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Abstract

The paper deals with the global Kondaurov double porositgl@haescribing a non-equilibrium
two-phase immiscible flow in fractured-porous reservoiteew non-equilibrium phenomena occur in
the matrix blocks, only. It is shown that the homogenized et@dn be represented as usual equations
of two-phase incompressible immiscible flow, except foralidition of two source terms calculated by a
solution to a local problem which is a boundary value problena non-equilibrium imbibition equation
given in terms of the real saturation and a non-equilibriarameter.
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1 Introduction

The homogenized Kondaurov double porosity type model @& flescribing a non-equilibrium two-phase
flow of immiscible incompressible fluids in fractured-posoreservoirs is considered. Two-phase flow in
porous media is important to many practical problems, iclg those in petroleum reservoir engineering,
soil science etc. The modeling and numerical simulatiowafphase flow in porous media represents an
important key in the design of cost-efficient, safe and blgtalean-up tools. It can reduce the number of
laboratory and field experiments, help to identify the digant mechanisms, optimize existing strategies
and give indications of possible risks. In the existing ptgisand mathematical literature the authors are
dealing mainly with the equilibrium models. However, thepermental studies have invalidated this kind
of models (see, e.gl, [11]). The model considered in thigpaprresponds physically to a non-equilibrium
immiscible incompressible two-phase flow through fraaduyperous media. Notice that the crucial feature
of a porous medium, saturated with immiscible fluids, is thet that the process depends on the rate and
direction of the change of state. The most well-known androftiscussed phenomena of this type are the
relaxation of capillary pressure, the "capillary presssaturation” hysteresis curve, and the dependence
of the phase permeabilities and the value of the capilldckiag on the rate and direction of a change in
the saturation. The generally accepted explanation oétpeenomena is the non-equilibrium of the joint
motion of the fluids (see, e.g., [17]).
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The homogenization of multiphase flow through heterogesgmuous media as well as the numerical
simulation of this physical process has been a problem efést for many years and many methods have
been developed. There is an extensive literature on thjsaulblere we refer to the monographsl[19, 26] as
well as to [28=30]. A recent review of the mathematical hoerogation methods developed for two-phase
flow in porous media can be viewed [n[1, 4]. It is important tice that the microscopic models of the
multiphase flow in porous media considered in all these warksequilibrium even if the homogenization
process for single- and multiphase flows in double porosiyialeads to appearing of an additional source
term which exhibits the global non-equilibrium behaviottoé model (see, e.gl,/[4,12/26] 33]). In addition,
it is shown in [2| 13] that the homogenization procedure $aacappearing of the non-equilibrium capillary
pressure in the global model. However, there are few papsating with the homogenization of non-
equilibrium two-phase flows in porous media. Here we refef3@), where the authors deal with the
upscaling of such flows in vertically fractured oil resergoiThe homogenization process is carried out for
Barenblatt's and Hassanizadeh's flow models (see, el@1[82]). Concerning the rigorous mathematical
studies in the domain of non-equilibrium two-phase flows alg® observe only few papers on the subject
dealing mainly with the existence and uniqueness probleses, €.9./[15,22]).

In this paper we study an immiscible non-equilibrium twapé flow in double porosity media in the
framework of the thermodynamically consistent Kondaurosded [23/24] which is, in fact, an integro-
differential one due to the fact that the mobility functiceasd the capillary pressure depend on Kondau-
rov’s non-equilibrium parameter which satisfies a kinetjoaion with respect to the real saturation (see
Section 2 below). The detailed comparison of the Kondaurodehand Barenblatt's and Hassanizadeh’s
non-equilibrium flow models is done in [24,125]. Here we foaus attention on the homogenized non-
equilibrium double porosity type model obtained recentlyfd5]. This model has a rather complicated
form in vue of the numerical simulation. From the other hand, know that the humerical methods are
very sensitive to the choice of the governing equations fofitmen the aim of the present paper is to find
a more simple form for the local problem involved in the moddbmely, we will show that the homog-
enized problem can be represented as usual equations qfhase incompressible, immiscible flow, with
two source terms calculated by a solution to a local probldrithvis a boundary value problem foman-
equilibrium imbibition equationThe derivation of this equation is essentially based onirttieduction of
a non-equilibrium global pressurehich generalizes the notion of the well-known global ppesgunction
(see, e.q. 16,16, 18]) widely used in the mathematicalyasiglof multi-phase flows in porous media. To
our knowledge it is a first attempt of introduction of the regpilibrium imbibition equation in the homog-
enization process.

