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Superlattice gain in positive differential conductivity region
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We analyze theoretically a superlattice structure proposed by A. Andronov et al. [JETP Lett 102, 207 (2015)]
to give gain in the Terahertz region. The existence of gain is confirmed but it is found to be strongly affected
by elastic scattering, which limits the peak value. It is shown that the dephasing strongly modifies the
nature of the relevant states, so that the common analysis based on Wannier Stark states is not reliable for
a quantitative description of the gain in structures with extremely diagonal transitions.

Semiconductor superlattices1 had always been consid-
ered as an interesting candidate for THz gain materials
due to the Bloch gain2, which was finally experimentally
confirmed more than 30 years later3–5. However, this
type of gain is intrinsically connected with the negative
differential conductivity in the current-field relation, so
that the formation of field domains6–9 strongly limits its
observation and practical use. As an alternative, it was
suggested10 that gain can be present in the positive dif-
ferential conductivity region of superlattices where reso-
nant tunneling over several barriers11–13 is relevant. The
idea is to operate the superlattice slightly below the tun-
neling resonance from the ground state of well µ to the
excited state in the next-neighboring well µ+ 2 (see the
inset of FIG. 1), which guarantees positive differential
conductivity. At the same time, gain is suggested for
the strongly diagonal transition to the excited state in
the well µ + 3, which is actually lower in energy than
the ground state in well µ. More detailed experimental
studies confirmed the suggested shape of the current-field
relation, but were not conclusive with respect to THz
gain14. Thus the question remains, whether this type
of gain exists at all and whether it is strong enough to
overcome losses. In order to address this question, we
performed detailed simulations with our non-equilibrium
Green’s function (NEGF) simulation scheme15, which are
reported here. We find that this particular gain mecha-
nism exists, but that it is not particularly strong for the
structure proposed. Testing different doping densities,
we noticed that dephasing strongly reduces this type of
gain. We show that this reduction can be explained by
the nature of the eigenstates of the lesser Green’s func-
tion, which represent better states to estimate gain than
the conventional eigenstates of the Hamiltonian called
Wannier-Stark (WS) states.
The NEGF model allows for a self-consistent eval-

uation of the transport with respect to both elastic
and inelastic scattering as well as interactions with
an electromagnetic field in semiconductor heterostruc-
ture devices15–19. It is particular suitable for the
study of semiconductor superlattices, as it contains sim-
pler approaches, such as miniband transport1, Wannier-
Stark hopping20,21, or sequential tunneling22 as limiting
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FIG. 1. Current-voltage characteristics for the samples stud-
ied. Simulations with modified scattering parameters are dis-
played as dashed lines. In the inset the configuration of the
Wannier states at 18 mV is shown, marked by a cross in the
main plot. The gain transition studied is indicated by an
arrow.

cases23.
In NEGF models, scattering is treated by self-energies

that are evaluated self-consistently until convergence is
reached. These objects are functions of both momentum
and energy, but in our implementation they are effec-
tively treated as only energy dependent, and evaluated
at a representative set of momentum transfers for the
scattering matrix elements15. This set is chosen by a
typical energy transfer Etyp = 3meV + 0.5kBT , fitted
to give scattering matrix elements matching those cal-
culated with thermalized subbands for other low doped
heterostructures. While we consider this as reasonable
for 77K, we apply also different values, in order to study
increased or decreased scattering environments.
In this study all samples considered were assumed to

be homogeneously doped. We also keep the lattice tem-
perature fixed at 77 K, where we consider the model to
be both robust and accurate.
FIG. 1 shows the calculated current voltage charac-

teristics for the device of Ref. 14 (red solid line for a
doping of 7 × 108/cm2 per period). The peak structure
agrees reasonably well with the experimental data shown
in FIG. 4 of Ref. 14. For comparison, the experimental
shoulder at 19 mV per period, where the ground state
is in resonance with the excited state of the 2nd near-
est neighbor well, shows a current density of 450A/cm

2
.

In the following we focus on the operation point at 18
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FIG. 2. Simulated gain for the two doping densities studied,
both at a bias per period of 18 mV. There are small signa-
tures of dispersive gain around the Bloch frequency and the
structure is mainly transparent at higher frequencies.

mV per period, which is a stable operation point with
positive differential conductivity. The inset in FIG. 1
shows the Wannier levels at this field. FIG. 2 shows the
calculated gain (at weak cavity field). For the nominal
structure (red solid line) it remains well below 10/cm,
which is probably too small to overcome the total losses.

