
ar
X

iv
:1

60
1.

00
91

6v
1 

 [
m

at
h.

A
C

] 
 5

 J
an

 2
01

6

THE ANNIHILATING-SUBMODULE GRAPH OF MODULES

OVER COMMUTATIVE RINGS

H. ANSARI-TOROGHY1∗ AND S. HABIBI2

1 Department of pure Mathematics

Faculty of mathematical Sciences

University of Guilan, P. O. Box 41335-19141, Rasht, Iran

e-mail: ansari@guilan.ac.ir

2 Department of pure Mathematics

Faculty of mathematical Sciences

University of Guilan, P. O. Box 41335-19141, Rasht, Iran

e-mail: sh.habibi@phd.guilan.ac.ir

Abstract. Let M be a module over a commutative ring R. In this paper,
we continue our study of annihilating-submodule graph AG(M) which was
introduced in (The Zariski topology-graph of modules over commutative rings,
Comm. Algebra., 42 (2014), 3283–3296). AG(M) is a (undirected) graph in
which a nonzero submodule N of M is a vertex if and only if there exists
a nonzero proper submodule K of M such that NK = (0), where NK, the
product of N and K, is defined by (N : M)(K : M)M and two distinct
vertices N and K are adjacent if and only if NK = (0). We obtain useful
characterizations for those modules M for which either AG(M) is a complete
(or star) graph or every vertex of AG(M) is a prime (or maximal) submodule
of M . Moreover, we study coloring of annihilating-submodule graphs.

1. Introduction

Throughout this paper R is a commutative ring with a non-zero identity and
M is a unital R-module. By N ≤ M (resp. N < M) we mean that N is a
submodule (resp. proper submodule) of M . Let Λ(M) and Λ(M)∗ be the set of
proper submodules of M and nonzero proper submodules of M , respectively.

Define (N :R M) or simply (N : M) = {r ∈ R| rM ⊆ N} for any N ≤ M .
We denote ((0) : M) by AnnR(M) or simply Ann(M). M is said to be faithful if
Ann(M) = (0).

Let N,K ≤ M . Then the product of N and K, denoted by NK, is defined by
(N :M)(K : M)M (see [3]).

There are many papers on assigning graphs to rings or modules (see, for example,
[1, 4, 7, 8]). The annihilating-ideal graph AG(R), was introduced and studied in
[8]. AG(R) is a graph whose vertices are ideals of R with nonzero annihilators and
in which two vertices I and J are adjacent if and only if IJ = (0).
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2 H. ANSARI-TOROGHY AND S. HABIBI

In [4], we generalized the above idea to submodules of M and defined the (undi-
rected) graph AG(M), called the annihilating-submodule graph, with vertices
V (AG(M))= {N ≤M | there exists (0) 6= K < M with NK = (0)}. In this graph,
distinct vertices N,L ∈ V (AG(M)) are adjacent if and only if NL = (0). Let
AG(M)∗ be the subgraph of AG(M) with vertices V (AG(M)∗) = {N < M with
(N : M) 6= Ann(M)| there exists a submodule K < M with (K : M) 6= Ann(M)
and NK = (0)}. Note that M is a vertex of AG(M) if and only if there exists a
nonzero proper submodule N of M with (N : M) = Ann(M) if and only if every
nonzero submodule of M is a vertex of AG(M).

A prime submodule of M is a submodule P 6=M such that whenever re ∈ P for
some r ∈ R and e ∈M , we have r ∈ (P :M) or e ∈ P [12, 13].

The prime spectrum (or simply, the spectrum) of M is the set of all prime
submodules of M and denoted by Spec(M). Also, Max(M) will denote the set of
all maximal submodules of M .

The prime radical radM (N) is defined to be the intersection of all prime submod-
ules of M containing N , and in case N is not contained in any prime submodule,
radM (N) is defined to be M [12].

Let Z(R) and Nil(R) be the set of zero-divisors and nilpotent elements of R,
respectively. Let ZR(M) or simply Z(M) be the set {r ∈ R| rm = 0 for some
0 6= m ∈M}.

Let N and K be submodules of M . Then the product of N and K is defined by
(N :M)(K : M)M and denoted by NK (see [3]).

A clique of a graph is a maximal complete subgraph and the number of vertices
in the largest clique of graph G, denoted by cl(G), is called the clique number of
G. Let χ(G) denote the chromatic number of the graph G, that is, the minimal
number of colors needed to color the vertices of G so that no two adjacent vertices
have the same color. Obviously χ(G) ≥ cl(G).

In section 2, we continue all modules M for which AG(M) is a complete (resp.
star) graph or every vertex of AG(M) is a prime (or maximal) submodule (see The-
orems 2.14, 2.15, and 2.17). In section 3, we study the coloring of the annihilating-
submodule graph of modules. At first, among other results, we give a character-
ization of χ(AG(M)∗) = 2 (see Theorem 3.2). It is shown that for a semiprime
module M , the following conditions are equivalent. (1) χ(AG(M)∗) is finite. (2)
cl(AG(M)∗) is finite. (3) AG(M)∗ does not have an infinite clique (see Corollary
3.8). Also, it is shown that for a faithful moduleM with radM (0) = (0), the follow-
ing conditions are equivalent. (1) χ(AG(M)∗) is finite. (2) cl(AG(M)∗) is finite.
(3) AG(M)∗ does not have an infinite clique. (4) R has a finite number of prime
ideals (see Proposition 3.11).

Let us introduce some graphical notions and denotations that are used in what
follows: A graph G is an ordered triple (V (G), E(G), ψG) consisting of a nonempty
set of vertices, V (G), a set E(G) of edges, and an incident function ψG that as-
sociates an unordered pair of distinct vertices with each edge. The edge e joins x
and y if ψG(e) = {x, y}, and we say x and y are adjacent. A path in graph G is a
finite sequence of vertices {x0, x1, . . . , xn}, where xi−1 and xi are adjacent for each
1 ≤ i ≤ n and we denote xi−1 − xi for existing an edge between xi−1 and xi.

