

|Q− ν| ≤ ‖em − f‖∞
∑
x,y

QXY (x, y) (152)

≤ δ/2; (153)

|ν − µ| ≤ ‖en − g‖∞
∑
x,y

f(x)QXY (x, y) (154)

≤ ‖en − g‖∞
∑
x,y

2QXY (x, y) (155)

≤ δ/2. (156)

But from (150), 1− δ/2 < |ν| < 1 + δ/2, so the probability distribution T := 1
|ν|ν satisfies

|ν − T | < δ/2. (157)

Then (146)-(147) holds by the triangle inequality.

3) Consider an SXY ∈ P(QXY ). Denote by a > 0 the minimum nonzero entry of SXY , and assume without

loss of generality that SX and SY are supported on {1, . . . ,m1} and {1, . . . , n1}, respectively. For any

δ ∈ (0, a/4), find ε > 0 as in 2). For any R ∈ P(QXY ) satisfying

|R− S| ≤ ε, (158)

define, for x ∈ {1, . . . ,m} and y ∈ {1, . . . , n},

µ(x, y) := R(x, y)1{x ≤ m1, y ≤ n1}. (159)

Invoke 2) and find T satisfying (144)-(147). We have

T ≥ a− δ
a

S, (160)

so that

T =
a− δ
a

S +
∑
x∈X

λxDx (161)

where each Dx �X T is a distribution under which X is deterministic, and
∑
x λx = δ

a . Denote by σ the

XY -concave function in question. By its marginal concavity,

σ(T ) ≥
(

1− δ

a

)
σ(S) +

∑
x∈X

λxσ(Dx) (162)

≥
(

1− δ

a

)
σ(S). (163)

Since the minimum nonzero entry in T is at least a− δ > a/2, we have

R̃ ≥ µ ≥ a− 2δ

a
T, (164)
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where R̃ := 1
|µ|µ = RXY |X≤m1,Y≤n1

, so a similar argument also shows that

σ
(
R̃
)
≥
(

1− 2δ

a

)
σ(T ). (165)

Moreover, consider R̃1 := RXY |Y≤n1
. Since 1− ε ≤ |µ| ≤ 1 by (158), we have

R̃ �X R̃1; (166)

R̃1 �Y R; (167)

(1− ε)R̃ ≤ R̃1; (168)

(1− ε)R̃1 ≤ R, (169)

so applying the similar argument again,

σ(R̃1) ≥ (1− ε)σ(R̃); (170)

σ(R) ≥ (1− ε)σ(R̃1). (171)

Assembling (163), (165), (170), (171) and noting that δ and ε can be chosen to be arbitrarily small, we must

have

lim inf
R→S

σ(R) ≥ σ(S). (172)

APPENDIX B

POINTWISE CONVERGENCE OF MARGINALLY CONVEX ENVELOPES

The following result forms the basis of the proof of Lemma 1.

Proposition 7. 1) Suppose (fk)k∈(0,∞) is a family of continuous functions on a simplex ∆, where fk(x) is

nondecreasing in k for any x ∈ ∆. Define f(x) := limk↓0 fk(x). If env f is nowhere −∞, then

env f(x) = lim
k↓0

env fk(x) (173)

for any x ∈ ∆.

2) Consider a QXY on a finite alphabet with fully supported QX and QY . Suppose (fk)k∈(0,∞) is a family

of continuous functions on a P(QXY ), where fk(PXY ) is nondecreasing in k for any PXY ∈ P(QXY ),

and fk is nonnegative when either X or Y is deterministic. Define f(PXY ) := limk↓0 fk(PXY ) for each

PXY ∈ P(QXY ). Then

envXY f(QXY ) = lim
k↓0

envXY fk(QXY ). (174)

Remark 6. There are simple counterexamples to show that, in general, taking the limit and the concave envelope can

not be switched if a sequence of continuous functions is only assumed to converge pointwise to a certain continuous

function. Moreover if the sequence of functions are decreasing but not necessarily continuous, the switching can
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also fail. Therefore both the monotonicity of ωsr(PXY ) in s and the continuity in PXY play an essential role in the

proof of Lemma 1.