The rest of the paper is organized as follows. In Seéfion 2nesgmt a mathematically rigorous adimen-
sionalized non-equilibrium Kondaurov model focusing oa tlorrect definitions of the capillary pressure
and mobility functions. In Sectidd 3, following the lines[@6], we introduce the global Kondaurov dou-
ble porosity model. Finally, in Sectidn 4, we study the lgsadblem involved in the homogenized model.
Introducing the notion of non-equilibrium global pressuse reduce the local problem formulated in terms
of phase pressures to a unigue non-equilibrium imbibitigma¢ion which is an integro-differential equation
with respect to the real saturation. As it shown in Reniark &ection 4, the last one is a generalization
of the well-known imbibition equation appearing in the hayanization of the two-phase double porosity
models (see, e.gl, [20] and the references herein). The gapempleted by the concluding remarks.

2 Adimensionalized non-equilibrium Kondaurov model

In this section we introduce the adimensionalized noniigiuim Kondaurov flow model proposed in [23]
and then developed in [24]. More recently it was discussd@5h The equations of the model read:

K
95x +divW, =0, where the fluxes are defined by : W, = _Efe(5x,€) \VA

d
ot ek

pr (K =w,n). (2.1)
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2 ADIMENSIONALIZED NON-EQUILIBRIUM KONDAUROV MODEL 3

Here the subscripts, n denote the wetting and non-wetting fluids; is the saturation of the corresponding
fluid; 0 < ® < 1 is the porosity function is the absolute permeability tensgr; is the pressure of the
wetting (non-wetting) fluidyf, = f.(Sk, &) stands for the relative permeability of the wetting (nortting)
fluid defined by:

fw(SZU7£):f’S} (2Sw+6£/a_1) and fn(Snvé):fg (2 [I_Sw] _65/0‘) (2'2)

with the superscript "e" denoting the equilibrium relatplease permeabilities in the Darcy-Muskat law (see,
e.g., [16]) andy, 8 > 0 being constitutive parameters of the model;is the viscosity of the wetting (non-
wetting) fluid; finally, £ denotes the non-equilibrium Kondaurov parameter whiclsfseg the following
kinetic equation:

= TAGE) with ASn O ™ S-S & 23)
Herer > 0 is the relaxation time. The model is completed as follows tH&ydefinition of saturations, one
hasS,, + S, = 1 with S,,, S,, > 0. Then the curvature of the contact surface between the tidsflinks
the jump of pressure of two phases to the saturation by théargipressure law:P, (S, &) = pn — Pw,
where (see, e.g!, [25]) the capillary pressure functionthegorm:

DL (S, &) &y + M[1—5,] —at. (2.4)

Here M,~ > 0 are constitutive parameters of the model. Finally, we bhiee the mobility functions\,

which will be widely used below. They are defined as(S,, €) % f..(S. &)/ 1w (& = w, n).

Now we discuss in more details the definitions and the priagsenf the capillary pressure and the
mobility functions. We also formulate the conditions on tlanstitutive parameters of the model. We
start the analysis by establishing the explicit dependefithe non-equilibrium parameter on the wetting

saturation function. Namely, denotilﬁ;‘gdéf Sw, one can easily show that

£= éinit(w) e—t/T + o

8

/ O (12 (0 e with €9(0) X €0,0) > 0. (25)
0

Consider the capillary pressure function. The initial baany value problem for the two-phase filtration is
well posed if only if the capillary pressure functidh is a decreasing function of the saturati®nin order to
prove this fact we often deal with the derivative of the pagtare with respect te5. This derivative involves
the function¢’s def %(w, 0). From now on, for the sake of definiteness, we assumetthat ¢'s(z,0) > 0

in 2, wheref2 is our reservoir of interest. We have the following result.

Lemma 1 Let the functiorg’y > 0 satisfy the bounthax,cq &'s(z,0) < 400 in  and letM, a, 3 be such
that M > 2 «?/3. Then the functiorP. is a positive decreasing function 6f

The proof of the lemma is based on the application of the kiregfuation[(Z.B).

