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Abstract

In previous work it was shown that if certain series based on sums over primes of non-principal

Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for

its L-function is valid to the right of the critical line <(s) > 1/2, and the Riemann Hypothesis for

this class of L-functions follows. Building on this work, here we propose how to extend this line

of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We use our

results to argue that Sδ(t) ≡ limδ→0+
1

π
arg ζ(12 + δ + it) = O(1), and that it is nearly always on

the principal branch. We conjecture that a 1-point correlation function of the Riemann zeros has

a normal distribution. This leads to the construction of a probabilistic model for the zeros. Based

on these results we describe a new algorithm for computing very high Riemann zeros as a kind of

stochastic process, and we calculate the 10100-th zero to over 100 digits.

a andre.leclair@gmail.com
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I. INTRODUCTION

There are many generalizations of Riemann’s zeta function to other Dirichlet series, which

are also believed to satisfy a Riemann Hypothesis. A common opinion, based largely on

counterexamples, is that the L-functions for which the Riemann Hypothesis is true enjoy

both an Euler product formula and a functional equation. However a direct connection

between these properties and the Riemann Hypothesis has not been formulated in a precise

manner. In [1, 2] a concrete proposal making such a connection was presented for Dirichlet

L-functions, and those based on cusp forms, due to the validity of the Euler product formula

to the right of the critical line. In contrast to the non-principal case, in this approach the

case of principal Dirichlet L-functions, of which Riemann zeta is the simplest, turned out

to be more delicate, and consequently it was more difficult to state precise results. In the

present work we address further this special case.

Let χ(n) be a Dirichlet character modulo k and L(s, χ) its L-function with s = σ+ it. It

satisfies the Euler product formula

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∞∏
n=1

(
1− χ(pn)

psn

)−1
(1)

where pn is the n-th prime. The above formula is valid for <(s) > 1 since both sides converge

absolutely. The important distinction between principal verses non-principal characters is

the following. For non-principal characters the L-function has no pole at s = 1, thus there

exists the possibility that the Euler product is valid partway inside the strip, i.e. has abscissa

of convergence σc < 1. It was proposed in [1, 2] that σc = 1/2 for this case. In contrast,

now consider L-functions based on principal characters. The latter character is defined as

χ(n) = 1 if n is coprime to k and zero otherwise. The Riemann zeta function is the trivial

principal character of modulus k = 1 with all χ(n) = 1. L-functions based on principal

characters do have a pole at s = 1, and therefore have abscissa of convergence σc = 1, which

implies the Euler product in the form given above cannot be valid inside the critical strip

0 < σ < 1. Nevertheless, in this paper we will show how a truncated version of the Euler

product formula is valid for σ > 1/2.

The primary aim of the work [1, 2] was to determine what specific properties of the

prime numbers would imply that the Riemann Hypothesis is true. This is the opposite

of the more well-studied question of what the validity of the Riemann Hypothesis implies
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for the fluctuations in the distribution of primes. The answer proposed was simply based

on the multiplicative independence of the primes, which to a large extent underlies their

pseudo-random behavior. To be more specific, let χ(n) = eiθn . In [1, 2] it was proven that

if the series

BN(t, χ) =
N∑
n=1

cos (t log pn + θpn) (2)

is O(
√
N), then the Euler product converges for σ > 1/2 and the formula (1) is valid to

the right of the critical line. For non-principal characters the allowed angles θn are equally

spaced on the unit circle, and it was conjectured in [2] that the above series with t = 0

behaves like a random walk due to the multiplicative independence of the primes, and this

is the origin of the O(
√
N) growth. Furthermore, this result extends to all t since domains

of convergence of Dirichlet series are always half-planes. Taking the logarithm of (1), one

sees that logL is never infinite to the right of the critical line and thus has no zeros there.

This, combined with the functional equation that relates L(s) to L(1 − s), implies there

are also no zeros to the left of the critical line, so that all zeros are on the line. The same

reasoning applies to cusp forms if one also uses a non-trivial result of Deligne [2].