Proof: For 1), the env f(x) ≤ limk↓0 env fk(x) part is trivial. For the opposite direction, notice that the

following statements are equivalent:

env f + ε > fk for some k > 0 (175)

⇐⇒{x : env f(x) + ε− fk(x) ≤ 0} = ∅ for some k > 0 (176)

⇐⇒
⋂
k>0

{x : env f(x) + ε− fk(x) ≤ 0} = ∅ (177)

⇐⇒ sup
k>0

(env f + ε− fk) > 0 (178)

⇐⇒ env f + ε > inf fk = f (179)

where (177) is the main step which follows from Cantor’s intersection theorem. More precisely, notice that a concave

function on a simplex is lower semicontinuous [40, Theorem 10.2], so env f + ε − fk is lower semicontinuous,

and the set in (176) is closed in ∆, hence compact. Then (177) follows because a decreasing nested sequence of

non-empty compact subsets of the Euclidean space has nonempty intersection. Since (179) holds for all ε, we have

from (175) and the concavity of env f + ε that

env f + ε ≥ env fk (180)

for some k. Therefore env f(x) ≥ limk↓0 env fk(x) must hold because ε is arbitrary.

The proof of 2) is similar. We need the semicontinuity of the XY -concave function proved in Lemma 2.3.

APPENDIX C

PROOF OF THEOREM 4

Consider a small perturbation, so that

dPXY = diag(df) ◦PXY (181)

where P>Xdf = 0, and we used ◦ to denote the Hadamard product (pointwise product) of matrices, which has a

lower priority than the conventional matrix product.

Let u and v be the left and right singular vectors of A corresponding to the second largest singular value of A,

both normalized, so that ρm(X;Y ) = u>Av. Then

dρm(X;Y ) =
1

2ρm(X;Y )
dρ2

m(X;Y ) (182)

=
1

2ρm(X;Y )
v>dMv (183)

=
1

2ρm(X;Y )
v>(dA>A + A>dA)v (184)

= u>dAv. (185)
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But

dPX := df ◦PX ; (186)

dPY := df>PXY , (187)

so

u>dAv =
df>

2
diag(u)Av + df> diag(u)Av − 1

2
u>Adiag(df>PX|Y )v (188)

=
ρm(X;Y )

2
(u◦2)>df − ρm(X;Y )

2
(v◦2)>(PX|Y )>df (189)

where, e.g. u◦2 represents entry-wise square. This implies that we must have

u◦2 −PX|Y v
◦2 = aPX (190)

for some real number a. Summing up the entries on each side on both sides gives a = 0. Thus

u◦2 = PX|Y v
◦2. (191)

The necessity of (64) and (65) have been shown. To show the further simplification (66)-(67) under additional

assumptions, notice that

QX = QX|YQY , (192)

which, combined with (64), shows that

D(u◦2‖QX) ≤ D(v◦2‖QY ) (193)

where we abuse the notation by considering, e.g. u◦2 as a probability distribution. However, the by symmetry

we also have D(u◦2‖QX) ≥ D(v◦2‖QY ), so (193) is actually achieved with equality. Denote by PXY the joint

distribution associated with QX|Y v
◦2. The necessary and sufficient condition for the data processing inequality

(193) to hold with equality is that QY |X = PY |X holds PX -almost surely. In the case of indecomposable QXY

and fully supported QX and QY , it is elementary to show that v◦2 = PY . The other condition follows from the

same reasoning.

APPENDIX D

AN INEQUALITY RELATED TO CONJECTURE 1 AND ITS NUMERICAL VALIDATION

Let

S̄r(X,Y ) := (H(X,Y ), I(X;Y ))− Sr(X,Y ) (194)

be the reflection of Sr(X,Y ) with respect to a point. The functional ωsr defined in (34)-(33) can then be represented

as

ωsr(QXY ) := max
(S̄,R̄)∈S̄r(X,Y )

{sS̄ − R̄}. (195)
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Then geometrically, ωsr(QXY ) is as illustrated in Figure 4. Notice that the slope of the supporting line intersecting

the upper-right point of Ss1(X,Y ) (resp. Ss∞(X,Y )) is exactly the SDPI s∗1(X;Y ) (resp. the SSDPI s∗∞(X;Y )),

both equal to (1− 2ε)2 for a BSS with error probability ε.