Now we turn to the mathematically rigorous definition and gneperties of the mobility functions
Aw, An in the non-equilibrium case. Let us recall that for an edtiilim two-phase flow in porous medium
(see, e.g.[]1,2], and the references therein) the staradamuimptions on the mobility functions ar@:<
AS(S), A8 (1 —=8) < 1forS € [0,1]and X, (S = 0) =0, AS(S = 1) = 1 andAe(S = 0) = 1,
AS(S = 1) = 0. HereS stands for the wetting phase saturation in the equilibri@sec Our goal now
is to establish similar properties of the mobility functowhich depend, in the non-equilibrium case, both
on the real saturatio§ and the non-equilibrium parametgr To this end, it is natural to introduce a new
non-equilibrium parameta# given by:

D254 8E/a—1 (2.6)
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3 THE GLOBAL KONDAUROV DOUBLE POROSITY MODEL 4

and to consider the properties of the mobility functionsemts of this parameter. As functions @f the
mobilities become,, (S, &) = XS, (¥) and A, (S, &) = A5 (1 — ). We have:

Lemma 2 Let® be the parameter defined i{2.6). Assume that maxq 2 £™%(z) < 1in Q. Then we
have: (i) There are the values of the saturatiSihdenoted bysy_y and Sy—1, such that

g

20

—t/(27) .
9 =0 for Sy def © <1 — B §‘mt> and ¥ =1 for Sy—1 def g _

5 a Einit(x) 6—t/(27‘).

2.7
(ii) The valuesSy—g, Sy—1 are such thad < Sy—_g < Sy—1 < 1landSy—y — 0, Sy—1 — 1 ast — +oo.

In order to prove the lemma, one have to solve a Volterra nowgeneous equation coming from the
representatiori (2.5) of the non-equilibrium paraméter
Now, let us study the dependance of the param@ten the saturatioty. We have:

Lemma 3 Let be the parameter defined hy (P.6). Th#&is an increasing function of.

The proof of the lemma is based on the positiveness of theimg.
Thus we conclude that with the following assumptions on thestitutive parameters:

€5(x,0) =0, M>2a*/8, and 0< max (BE€™(z)/a) <1 inQ (2.8)

we have that(i) The capillary pressure is a decreasing function of the gatur.S. (ii) The parametet
equals 0 and 1 fofy—o and Sy—1 given by [2.T).(iii) The parametet? is an increasing function df.
Now let us explain how do we understand the mobility fundiag, A, in our further analysis. We set:

1, when S > Sy—1; 1, when § < Sy—o;
Aw(S,€) = ¢ A, (Y¥) when Sely; and AN, (S,&):=¢ A, (1—-9) when Sely; (2.9)
0, when S < Sy—g 0, when S > Sy_1,

wherely def [Sw—0, Syw=1] stands for our interval of interest.

3 The global Kondaurov double porosity model

In this section we formulate the mesoscopic flow equatiorte@Kondaurov model and then introduce the
homogenized model obtained earlier(in][25]. We considesam@irQ) ¢ R¢ (d = 2, 3) which is assumed
to be a bounded, connected domain with a periodic structMiare precisely, we will scale this periodic

structure by a parameterwhich represents the ratio of the cell size to the whole regiand we assume

thate | 0. LetY def (0,1)¢ be a basic cell of a fractured porous medium. We assumelttiatmade

up of two homogeneous porous medig andY; corresponding to the parties of the mesoscopic domain
occupied by the matrix block and the fracture, respectivehusY = Y,, U Y; U I's,, Wherel's,, denotes

the interface between the two media. Kitwith ¢/ = ”f” or ”’m” denotes the open set corresponding to the

porous medium with index. ThenQ) = Qp UT'g U Qf, wherel's o 00z N 082, N 2 and the subscripts

"m”, ”f” refer to the matrix and fracture, respectively.
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Figure 1: (a) The domaife with the mesostructure.  (b) The reference gell