A graph H is a subgraph of G if V (H) ⊂ V (G), E(H) ⊆ E(G) and ψH is the
restriction of ψG to E(H). A bipartite graph is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge connects a vertex in
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U to one in V ; that is, U and V are each independent sets and complete bipartite
graph on n and m vertices, denoted by Kn,m, where V and U are of size n and
m, respectively, and E(G) connects every vertex in V with all vertices in U . Note
that a graph K1,m is called a star graph and the vertex in the singleton partition
is called the center of the graph. (see [14]).

2. The Annihilating-submodule graph

An ideal I ≤ R is said to be nil if I consist of nilpotent elements; I is said to be
nilpotent if In = (0) for some natural number n.

Proposition 2.1. Suppose that e is an idempotent element of R. We have the
following statements.

(a) R = R1 ⊕R2, where R1 = eR and R2 = (1− e)R.
(b) M =M1 ⊕M2, where M1 = eM and M2 = (1− e)M .
(c) For every submodule N of M , N = N1 × N2 such that N1 is an R1-

submodule M1, N2 is an R2-submodule M2, and (N :R M) = (N1 :R1

M1)× (N2 :R2
M2).

(d) For submodules N and K of M , NK = N1K1 × N2K2 such that N =
N1 ×N2 and K = K1 ×K2.

Proof. This is clear. �

We need the following lemmas.

Lemma 2.2. (See [2, Proposition 7.6].) Let R1, R2, . . . , Rn be non-zero ideals of
R. Then the following statements are equivalent:

(a) RR = R1 ⊕ . . .⊕Rn;
(b) As an abelian group R is the direct sum of R1, . . . , Rn;
(c) There exist pairwise orthogonal central idempotents e1, . . . , en with 1 =

e1 + . . .+ en, and Ri = Rei, i = 1, . . . , n.

Lemma 2.3. (See [11, Theorem 21.28].) Let I be a nil ideal in R and u ∈ R be
such that u+ I is an idempotent in R/I. Then there exists an idempotent e in uR
such that e− u ∈ I.

Lemma 2.4. Let N be a minimal submodule of M and let Ann(M) be a nil ideal.
Then we have N2 = (0) or N = eM for some idempotent e ∈ R.

Proof. Assume N2 6= (0). Since N2 6= (0) and N is a minimal submodule of M , we
have (N :M)m 6= (0) for somem ∈ N so that (N :M)m = N . Choose u ∈ (N :M)
such that m = um. So N = uM . Since m ∈ ((0) :N u − 1), N = ((0) :N u − 1)
and hence u(u − 1)M = (0). Thus u(u − 1) ∈ Ann(M). By Lemma 2.3, there is
an idempotent e in R with e − u ∈ Ann(M). So (e − u)M = (0). It is clear that
eM = uM . Hence N = eM . �

Theorem 2.5. Let Ann(M) be a nil ideal. There exists a vertex of AG(M) which
is adjacent to every other vertex if and only if M = eM ⊕ (1 − e)M , where eM is

a simple module and (1 − e)M is a prime module for some idempotent e ∈ R or

Z(M) = Ann((N : M)M), where N is a nonzero proper submodule of M or M is

a vertex of AG(M).



4 H. ANSARI-TOROGHY AND S. HABIBI

Proof. Suppose that N is adjacent to every other vertex of AG(M), Z(M) 6=
Ann((K : M)M) for every nonzero proper submodule K of M and M is not
a vertex of AG(M). If N2 = (0), then Z(M) = Ann((N : M)M), a contra-
diction (note that if r ∈ Z(M), then there exists a nonzero element m ∈ M
such that rm = 0. If rM = (0), then r ∈ Ann((N : M)M). Otherwise, since
(rM :M)(mR :M)M = (0), we have (rM :M)(N :M)M = (0)). Thus N2 6= (0).
Again by the above arguments, N = (N : M)M . By Lemma 2.4, N = eM for
some idempotent e ∈ R. We may assume that R = R1 × R2 and M = M1 ×M2.
Also, by Proposition 2.1, we may assume that M1 × (0) is adjacent to every other
vertex of AG(M). Now we show that M2 is a prime module. Otherwise, there
exist 0 6= m ∈ M2 and r ∈ R such that rm = 0 and r /∈ Ann(M2). It follows that
(M1 ×mR2)((0)× rM2) = (0). So M1× (0) is adjacent to M1 ×mR2. This implies
that R1 = (0), a contradiction. Therefore M2 is a prime module. Conversely, as-
sume that M = eM ⊕ (1 − e)M , where eM is a simple module and (1 − e)M is a
prime module such that e is an idempotent. One can see that eM × (0) is adjacent
to every other vertex of AG(M). If M is a vertex of AG(M), then there exists a
nonzero proper submodule N of M such that (N : M) = Ann(M) and hence N
is adjacent to every other vertex. Now suppose that Z(M) = Ann((N : M)M),
where N is a nonzero proper submodule of M . Then it is easy to see that N is
a vertex of AG(M) which is adjacent to every other vertex or M is a vertex of
AG(M). �

Example 2.6. Let M := Z2 ⊕ Z3 as a Z12−module. Clearly, Ann(M) = {0̄, 6̄} is
a nil ideal and AG(Z2 ⊕Z3) is a star graph with the only edge Z2 ⊕ (0)− (0)⊕Z3.

Theorem 2.7. Let M be a faithful module. There exists a vertex of AG(M)∗ which

is adjacent to every other vertex of AG(M)∗ if and only if M = M1 ⊕M2, where

M1 is a simple module and M2 is a prime module or Z(R) is an annihilator ideal.