In this article we reconsider the principal Dirichlet case, specializing to Riemann zeta

itself since identical arguments apply to all other principal cases with k > 1. Here all angles

θn = 0, so one needs to consider the series

BN(t) =
N∑
n=1

cos(t log pn) (3)

which now strongly depends on t. On the one hand, whereas the case of principal Dirichlet L-

functions is complicated by the existence of the pole, and, as we will see, one consequently

needs to truncate the Euler product to make sense of it, on the other hand BN can be

estimated using the prime number theorem since it does not involve sums over non-trivial

characters χ, and this aids the analysis. This is in contrast to the non-principal case, where,

however well-motivated, we had to conjecture the random walk behavior alluded to above,

so in this respect the principal case is potentially simpler. To this end, a theorem of Kac

(Theorem 1 below) nearly does the job: BN(t) = O(
√
N) in the limit t and N →∞, which

is also a consequence of the multiplicative independence of the primes. This suggests that

one can also make sense of the Euler product formula in the limit t → ∞. However this is

not enough for our main purpose, which is to have a similar result for finite t which we will
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develop.

This article is mainly based on our previous work [1, 2] but provides a more detailed

analysis and extends it in several ways. It was suggested in [1] that one should truncate

the series at an N that depends on t. In the next section we explain how a simple group

structure underlies a finite Euler product which relates it to a generalized Dirichlet series

which is a subseries of the Riemann zeta function. Subsequently we estimate the error under

truncation, which shows explicitly how this error is related to the pole at s = 1, as expected.

The remainder of the paper presents various applications of these ideas. We use these results

to study the argument of the zeta function and calculate very high zeros. We also conjecture

that the statistical fluctuations of individual zeros have a normal distribution.

In some aspects, our work is related to the work of Gonek et. al. [4, 5], which also

considers a truncated Euler product. The important difference is that the starting point in

[4] is a hybrid version of the Euler product which involves both primes and zeros of zeta.

Only after assuming the Riemann Hypothesis can one explain in that approach why the

truncated product over primes is a good approximation to zeta. In contrast, here we do not

assume anything about the zeros of zeta.

II. ALGEBRAIC STRUCTURE OF FINITE EULER PRODUCTS

The aim of this section is to define properly the objects we will be dealing with. In par-

ticular we will place finite Euler products on the same footing as other generalized Dirichlet

series. The results are straightforward and are mainly definitions.

Definition 1. Fix a positive integer N and let {p1, p2, . . . pN} denote the first N primes where

p1 = 2. From this set one can generate an abelian group QN of rank N with elements

QN =
{
pn1
1 p

n2
2 · · · p

nN
N , ni ∈ Z ∀i

}
(4)

where the group operation is ordinary multiplication. Clearly QN ⊂ Q+ where Q+ are the

positive rational numbers. There are an infinite number of integers in QN which form a

subset of the natural numbers N = {1, 2, . . .}. We will denote this set as NN ⊂ N, and

elements of this set simply as n.
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Definition 2. Fix a positive integer N . For every integer n ∈ N we can define the character

c(n):

c(n) = 1 if n ∈ NN ⊂ QN

= 0 otherwise (5)

Clearly, for a prime p, c(p) = 0 if p > pN .

Definition 3. Fix a positive integer N and let s be a complex number. Based on QN we can

define the infinite series

ζN(s) =
∞∑
n=1

c(n)

ns
=
∑

n ∈NN

1

ns
(6)

which is a generalized Dirichlet series. There are an infinite number of terms in the above

series since NN is infinite dimensional.

Example 1. For instance

ζ2(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

6s
+

1

8s
+

1

9s
+

1

12s
+ . . .

Because of the group structure of QN , ζN satisfies a finite Euler product formula:

Proposition 1. Let σc be the abscissa of convergence of the series ζN(s) where s = σ + it,

namely ζN(s) converges for <(s) > σc. Then in this region of convergence, ζN satisfies a

finite Euler product formula:

ζN(s) =
N∏
n=1

(
1− 1

psn

)−1
(7)

Proof. Based on the completely multiplicative property of the characters,

c(nm) = c(n)c(m) (8)

one has

ζN(s) =
∞∏
n=1

(
1− c(pn)

psn

)−1
The result follows then from the fact that c(pn) = 0 if n > N .
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Example 2. Let N = 1, so that {n} = {1, 2, 22, 23 . . .}. Then the above Euler product

formula (7) is simply the standard formula for the sum of a geometric series:

ζ1(s) =
∞∑
n=0

1

2ns
=

1

1− 2−s
(9)

Here the abscissa of convergence is σc = 0.