Before describing the equations of the modell(2.1) for thehmonogeneous porous medidmwith
the periodic structure, we give the corresponding notaéind also define the porosity function and the
global permeability tensor adopted to the double porosigdiom 2. We have: ®°(z) = ®(%) is the

porosity of the reservoif2. The function® is aY -periodic defined by®*(x) = Q15 (x) + Pl (2),
wherelsg, 17, are the characteristic functions of the metig (27, respectively, and where the constants
0 < &, ®,, < 1do not depend on; K°(x) = K (%) is the absolute permeability tensor@fit is defined
by: K¢(z) K 15(z) + 2K 15, where0 < Ky, K, < +oo are positive constants that do not depend
one; S5, = Si,(x,t), S;,, = S;,(xt) are the saturations of wetting and nonwetting fluid<y
respecti\’/ely;pzw’: pzw(x,i), Pin = pi (. t) are the pressures of wetting and nonwetting fluid&jn
respectively£; = £;(x, t) is the non-equilibrium parameter in the medi@ft A ,,, \¢,, are the mobilities

of wetting and nonwetting fluids if27, respectively;r, is the relaxation time if23; oy, B¢, ve, My > 0

denote the constitutive parameters(ifp which do not depend oa. Denoting.S; def ge

7.+ We obtain the
following flow equations:

<I>5(:U)aaS: —div {Ka(:v))\w (E,S‘S,E‘S) fou} =0 in Qp;
—P°(x a;; — div {Ke(ac))\n <§,S€,£€) Vpn} =0 in Qp;

C (@) + M () [1 - ) — o () €7,

(3.10)
whereQ 0« (0,T) (T > 0is fixed); the mobilities\, ,,, \¢,, are defined (in accordance with (2.9))
by:

Mw(S7,€7) = Aew(287 — 14 Be&i/ag)  and  Ayn(S7,€7) = A (21— S7] — Be&i/ow) (3.11)

P (.5°€) = i~ i, with (@) (£.57.€°)
c 9

and each function® := S¢, p , p5,, & as well as the piece-wise constant functidris K¢, v¢, M€, of are

defined asu® % uf1f(z) 4+ uf,15,(z). The system(3.10) is completed by the corresponding axteréind

initial conditions which are omitted here for the sake ofvitse(for more details see [25]).
Now we introduce the global non-equilibrium Kondaurov flowedkel obtained by the method of two-
scale asymptotic expansions (see, €.g., [8, 10,13, 31pdtich 4.2 of[[25]. Here we also restrict ourselves
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3 THE GLOBAL KONDAUROV DOUBLE POROSITY MODEL 6

to a special case of the homogenized model. Namely, as inf@donsider the non-equilibrium effects
for the matrix part only and not for the fracture system whghelated to the fact that the non-equilibrium
effects for fractures, due to their high permeabilities,aimhsequently, low capillary forces, are negligible.
First, we introduce the notatiors, P,,, P, denote the homogenized wetting liquid saturation, theimgptt
and nonwetting liquid pressures, respectivedy; denotes the effective porosity and is given ki def

¢ |Ys|/| Y|, Where|Yy| is the measure of the s&} (¢ = f,m); K* is the homogenized tensor with the
entries

def K —Ay ¢ =01in Yy
K}, = ﬁ [VyGi + @] [Vy¢ + €] dy, where (; satisfies : § V(- Uy = —€; - Uy on 'y
mi Y y— (i(y) Y — periodic.
(3.12)
Then the homogenized system has the form:
ol (g—f — div, {K* )\f7w(s)va} =Q, in Qp;
g % — div, {K*Af,nu - S)VPn} = Q, inQp (3.13)
P.(S) = P, — P, with ®; P.(S) % ag1 S+ 253 in Qp,
where the constants ; (j = 1,2, 3) in vue of condition[(2.B) are defined as:
def def def
agg = — (My—aj/Br) <0, aga =1 (M¢—20j/B) >0, ags = ve+Me—aj/Be >0 (£ =f,m).
(3.14)

Remark 1 Notice that the functions, P,,, P, appearing in[(3.IB) are, in fact, zero order terms in the
asymptotic expansions for the saturatiofis, and phase pressures ,, pf , in the fracture domairf2;
(for more details see formulae (3.3)-(3.4) and the begigroh Section 3.2 in([25]). In a similar way, we
introduce below the functions p,,, p,, in (3.18) for the matrix block.