R̄ := I(X;Y ) −R

S̄ := H(XY ) − S

I(X;Y )

ωs
r(QXY ) slope = s

Sr(X,Y )

Figure 4: Geometric illustration of ωs
r(QXY ).

We shall need to parameterize the lower set P(QXY ) with two parameters as in (110), via the bijection (f, g) 7→

PXY .

It can be easily verified that for fixed g, the transitional probability PY |X is also fixed, hence f only controls

the marginal PX . Further, the function

χ(f, g) := A+
c

Z

(
f − 1

2

)(
g − 1

2

)
(196)

is XY -linear (defined similarly as XY -concave with obvious changes) for any real numbers A and c. If α ∈ [0, 1
2 ]

is the number that maximizes sH(X,Y |U)− I(X;Y |U) where U is symmetric Bernoulli satisfying U −X − Y ,

then straight forward calculations show that

s =
(ε̄− ε)(log(α ∗ ε)− log(ᾱ ∗ ε))

logα− log ᾱ
. (197)

Moreover, sH(X,Y |U)− I(X;Y |U) is equal to ωs0 at four points:

(f, g) =(α,
1

2
), (198)

(f, g) =(ᾱ,
1

2
), (199)

(f, g) =(
1

2
, α), (200)
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(f, g) =(
1

2
, ᾱ). (201)

We can choose a unique A such that χ and ωs0 have the same values at those four points, and a unique c such that

the two functions have the same first order derivatives at those four points. It is an elementary exercise to figure

out the values of such A and c. If with these values of A and c the XY -linear functional χ dominates ωs0, then

Conjecture 1 will follow. In other words, Conjecture 1 will be implied by the following conjectured inequality:

Conjecture 2. Suppose α, ε, f, g ∈ (0, 1), and

s :=
(ε̄− ε)[log(α ∗ ε)− log(ᾱ ∗ ε)]

logα− log ᾱ
. (202)

(We remind the reader the notations ε̄ := 1− ε and α ∗ ε := αε̄+ ᾱε.) Also define

c :=
4kαᾱ(ε̄− ε)

ᾱ− α
log

α

ᾱ
+ 4(k + 1)εε̄ log

ε

ε̄
− 4(ε ∗ α)(ε ∗ ᾱ)

ᾱ− α
log

ε ∗ α
ε ∗ ᾱ

(203)

=
4εε̄

ᾱ− α
log

ᾱ ∗ ε
α ∗ ε

−
4εε̄(ε̄− ε) log ε̄

ε log ᾱ∗ε
α∗ε

log ᾱ
α

− 4ε̄ε log
ε̄

ε
. (204)

When α = 1
2 the above are defined via continuity. Then we have

sH(X̂, Ŷ )− I(X̂; Ŷ ) ≤ s[h(ε) + h(α)]− [h(α ∗ ε)− h(ε)] +
c(f − 1

2 )(g − 1
2 )

f ∗ ḡ ∗ ε
. (205)

(remember that h is the binary entropy function, PXY was defined in (110), and (X̂, Ŷ ) ∼ PXY ) and the equality

holds at the four points (198)-(201).

Remark 7. By symmetry of the functions involved, we only have to verify for α, ε, f ∈ (0, 1
2 ) and g ∈ (0, 1).

Remark 8. Conjecture 2 is stronger than Conjecture 1. On the other hand, it can be shown that Conjecture 1 implies

the inequality in Conjecture 2 for (f, g) ∈ [0, 1]× [α, ᾱ]
⋃

[α, ᾱ]× [0, 1].

Remark 9. From

E[X̂Ŷ ] =
ε̄(f̄ ḡ + fg)− ε(f̄g + fḡ)

Z
(206)

we obtain

c(f − 1
2 )(g − 1

2 )

f ∗ ḡ ∗ ε
=
c

4

[
1

2ε̄
− 1

2ε
+

(
1

2ε̄
+

1

2ε

)
E[X̂Ŷ ]

]
(207)

Therefore the conjecture inequality is equivalent to

(s+ 1)H(X̂, Ŷ ) ≤ H(X̂) +H(Ŷ ) + s[h(ε) + h(α)]− [h(α ∗ ε)− h(ε)] +
c

8εε̄
[ε− ε̄+ E[X̂Ŷ ]] (208)