The series ζN(s) defined in (6) has some interesting properties:

(i) For finite N the product is finite for s 6= 0, thus the infinite series ζN(s) converges for

<(s) > 0 for any finite N .

(ii) Since the logarithm of the product is finite, for finite N , ζN(s) has no zeros nor poles

for <(s) > 0. Thus the Riemann zeros and the pole at s = 1 arise from the primes at infinity

p∞, i.e. in the limit N → ∞. In this limit all integers are included in the sum (6) that

defines ζN since N∞ = N. This is in accordance to the fact that the pole is a consequence

of there being an infinite number of primes.

The property (ii) implies that, in some sense, the Riemann zeros condense out of the

primes at infinity p∞. Formally one has

lim
N→∞

ζN(s) = ζ(s) (10)

However since N is going to infinity, the above is true only where the series formally con-

verges, which, as discussed in the Introduction, is <(s) > 1. Nevertheless, for very large

but finite N , the function ζN can still be a good approximation to ζ(s) inside the critical

strip since for N finite there is convergence of ζN(s) for <(s) > 0. This is the subject of the

next section, where we show that a finite Euler product formula is valid for <(s) > 1/2 in

a manner that we will specify.

III. FINITE EULER PRODUCT FORMULA AT LARGE N TO THE RIGHT OF

THE CRITICAL LIINE.

In this section we propose that the Euler product formula can be a very good approxi-

mation to ζ(s) for <(s) > 1/2 and large t if N is chosen to depend on t in a specific way

which was already proposed in [1, 2]. The new result presented here is an estimate of the

error due to the truncation.
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The random walk property we will build upon is based on a central limit theorem of Kac,

which largely follows from the multiplicative independence of the primes:

Theorem 1. (Kac) Let u be a random variable uniformly distributed on the interval u ∈

[T, 2T ], and define the series

BN(u) =
N∑
n=1

cos(u log pn) (11)

Then in the limit N →∞ and T →∞, BN/
√
N approaches the normal distribution N (0, 1),

namely

lim
N→∞

lim
T→∞

P

{
x1√

2
<
BN(u)√

N
<

x2√
2

}
=

1√
2π

∫ x2

x1

e−x
2/2dx (12)

where P denotes the probability for the set.

We wish to use the above theorem to conclude something about BN(t) for a fixed, non-

random t. Based on Theorem 1, we first conclude the following for non-random, but large

t:

Corollary 1.

lim
N→∞

lim
t→∞

BN(t) = O(
√
N) (13)

Proof. This is straightforward: as T → ∞, even though u is random, all u in the range

[T, 2T ] are tending to ∞.

A consequence of the above Theorem 1 and the Corollary 13 is that the Euler product

formula is valid to the right of the critical line in the limit of large t:

Theorem 2. For σ > 1/2,

lim
t→∞

ζ(σ + it) = lim
N→∞

lim
t→∞

N∏
n=1

(
1− 1

pσ+itn

)−1
(14)

Proof. The proof is essentially the same as in [1, 2], so we just sketch the main steps involved.

Taking the logarithm of the above equation, one concludes that the Euler product converges

with σ > 1/2 if the series XN(s) =
∑N

n=1 1/psn converges as N →∞. It is enough to consider

SN = <(XN):

SN(s) =
N∑
n=1

anbn, an =
1

pσn
, bn = cos(t log pn) (15)
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The latter can be reorganized using integration by parts:

SN = aNBN +
N−1∑
n=1

Bn(an − an+1), Bn ≡
n∑
k=1

cos(t log pn) (16)

The sum above is bounded

|SN | ≤ σ
N−1∑
n=1

|Bn|
gn
pσ+1
n

+O(1) (17)

where gn = pn+1− pn is the gap between primes. One then performs another summation by

parts using a summed version of the Cramér-Granville conjecture

N∑
n=1

gn <

N∑
n=1

log2 pn (18)

Now if limt→∞BN(t) = O(
√
N) for large N , as far as convergence is concerned, the sum in

(17) behaves as
∑

n log2 n/nσ+1/2 which converges for σ > 1/2.