For almost all point: € €, the equations for flow in a matrix block are given by:

% % — divy {Km )\m,w(ﬂm)vypw} =0 in Yy, X Qp;
Js . .
—®,, 5 divy § Km Aman(1 —9m)Vypn p =0 in Yy, X Qp;

(3.15)

™ot ™ot ot
pw(z,y,t) = Py(z,t) and pu(x,y,t) = Py(z,t) on ey X Qp.

Im Tm \ de O
DPe <79 0 > = Pp — Pw With @ pe <79 0 > d:f am,1 Unm + am,2 8— + am,3;

Here we make use of the following notatios; p,,, p,, denote the wetting liquid saturation, the wetting
and nonwetting liquid pressures in the matrix bld¢k, respectively,,, denotes the local non-equilibrium
parameter in the matrix block,, it is defined as the solution to the following equation:

0€m 1 def Om

ot = HA(&gm) with A(37£m) = 5_m [1 - S] - £m; (316)

the parameted,, is defined by:9,, dfos + Bm &m/am — 1. For anyz € Q andt > 0, the matrix-fracture
sources are given by:

def Pm Os
w — A 3 ,t d = —X=n- 317
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4 NON-EQUILIBRIUM MATRIX IMBIBITION EQUATION 7

Remark 2 Notice that in the case of the equilibrium flow, frdm (3.16¢ ave thag,, = = [1—s] for

7m = 0. Then the macroscopic model(3.18)-(3.17) is exactly éntlg, with a specified capillary pressure)
the well known homogenized double porosity model for theisaoinbe incompressible two-phase flow in

porous media considered by many authors (see, e.gl, [1332@nd the references therein).

4 Non-equilibrium matrix imbibition equation

Let us recall that when a porous medium filled with some fluidrsught into contact with another fluid
which preferentially wets the medium, there is a spontasdiow of the wetting fluid into the medium and
a counterflow of the resident fluid from the medium. This plmeanon is called imbibition and arises in
physical situations involving multiphase flow systems (seg., [27]).

The goal of this section is to reduce the local problem (3f@6hulated in terms of the phase pressures
to a new problem, for @on-equilibrium imbibition equatiogiven in terms of the real saturaticrand the
parametew,, which is, in fact, the functional of. To this end, let us rewrite the capillary pressure function
given in [3.15) as follows:

Pe (ﬂm,ag%> :wc(ﬂm)+é\m728;’% with 7e(Om) < 31 Om+3ms and am; < am /. (4.18)

Inspired by [1], we introduce the notion abn-equilibrium global pressufewhich is a generalization
of the global pressure function defined earlier (see, &L 18]) in the the equilibrium case:

€ ~ 7-9m €: ~ 79m
P P Gu(O) +3ma T (9 ) and P GO 3T (9 T ) (429)
where the function&,,, G,,, F.,, I, will be specified later using several conditions. Roughlgadging, these
conditions are a consequence of the definition of capillagsgure function (3.15) First, we define the
functionsG,,, G,,. Namely, the functiorG,,(9¥,) we choose in the following way:

9
€ m )\ m,w . €
G (9m) % / ﬁg) 7 ds With Am(Bm) Y Ao (Om) + Amn (@), (4.20)
0 m

From now on\ m »(9m) := Am (1 — 9m) andn, denotes the derivative of the functiarwith respect to
its argument. Notice that the standard assumption on thaifum)\,,, (see, e.gl]1] and the references herein)
is that there exists a strictly positive constdntsuch that\n,(s) > Lo > 0in¢ € [0,1]. Now, taking into
account thatr.(¢) = am,1, Wherean, 1 < 0 (see[(3.14)), from(4.20) we get:

P )\m,w(g)

lgm)
G,(Vm) = am / d¢ with V,G,,(¥m) = am
( ) )1 0 )\m(g) Y ( ) 1

)\m,w(
Am(Pm

V. (4.21)

The functionG,, is then defined by, (9,) def G (¥m) — me(Im). This implies the following formula for

the gradient of the functiofa,,:

A m,n('ﬂm)
Am(Fm)

We notice that\ m ) (Vm)Vy Gy (Pm) = a(Fm)VyOm and m 1 (9m)VyGn(Pm) = —a(9m)V,yIm, Where