Proof. (=⇒). Suppose that Z(R) ia not an annihilator ideal and N is adjacent to
every other vertex. If N2 = (0), then Z(R) = Ann((N :M)), a contradiction (note
that if r ∈ Z(R), then there exists a nonzero element s ∈ R such that rs = 0. So we
have (rM : M)(sM : M) = (0). Hence (rM : M)(N : M) = (0)). Thus N2 6= (0).
Now the claim follows by using similar arguments as in the proof of theorem 2.5.
(⇐=). Assume that M = M1 ⊕M2, where M1 is a simple R-module and M2 is a
prime R-module. Since M1 is a simple R-module, Ann(M1) is a maximal ideal of
R and since Ann(M) = (0), we have Ann(M2) + Ann(M1) = R and so we may
assume that R = R1 ⊕ R2. Then Lemma 2.2 and Theorem 2.5 imply that there is
a vertex of AG(M)∗ which is adjacent to every other vertex of AG(M)∗. Now let
Z(R) = Ann(I) for some nonzero proper ideal I of R. In this case, clearly, IM is
a vertex of AG(M)∗ which is adjacent to every other vertex of AG(M)∗. �

Example 2.8. It is easy to see that Q ⊕ Q as Q ⊕ Z−module is faithful and
AG(Q ⊕Q)∗ is a star graph with the only edge Q⊕ (0)− (0)⊕Q.

Corollary 2.9. Let R be a reduced ring and let Ann(M) be a nil ideal. Then the
following statements are equivalent.

(a) There is a vertex of AG(M)∗ which is adjacent to every other vertex of
AG(M)∗.

(b) AG(M)∗ is a star graph.
(c) M =M1 ⊕M2, where M1 is a simple module and M2 is a prime module.
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Proof. (a) ⇒ (b) Suppose that there is a vertex of AG(M)∗ which is adjacent to
every other vertex. If Z(R) = Ann(x) for some 0 6= x ∈ R, then we have x2 = 0,
a contradiction. Therefore by Theorem 2.7, M = M1 ⊕M2, where M1 is a simple
module and M2 is a prime module. Then every nonzero submodule of M is of the
form M1 × N2 and (0) × N2, where N2 is a nonzero submodule of M2. By our
hypothesis, we can not have any vertex of the formM1×N2, where N2 is a nonzero
proper submodule of M2. Also M1 × (0) is adjacent to every other vertex, and non
of the submodules of the form (0)×N2 can be adjacent to each other. So AG(M)∗

is a star graph.
(b) ⇒ (c) This follows by Theorem 2.7.
(c) ⇒ (a) This follows by Theorem 2.7. �

Let M be an R-module. The set of associated prime ideals of M , denoted by
AssR(M) (or simply Ass(M)), is defined as Ass(M) = {p ∈ Spec(R)| p = (0 :R m)
for some 0 6= m ∈M}.

Corollary 2.10. Let R be an Artinian ring and let Ann(M) be a nil ideal. Then
there is a vertex of AG(M) which is adjacent to every other vertex if and only if
either M =M1 ⊕M2, where M1 is a simple module and M2 is a prime semisimple
module or R is a local ring with maximal ideal p ∈ Ass(M) or M is a vertex of
AG(M).

Proof. (=⇒) Let N be a vertex of AG(M) which is adjacent to every other vertex
and suppose M is not a vertex of AG(M). As we have seen in Theorem 2.5,
either M = M1 ⊕M2, where M1 is a simple module and M2 is a prime module
or Z(M) = Ann((K : M)M), where K is a nonzero proper submodule of M . Let
M =M1 ⊕M2, where M1 is a simple module and M2 is a prime module. It is easy
to see thatM2 is a vector space over R/Ann(M2) and so is a semisimple R-module.
If Z(M) is an ideal of R , since R is an Artinian ring, then Z(M) = p ∈ Ass(M).
(⇐=) First suppose that R is not a local ring. Hence by [5, Theorem 8.7], R =
R1 × . . .× Rn, where Ri is an Artinian local ring for i = 1, . . . , n. By Lemma 2.2
and Theorem 2.5, we may assume that eM × (0) is adjacent to every other vertex
of AG(M). If R is a local ring with maximal ideal p ∈ Ass(M), then there exists
0 6= m ∈ M such that p = Ann(m). We claim that Rm is adjacent to every other
vertex. Suppose N is a vertex. We have (N :M) ⊆ p. Hence (N : M)(mR) = (0).
So we have N(mR) = (0). �

Example 2.11. LetM := Z3⊕Z8 as a Z48−module. Clearly, Ann(M) = {0̄, 2̄4} is
a nil ideal and AG(Z3⊕Z8) is a star graph with the center Z3⊕(0) and V (AG(Z3⊕
Z8)) = {Z3⊕(0), (0)⊕Z8, (0)⊕N, (0)⊕K}, where N = (0̄, 2̄)Z48 andK = (0̄, 4̄)Z48.

Corollary 2.12. Let R be an Artinian ring and let M be a faithful R-module.
Then there is a vertex of AG(M)∗ which is adjacent to every other vertex if and
only if either M =M1 ⊕M2, where M1 and M2 are simple modules or R is a local
ring with maximal ideal p ∈ Ass(M).

Proof. (=⇒) Let N be a vertex of AG(M)∗ which is adjacent to every other vertex.
So there is a vertex of AG(R) which is adjacent to every other vertex of AG(R). By
[8, Corollary 2.4], we may assume that R = F1 ⊕ F2, where F1 and F2 are fields or
Z(R) is an annihilator ideal. If R = F1 ⊕ F2, then AG(R) is a complete graph. It
follows that AG(M)∗ is a complete graph. Hence AG(M)∗ have exactly two vertices
M1 × (0) and (0)×M2. So M2 is a simple module. If Z(R) is an annihilator ideal,
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since R is an Artinian ring, then Z(R) is the unique maximal ideal of R. Since R
is a Noetherian ring, Z(M) = p ∈ Ass(M) and hence Z(R) = Z(M).
(⇐=) This is clear by Corollary 2.10. �

Lemma 2.13. Let R be an Artinian ring and assume that Ann(M) is a nil ideal
and AG(M) is a star graph. Then either M = M1 ⊕M2, where M1 is a simple
module and M2 is a prime semisimple module or R is a local ring with maximal
ideal p = Ann(m), (mR)2 = (0) and p4M = (0) or M is a vertex of AG(M).