It is desirable to have a version of Theorem 2 where N and t are taken to infinity si-

multaneously. Namely, we wish to truncate the product at an N(t) that depends on t with

the property that limt→∞N(t) =∞. One can then replace the double limit on the RHS of

(14) with one limit t→∞, or equivalently N(t)→∞. There is no unique choice for N(t),

but there is an optimal upper limit, N(t) < Nmax(t), which we now describe. We need the

following [1, 2]:

Proposition 2.

BN(t) = O(
√
N), for N < Nmax(t) ≡ [t2] (19)

where [t2] denotes its integer part.

Proof. Using the prime number theorem,

BN(t) ≈
∫ pN

2

dx

log x
cos(t log x) = < (Ei ((1 + it) log pN)) (20)

≈ pN
log pN

(
t

1 + t2

)
sin (t log pN)

where Ei is the usual exponential-integral function, and we have used

Ei(z) =
ez

z

(
1 +O

(
1

z

))
(21)

The prime number theorem implies pN ≈ N logN . Using this in (20) and imposing BN(t) <
√
N proves the proposition.
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Based on the above proposition, henceforth we will always assume the following properties

of N(t):

N(t) ∼ Nmax(t) ≡ [t2] with lim
t→∞

N(t) =∞ (22)

Repeating the arguments in the proof of Theorem 2, we now have the following:

Proposition 3. Let N(t) satisfy (22). Then

lim
t→∞

ζ(s) = lim
t→∞

N(t)∏
n=1

(
1− 1

psn

)−1
, for <(s) > 1/2 (23)

Extensive and compelling numerical evidence supporting the above formula was already

presented in [1].

Based on the above results we are now in a position to study the following important

question. If we fix a finite but large t, and truncate the Euler product at N(t), which is

finite, what is the error in the approximation to ζ to the right of the critical line? We

estimate this error as follows:

Theorem 3. Let N(t) satisfy (22). Then for <(s) > 1/2 and large t,

ζ(s) =

N(t)∏
n=1

(
1− 1

psn

)−1
exp

(
RN(t)(s)

)
(24)

where

RN(s) =
1

(s− 1)
O

(
N1−s

logsN

)
(25)

is finite (except at the pole s = 1) and satisfies

lim
t→∞

RN(t)(s) = 0 (26)

Proof. From (23), one concludes that (24) must hold in the limit of large t with RN satisfying

(26). The logarithm of (24) reads

log ζ(s) = −
N∑
n=1

log

(
1− 1

psn

)
+RN(s) (27)

In the limit of large t, the error upon truncation is the part that is neglected in (23):

RN(s) = −
∞∑

n=N+1

log

(
1− 1

psn

)
(28)
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FIG. 1. The error term |RN (s)| with N(t) = Nmax(t) = [t2] for <(s) = 3/4 inside the critical

strip as a function of t. The fluctuating (blue) curve is |RN | computed directly from the definition

(27) with ζ(s) the usual analytic continuation into the strip. The smooth (yellow) curve is the

approximation RN (s) =
1

(s− 1)

N1−s

logsN
based on (25).

Expanding out the logarithm, one has

RN(s) ≈
∞∑
n=N

1

psn

≈
∫ ∞
pN

dx

log x

1

xs
≈ 1

(s− 1)

p1−sN

log pN
(29)

Next using pN ≈ N logN , one obtains (25). In the above integral, the reason the upper

limit of integration x =∞ gives zero is that the lower limit behaves as N(t)1−s/t < N1/2−s

which goes to zero as N →∞ if <(s) > 1/2. The latter also implies (26).

Theorem 3 makes it clear that the need for a cut-off N < Nmax originates from the pole

at s = 1, since as long as s 6= 1, the error RN(s) in (25) is finite. The error becomes smaller

and smaller the further one is from the pole, i.e. as t → ∞. In Figure 1 we numerically

illustrate Theorem 3 inside the critical strip.

Remark 1. For estimating errors at large t the following formula is useful:

|RN(t)(s)| ∼
N(t)1−σ

t
∼ 1

t2σ−1
(30)

Theorem 4. Assuming Theorem 3, all non-trivial zeros of ζ(s) are on the critical line.

Proof. Taking the logarithm of the truncated Euler product, one obtains (27). If there

were a zero ρ with <(ρ) > 1/2, then log ζ(ρ) = −∞. However the right hand side of (27) is
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always finite, thus there are no zeros to the right of the critical line. The functional equation

relating ζ(s) to ζ(1− s) shows there are also no zeros to the left of the critical line.