(Om) VyOm = —am1 VyOm. (4.22)

def )\m,n(ﬂm))\m,w(ﬁm)

a(9m) 2 Al C (4.23)
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4 NON-EQUILIBRIUM MATRIX IMBIBITION EQUATION 8

Let us introduce the following function:

Do O
b(Im) < /o a(s) ds = [am 1| /0 Am’n(;:q?g’w(g) ds. (4.24)

Then taking into account the definition of the functiowe have:

~ Im
Am,w(Om)VyPw = Amw(@m)VyP + Vyb(Om) + Amw(Pm) am,2 VyFu <19m, 7) ; (4.25)

~ OV
Ama(Bm)Vypn = Amn(Om)VyP = Vyb(@m) + Amn(Fm) 3m2 VyTn ( Om, =5~ | - (4.26)

Now, we turn to the function§,,, F,. The relation [(3.15) along with the previous assumptions on the
functionsG,,, G,, leads to the following condition:

09 09 09

n 'ﬁm, ~Qa, | T Yw 'ﬂm,— - a8, - 4.27
5 (0m ) = (0m ) =5 20
Let us rewrite[(3.15) in terms of the non-equilibrium glope¢ssure?, saturations, and the non-equilibrium
parametend,,. From [4.25),[(4.26), we get:

I
P, % — Kn, diVy {)\ m,w(ﬂm)vyp + Vyb('ﬂm) +3m,2 Am,w('ﬂm) Vy"fw ('19m, %) } = 0; (428)
0s ] R 99,
= ®m oo = K divy ¢ A (Im) VyP = V3 b(0m) + 3m2 Amon(Om) VT | Im, 57 | ¢ = 0. (4.29)
We add the equations (4]28) ahd (4.29), to have:
_ diVy{)\m('ﬂm)vyP +am2 |:)\m,w('l9m) VT (19m, a{;’;tm) + Amn(Om) Vy Fn (ﬂm, 8(;’%)} } =0. (4.30)

Then we can impose the second condition on the functignsr,,. Namely, we set:

Amw(9m) VyFu <r¢9m, 8(;’%) + Amn(9m) VyFn <r¢9m, %) —0. (4.31)

Now the simple calculations lead to the following result:
Lemma 4 Let the functionsf,,, &, satisfy the conditions (4.27) and (4131). Then

09 Amn(Om) 09 09 Amow(Pm) 09
m = - : n m» = : : 4.32
VyFw (19 pr ) T Vy pr and V,F (19 pr ) (O Vy P (4.32)

Lemmal4 implies tha{{4.30) becomesdivy {\m(¥m)V,P} = 0. Then it follows from [3.1b) that
the boundary conditions for the real saturatioas well as for the functio® on the interfacd’s,, (see the
beginning of Sectionl3 for the definition @f,,,) do not depend on the variable This fact allows us to
prove the following result (see Lemma 1 in [20] for similagaments).

Lemma 5 The functionP does not depend on the variabjgi.e.,V,P = 0in Y, x Q7.
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4 NON-EQUILIBRIUM MATRIX IMBIBITION EQUATION 9

Now, taking into account the results of Lemfa 5, from equef®28), (4.3R), and (3.15)we obtain,
finally, the desired non-equilibrium imbibition equatidhreads:

B 0s + Kmdivy 3 F (Om) Vype | Om, Pm) 1 _ 0 in Yy, x Qr, (4.33)
ot ot
where N (91m) Ao (01
def Amn{Um m,w\Ym
O T @) @

Thus the homogenized double porosity Kondaurov model amthe global equations (3J13) coupled with
the boundary value problem for the non-equilibrium imbdsitequation[(4.33).

Remark 3 Notice that in contrast to the classical case (see, €.9.] 1l the references therein) or the
case of the global Barenblatt modél [5], equatién (4.33niegro-differential. This fact shows explicitly the
impact of the capillary non-equilibrium on the mass excleabgtween the fracture system and blocks via
the source termg,,, Q,, in (3.13).

Remark 4 Notice that ifr,, = 0 (equilibrium state) then, as it was shown in Remarl¥9g, = s and, in
addition, due to[(3.148m » = 0. Thus, equatior (4.33) becomes:

@m%—KmAyb(s):() in Y, x Qp,

where the functiom is defined in[(4.24). This is exactly (with evident modifaagidue to a special form of
the capillary pressurer.) the classical imbibition equation in the equilibrium casee, e.g., formula (24)
in [20]).