Proof. Let R be an Artinian ring and assume that AG(M) is a star graph and M
is not a vertex of AG(M). Then by Corollary 2.10, either M = M1 ⊕M2, where
M1 is a simple module and M2 is a prime semisimple module or R is a local ring
with maximal ideal p ∈ Ass(M). If M =M1 ⊕M2, then there is nothing to prove.
If R is a local ring with maximal ideal p = Ann(m), where 0 6= m ∈ M , then
as we showed in Corollary 2.10, mR is adjacent to every other vertex. Since R is
an Artinian ring and M is not a vertex, there exists an integer n > 1 such that
pnM = (0) and pn−1M 6= (0). As AG(M) is a star graph (resp. (mR : M) ⊆ p),
we have p4M = (0) and mR = p3M (resp. (mR)2 = (0)). �

Theorem 2.14. Let R be an Artinian ring and assume that M is not a vertex of

AG(M) and Ann(M) is a nil ideal. Then AG(M) is a star graph if and only if

either M = M1 ⊕M2, where M1 and M2 are simple modules or R is a local ring

with maximal ideal p = (0 : m) ∈ Ass(M) and one of the following cases holds.

(a) p2M = (0) and pM = mR is the only nonzero proper submodule of M .

(b) p3M = (0) and p2M = mR is the only minimal submodule of M and for

every distinct proper submodules N1, N2 ofM such that mR 6= Ni (i = 1, 2),
N1N2 = Rm.

(c) p4M = (0), p3M 6= (0), and Λ(M)∗ = {N < M | (N : M) = (pM :
M)} ∪ {p2M,p3M = mR}.

Proof. (=⇒) Suppose that AG(M) is a star graph. By Lemma 2.13, we may have
p4M = (0). We proceed by the following cases:

Case 1. p2M = (0). Hence every nonzero proper submodule N of M is a ver-
tex and N2 = (0). It is clear that pM is a p-prime submodule of M and is adjacent
to every other vertex. Thus pM = Rm. Since for every nonzero proper submodule
N and K ofM , NK = (0) and AG(M) is a star graph,M has at most two nonzero
proper submodules. So M is a Noetherian module and Rm is a subset of every
nonzero submodule of M . It is easy to see that M is cyclic and hence a multiplica-
tion module. It follows that pM = mR is the only nonzero proper submodule ofM .

Case 2. p3M = (0) and p2M 6= (0). It is clear that p2M is adjacent to every other
vertex. So p2M = Rm. We claim that Rm is the only minimal submodule of M .
Suppose N is another minimal submodule ofM . It is easy to see that Ann(N) = p.
Let K be a nonzero proper submodule ofM . Thus (K :M) ⊆ Ann(N) = p so that
NK = (0). Hence N = Rm. Finally, suppose N1, N2 6= Rm are distinct nonzero
proper submodules of M . We have (N1 : M), (N2 : M) ⊆ p. Since AG(M) is a
star graph, we have N1N2 6= (0). Hence by minimality of p2M = mR, N1N2 = mR.

Case 3. p4M = (0) and p3M 6= (0). Since AG(M) is a star graph and R is a
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local ring, then the center of the star graph must be a nonzero cyclic submodule
p3M = mR. Since p3 ( p2, there are elements a, b ∈ p \ p2 such that ab ∈ p2 \ p3.
Then abp2M = (0), so p2M = abM because AG(M) is a star graph. If a2 ∈ p3M ,
then (aM)(abM) = (0), a contradiction with the star shaped assumption. Hence
p2M = a2M . Another application of the star shaped assumption yields a3 6= 0. So
p3M = a3M . For c ∈ p \ p2, ca2 ∈ a3R \ (0). We conclude that c ∈ aR. Hence
p = aR and hence every non-zero ideal of R is a power of p. So (aM : M) = aR,
(a2M : M) = a2R, and (a3M : M) = a3R. It is easy to see that AG(M) is
a star graph with the center a3M = mR, and the other vertices are aM , a2M ,
and every nonzero proper submodule N of M with (N : M) = aR. (Note that
Spec(M) = {(0) 6= N < M | N 6= a2M,a3M}.)
(⇐=) This is clear. �

Theorem 2.15. Assume that M is a faithful module and is not a vertex of AG(M).
Then AG(M) is a complete graph if and only if M is one of the three types of

modules.

(a) M =M1 ⊕M2, where M1 and M2 are simple modules,

(b) Z(R) is an ideal with (Z(R))2 = (0), or
(c) Every nonzero proper submodule of M is a vertex, Spec(M) =Max(M) =

{aM}, where R is a local ring with exactly two nonzero proper ideals Z(R) =
aR, Z(R)2 such that a3 = 0, and for every nonzero proper submodule

N 6= aM , (N : M) = a2R.

Proof. (=⇒) Assume that AG(M) is a complete graph. So AG(R) is a complete
graph. By Theorem 2.5, M = M1 ⊕M2, where M1 is a simple module and M2 is
a prime module or Z(R) is an ideal. Suppose that we have the first case. If M2

has a nonzero proper submodule, say N2, then (0)×M2 and (0)×N2 are vertices
of AG(M) which are not adjacent, a contradiction. Thus M2 can not have any
nonzero proper submodule, and hence it is a simple module. Now assume that
Z(R) is an ideal of R. So (b) holds if Z(R)2 = (0). Otherwise, then by [8, Theorem
2.7], R is a local ring with exactly two nonzero proper ideals Z(R) = aR and Z(R)2

(note that a3 = 0). Hence every nonzero proper submodule M is a vertex. Since
AG(M) is a complete graph, for every nonzero proper submodule N 6= aM , we
have (N :M) = a2R. It follows that Spec(M) =Max(M) = {aM}.
(⇐=) This is clear. �

Corollary 2.16. Assume thatM is a faithful module and is not a vertex of AG(M).
Then we have the following.