Although Conjecture 2 seems elementary, we have not been able to find a full proof. Nevertheless, since it only

involves four parameters we can parameterize the space (0, 1)4 and verify numerically. We computed the difference

between the right hand side of (205) and the left hand side. From the choice of A we know that the difference is

exactly zero at the four points (198)-(201). Using Matlab we computed difference between the right hand side of
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(205) and the left hand side for f, g, ε, α ranging from vectors

F =[ss/3 : ss : 0.5− ss/3]′; (209)

G =[ss/3 : ss : 1− ss/3]′; (210)

E =[ss/3 : ss : 0.5− ss/3]′; (211)

A =E; (212)

where the step size ss := 0.001. As the result the minimum value of the difference is

-5.841478017444557e-17 with double precision, which is quite small. Moreover negativity of the

difference occurs only when 0.496333333333333 ≤ ε < 0.5 and 0.499333333333333 ≤ α < 0.5. If we make ε

and α closer to 0.5, then the magnitude of the difference can further increase, up to about 10−9 at most; however

in this case the image of the left hand side becomes noise-like of the magnitude about 10−9 as well, so the error

is most likely due to the limit of the double precision. In fact, when we use variable precision arithmetic (vpa),

the images become smooth and good looking again, and the minimum difference becomes zero.

To visualize what is happening in Conjecture 2, we plotted ωs0, χ and their difference in Fig. 5-7 for a particular

instance of ε and α (the value of k is then uniquely determined).

Figure 5: Plot of ωs0 against f and g when α = ε = 0.11

APPENDIX E

PROOF OF CONJECTURE 2 FOR ε→ 1
2

We fix f , g and α and let ε→ 1
2 . Let u be such that

ε =
1− u

2
. (213)
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Figure 6: Plot of χ against f and g when α = ε = 0.11

Figure 7: Plot of χ− ωs0 against f and g when α = ε = 0.11

Introduce the notation

ε(x, y) :=

 1− ε x = y;

ε otherwise.
(214)

Then,

d

dε
log ε(x, y) =

log e

ε(x, y)
(−1)x−y+1, (215)

d2

dε2
log ε(x, y) = − log e

ε2(x, y)
, (216)
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d

dε
logZ =

log e

f ∗ ḡ ∗ ε
(f ∗ g − f ∗ ḡ) (217)

=− log e

f ∗ ḡ ∗ ε
(f̄ − f)(ḡ − g), (218)

d2

dε2
logZ = − log e

(f ∗ ḡ ∗ ε)
(f̄ − f)2(ḡ − g)2 (219)

d

dε
log
∑
x′

ε(x′, y)f(x′) =
log e∑

x′ ε(x
′, y)f(x′)

∑
x′

(−1)x
′−y+1f(x′) (220)

d2

dε2
log
∑
x′

ε(x′, y)f(x′) = −
log e(

∑
x′(−1)x

′−y+1f(x′))2

(
∑
x′ ε(x

′, y)f(x′))2
(221)

In particular,

d

dε
log ε(x, y)

∣∣∣∣
ε= 1

2

= 2 log e(−1)x−y+1, (222)

d2

dε2
log ε(x, y)

∣∣∣∣
ε= 1

2

= −4 log e, (223)

d

dε
logZ

∣∣∣∣
ε= 1

2

= −2 log e(f̄ − f)(ḡ − g), (224)

d2

dε2
logZ

∣∣∣∣
ε= 1

2

= −4 log e(f̄ − f)2(ḡ − g)2, (225)

d

dε
log
∑
x′

ε(x′, y)f(x′)

∣∣∣∣∣
ε= 1

2

= 2 log e
∑
x′

(−1)x
′−y+1f(x′), (226)

d2

dε2
log
∑
x′

ε(x′, y)f(x′)

∣∣∣∣∣
ε= 1

2

= −4 log e(
∑
x′

(−1)x
′−y+1f(x′))2. (227)

When ε→ 1
2 , we show that both sides of the inequality is of the order of u2. It’s easy to compute

s =
2 log e(ᾱ− α)u2

log ᾱ− logα
+ o(u2), (228)

c = o(u2), (229)

