
DrMAD: Distilling Reverse-Mode Automatic
Differentiation for Optimizing Hyperparameters

of Deep Neural Networks

Jie Fu1, Hongyin Luo2, Jiashi Feng3 and Tat-Seng Chua4

1Graduate School for Integrative Sciences and Engineering,
National University of Singapore

2Department of Computer Science and Technology, Tsinghua
University

3Department of Electrical and Computer Engineering, National
University of Singapore

4School of Computing, National University of Singapore

Abstract

The performance of deep neural networks is well known to be sensitive
to the setting of their hyperparameters. Recent advances in reverse-mode
automatic differentiation allow for optimizing hyperparameters with gra-
dients. The standard way of computing these gradients involves a forward
and backward pass of computations. However, the backward pass usually
needs to consume unaffordable memory to store all the intermediate vari-
ables to exactly reverse a training procedure. In this work we propose a
new method, DrMAD, to distill the knowledge of the forward pass into
an shortcut path, through which we approximately reverse the training
trajectory. Experiments on MNIST dataset show that DrMAD reduces
memory consumption by 4 orders of magnitude for optimizing hyperpa-
rameters without sacrificing its effectiveness. To the best of our knowl-
edge, DrMAD is the first research attempt to automatically tune hundreds
of thousands of hyperparameters of deep neural networks in practice.

1 Introduction
Modern machine learning algorithms are rarely hyperparameter-free: hyperpa-
rameters determining the learning rate or how important the L2-norm penalties
are during training. Recent results [21, 5, 28] show that the performance of
large-size deep models is sensitive to the setting of their hyperparameters. Tun-
ing hyperparameters of deep neural networks is thus now recognized as a cru-
cial step in the process of applying machine learning algorithms to achieve best

1

ar
X

iv
:1

60
1.

00
91

7v
2 

 [
cs

.L
G

] 
 6

 J
an

 2
01

6



performance and drive industrial applications [24]. For decades, the de-facto
standard for hyperparameter tuning in machine learning has been a simple grid
search [24]. Recently, it has been shown that hyperparameter optimization, a
principled and efficient way of automatically tuning hyperparameters, can reach
or surpass human expert-level hyperparameter settings for deep neural networks
to achieve new state-of-the-art performance in a variety of benchmark datasets
[24, 25, 28].

The common choice for hyperparameter optimization is gradient-free Bayesian
optimization [6]. Bayesian optimization builds on a probability model1 for
P (validation_loss|hyperparameter) that is obtained by updating a prior from a
history H of {hyperparameter, validation_loss} pairs. This probability model is
then used to optimize the validation loss after complete training of the model’s
elementary2 parameters. Although those techniques have been shown to achieve
good performance with a variety of models on benchmark datasets [24], they can
hardly scale up to handle more than 20 hyperparameters3 [18, 24]. Due to this
inability, hyperparameters are often considered nuisances, indulging researchers
to develop machine learning algorithms with fewer of them. We argue that be-
ing able to richly hyperparameterize our models is more than a pedantic trick.
For example we can set a separate L2-norm penalty for each layer4, which has
been shown to improve the performance of deep models on several benchmark
datasets [25].

On the other hand, automatic differentiation (AD), as a mechanical transfor-
mation of a objective function, can calculate gradients with respect to hyperpa-
rameters (thus called hypergradients) accurately [2, 18]. Although hypergradi-
ents enable us to optimize thousands of hyperparameters, all the prior attempts
[3, 2, 18] insist on exactly tracing the training trajectory backwards, which are
unfeasible for real-world data and deep models from a memory perspective.
Suppose we are to train a neural networks on MNIST with 60,000 training sam-
ples, the mini-batch size is 100, the epoch number is 200, and every elementary
parameter vector takes up 0.1 GB. In order to trace the training trajectory
backwards, the naïve solution has to store all the intermediate variables (e.g.
weights) at every iteration thus costing memory up to 60000/100×200×0.1 GB
= 12 TB. The improved method proposed in [18] needs at least 60 GB memory,
which still cannot utilize the power of modern GPUs5 even for this small-scale
dataset, let alone ImageNet dataset consisting of millions of training samples.