In the following we will employ a strict naming conven-
tion for the superlattice states (µ, ν) where µ will give the
period index, with 0 for the central period, and ν for the
state index. Here, Wannier states, are denotes by letters
ν = a, b, c and Wannier Stark states (WS states, which
are the eigenstates of the Hamiltonian) by roman num-
bers ν = i, ii, iii. The tunneling resonance at the current
peak at 19 mV per period is thus between Wannier levels
(µ, a) and (µ+2, b). At 18 mV per period the resonance
between these levels is slightly detuned, so that the WS
state (µ, i) is dominated by (µ, a) but has significant ad-
mixtures from (µ+2, b) and (µ+1, b). Similarly, the WS
state (µ+2, ii) is dominated by (µ+2, b) with significant
admixtures from (µ, a), (µ + 1, b), and (µ + 3, b). These
states are displayed in FIG. 3 (c) by full lines. The state
(µ, i) is lower in energy than (µ + 2, ii) and has thus a
significantly larger occupation.

Now the state (µ + 3, ii), which is equivalent to (µ +
2, ii), but shifted to the right and down in energy, is
about 14.7 meV below the state (µ, i). As both states
extend over several periods they overlap significantly and
furthermore there is inversion for the corresponding tran-
sition. We can attribute the gain shown in FIG. 2 to this
transition, where a slight red shift can be explained by
dispersive gain24.

As an attempt to improve inversion and gain, the dop-
ing was increased to give a sheet density three times
higher than the nominal sample. The result on current
and gain is shown in FIG. 1 and FIG. 2, respectively.
As expected the current density increases approximately
by a factor three. However, the peak gain increases only
slightly. Furthermore, in both samples there are small
signatures of Bloch gain at around 4.2 THz and we also

Density [1/cm2] 7× 108 2× 109

Γ1(meV) 1.2 2.4 3.3 4.8

NEGF 18.8 7.69 10.6 -0.98

FGR(WS) 15.6 7.86 16.3 11.9

FGR(G<) 24.4 8.9 13.1 6.4

TABLE I. Estimated gain in units cm−1 from the gain tran-
sition using FGR with WS states and states from diagonal-
ization of the lesser Green’s function G<, compared to the
full NEGF calculations. The values are sorted by the lifetime
broadening of the ground state Γ1.

observe that the high doped sample has more dark ab-
sorption at the frequencies far from the gain transition.
In the following, we want to study, why the increase

of gain is limited, so that its practical use appears ques-
tionable. A naive guess, would be an increase of gain
by a factor three just like the current. However, the in-
version might not be proportional to the doping and the
linewidth changes with doping. In order to study these
effects, we use the standard estimate for the gain using
Fermi’s Golden Rule (FGR)

G(ω) =
∆Efi

~

e2∆nfiz
2
fi

2nrcǫ0d

Γw

(∆Efi − ~ω)2 + Γ2
w/4

(1)

where ∆Efi is the energy difference between the initial
and final states, ∆nfi is the inversion, zfi the dipole ma-
trix element, nr is the refractive index and Γw is the full
width half maximum of the gain peak. These variables
can be extracted from the full NEGF model where we
diagonalize the Hamiltonian including the real parts of
the self-energies, on the diagonal in order to shift the
single particle energy levels, to get the WS states. Here
we approximate the linewidth as the sum of the lifetimes
of the two states involved, Γw = γf + γi.
The result of this estimate is shown in TAB. I for a

set of different model systems. The two middle columns
of TAB. I refer to our standard simulation parame-
ters as used in FIGS. 1-2. Furthermore, we also per-
formed simulations by changing Etyp. The data in the
left-most/right-most column are for decreased/increased
scattering compared to their neighboring column. This is
reflected by the respective width of the ground state Γ1,
which is extracted from the NEGF calculation. The cur-
rent simulations for these parameters are shown along-
side the standard ones in FIG. 1 as dashed lines. It
is clear that the effect on the current is limited, it
merely broadens/sharpens the tunneling resonances for
decreased/increased scattering.
Let us first consider the estimate from FGR (1) with

the common WS states in TAB. I. Here we find, that
the peak gain follows essentially the doping density di-
vided by Γ1, which shows that the inversion is essentially
proportional to doping, and all other ingredients, except
for the broadening, are constant. In contrast, the NEGF
calculation shows a much stronger decrease of gain with
Γ1. While a part of the differences may be attributed
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FIG. 3. (a) Eigenvalues fn(E) of the lesser Green’s function
(2πi)G<

αβ(k = 0, E) at each energy point. (b) Modulus square
of the dipole matrix elements against the energy broadening
of the ground state. The eigenstates of the density matrix
(dashed blue) is strongly dependent on scattering as opposed
to Wannier-Stark states (solid green). (c) Real part of the
eigenstates (dashed) corresponding to the eigenvalues indi-
cated in (a). The imaginary part is visualized by plotting the
current carrying combination25 ℜ{−iφ∗dφ/dz/m∗} (dotted-
dashed) for both eigenstates. These can be seen, especially
for state (2), to extend over several periods. For easy compar-
ison we plot also the Wannier-Stark states (µ, i) (blue solid
line) and (µ+3, ii) (blue)(red solid line). The well where each
wavefunction has its origin is shaded as guidance.

to the widening of other absorbing transitions, the large
extent is stunning.