(a) AG(M) is a complete graph with one vertex if and only if M has only one
nonzero proper submodule.

(b) AG(M) is a graph with two vertices if and only if M = M1 ⊕M2, where
M1 and M2 are simple modules orM is a module with exactly two nonzero
proper submodules Z(R)M and Z(R)2M .

(c) AG(M) is a graph with three vertices if and only if M has exactly three
nonzero proper submodules m1R,m2R,m3R such that m3R = m1R ∩
m2R,Z(R) = Ann(m3), (m1R)

2 = (m2R)
2 = (m3R)

2 = (0), where 0 6=
m1,m2,m3 ∈M , or Λ(M)∗ = {Z(R)M,Z(R)2M,Z(R)3M}.

Proof. (a) (=⇒) This follows by [4, Theorem 3.6 and Proposition 3.5].
(⇐=) Suppose M has only one nonzero proper submodule. It follows that M ∼= R
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and hence [8, Corollary 2.9(a)] completes the proof.
(b) (=⇒) Suppose AG(M) is a graph with two vertices. By [4, Theorem 3.6 and
Proposition 3.5], M has exactly two nonzero proper submodules. Since AG(M) is
connected, then AG(M) is a complete (or star) graph. Thus by Theorem 2.15 and
Theorem 2.14, M = M1 ⊕M2, where M1 and M2 are simple modules or M is a
module with exactly two nonzero proper submodules Z(R)M and Z(R)2M .
(⇐=) This is clear.
(c) (=⇒) Suppose AG(M) is a graph with three vertices. By [4, Theorem 3.6 and
Proposition 3.5], M has exactly three nonzero proper submodules. Since AG(M)
is connected, either it is a complete (or star) graph. If AG(M) is a complete graph,
then we may have the cases (b) and (c) in Theorem 2.15. First we assume that the
case (b) in this theorem is true. Then Z(R) is an ideal of R with Z(R)2 = (0). It
follows that R is an Artinian ring and Z(R) = Nil(R) = Ann(m) is the only prime
ideal of R, where Rm is a minimal submodule of M . Let N1, N2, and N3 be the
only nonzero proper submodules of M . We proceed by the following cases:

Case 1. N1 ⊂ N2 ⊂ N3. Then we have M and R are isomorphic which is a
contradiction by [8, Corollary 2.9].

Case 2. N1, N2, and N3 are minimal submodules of M . In this case, M is a
multiplication cyclic module. But this yields a contradiction.

Case 3. N1 ⊂ N2, and N3 is not comparable with Ni, i = 1, 2. Then since
(N2 :M) = (N3 :M) = Z(R), it follows that N1 = N3 or N2 = N3, a contradiction.

Case 4. N1 ⊂ N2, and N3 ⊂ N2. Then we have (N2 : M) = Z(R). If M is a
multiplication module, then it is cyclic and hence similar to the case (1), we get a
contradiction. Otherwise, N1 ⊂ N3 or N3 ⊂ N1, which is again a contradiction.

Case 5. N3 ⊂ N1 and N3 ⊂ N2. It follows that N1 = Rm1, N2 = Rm2,
N3 = Rm3 = N1 ∩ N2, Z(R) = Ann(m3), and N2

1 = N2
2 = N2

3 = (0), as de-
sired.

Now suppose that the case (c) in Theorem 2.15 is true. Then we have Λ(M)∗ =
{aM, a2M,N} such that Spec(M) = Max(M) = {aM}, where Z(R) = aR and
(N :M) = a2R. It follows that N ⊆ aM and hence similar to case (4), we get again
a contradiction. Finally suppose that AG(M) is a star graph with three vertices.
Then we may have the cases (b) and (c) in Theorem 2.15. We prove that the case
(b) in this theorem is not true. Otherwise, Z(R)3M = (0) and Z(R)2M is the
only minimal submodule of M . Let N be a nonzero proper submodule of M and
N 6= pM, p2M . IfN is a maximal submodule ofM , then p2M ⊂ pM ⊂ N and hence
similar to case (1), we have a contradiction. Otherwise, p2M ⊂ N ⊂ pM , which
is again a contradiction. Thus M has exactly three nonzero proper submodules
Z(R)M , Z(R)2M , and Z(R)3M .
(⇐=) This is clear.

�

Theorem 2.17. Suppose that R is not a domain and M is a faithful module. If

every vertex of AG(M) is a prime submodule of M , then either M = M1 ⊕M2,

whereM1 andM2 are simple modules or M has only one nonzero proper submodules.
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Proof. Case 1. Let x ∈ Z(R) and x2 6= 0. It follows that xM and x2M are ver-
tices of AG(M). We have (xM : M)(xM) ⊆ x2M . This implies that xM ⊆ x2M
or (xM : M) ⊆ (x2M : M) so that xM = x2M . Let N be a nonzero proper
submodule of M with N ≤ xM and let m ∈ M . Since xm ∈ x2M , there exists
m′ ∈ M such that xm = x2m′. Since M 6= xM , hence m − xm′ 6= 0. Thus we
have x(m − xm′) = 0 ∈ N . Again, since M 6= xM , x ∈ (N : M). It follows that
N = xM and hence xM is a minimal submodule of M . By Lemma 2.4, we have
N = eM for some idempotent e ∈ R. Now we show that (1 − e)M is a minimal
submodule of M . Let 0 6= K ⊂ (1 − e)M . Then there exists m ∈ M such that
m(1−e) /∈ K. We have e(m(1−e)) ∈ K. So e ∈ (K :M). It follows that e2M = 0,
a contradiction. This implies that M = M1 ⊕M2, where M1 and M2 are simple
modules.