The high memory cost roots in pursuing exact reverse of the training proce-
dure. In this work, we propose DrMAD, to reduce the memory cost and make
the hyperparameter optimization feasible in practice. Compared with exact re-
verse methods, DrMAD chooses to reverse training dynamics in an approximate

1Gaussian processes are the most popular choice as the regressor. Except in [4], where
they use a random forest and in [26] where they use a Bayesian neural network.

2Following the tradition in [18], we use elementary to unambiguously denote the traditional
parameters updated by back-propagation, e.g. weights and biases in a neural network.

3Here we mean effective hyperparameters, as has been shown in [30], Bayesian optimization
can handle high-dimensional inputs only if the number of effective hyperparameters is small.

4The winning deep model for ILSVRC2015 has 152 layers [15].
5Till the writing of this paper, the most advanced GPU is equipped with 24GB memory.

2



manner. Doing so allows us to reduce the memory consumption of tuning hyper-
parameters by a factor of 50,000 at least. On the MNIST dataset, our method
only needs 0.2 GB memory thus enabling the use of GPUs. More importantly,
the memory consumption is independent of the problem size as long as the deep
model has converged6. In addition, DrMAD only incurs negligible performance
drop. Section 2 and Section 3 describe this problem and our solution in detail
respectively, which is the main technical contribution of this paper.

In short, we make the following contributions in this work:

• We give an algorithm that approximately reverses stochastic gradient de-
scent to compute gradients w.r.t. hyperparameters. Our method can
reduce memory consumption by orders of magnitude without sacrificing
its effectiveness compared with the previous attempts [18, 9] based on
exact arithmetic.

• We show that DrMAD can be further accelerated when combined with
checkpointing, a standard technique in reverse-mode automatic differenti-
ation.

• We give some suggestions on how to prevent overfitting faced by high-
dimensional hyperparameter optimization.

2 Foundations and Related Work
We first review the general framework of automatic hyperparameter tuning
and previous work on automatic differentiation for hyperparameters of machine
learning models.

2.1 Automatic Hyperparameter Tuning
Typically, a deep learning algorithm Aw,λ has a vector of elementary parameters
w = {w1, ..., wm} ∈W , whereW = W1× ...×Wm define the parameter space,
and a vector of hyperparameters λ = {λ1, ..., λn} ∈ Λ, where Λ = Λ1 × ... ×
Λn define the hyperparameter space. We further use ltrain = L(Aw,λ,Xtrain)
to denote the training loss, and lvalid = L(Aw,λ,Xtrain,Xvalid) to denote the
validation loss that Aw,λ achieves on validation data Xvalid when trained on
training data Xtrain. An automatic hyperparameter tuning algorithm then tries
to find λ ∈ Λ that minimizes lvalid in an efficient and principled way.

2.2 Automatic Differentiation
Most training of machine learning models is driven by the evaluation of deriva-
tives, which are usually handled by four approaches [2]: numerical differentia-

6We only require that the deep model converges, but not necessarily achieves highest
performance. This can be easy to be met in practice, as will be discussed in detail in Section
3.1.

3



⇓

Forward Pass

⇑

Backward Pass
v−1 = x1 = 3 x̄1 = v̄−1 = 6
v0 = x2 = 6 x̄2 = v̄0 = 0.02

v1 = ln(v0) = ln(6) v̄−1 = v̄2
∂v2
∂v−1

= 6

v2 = v2−1 = 32 v̄0 = v̄0 + v̄1
∂v1
∂v0

= 0.02

v3 = cos(v0) cos(3) v̄0 = v̄3
∂v3
∂v0

= −0.14

v4 = v1 + v2 = 1.79 + 9 v̄1 = v̄4
∂v4
∂v1

= 1

v̄2 = v̄4
∂v4
∂v2

= 1

v5 = v4 + v3 = 10.79− 0.98 v̄3 = v̄5
∂v5
∂v3

= 1

v̄4 = v̄5
∂v5
∂v4

= 1

y = v5 = 9.80 v̄5 = ȳ = 1

Table 1: Reverse-mode automatic differentiation example, with y = f(x1, x2) =
ln(x2) + x21 + cos(x1) at (x1, x2) = (3, 6). Setting ȳ = 1, ∂y/∂x1 and ∂y/∂x2
are computed in one backward pass.

tion; manually calculating the derivatives and coding them; symbolic differen-
tiation by computer algebra; and automatic differentiation.