Remark 2. Interestingly Theorems 3 and 4 imply that proving the validity of the Riemann

Hypothesis is under better control the higher one moves up the critical line. For instance, it

is known that all zeros are on the line up to t ∼ 1013, and beyond this, the error RN is too

small to spoil the validity of the Riemann Hypothesis. Henceforth, we assume Theorem 4.

IV. IMPLICATIONS FOR THE ARGUMENT OF THE ζ-FUNCTION

The function S(T ) is conventionally defined as

S(T ) =
1

π
arg ζ

(
1
2

+ iT
)

(31)

for T not the ordinate of a zero. The argument is usually defined by piecewise integration

from s = 2 to s = 2 + it, then to 1
2

+ it. The importance of S(T ) is its role in the function

N (T ) which counts the number of zeros inside the critical strip with ordinate 0 < t < T .

There is an exact formula due to Backlund: N (T ) =
1

π
ϑ(T ) + 1 + S(T ), where ϑ(T ) is the

Riemann-Siegel ϑ-function. Consequently, there is a large literature concerning S(T ); see

for instance [7]. S(t) also plays an important role in the transcendental equations satisfied

by individual zeros obtained in [6]. The main properties of S(T ) that are well-known are:

(i) At each zero of ζ it jumps by the multiplicity of the zero; (ii) Between zeros dS(t)/dt < 0

since dN (t)/dt = 0 there and ϑ(t) is monotonically increasing; (iii) The average of S(t) is

zero.

The current best bound on S(t) was proven by Goldston and Gonek [8] |S(t)| ≤(
1
2

+ o(1)
)

log t/ log log t in the limit t → ∞. It should be kept in mind that this is an

upper bound so that |S(t)| may actually be much smaller, as numerical evidence would

suggest. Below, based on the results of the last section, we will propose that S(t) is actually

O(1), and in fact is nearly always on the principal branch.

In the work [6], Sδ(t) was defined as follows:

Sδ(t) = lim
δ→0+

1

π
arg ζ

(
1
2

+ δ + it
)

(32)

The above Sδ(t) is actually also well-defined for t equal to the ordinate of a zero. It should

be kept in mind that this definition is not necessarily equivalent to other definitions in the
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FIG. 2. The exact S(t) (blue line) verses S(t) calculated from the Euler product formula (33)

(yellow line). Here we took δ = 0.01 and N = 105 < Nmax(t).

literature. However, if the Riemann Hypothesis is true, they are expected to be the same

away from the ordinate of a zero since no singularities are encountered in the final integration

to the critical line. Henceforth, S(t) refers to Sδ(t) as defined above. Based on Theorem 3,

we have

Sδ(t) =
1

π
= log ζ

(
1
2

+ δ + it
)

= − 1

π

N(t)∑
n=1

log

(
1− 1

p
1/2+δ+it
n

)
+

1

π
=RN(1

2
+ it) (33)

Recall that as t→∞, RN actually goes to zero. One can check numerically that the above

formula works rather well with RN disregarded; see Figure 2. From this figure one clearly

sees that the above formula knows about all the Riemann zeros, where it jumps by one at

each.

It is clear that based on (33), S(t) = O(1) because it is finite. We can state something

more precise as follows:

Proposition 4. Under the assumption of Theorem 3, which implies the Euler product for-

mula (33) for S(t), then S(t) is well-defined for all t and limt→∞ S(t) = O(1).

Proof. Let us fix N = N(t) satisfying (22). Expanding the logarithm, one has

S(t) = lim
δ→0+

1

π
=

N∑
n=1

1

p
1/2+δ+it
n

+O(1) (34)

We neglected the RN error since it is also O(1) by (30). As for other functions defined

by sums over primes, such as the prime number counting function π(x), there is a leading
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smooth part which is determined by the prime number theorem, and a subleading fluctuating

part that depends on the exact locations of the primes. We can therefore write

S(t) = Spnt(t) + δS(t) (35)

where Spnt(t) is the smooth part coming from the prime number theorem, and δS(t) are the

fluctuating corrections. Consider first the smooth part:

Spnt(t) =
1

π
=
∫ pN

2

dx

log x

e−it log x√
x

(36)

=
1

π
=
(
Ei
[
(1
2
− it) log pN

]
− Ei

[
(1
2
− it) log 2

])
For y > 0:

=(Ei(−iy)) = −π +
cos y

y
+O

(
1

y2

)
(37)

Thus limy→∞= (Ei(−iy)) = −π. Now, as t → ∞, in (36) one can replace 1
2
− it with −it,

and the two terms cancel:

lim
t→∞

Spnt(t) = 0 (38)

Let us now turn to the fluctuating term δS(t) which actually knows about the locations

of the zeros since at each zero it jumps by its multiplicity. Since the leading contribution

Spnt goes to zero, δS(t) has no growth and consists only of these jumps, all occurring around

S = 0. Thus S(t) = O(1).