Case 2. Assume that x2 = 0 for every 0 6= x ∈ Z(R). At first, we show that
for every x, y ∈ Z(R) \ {0}, xM = yM . Otherwise, there exists m,m′ ∈ M such
that xm /∈ yM and ym′ /∈ xM . We have x(xm) = 0 ∈ yM and y(ym′) = 0 ∈ xM .
It follows that xM ⊆ yM and yM ⊆ xM , a contradiction. Hence xy = 0. It
implies that for every vertex N and K of AG(M), NK = (0). Therefore AG(M)
is a complete graph. One can see that for every 0 6= x ∈ Z(R), xM is a minimal
submodule of M and hence there exists 0 6= m ∈ M such that xM = Rm. This
case and Z(R) = Nil(R) yield that Z(R) = Ann(m) is a unique prime ideal of
R. So every nonzero proper submodule of M is a vertex. Now, if xM is the only
nonzero proper submodule of M , then there is nothing to prove. Otherwise, let N
be a nonzero proper submodule ofM such that xM ⊂ N . Thus there exists m ∈ N
such that m /∈ xM . If Ann(m) = (0), then R ∼= Rm. So every nonzero proper ideal
of R is a prime ideal and hence R has only one nonzero proper ideal. Now the result
follows from Theorem 2.14. If Ann(m) 6= (0), then Rm is a minimal submodule
of M . Since xM ⊆ Rm (xM = (xM : M)M = Z(R)M = (Rm : M)M), we have
xM = Rm, a contradiction, as desired. �

Corollary 2.18. Assume that R is not a domain andM is a faithful module. Then
we have the following.

(a) V (AG(M)) ⊆Max(M), i.e., every vertex of AG(M) is a maximal submod-
ule of M .

(b) V (AG(M)) =Max(M)
(c) V (AG(M)) = Spec(M).
(d) V (AG(M)) ⊆ Spec(M).
(e) Either M = M1 ⊕M2, where M1 and M2 are simple modules or M has

only one nonzero proper submodule.

Proof. This is clear. �

3. Coloring of the annihilating-submodule graphs

We recall that M is an R-module.
The purpose of this section is to study of coloring of the annihilating-submodule
graphs of modules and investigate the interplay between χ(AG(M)) and cl(AG(M)).

Proposition 3.1. Let M be a faithful module. Then χ(AG(M)) = 1 if and only
if M has only one nonzero proper submodule.
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Proof. Let χ(AG(M)) = 1. Since AG(M) is a connected graph, it can not have
more than one vertex. IfM is a faithful module, then by Corollary 2.16(a), AG(M)
is a graph with one vertex if and only ifM has only one nonzero proper submodule.

�

Theorem 3.2. Let M be a faithful module. Then the following statements are

equivalent.

(a) χ(AG(M)∗) = 2.
(b) AG(M)∗ is a bipartite graph with two nonempty parts.

(c) AG(M)∗ is a complete bipartite graph with two nonempty parts.

(d) Either R is a reduced ring with exactly two minimal prime ideals or AG(M)∗

is a star graph with more than one vertex.

Proof. (a) ⇐⇒ (b) and (c) =⇒ (b) are clear.
(b) =⇒ (d) Suppose that AG(M)∗ is a bipartite graph with two nonempty parts V1
and V2. One can see that AG(M)∗ is a bipartite graph with two nonempty parts
V1 and V2 if and only if AG(R) is a bipartite graph with two nonempty parts U1

and U2 such that if N ∈ Vi, then (N : M) ∈ Ui and if I ∈ Ui, then IM ∈ Vi, for
i = 1, 2. Hence by [9, Theorem 2.3], R is a reduced ring with exactly two minimal
prime ideals p1 and p2 or AG(R) is a star graph with more than one vertex. If
R is a reduced ring with exactly two minimal prime ideals p1 and p2, then there
is nothing to prove. If AG(R) is a star graph with more than one vertex, then
AG(M)∗ is a star graph with more than one vertex.
(d) =⇒ (c) Assume that R is a reduced ring with exactly two minimal prime ideals
p1 and p2. Then by [9, Theorem 2.3], AG(R) is a complete bipartite graph with two
nonempty parts so that AG(M)∗ is a complete bipartite graph with two nonempty
parts. If AG(M)∗ is a star graph with more than one vertex, then AG(M)∗ is a
complete bipartite graph. �

Corollary 3.3. Let R be an Artinian ring and assume thatM is a faithful module.
Then the following statements are equivalent.

(a) χ(AG(M)∗) = 2.
(b) AG(M)∗ is a bipartite graph with two nonempty parts.
(c) AG(M)∗ is a complete bipartite graph with two nonempty parts.
(d) Either M = M1 ⊕M2, where M1 and M2 are simple modules or AG(M)∗

is a star graph with more than one vertex such that R is a local ring.

Proof. By Theorem 3.2, (a) ⇐⇒ (b) ⇐⇒ (c).
(b) =⇒ (d) Assume that AG(M)∗ is a bipartite graph with two nonempty parts.
Hence AG(R) is a bipartite graph with two nonempty parts. By [9, Corollary 2.4],
if R ∼= F1 ⊕ F2, then AG(R) is a star graph. So AG(M)∗ is a star graph. Hence
by Corollary 2.12, either M = M1 ⊕M2, where M1 and M2 are simple modules
or R is a local ring with maximal ideal p = (0 : m) ∈ Ass(M). In the first case,
as desired. In the second case, AG(M)∗ is a star graph with the center Rm. On
the other hand, if R is a local ring such that AG(R) is a star graph, then we are
done. �

Corollary 3.4. Let R be a reduced ring and assume that M is a faithful module.
Then the following statements are equivalent.

(a) χ(AG(M)∗) = 2.
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(b) AG(M)∗ is a bipartite graph with two nonempty parts.
(c) AG(M)∗ is a complete bipartite graph with two nonempty parts.
(d) R has exactly two minimal prime ideals.

Proof. Use Theorem 3.2. �

Recall that N < M is said to be a semiprime submodule ofM if for every ideal I
of R and every submodule K of M , I2K ⊆ N implies that IK ⊆ N . Further M is
called a semiprime module if (0) ⊆M is a semiprime submodule. Every intersection
of prime submodules is a semiprime submodule (see [15]). A prime submodule N
of M will be called extraordinary if whenever K and L are an intersection of prime
submodules of M with K ∩ L ⊆ N , then K ⊆ N or L ⊆ N (see [13]).