Concluding remarks

In the framework of Kondaurov’s formalism [23], a non-eduilum porous medium saturated by two flu-
ids is described by a dependence of the thermodynamicattedten a number of constitutive parameters.
Using the relations which guarantee a thermodynamical nomesistency, it is possible to calculate the
capillary pressure function and the right-hand side of timetic equation. The first one determines the
capillary driven fluxes and the second one describes thélargpielaxation processes. This approach has
a number of advantages in contrast to Barenblatt's model &sg.,[[9]) whose application is restricted to
weakly non-equilibrium flows. Turning to the model consgtkiin this Note, we observe that in practice,
the fractured porous medium is usually modeled by two-sopgmrsed continua, a connected fracture sys-
tem and a system of topologically disconnected matrix tdo@ee, e.g.[ [25] and the reference therein).
Therefore, we are facing a problem of description of a hidgldterogeneous medium, where each block is
described by Kondaurov’'s model. A distinctive feature a§ ttmodel is as follows. It enables to take into
account the impact of the capillary non-equilibrium on thassrexchange between the fissure system and
the blocks. The analysis of the homogenized system carttih ¢his Note shows some new aspects which
are briefly discussed below. We focus our attention on twarpaints.

(i) Numerical aspects of Kondaurov's model.From the mathematical point of view, the double porosity
models like [(3.IB)E(3.15) are rather complex systems of RD&ving (2+1) variables(z, y,t) instead of

(d + 1) for the initial mesoscopic system. However, we know (seg, €h. 10 in[[19]) that the double
porosity model in contrast to the mesoscopic one does naireethe length scale of the block to be grid
resolved. This enables us to solve macroscopic problemencaily andajustifies the importance of the
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homogenization process in the study of non-equilibrium $lolike KondaurovSs flow model, in double
porosity media. Our next step in this Note is to pass from tlatrisn problem formulated in terms of
phase pressures to the non-equilibrium imbibition equaf#dd33). Evidently, the new formulation of the
homogenized problem is more easier for the numerical siiouldbecause the number of the unknown
functions and, consequently, the standing equations isrdan for problem[(3.13)-(3.15). Notice that
for the case of equilibrium two-phase flow in double porositgdia (see, e.gl, [12,19,33]) the numerical
analysis of the global model can be done in two main ways. Thedne is to deal directly with the global
model involving an equilibrium imbibition equation, usitige numerical resolution of this equation by the
approach proposed in_[14]. The second one is the lineasizatf the non-linear equilibrium imbibition
equation in the sense of|[2, 7] or like in_[20] for the case @&f tlouble porosity media with thin fissures. In
this case the homogenized system becomes fully homoge(iieeddoes not involve any coupling with a
matrix problem) and the numerical simulation is much mosgeravithout great loss of accuracy. Thus, our
further work is to generalize these approaches to the dralf/the global Kondaurov modél (3]13)-(4133).

(i) Mathematical analysis of Kondaurov's model. As it was underlined in_[25], we carry out our work
with eye to a rigorous mathematical analysis of Kondaurawlel. To this end, in Sectidd 2, we define
rigorously the capillary pressure and mobility functiofifie main results of the Note are given in Section
4. The key point here is the definition of non-equilibrium lggb pressure. The global pressure function
for degenerate (i.e., when the mobility functions vanishtfe wetting phase saturation taking the values
zero or one) equilibrium multiphase flows in porous medigpla crucial role, in particular, for the proof
of compactness results. This is also the case for the noifibegum two-phase flows like Kondaurov’s
flow model or the Hassanizadeh model (see, e.g. [21]). Itlerab apply the ideas of [3] in the proof of
the existence result, including the proof of the maximunmgigle for the real saturation. The notion of
the non-equilibrium global pressure along with the nonddmium matrix imbibition equation will play
an important role in the rigorous justification of the homigation result obtained by formal asymptotic
expansions in [25].

Thus the main novelty of the paper with respect to the exjdtterature, is the introduction of the non-
equilibrium global pressure and derivation of the non-fopiiim imbibition equation. These results will
allow us to continue the development of the theory of nonitdium multiphase flows in porous media.
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