Manual differentiation can avoid approximation errors and instability asso-
ciated with numerical differentiation, but is labor intensive and prone to errors
[14]. Although symbolic differentiation could address weakness of both numeri-
cal and manual methods, it has the problem of “expression swell” and not being
efficient at run-time[14]. AD has been underused [2], if not unknown, by the
machine learning community despite its extensive use in other fields, such as
real-parameter optimization [29] and probabilistic inference [19]. AD systemat-
ically applies the chain rule of calculus at the elementary operator level [14]. It
also guarantees the accuracy of evaluation of derivatives with a small constant
factor of computational overhead and ideal asymptotic efficiency [2].

AD has two modes: forward and reverse7 [14]. Here we only consider the
reverse-mode automatic differentiation (RMAD) [2]. RMAD is a generalization
of the back-propagation [12] used in the deep learning community8. RMAD
allows the gradient of a scalar loss with respect to its parameters to be computed
in a single backward pass after a forward pass [2]. Table 1 shows an example of
RMAD for y = f(x1, x2) = ln(x2) + x21 + cos(x1).

2.3 Gradient-Based Methods for Hyperparameters
Although our method could work in principle for any continuous hyperparame-
ter, in this paper we focus on studying the tuning of regularization hyperparam-
eters, which only appear in the penalty term. We consider stochastic gradient
descent (SGD), as it is the only affordable way of optimizing large-size neural

7Do not confuse these two modes with the forward and backward passes used in reverse-
mode automatic differentiation, as will be described in detail shortly.

8One of the most popular deep learning libraries, Theano [1], can be described as a limited
version of RMAD and a heavily optimized version of symbolic differentiation [2].

4



networks [12]. To make the definitions in Section 2.1 more concrete and concise,
we denote the training objective function as:

ltrain = L(w|λ,Xtrain) = C(w|λ,Xtrain) + P (w,λ) = Ctrain + P (w,λ), (1)

where w is the vector of elementary parameters (including weights and bi-
ases), Xtrain is the training dataset, λ is the vector of hyperparameters, C(·) is
the cost function on either training (denoted by Ctrain) or validation (denoted
by Cvalid) data, and P (·) is the penalty term.

The elementary parameters updating formula is: wt+1 = wt+ηw∇wL(wt|λ,Xtrain),
where the subscript t denotes the count of iteration (i.e. one forward and back-
ward pass over one mini-batch), and ηw is the learning rate for elementary
parameters.

The gradients of hyperparameters (hypergradients) are computed on the
validation data Xvalid without considering the penalty term [10, 18, 17]:

∇λCvalid = ∇wCvalid
∂wt

∂λ
= ∇wCvalid

∂2ltrain
∂λ∂w

, (2)

where Cvalid = C(w|Xvalid) is the validation cost.
The hyperparameters are updated at every iteration in [17, 10]. In [10], given

the elementary optimization has converged, the hyperparameters are updated
as:

λt+1 = λt + ηλ∇wCvalid(∇2
wltrain)−1 ∂

2ltrain
∂λ∂w

, (3)

where ηλ is the learning rate for hyperparameters. The authors in [17]
propose to update hyperparameters by simply approximating the Hessian in
Eq. 3 as ∇2

wltrain = I:

λt+1 = λt + ηλ∇wCvalid
∂2ltrain
∂λ∂w

. (4)

However, updating hyperparameters at every iteration might result in unsta-
ble hypergradients, because it only considers the influence of the regularization
hyperparameters on the current elementary parameter update. Consequently,
this approach can hardly scale up to handle more than 20 hyperparameters as
shown in [17].