I(X̂, Ŷ ) =
∑
x,y

ε(x, y)f(x)g(x)

Z
log

ε(x, y)Z∑
x′ ε(x

′, y)f(x′)
∑
y′ ε(x, y

′)g(y′)
(230)

where the summations are over (x, y) ∈ {0, 1}2, x′ ∈ {0, 1} and y′ ∈ {0, 1}, respectively. Define

T (ε) := I(X̂; Ŷ )Z. (231)

Since

I(X̂; Ŷ )
∣∣∣
ε= 1

2

= 0, (232)
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and from the minimality of I(X̂; Ŷ ) at ε = 1
2 ,

d

dε
I(X̂; Ŷ )

∣∣∣∣
ε= 1

2

= 0, (233)

we have from Leibniz’s rule

d2

dε2
T

∣∣∣∣
ε= 1

2

=
d2

dε2
I(X̂; Ŷ )

∣∣∣∣
ε= 1

2

Z
∣∣∣
ε= 1

2

+ 2
d

dε
I(X̂; Ŷ )

∣∣∣∣
ε= 1

2

d

dε
Z

∣∣∣∣
ε= 1

2

+ I(X̂; Ŷ )
∣∣∣
ε= 1

2

d2

dε2
Z

∣∣∣∣
ε= 1

2

(234)

=
1

2

d2

dε2
I(X̂; Ŷ )

∣∣∣∣
ε= 1

2

. (235)

Thus we obtain

d2

dε2
I(X̂; Ŷ )

∣∣∣∣
ε= 1

2

= 2
d2

dε2
T

∣∣∣∣
ε= 1

2

(236)

which is useful because the differential on the right hand side above is easier to compute than the left hand side.

From (230) and (231),

d2

dε2
T

∣∣∣∣
ε= 1

2

=
∑
x,y

d2

dε2
[ε(x, y)f(x)g(x)]

∣∣∣∣
ε= 1

2

log
ε(x, y)Z∑

x′ ε(x
′, y)f(x′)

∑
y′ ε(x, y

′)g(y′)

∣∣∣∣∣
ε= 1

2

(237)

+ 2
∑
x,y

d

dε
[ε(x, y)f(x)g(x)]

∣∣∣∣
ε= 1

2

d

dε
log

ε(x, y)Z∑
x′ ε(x

′, y)f(x′)
∑
y′ ε(x, y

′)g(y′)

∣∣∣∣∣
ε= 1

2

(238)

+
∑
x,y

ε(x, y)f(x)g(x)
∣∣∣
ε= 1

2

d2

dε2
log

ε(x, y)Z∑
x′ ε(x

′, y)f(x′)
∑
y′ ε(x, y

′)g(y′)

∣∣∣∣∣
ε= 1

2

(239)

From (222)-(227), we see that the first term is zero. The second term is equal to

2
∑
x,y

f(x)g(y)(−1)x−y+1 · 2 log e

(−1)x−y+1 − (f̄ − f)(ḡ − g) +
∑
x′

(−1)x
′−yf(x′) +

∑
y′

(−1)x−y
′
g(y′)


(240)

= 4 log e
(
1 + (f̄ − f)2(ḡ − g)2 − (f̄ − f)2 − (ḡ − g)2

)
(241)

The third term in (239) can be simplified as

∑
x,y

f(x)g(y)

2
· 4 log e

−1− (f̄ − f)2(ḡ − g)2 + (
∑
x′

(−1)x
′−y+1f(x′))2 + (

∑
y′

(−1)x−y
′+1g(y′))2

 (242)

= 2 log e[−1− (f̄ − f)2(ḡ − g)2 + (f̄ − f)2 + (ḡ − g)2] (243)

Hence

d2

dε2
T

∣∣∣∣
ε= 1

2

= 4 log e[1− (f̄ − f)2][1− (ḡ − g)2] (244)

Thus we find the left hand side of (205) is

2 log e(ᾱ− α)u2

log ᾱ− logα
[h(f) + h(g)]− u2

2
log e[1− (f̄ − f)2][1− (ḡ − g)2] + o(u2). (245)
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The right hand side of (205) is