If one assumes all zeros of ζ are simple then one can further argue that S(t) is nearly

always on the principal branch:

− 1 . S(t) . 1 (39)

If all zeros are simple, then S(t) jumps by only 1 at each zero. Thus the largest value of

|δS(t)| is approximately 1 corresponding to a jump beginning at t ≈ 0. In other words, S(t)

is never very far from zero so that most of the jumps pass through S = 0 as seen in Figure

2.

Figure 2 provides numerical evidence for Proposition 4. Simply stated, the above Propo-

sition shows that there is no change in behavior of S(t) as t increases to infinity, such that

the pattern in Figure 2 persists. We checked its validity all the way up to t = 1012. Only

rarely is |S(t)| slightly above 1. Over this whole range we found |S(t)| < 1.2.
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V. 1-POINT CORRELATION FUNCTION OF THE RIEMANN ZEROS

Montgomery conjectured that the pair correlation function of ordinates of the Riemann

zeros on the critical line satisfy GUE statistics [9]. Being a 2-point correlation function, it is

a reasonably complicated statistic. In this section we propose a simpler 1-point correlation

function that captures the statistical fluctuations of individual zeros.

Let tn be the exact ordinate of the n-th zero on the critical line, with t1 = 14.1347... and

so forth. The single equation ζ(ρ) = 0 has an infinite number of solutions ρ = 1
2

+ itn. In

[6], by placing the zeros in one-to-one correspondence with the zeros of the cosine function,

the single equation ζ(ρ) = 0 was replaced by an infinite number of equations, one for each

tn that depends only on n:

ϑ(tn) + lim
δ→0+

arg ζ(1
2

+ δ + itn) = (n− 3
2
)π (40)

where ϑ is the Riemann-Siegel function:

ϑ(t) = = log Γ(1
4

+ it
2
)− t log

√
π (41)

This equation was used to calculate zeros very accurately in [6], up to thousands of digits.

There is no need for a cut-off Nmax in the above equation since the arg ζ term can in principle

be calculated for arbitrarily high t without the Euler product formula using standard analytic

continuation. One aspect of this equation is the following theorem:

Theorem 5. (França-LeClair [6]) If there is a unique solution to the equation (40) for

every n, then the Riemann Hypothesis is true, and furthermore, all zeros are simple.

If the arg ζ term is ignored, then there is indeed a unique solution for all n since ϑ(t) is

a monotonically increasing function of t. Using its asymptotic expansion for large t, (48)

below, then the solution is approximately

t̃n =
2π(n− 11

8
)

W
(
(n− 11

8
)/e
) (42)

where W is the Lambert W -function. The only way there would fail be a solution is if S(t)

is not well defined for all t. However this appears to be ruled out by the analysis of the last

section, in particular Proposition 4.
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FIG. 3. The first 30 Riemann zeros. The smooth curve is the approximation t̃n in (42), whereas

the dots are the actual zeros tn.

The fluctuations in the zeros obviously come from S(t) since t̃n is a smooth function of

n. These small fluctuations are shown in Figure 3. Let us define

δtn = tn − t̃n (43)

One needs to properly normalize δtn, taking into account that the spacing between zeros

decreases as 1/ log n. To this end we expand the equation (40) around t̃n. Using ϑ(t̃n) ≈

(n − 3
2
)π, one obtains δtn ≈ πS(tn)/ϑ′(t̃n) where ϑ′(t) is the derivative with respect to t.

Using ϑ′(t) ≈ 1
2

log(t/2πe), this leads us to define

δn ≡
δtn
2π

log

(
t̃n

2πe

)
≈ S(tn) (44)

One can then study the probability distribution of the set

∆M ≡
{
δ1, δ2, . . . , δM

}
(45)

for large M . The equation (44) together with (33) makes it clear that the origin of the

statistical fluctuations of ∆M is the fluctuations in the primes.