In this paper, we follow the direction of [18, 3, 9], in which RMAD is
used to compute hypergradients, taking into account the effects of the hy-
perparameters on the entire learning trajectory. Specifically, different from
Eq. 2 in [17, 10] only considering ∂wt

∂λ , we consider the term ∂wT

∂λ (here T
represents the final iteration number till convergence) similar to [18, 3, 9]:
wT =

∑
0<t<T 4wt,t+1(wt(λk),λk,Xt, ηλ) +w0, where the subscript k in λk

stands for the counter of meta-iterations used for hyperparameter optimization
(i.e. the number of entire training of elementary parameters), Xt is the mini-
batch of training data used in iteration t, and w0 is the initial parameter vector.
Update of hyperparameter in this paper and also [18, 3, 9] is:

5



λk+1 = λk + ηλ∇wCvalid
d

dλ
(
∑

0<t<T

4wt,t+1(wt(λk),λk,Xt, ηλ) +w0). (5)

Unfortunately, RMAD requires all the intermediate variables obtained in the
forward pass be maintained in memory for the backward pass [14]. Conventional
RMAD with exact arithmetic stores the entire training trajectory {w0, ...,wT }
in memory, which is totally impractical for even small-size tasks.

An “information buffer” method is proposed in [18] to recompute the learning
trajectory on the fly during the reverse pass of RMAD rather than storing it
in memory by making use of the SGD momentum mechanism. Certain amount
of auxiliary bits as information buffer, which depend on the specific learning
dynamics, to handle finite precision arithmetic is needed in this case. Although
the proposed method in [18] is shown to be able to tune hundreds of thousands
of hyperparameters and reduce the memory consumption by a factor of 200 (in
the most ideal setting), it can only work on small-size datasets9.

3 Approximating RMAD with a Shortcut
In this paper, we raise a crucial yet rarely investigated question: do we really
need to exactly trace the whole training procedure backwards, starting from the
trained parameter values and working back to the initial random parameters?
If all that we care about are decent enough hyperparameters, the answer might
be no. Driven by this question, we demonstrate how to establish a shortcut by
distilling the knowledge of the forward pass of RMAD.

3.1 Distilling Knowledge from the Forward Pass
Trying to trace backwards exactly can be wasteful as this approach does not take
into account the highly structured nature of deep models training dynamics.
It has been argued in [13] that if we knew the direction defined by the final
learned weights after convergence, a single coarse line search could do a good
job of training a neural network. The results in [13] are consistent with recent
empirical and theoretical work arguing that local minima are not a significant
problem for training deep neural networks [7, 8].

It is also well known that when doing elementary parameter optimization,
second-order methods such as Newton’s method are more efficient with fewer it-
erations compared to the naïve gradient descent, but they cannot easily applied
to high-dimensional models due to heavy computations with large matrices. In
practice, it is usually approximated by a diagonal or block-diagonal approxima-
tion [22]. Motivated by these approximation techniques, we make an aggressive
approximation for RMAD here – discard all the intermediate variables alto-
gether. In other words, we choose a shortcut, which simply approximates the

9In the experimental part of [18], they only use 10,000 training samples of MNIST dataset
and the number of iterations is 100, which are far from the real-world settings.

6



forward pass learning history used in Eq. 5 as a series of parameter vectors
w = (1− β)w0 + βwT for varying values of 0 < β < 1, which can be generated
on the fly almost without storing anything.

More concretely, DrMAD works by first obtaining the final trained elemen-
tary parameter values using SGD algorithms. Alg. 1 demonstrates the proce-
dure formally. No that we could use any SGD variants here and do not put
constraints on the momentum term. But the previous most similar work [18] is
highly dependent on the momentum setting in order to save memory.

Then Alg. 2 shows how to compute the gradients of hyperparameters by
DrMAD , where in step 4 we approximate the learning dynamics. These hy-
pergradients are used to update hyperparameters using Eq. 5. In addition to
reduction in memory, compared to [18], Alg. 2 also reduces the computational
operations as a byproduct, because it does not to recompute the elementary
parameters exactly.

