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THE HOMOLOGY CORE AND INVARIANT MEASURES

ALEX CLARK AND JOHN HUNTON

Abstract. Here we shall consider the topology and dynamics associated to a wide
class of matchbox manifolds, including a large selection of tiling spaces and all mini-
mal matchbox manifolds of dimension one. For such spaces we introduce topological
invariants related to their expansions as an inverse sequence of simplicial complexes.
These invariants are related to corresponding inverse sequences of groups arising
from applying the top–dimension homology to these sequences. In many cases this
leads to a computable invariant based on an inverse sequence of matrices. Signifi-
cantly, we show that when the space is obtained by suspending a topologically tran-
sitive action of the fundamental group Γ of a closed orientable on a zero–dimensional
compact space this invariant at the same time corresponds to the space of Borel
measures on the Cantor set which are invariant under the action of Γ. This leads
to connections between the rank of homology groups we consider and the number
of invariant, ergodic Borel probability measures for such actions. We illustrate with
several examples how these invariants can be calculated and used for topological
classification and how it leads to an understanding of the invariant measures.

1. Introduction

Given the action of the fundamental group Γ = π1(M) of a closed orientable M on
the zero–dimensional compact metric space Z, one can suspend the Γ action over
M to form a space M. Provided this Γ action has a dense orbit (i.e., is topolog-
ically transitive), this space will have the structure of a matchbox manifold. More
generally, a matchbox manifold is a compact, connected metric space that locally has
the structure of Rd × Z, where Z is a zero–dimensional space. We do not in gen-
eral here require any differentiable structure, but shall restrict our consideration to
matchbox manifolds that admit an expansion as an inverse system (tower) of finite
simplicial complexes with well-behaved projection and bonding maps; such expan-
sions are known to exist for many classes, see for example, [18]. We detail the precise
class of spaces we consider in Section 2.

Examples of such objects include the so called tiling spaces arising from a tiling of a
Euclidean space with finite (translational) local complexity; see Sadun’s text [39] for
a general introduction to such examples. These tiling spaces can in turn be viewed
as the suspension over a torus of a Zd action on a zero–dimensional space, as detailed
by Sadun & Williams [40].

In this paper we introduce a homeomorphism invariant of oriented matchbox mani-
folds, the homology core ofM. In its strongest form, the core may be considered as a
monoid equipped with a representation in a linear space. Our construction uses the
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top dimensional homology groups of an expansion ofM, and as such the invariance
of the homology core can be considered a generalisation of the work of Barge & Dia-
mond [6] and Swanson & Volkmer [42] on the weak equivalence of matrices related to
a one dimensional substitution tiling system; we have however no reason to restrict
attention to substitution tiling spaces, and even in more general cases we can often
compute our invariant to great advantage. A particular advantage of our approach
is that it can be applied to tiling spaces, indeed to oriented matchbox manifolds, of
any dimension. Our work may also be seen as providing a generalisation of invariants
as introduced by Kellendonk [30] and Ormes, Radin & Sadun [36] which use oriented
dimension or cohomology groups, applied to higher dimensional substitution tiling
spaces; our use of homology however gives, even in the substitution tiling case, a
richer invariant, yielding information distinguishing finer classifications than the ear-
lier work. In particular, the homology core topologically distinguishes many spaces
that have isomorphic cohomology and captures some information related to the rel-
ative frequencies of cycles that is directly related to the invariant measures to which
the homology core corresponds.

While the homology core is constructed using expansions, as is usual in shape theory,
the homology core is not a shape invariant. In fact, we show that the homology core
can be used to distinguish examples of shape equivalent spaces, but at the same time,
there are examples of spaces the homology core does not distinguish but which are
distinguished by the authors’ shape invariant L1 defined in [16].

An intriguing and significant feature of the homology core we present is when our
underlying matchbox manifoldM is constructed, as at the start of this introduction,
by suspending a topologically transitive Γ action on a zero–dimensional compact
space Z over the oriented manifold M . We show that the top Cech cohomology of
such a matchbox manifold is tractable, and as a result in many natural cases the
homology core can be identified with the space of Borel measures on the space Z that
are invariant under the given action of Γ . Here there is some similarity with objects
that have been previously used in the study of invariant measures in, for example,
Bezuglyi, Kwiatkowski, Medynets, & Solomyak [13], Aliste-Prieto & D. Coronel [4],
Petite [35] and Frank & Sadun [24]. In those constructions the number of invariant,
ergodic, Borel probability measures is usually found to be bounded above by the
number of tile types, vertices in a related Bratteli diagram or similar information.
From our viewpoint, in many cases we can directly compute the number of invariant,
ergodic Borel measures in terms of extreme points in our potentially much smaller
homology core of M. Furthermore, our result can also be viewed as a refinement
of the connection between the foliation cycles of a foliated space and the space of
invariant measures discovered by Sullivan [41], see also [33]. The advantage of our
approach is that one can calculate the homology core in a direct and quite tangible
way, capturing some of the geometric information lost in the other approaches.