To understand this discrepancy we analyze instead the
eigenstates of lesser Green’s function G<

αβ(k, E) (which
can be viewed as the energetically resolved density ma-
trix) following Ref. 25. The eigenvalues for the nominal
case with Γ1 = 2.4 are plotted in FIG. 3 (a) for k = 0.
The eigenvalues show where the states are located in en-
ergy, and they also visualize the inversion at an energy of
12 meV (indicated by arrows), corresponding to 3 THz.
As the eigenvalues are sorted by size in the diagonal-
ization process, we see anti-crossings where the different
eigenstates passes each other, so that the state at the
eigenvalue indicated by (2) is not the same as the one at
(1) since they are separated by at least one anti-crossing.

At the eigenvalue peaks (1) and (2) we plot the cor-
responding eigenstates in FIG. 3 (c) together with the
WS states. From this plot it is possible to see that com-
pared to the WS states, the eigenstates of the Green’s
function are slightly more delocalized for these sample
parameters. For example state (µ, 1) extends much fur-
ther out to the neighboring periods than (µ, i), allowing
for a larger overlap and thus a higher dipole matrix el-
ement with (µ + 3, 2) or (µ + 3, ii). In FIG. 3 (b) the
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FIG. 4. Gain at 3 THz resolved in energy and space for the
nominal case with Γ1 = 2.4 meV. The coherence giving rise
to the gain extends over several periods. The bias is 18 mV
per period.

modulus square of the dipole matrix elements are plot-
ted versus the width of the ground state. The WS states
show small variations due to meanfield and renormaliza-
tion due to scattering, but are otherwise constant. In
contrast, the dipole matrix elements, calculated by the
eigenstates of the Green’s function provide a strong de-
crease with increasing scattering. These dipole matrix
elements can be applied in FGR (1), and the results are
given in the lowest line of TAB. I. They actually fol-
low the trend of the full calculation, which demonstrates
the relevance of these eigenstates. The result by FGR
naturally overestimates the gain slightly, as we consider
the gain from only one transition while all other (mostly
absorbing) transitions are neglected, while they are fully
taken into account in the NEGF model.

The strong Γ-dependence of the eigenstates of the
lesser Green’s function is reflected by dephasing, which
affects the coherence length. In this particular situation,
the gain is highly diagonal and is thus dependent on
these spatial coherences. This is further demonstrated
in FIG. 4, where the gain stripes extend over more than
50 nm. As impurity scattering is strongly dependent on
temperature due to screening, we expect higher gain at
lower temperatures, which might be sufficient for lasing
in the higher doped structure. Preliminary simulations
with the model predict, that a lattice temperature be-
low 50 K results in gain over 20/cm for our standard
parameters26.

As the optimization using carrier densities did not yield
any spectacular increase in performance, we studied in
addition, whether gain can be enhanced by adjusting the
well width. In FIG. 5 we display results for samples
named wide/ narrow where the width of the quantum
well was increased/decreased by 4 monolayers, respec-
tively, while the sheet doping density was kept constant
at 7×108/cm2. The data shows that the peak gain hardly
depends on the well width, which merely causes a shift
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FIG. 5. (a) Gain and current (b) for standard scattering pa-
rameters for the two altered structures as well as the nominal
sample from Ref. 14. The operating bias per period was 16
mV and 23 mV for the wide and narrow structure, respec-
tively.

in the peak frequency.

In conclusion, we have shown that the NEGF model
predicts gain in the structure from Ref. 14 for a lattice
temperature of 77 K, which is however relatively small.
We did not find significant improvements by increasing
doping or changing the well width. However, improved
screening at lower temperatures may allow for observing
laser emission.

For this highly diagonal transition, the gain is strongly
dependent on the scattering. This can be demonstrated
by the eigenstates of the lesser Green’s function, which
essentially differ from the WS states in this case. We
demonstrated that these unconventional states are more
appropriate to calculate the z-matrix elements for a quan-
titative description of gain by Fermi’s golden rule.
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