Algorithm 1 Stochastic gradient descent (SGD).
1: inputs: initial w1, fixed learning rate α, fixed decay γ, hyperparameters
λ, train loss function ltrain

2: initialize v1 = 0
3: for t = 1 to T − 1 do
4: gt = ∇wltrain �evaluate gradient
5: vt+1 = γvt − (1− γ)gt
6: wt+1 = wt + αtvt �update position
7: end for
8: output: trained parameters wT

Algorithm 2 Distilling reverse-mode automatic differentiation (DrMAD) of
SGD.
1: inputs: initial w0, learned wT , training loss ltrain, validation loss lvalid

2: initialize dλ = 0, γ = 0.1, βt = 0.01 where 0 < βt < 1, dw = ∇wlvalid

3: for t = T − 1, counting down to 1 do
4: wt−1 = (1− βt)w0 + βtwT �approximate wt−1 on the fly
5: dv = dv + αdw
6: dλ = dλ− (1− γ)dv∇λ∇wlvalid
7: end for
8: output: gradient of lvalid w.r.t. λ

Actually, DrMAD can be seen as a form of knowledge distillation [16]. It
has been show that the knowledge acquired by a large ensemble of large-size
models, the “teacher”, can be distilled into a single small model, the “student”
[16]. For example we can first form a teacher by training an ensemble of five 10-
layer deep neural networks on a dataset. After this, a student with 5-layer could

7



achieve almost the same accuracy as the teacher with much less parameters by
approximating the teacher’s behavior rather than being trained on the original
dataset from scratch.

In our situation, the most valuable knowledge is the initial random and
final trained weight vectors once the deep model has converged. Therefore, the
forward pass of SGD training provides the final weight vector after convergence,
which is defined as a teacher; The reverse pass given by shortcut is a student
here.

We should emphasize that our convergence requirement is reasonable, as it
has been demonstrated that modern deep neural networks are relatively easy to
converge in practice [7, 13].

DrMAD is also in essence similar to transfer learning based hyperparameter
optimization methods [28]. In transfer Bayesian hyperparameter optimization,
one can explore a wide range of hyperparameters on a auxiliary dataset, and
then transfer this knowledge to quickly find the suitable hyperparameters on
another dataset with less optimization time [28]. DrMAD is different from
transfer Bayesian optimization in that it always runs on the same dataset.

Obviously, obtaining derivatives from the shortcut may never reveal more
information about hyperparameters than calculating derivatives from the ex-
act trajectories. However, when (memory and computational) costs are taken
into account, the shortcut may convey more information per unit cost. In fact,
our approach explicitly separates the optimization of the elementary parameters
and hyperparameters, which serves as a trade-off between accuracy and com-
putational expense. In the experimental part, we will show that the accuracy
performance of DrMAD is slightly worse than the RMAD with exact arithmetic.
Furthermore, by separating the optimization of the elementary parameters and
hyperparameters, we can use existing GPU-based deep learning libraries, such
as Theano [1], to speed up the forward pass, because currently none of the
automatic differentiation libraries, such as Autograd10, support GPUs.

3.2 Approximate Checkpointing with DrMAD
The computations of hypergradients are dependent on their hyperparameters
through thousands of iterations of SGD. Furthermore, within each iteration
of SGD, it involves forward- and then back-propagations through a deep neu-
ral network. Overall, the stacking of all the above operations would result in
vanishing gradient problems [11]. Even worse, when optimizing elementary pa-
rameters, we typically have thousands of iterations to generate gradients; while
for hyperparameters, due to the limited computing budget, it cannot get access
to more than 50 meta-iterations in practice, which might not be enough to drive
the hyperparameter search effectively.

Checkpointing, as a standard way to save memory in RMD, only stores the
intermediate variables on a fraction of the training steps, and recomputes the
missing steps of the forward training procedure as needed during the backward

10https://github.com/HIPS/autograd

8



pass [18]. However, this would still need too much memory to be useful for
large-size neural networks [18]. Furthermore it can hardly trace back from the
trained elementary parameters to the initial random ones, thus giving rise to
unstable hyperparameter optimization process.

In contrast, when combining checkpointing with DrMAD, we can more safely
decrease the number of backward iterations. Checkpointing serves as a hyper-
gradient damper here. Empirically, we observe that DrMAD can achieve almost
the same test error on MNIST dataset after retaining only 10% of the backward
iterations.