2 log e(ᾱ− α)u2

log ᾱ− logα
(1 + h(α))− log e

2
[1− (ᾱ− α)2]u2. (246)

Thus the following inequality implies the validity of (205) for fixed α, f, g ∈ (0, 1
2 ) and vanishing ε− 1

2 :

2(ᾱ− α)

log ᾱ− logα
[h(f) + h(g)]− 8ff̄gḡ ≤ 2(ᾱ− α)

log ᾱ− logα
(1 + h(α))− 2αᾱ (247)

Note that now we only have to verify the inequality for g ∈ (0, 1
2 ), in contrast to Remark 7. Consider fixed α. The

values of f and g that maximizes the left hand side of (247) must be the solution of the following optimization

problem:

minimize η(f, g) := 16ff̄gḡ subject to φ(f, g) := h(f) + h(g) = C (248)

for some constant C. We solve this minimization problem using Lagrange multiplier method. Define

L(f, g) := η(f, g)− λφ(f, g). (249)

Suppose (f∗, g∗) is a local minimum, then for some value of α, we have ∂1L(f∗, g∗) = 0,

∂2L(f∗, g∗) = 0.
(250)

for some λ = λ∗ 6= 0, which implies that ∂1η(f∗, g∗) = λ∗∂1φ(f∗, g∗),

∂2η(f∗, g∗) = λ∗∂2φ(f∗, g∗).
(251)

1) If f∗ 6= 1
2 and g∗ 6= 1

2 , we can cancel λ∗ from (251) and obtain after rearrangement

log f̄∗ − log f∗

f̄∗ − f∗
f̄∗f∗ =

log ḡ∗ − log g∗

ḡ∗ − g∗
ḡ∗g∗. (252)

It is elementary to check (e.g. by writing it as Taylor series in terms of 1− 2x that the function

T (x) :=
log x̄− log x

x̄− x
x̄x (253)

is monotonically increasing on (0, 1
2 ). Thus (252) implies that

g∗ = f∗. (254)

Recall that (f∗, f∗) being a local minimum point implies that the Hessian matrix [∂2
i,jL(f∗, f∗)] is positive-

semidefinite on the orthogonal complement of the span of ∇φ(f∗, f∗). In our case, this means that the

matrix  λ∗ log e
f∗f̄∗

− 32f∗f̄∗ 16(f̄∗ − f∗)2

16(f̄∗ − f∗)2 λ∗ log e
f∗f̄∗

− 32f∗f̄∗

 (255)

is positive-semidefinite on the span of (1,−1)>, or equivalently,

λ∗ log e

f∗f̄∗
− 32f∗f̄∗ ≥ 16(f̄∗ − f∗)2 (256)
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Substituting (254) into (251), we obtain

λ∗ =
16(f̄∗ − f∗)f∗f̄∗

log f̄∗ − log f∗
, (257)

hence (256) is equivalent to

log e(f̄∗ − f∗)
log f̄∗ − log f∗

− 2f∗f̄∗ ≥ (f̄∗ − f∗)2 (258)

However for any u∗ := 1− 2f∗ 6= 0, we show that (258) fails:

LHS of (258) =
u∗

ln(1 + u∗)− ln(1− u∗)
− 2f∗f̄∗ (259)

=
u∗∑∞

k=1
(−1)k−1

k u∗k −
∑∞
k=1

(−1)k−1

k u∗k
− 2f∗f̄∗ (260)

=
u∗∑∞

k=1
(−1)k−1

k u∗k +
∑∞
k=1

1
ku
∗k
− 2f∗f̄∗ (261)

=
1∑

l∈2N
2
l+1u

∗l − 2f∗f̄∗ (262)

<
1

2
− 2f∗f̄∗ (263)

=
(f̄∗ − f∗)2

2
(264)

<RHS of (258). (265)

Therefore, the solution to (248) must belong to the following case:

2) If either f∗ = 1
2 or g∗ = 1

2 , by the symmetry of (247) we may assume without loss of generality that g∗ = 1
2 .

The left hand side of (247) becomes

2(ᾱ− α)

log ᾱ− logα
(1 + h(f))− 2ff̄ . (266)

When viewed as a function of f , it is maximized by f = α using Calculus, in which case it agrees with the

right hand side of (247). Thus (247) is proved.
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