Lemma 3.5. Let M be a semiprime R-module such that AG(M)∗ does not have
an infinite clique. Then M has a.c.c. on submodules of the form AnnM (I), where
I is an ideal of R.

Proof. Suppose that AnnM (I1) ⊂ AnnM (I2) ⊂ AnnM (I3) ⊂ ... (strict inclusions)
so that M does not satisfy the a.c.c. on submodules of the form AnnM (I), where
I is an ideal of R. Clearly, IiAnnM (Ii+1) 6= 0, for each i ≥ 1. Thus for each
i ≥ 1, there exists xi ∈ Ii such that xiAnnM (Ii+1) 6= (0). Let Ji = xiAnnM (Ii+1),
i = 1, 2, 3, . . . . Then if i 6= j (we may assume that i < j), Ji 6= Jj because
if xiAnnM (Ii+1) = xjAnnM (Ij+1), then we have AnnM (Ii+1) ⊆ AnnM (Ij). So
xjAnnM (Ii+1) = (0). Hence x2jAnnM (Ij+1) = (0). This yields a contradiction
because M is a semiprime module and xjAnnM (Ij+1) 6= 0. On the other hand, one
can see that JiJj ⊆ xixjAnnM (Ii+1) and JiJj ⊆ xixjAnnM (Ij+1). Hence we have
JiJj = (0). �

Lemma 3.6. Let P1 = AnnM (x1) and P2 = AnnM (x2) be two distinct elements
of Spec(M). Then (x1M)(x2M) = (0).

Proof. The proof is straightforward. �

Theorem 3.7. M is a faithful module if one of the following holds.

(a) R is a reduced ring and Z(M) = p1∪p2∪...∪pk, whereMin(R) = {p1, p2, ..., pk}.
(b) M is a semiprime module and AG(M)∗ does not have an infinite clique.

Proof. (a). Let (0) = p1 ∩ p2 ∩ ... ∩ pk, where p1, p2,..., pk are minimal prime
ideals of R. We have Ann(M) ⊆ (p1M : M) ∩ ... ∩ (pkM : M). It is enough to
show that (piM : M) = pi, i = 1, ..., k. For 1 ≤ i ≤ n, p1p2...pi−1pi+1...pn 6= (0)
because if p1p2...pi−1pi+1...pn = (0), then pj ⊆ pi, where j 6= i, a contradiction.
Also, if (p1p2...pi−1pi+1...pn)M = (0), then p1p2...pi−1pi+1...pn ⊆ Ann(M). So for
every nonzero element m ∈ M , we have p1p2...pi−1pi+1...pn ⊆ Ann(m) ⊆ Z(M).
It follows that there exists j 6= i such that Ann(m) ⊆ pj. Hence Z(M) = p1 ∪ p2 ∪
... ∪ pi−1 ∪ pi+1 ∪ ... ∪ pn, a contradiction. So (p1p2...pi−1pi+1...pn)M 6= (0). We
have (piM)((p1p2...pi−1pi+1...pn)M) = 0 and so (piM : M) ⊆ Z(M). It follows
that (piM :M) = pi, as desired.
(b) Suppose that M is a semiprime module and AG(M)∗ does not have an infinite
clique. Then by Lemma 3.5, M has a.c.c. on submodules of the form AnnM (I),
where I is an ideal of R. Therefore the set {AnnM (x)| x /∈ Ann(M)} has maximal
submodules so that they are prime submodules ofM . Let AnnM (xλ), where λ ∈ Λ,
be the different maximal members of the family {AnnM (x)| x /∈ Ann(M)}. By
Lemma 3.6, the index set Λ is finite. Let x ∈ R such that x /∈ Ann(M). Then
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AnnM (x) ⊆ AnnM (xλ1
) for some λ1 ∈ Λ. We claim that ∩λ∈Λ(AnnM (xλ) :M) =

(0). Let 0 6= x ∈ ∩λ∈Λ(AnnM (xλ) : M). So xM ⊆ AnnM (xλ) for every λ ∈ Λ.
We have AnnM (x) ⊆ AnnM (xλ1

). Since xM ⊆ AnnM (xλ1
), xλ1

M ⊆ AnnM (x).
Thus x2λ1

M = (0), a contradiction. Now the proof is completed because Ann(M) ⊆
(AnnM (xλ) :M) for every λ ∈ Λ.

�

Corollary 3.8. Assume that M is a semiprime module. Then the following state-
ments are equivalent.

(a) χ(AG(M)∗) is finite.
(b) cl(AG(M)∗) is finite.
(c) AG(M)∗ does not have an infinite clique.

Proof. (a) =⇒ (b) =⇒ (c) is clear.
(c) =⇒ (d) Suppose AG(M)∗ does not have an infinite clique. It follows directly
from the proof of Theorem 3.7(b), there exists a finite number of prime submodules
P1, ..., Pk of M such that (0) = P1 ∩ P2 ∩ ... ∩ Pk. Define a coloring f(N) =
min{n ∈ N | (N : M)M * Pn} such that N is a vertex of AG(M)∗. We have
χ(AG(M)∗) ≤ k. �

Corollary 3.9. Assume that radM (0) = (0) and every prime submodule of M is
extraordinary. Then the following statements are equivalent.

(a) χ(AG(M)∗) is finite.
(b) cl(AG(M)∗) is finite.
(c) AG(M)∗ does not have an infinite clique.
(d) M has a finite number of minimal prime submodules.