3.3 Prevent Overfitting
Tuning hundreds of thousands of hyperparameters with Eq. 5 increases the risk
of overfitting the validaiton dataset. This is similar to optimizing too many
elementary parameters which might result in overfitting the training dataset.
One rule of thumb as suggested in [18] is to use the size of the validation dataset
as a rough guide to determine how many hyperparameters should be optimized.
For example, if one has 10,000 validation datapoints at hand, he may have the
luxury to optimize 1,000 hyperparameters.

Analogous to dropout commonly used when optimizing elementary param-
eters in deep neural networks [27], one slightly more principled way for avoid-
ing overfitting in hyperparameter optimization would be to randomly drop out
some hyperparameters during training. We call this method as hyper-drop. In
the simplest situation, each hyperparameter is retained for subsequent opti-
mization process with a fixed probability p independent of each other. In other
words, p of the hyperparameters are randomly chosen to be optimized by Dr-
MAD, whereas the other (1 − p) hyperparameters are left unchanged. To do
so, we need to modify the penalty term, P (w,λ), in Eq. 1. Specifically, we use
λ̃ = r ∗ λ to replace the original λ, where ∗ denotes an element-wise product.
We also set rn ∼ Bernoulli(p), where the subscript n in rn is the number of
hyperparameters. However, like dropout [27], hyper-dropout might need more
meta-iterations to converge.

We might also choose to share the same hyperparameters across several
different elementary parameters, which is similar to weight-tying [20]. Doing
so enables us to explicitly trade-off the flexibility given by high-dimensional
hyperparameters and low-risk of overfitting.

We have not tested the above methods thoroughly, and will leave it for future
work.

4 Experiments
We evaluted DrMAD for optimizing continuous regularization hyperparameters
on MNIST dataset (50,000 for training, 10,000 as validation, and 10,000 for
testing) using a multilayer perceptron (MLP) with tanh activation function.
The MLP has one hidden layer with 500 neurons, and each neuron has its own

9



0 5 10 15 20
−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

L
o
g

 L
2

 r
e
g

u
la

ri
za

ti
o
n

0 5 10 15 20
Meta iterations

8

9

10

11

12

13

14

T
e
st

 e
rr

o
r 

(%
)

0 5 10 15 20
−5.6
−5.4
−5.2
−5.0
−4.8
−4.6
−4.4
−4.2
−4.0
−3.8

L
o
g

 L
2

 r
e
g

u
la

ri
za

ti
o
n

0 5 10 15 20
Meta iterations

9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5

T
e
st

 e
rr

o
r 

(%
)

Figure 1: Left: Evolution of the average of hyperparameters and the correspond-
ing test error obtain by RMAD. Right: Evolution of the average of hyperparam-
eters and the corresponding test error obtain by DrMAD. We can observe that
both the hyperparameter and test error curves of DrMAD is close to RMAD on
MNIST dataset during hyperparameter optimization.

L2-norm penalty, thus 500 hyperparameters. The learning rate for elementary
parameters is 0.01, the number of elementary iterations is 1000, the learning
rate for hyperparameters is 0.1, the mini-batch size is 20, and the number of
meta-iterations is 20. Data pre-processing only includes centering each feature.

It should be noted that we set the mini-batch size to a very small number
and the number of emementary iterations to a large number on purpose. There-
fore, we can see if DrMAD can approxiate this highly zigzag and long learning
trajectory.

Code for all experiments is modified from https://github.com/HIPS/hypergrad.
We will open-source our modification soon.

Fig. 1 shows the evolution of hyperparameter values during optimization
and the corresponding test error, using RMAD and DrMAD respectively.

Clearly, even the RMAD with exact arithmetic introduced in [18] can only
achieve a test error of 8.7%. Because we put too much weight on penalty term
P (w,λ) in Eq. 1 deliberately. Here we do not aim to provide state-of-the-art
performance on MNIST, but to show that DrMAD can in principle optimize
thousands of hyperparameters and provide similar performance as RMAD. Do-
ing so inevitably incurs serious overfitting as expected.