Let us make the hypothesis that ∆M satisfies a normal distribution N (µ, σ1). Using the

properties of S(tn) described in the last section, together with the equation (44), we can

propose the following. First, one expects that the average of δn is zero since it is known

that the average of S(t) is zero, thus µ = 0. Secondly, if S(t) is nearly always on the

principal branch, as argued in the last section, then at each jump by 1 at tn, on average

S(tn) passes through zero. This implies that the average |S(tn)| ≈ 1/4. For a normal

15
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FIG. 4. The probability distribution for the set ∆M defined in (45) for M = 106. The smooth

curve is the normal distribution N (0, σ1) with σ1 =
√
π/32.

distribution |S(tn)| =
√

2
π
σ1. Thus one expects the standard deviation σ1 of ∆M to be

σ1 ≈
√
π/32 = 0.313... In Figure 4 we present results for the first 106-th known zeros. The

distribution function fits a normal distribution with σ1 =
√
π/32 very well. Performing a

fit, one finds σ1 ≈ 0.2966. This leads us to conjecture:

Conjecture 1. In the limit of large M the set ∆M has a normal distribution N (0, σ1) with

σ1 ≈
√
π/32.

Based on Conjecture 1 we can construct a probabilistic model of the Riemann zeros:

Definition 4. A probabilistic model of the Riemann zeros. Let r be a random

variable with normal distribution N (0, σ1). Then a probabilistic model of the zeros tn can

be defined as the set {t̂n}, where

t̂n ≡ t̃n +
2π r

log(t̃n/2πe)
(46)

and t̃n is defined in (42).

Such a model could have a variety of applications, similarly to Cramér’s probabilistic

model of the primes. For instance, one could use it to define a randomized zeta function

from a Hadamard product ζ̂(s) =
∏

ρ̂n
(s−ρ̂n) where ρ̂n = 1

2
±it̂n. Furthermore, if we assume

an Euler product for this randomized ζ, this would define a random model of the primes.

We do not pursue this further here, but rather we investigate the following question.
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FIG. 5. The pair correction function of {t̂n} defined in (46) for n up to 105 where the standard

deviation of r was taken to be σ1 = 0.274. The solid curve is the GUE prediction. The parameters

in (47) are β = α+ 0.05 with α = (0, 0.05, 0.10, . . . , 3) and the x-axis is given by x = (α+ β)/2.

The statistical model (46) is rather simplistic since it is just based on a normal distribution

for r and t̃n is smooth and completely deterministic. A natural question then arises. Does

the pair correlation function of {t̂n} satisfy GUE statistics as does the actual zeros {tn}?

We expect the answer is no, since the only correlation between pairs of t̂n’s is the smooth,

predictable part t̃n. Nevertheless, it is interesting to study the 2-point correlation function of

{t̂n}. Montgomery’s pair correlation conjecture can be stated as follows. Let N (T ) denote

the number of zeros up to height T , where N (T ) ∼ T
2π

log
(
T
2πe

)
. Let t, t′ denote zeros in the

range [0, T ]. Then in the limit of large T :

1

N (T )

∑
α<d(t,t′)<β

1 ∼
∫ β

α

du

(
1− sin2(πu)

π2u2

)
(47)

where d(t, t′) is a normalized distance between zeros d(t, t′) = 1
2π

log
(
T
2πe

)
(t− t′).

In Figure 5 we plot the pair correction function for the first 105-th t̂n’s. We chose

σ1 = 0.274 since in this range of n this gives a better fit to the normal distribution of the

1-point function. The results are surprisingly close to the GUE prediction (47), especially

considering that for just the first 105 true zeros the fit to the GUE prediction is not perfect;

for much higher zeros it is significantly better [10].

VI. COMPUTING VERY HIGH ZEROS FROM THE PRIMES

This section can be viewed as providing numerical evidence for some of the previous

results. Since we will be calculating S(t) from the primes using (33), which requires <(s)→

17



1/2, this is pushing the limit of the validity of the Euler product formula, nevertheless we

will obtain reasonable results.