Proof. (a) =⇒ (b) =⇒ (c) is clear.
(c) =⇒ (d) Suppose AG(M)∗ does not have an infinite clique. Once again, it
follows directly from the proof of Theorem 3.7(b), there exists a finite number of
prime submodules P1, ..., Pk of M such that (0) = P1 ∩ P2 ∩ ... ∩ Pk. Since every
prime submodule of M is extraordinary, M has a finite number of minimal prime
submodules.
(d) =⇒ (a) Assume that M has a finite number of minimal prime submodules so
that (0) = P1 ∩P2 ∩ ...∩Pk, where P1, ..., Pk are minimal prime submodules of M .
Define a coloring f(N) = min{n ∈ N | (N : M)M * Pn} such that N is a vertex
of AG(M)∗. We have χ(AG(M)∗) ≤ k. �

Lemma 3.10. Let R be a reduced ring and M a faithful R-module. Then AG(R)
has an infinite clique if and only if AG(M)∗ has an infinite clique.

Proof. This is clear. �

Proposition 3.11. Assume that radM (0) = (0) and M is a faithful R-module.
Then the following statements are equivalent.

(a) χ(AG(M)∗) is finite.
(b) cl(AG(M)∗) is finite.
(c) AG(M)∗ does not have an infinite clique.
(d) R has a finite number of minimal prime ideals.

Proof. (a) =⇒ (b) =⇒ (c) is clear.
(c) =⇒ (d) Suppose AG(M)∗ does not have an infinite clique. Then by Theorem
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3.7(b), M is a faithful module. Since radM (0) = (0), it follows that R is a reduced
ring. So by Lemma 3.5, AG(R) does not have an infinite clique. Then by [9,
Corollary 2.10], R has a finite number of minimal prime ideals so that (0) = p1 ∩
p2 ∩ ... ∩ pk, where p1, ..., pk are prime ideals.
(d) =⇒ (a) Assume that R has a finite number of minimal prime ideals. Since M
is a faithful module and radM (0) = (0), then R is a reduced ring. So R has a finite
number of minimal prime ideals p1, ..., pk such that (0) = p1 ∩ p2 ∩ ...∩ pk. Define a
coloring f(N) = min{n ∈ N | (N : M) * pn} such that N is a vertex of AG(M)∗.
We have χ(AG(M)∗) ≤ k. �

Corollary 3.12. Assume that radM (0) = (0) and M is a faithful module. Then
χ(AG(M)∗) = cl(AG(M)∗). Moreover, if χ(AG(M)∗) is finite, then R has a finite
number of minimal prime ideals, and if k is this number, then χ(AG(M)∗) =
cl(AG(M)∗) = k.

Proof. Suppose χ(AG(M)∗) is finite. Then by Proposition 3.11, R has a finite
number of minimal prime ideals p1, ..., pk. One can see that R is a reduced ring.
So cl(AG(M)∗) ≤ χ(AG(M)∗) ≤ k. By [6, Theorem 6], cl(AG(R)) ≥ k, and so
cl(AG(M)∗) ≥ k, as desired. �

Lemma 3.13. If cl(AG(M)∗) is finite, then for every nonzero submodule N of M
with N2 = (0) and (N : M) 6= Ann(M), N has a finite number of R-submodules
K such that (K :M) 6= Ann(M).

Proof. This is clear. �

Theorem 3.14. Let M be a Noetherian module and Υ = {N ∈ V (AG(M)∗)|
N2 = (0)}. Assume that every N ∈ Υ has a finite number of R-submodules in Υ.

If one of the following statements holds, then cl(AG(M)∗) is finite.

(a) We have (ΣN∈ΥN :M)M = (ΣN∈Υ(N :M)M :M)M
(b) For every N ∈ Υ, the subset {K < M | (N :M)M = (K :M)M} is finite.

Proof. Suppose that every N ∈ Υ has a finite number of R-submodules in Υ and
we have (a). Let C be a largest clique in AG(M)∗ and let Υ1 be the set of all
vertices N of C with N2 = (0). If Υ1 6= ∅, then K = ΣN∈Υ1

N is again a vertex of
C and K2 = (0) because for every L ∈ C, we have

(L :M)(ΣN∈Υ1
N :M)M = (L :M)(ΣN∈Υ1

(N :M)M :M)M ⊆

(L :M)(ΣN∈Υ1
(N :M)M) ⊆ ΣN∈Υ1

(L : M)(N :M)M = (0).

Hence K ∈ C. We have

K2 = (ΣN∈Υ1
N : M)2M = (ΣN∈Υ1

(N : M)M :M)2M ⊆ ...

⊆ ΣN,N ′∈Υ1
(N :M)(N ′ :M)M = (0).

So by our hypothesis, K has a finite number of R-submodules in Υ. But if N ∈ Υ1,
every R-submodule of N is an R-submodule of K. Thus for every N ∈ Υ1, N has a
finite number of R-submodules in Υ and hence Υ1 has a finite elements. We claim
that C\Υ1 has also a finite elements. Suppose that {N1, N2, ...} is an infinite subset
of C\Υ1. Consider the chain N1 ⊆ N1 +N2 ⊆ N1 +N2 +N3 ⊆ . . . . Since M is a
Noetherian module, there exists n ∈ N such thatN1+...+Nn = N1+...+Nn+Nn+1,
i.e., Nn+1 ⊆ N1 + ...+Nn. So

N2
n+1 ⊆ Nn+1(N1 + ...+Nn) ⊆ (Nn+1 :M)((N1 :M)M + ...+ (Nn :M)M)
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⊆ (Nn+1 :M)(N1 :M)M + ...+ (Nn+1 :M)(Nn : M)M = (0).

It follows that N2
n+1 = (0), a contradiction. Thus C has a finite number of vertices

and from there, cl(AG(M)∗) is finite. Now assume that we have the hypothesis in
case (b). Let K = ΣN∈Υ1

(N : M)M . By using similar arguments as in case (a),
we have K2 = (0). But by hypotheses, K has a finite number of submodules in
Υ. We claim that Υ1 has a finite number of elements. Suppose not. Then there
exists N ∈ Υ1 such that the subset {L ∈ Υ|(N : M)M = (L : M)M} is infinite, a
contradiction. Thus C has a finite number of vertices and from there, cl(AG(M)∗)
is a finite set.

�
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