5 Discussion and Conclusion
In this paper, we proposed a memory efficient procedure called distilling reverse-
mode automatic differentiation (DrMAD) for gradient-based automatic opti-
mization of continuous hyperparameters of deep neural networks. We showed
how DrMAD allows the optimization of validation loss w.r.t. hundreds of thou-
sands of hyperparameters in practice, which was previously impossible due to

10



the extremely huge memory consumption.
Due to the explicit decoupling of elementary and hyper- parameters, the

shortcut trajectory would be different from the actual learning trajectory, thus
loosing the ability to tune learning rate schedules suitable only for the origi-
nal learning trajectory. However, the stability of hypergradients is sensitive to
the learning rates schedule. Fortunately, there are many alternative learning
rate schedulers (e.g. [23]) or we can tune the learning rates using Bayesian
optimization [28].

Acknowledgments
Jie Fu would like to thank NVIDIA for GPU donation. Jie Fu would also like to
thank Microsoft Azure for Research for providing the computational resources
under the Windows Azure for Research Award program.

References
[1] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J.

Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio.
Theano: new features and speed improvements. Deep Learning and Unsu-
pervised Feature Learning NIPS 2012 Workshop, 2012.

[2] Atilim Gunes Baydin, Barak A Pearlmutter, and Alexey Andreyevich
Radul. Automatic differentiation in machine learning: a survey. arXiv
preprint arXiv:1502.05767, 2015.

[3] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889–1900, 2000.

[4] James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms,
2013.

[5] James Bergstra, Daniel Yamins, and David Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In Proceedings of The 30th International Conference on Ma-
chine Learning, pages 115–123, 2013.

[6] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on
bayesian optimization of expensive cost functions, with application to ac-
tive user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[7] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous,
and Yann LeCun. The loss surface of multilayer networks. arXiv preprint
arXiv:1412.0233, 2014.

11



[8] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In Advances
in Neural Information Processing Systems, pages 2933–2941, 2014.

[9] Justin Domke. Generic methods for optimization-based modeling. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 318–326,
2012.

[10] Chuan-sheng Foo, Chuong B Do, and Andrew Y Ng. Efficient multiple
hyperparameter learning for log-linear models. In Advances in neural in-
formation processing systems, pages 377–384, 2008.

[11] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In International conference on artificial
intelligence and statistics, pages 249–256, 2010.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book
in preparation for MIT Press, 2015.

[13] Ian J Goodfellow and Oriol Vinyals. Qualitatively characterizing neural
network optimization problems. International Conference on Learning Rep-
resentations, 2014.

[14] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. Siam, 2008.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[16] Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. In NIPS 2014 Deep Learning Workshop, 2014.

[17] Jelena Luketina, Mathias Berglund, and Tapani Raiko. Scalable gradient-
based tuning of continuous regularization hyperparameters. arXiv preprint
arXiv:1511.06727, 2015.

[18] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Gradient-based
hyperparameter optimization through reversible learning. arXiv preprint
arXiv:1502.03492, 2015.

[19] Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2, 2011.

[20] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W Koh, Quoc V Le,
and Andrew Y Ng. Tiled convolutional neural networks. In Advances in
Neural Information Processing Systems, pages 1279–1287, 2010.

12



[21] Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-
throughput screening approach to discovering good forms of biologically
inspired visual representation. PLoS computational biology, 5(11):e1000579,
2009.

[22] Tom Schaul and Yann LeCun. Adaptive learning rates and paral-
lelization for stochastic, sparse, non-smooth gradients. arXiv preprint
arXiv:1301.3764, 2013.

[23] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates.
arXiv preprint arXiv:1206.1106, 2012.

[24] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
de Freitas. Taking the human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175, 2016.

[25] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in Neural Infor-
mation Processing Systems, pages 2951–2959, 2012.

[26] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Md Patwary, Mostofa Ali, Ryan P Adams, et al.
Scalable bayesian optimization using deep neural networks. arXiv preprint
arXiv:1502.05700, 2015.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15(1):1929–
1958, 2014.

[28] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian
optimization. In Advances in Neural Information Processing Systems, pages
2004–2012, 2013.

[29] Andrea Walther. Automatic differentiation of explicit runge-kutta meth-
ods for optimal control. Computational Optimization and Applications,
36(1):83–108, 2007.

[30] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando
de Freitas. Bayesian optimization in a billion dimensions via random em-
beddings. arXiv preprint arXiv:1301.1942, 2013.

13