Many very high zeros of ζ have been computed numerically, beginning with the work of

Odlyzko. All zeros up to the 1013-th have been computed and are all on the critical line

[11]. Beyond this the computation of zeros remains a challenging open problem. However

some zeros around the 1021-st and 1022-nd are known [12]. In this section we describe a new

and simple algorithm for computing very high zeros based on the results of Section IV. It

will allow us to go much higher than the known zeros since it does not require numerical

implementation of the ζ function itself, but rather only requires knowledge of some of the

lower primes.

Let us first discuss the numerical challenges involved in computing high zeros from the

equation (40) based on the standard Mathematica package. The main difficulty is that one

needs to implement the arg ζ term. Mathematica computes Arg ζ, i.e. on the principal

branch, however near a zero this is likely to be valid due to (39). The main problem is that

Mathematica can only compute ζ for t below some maximum value around t = 1010. This

was sufficient to calculate up to the n = 109-th zero from (40) in [6]. The log Γ term must

also be implemented to very high t, which is also limited in Mathematica.

We deal with these difficulties first by computing arg ζ from the formula (33) involving a

finite sum over primes. Then, the log Γ term can be accurately computed using corrections

to Stirling’s formula:

ϑ(t) =
t

2
log

(
t

2πe

)
− π

8
+

1

48 t
+O(1/t3) (48)

Let tn;N denote the ordinate of the n-th zero computed using the first N primes. For high

zeros, it is approximately the solution to the following equation

tn;N
2

log

(
tn;N
2πe

)
− π

8
+

1

48tn;N
− lim

δ→0+
=

N∑
k=1

log

(
1− 1

p
1/2+δ+itn;N

k

)
= (n− 3

2
)π (49)

The important property of this equation is that it not longer makes any reference to ζ itself.

It is straightforward to solve the above equation with standard root-finder software.

One can view the computation of tn as a kind of stochastic process. If one includes no

primes, i.e. N = 0, and drops the next to leading 1/t corrections, then the solution is unique

and explicitly given by tn;0 = t̃n in (42). One then goes from tn;0 to tn;1 by finding the root

to the equation for tn;1 in the vicinity of tn;0, then similarly tn;2 is calculated based on tn;1

18



n tn;N Odlyzko

1021 − 1 144176897509546973538.205 ∼ .225

1021 144176897509546973538.301 ∼ .291

1021 + 1 144176897509546973538.505 ∼ .498

1022 − 1 1370919909931995308226.498 ∼ .490

1022 1370919909931995308226.614 ∼ .627

1022 + 1 1370919909931995308226.692 ∼ .680

TABLE I. Zeros around the n = 1021-first and 1022-nd computed from (49) with N = 5 × 106

primes. We fixed δ = 10−6. Above, ∼ denotes the integer part of the second column.

and so forth. At each step in the process one includes one additional prime, and this slowly

approaches tn, so long as N(t) < Nmax(t).

For very high t, Nmax(t) = [t2] is extremely large and it is not possible in practice to work

with such a large number of primes. This is the primary limitation to the accuracy we can

obtain. We will limit ourselves to N = 5×106 primes. Let us very roughly estimate the error

in computing a zero at a given N < Nmax. Since according to Proposition 4, S(t) = O(1),

the integer part of tn;0 is expected to be correct, and we verify this below. Now, in each

step tn;N−1 → tn;N one includes an additional term in (49) that is approximately 1/
√
pN

and this can be used to roughly estimate the error. For example, if we work with only

the first N = 106 primes, we expect to get the first 2 to 3 digits beyond the decimal point

correct. Let us verify this by comparing with some known zeros around n = 1021 and 1022.

The results are shown in Table I. As predicted, we have accuracy to about 2 digits beyond

the decimal point. Odlyzko was able to calculate a few more digits; our accuracy can be

improved by increasing N of course.

Having made this check, let us now go far beyond this and compute the n = 10100-th zero

by the same method. At higher tn one does not need to include more primes if one is still

only interested in 2 digits beyond the decimal point. Using N = 5 × 106 primes, we found

the following tn:

10100th zero :

280690383842894069903195445838256400084548030162846

045192360059224930922349073043060335653109252473.244....
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We are confident that the last 3 digits ∼ .244 are accurate since we checked that they didn’t

change beyond N = 106. We calculated the next zero to be ∼ .273. By the same procedure,

we were easily able to calculate the 101000-th zero to the same accuracy.
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