The paper is arranged as follows. In Sections 2 and 3 we specify the category of
matchbox manifolds we consider, associated homology classes and their behaviour
under homeomorphisms. In Section 4 we define the homology core, Definition 4.2,
and prove its invariance under homeomorphism. We also introduce the properties of
Z and Q-stability. In Section 5 we concentrate on those matchbox manifolds that
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are suspensions over manifolds, and relate the homology core to spaces of invariant
measures. In the final section, 6, we detail a number of examples and computations.
We recover and generalise a result of Cortez & Petite [20] on the unique ergodicity
of certain solenoids and their associated odometers, Theorem 6.2, provide examples
for which the homology core can be used to identify a natural class of spaces that are
not uniquely ergodic but for which the homology core can be calculated, Examples
6.8, examples which demonstrate that the core is not a shape invariant, Example 6.5,
but that also that the core will not fully distinguish between all shape inequivalent
spaces, Example 6.4.

2. Background

In this section we shall present the preliminary results that allow us to obtain the
topological invariance of the homology core we construct in Section 4. We begin by
recalling the suspension construction.

Let Γ = π1(M,m0) be the fundamental group of a PL closed orientable M of dimen-
sion d. Let Γ act on the left of the zero–dimensional compact space Z. We identify

Γ with the deck transformations of the universal covering map M̃ → M , and we

consider Γ to act on the right of M̃. This then leads to the suspension M̃ ×ΓZ, which

is the orbit space of the action of Γ on M̃ × Z given by

(γ, (m, c)) 7→ (m · γ−1, γ · c).

The space M := M̃ ×π1(M) Z thus constructed is a foliated space which is locally
homeomorphic to Rd × Z. Provided that the action of Γ is topologically transitive,
M is connected and thus an example of a matchbox manifold.

DEFINITION 2.1. A matchbox manifoldM is a compact, connected metric space
with the structure of a smooth foliated space, such that for each x ∈ M, the transverse
model space Tx is totally disconnected.

The topological dimension of a matchbox manifold of dimension d is the same as the
dimension of its leaves, which coincide with the path components. In the case of a
suspension over a manifold M, d coincides with the dimension of M. The smoothness

of a suspension M̃×π1(M)Z along leaves in the case thatM is smooth and its structure
as a fiber bundle over M with fiber Z follow from general considerations, see [15,
Chapt 3.1]. A matchbox manifold is minimal when each path component is dense.

A suspension M̃ ×π1(M) Z is minimal if the action of Γ on Z is minimal. We refer the
reader to [17], [18] for a more detailed discussion.

DEFINITION 2.2. Let M be a matchbox manifold of dimension d. A simplicial
presentation ofM is an inverse sequence whose limit is homeomorphic toM

M ≈ lim←−{M
f1←− X2

f2←− X3
f3←− · · · }

and is such that each Xn is a triangulated space and each bonding map fn is surjective
and simplicial. Additionally, we require for each n that:
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(i) each simplex in the triangulation of Xn is a face of a d–dimensional simplex
and

(ii) each d–dimensional simplex S ofXn pulls back inM to a subset homeomorphic
to S ×K for some zero–dimensional compact K and that for each k ∈ K the
restriction of the projection M → Xn to S × {k} is a homeomorphism onto
its image.

Condition (ii) is similar to requiring the restrictions to leaves to be covering maps (as
is the case of the fiber bundle projections in a suspension), only at the boundaries of
the simplices S in the leaves (where there can be branching in Xn) the projections
do not necessarily behave as covering maps. In addition to very general tiling spaces,
according to the results of [18], a wide variety of minimal matchbox manifolds admit
such a presentation.

According to the definition, corresponding to the triangulation of Xn in a simplicial
presentation ofM admits, there is a decomposition ofM into a finite number of sets
of the form Si×Ki that intersect only along sets of the form ∂Si×K, where ∂Si is the
boundary of Si and K is a clopen subset of Ki. Thus, the leaves ofM can be given
a simplicial structure induced by this decomposition. What is more, the leaves ofM
can be considered as being tiled by finitely many tile types, one type corresponding
to each simplex Si in the triangulation of Xn. Given the nature of a triangulation,
we also have that there are only finitely many ways that tiles may intersect in a
leaf, which can be considered as a form of what is known as finite local complexity.
Each of the successive approximating spaces Xn leads to a finer decomposition of
M and the fibers of the projection M → Xn+1 are contained in the fibers of the
projection M → Xn and the induced map fn : Xn+1 → Xn is simplicial in that it
can be considered as the geometric realisation of a simplicial map of the complexes
underlying the triangulations of Xn+1 and Xn.

This special structure will allow us to apply a powerful result on the approximation
of maps between inverse limits as described below.

DEFINITION 2.3. For given inverse limitsM = lim
←−
{Xn, fn} and N = lim

←−
{Yn, gn},

a map h : M → N is said to be induced if for a subsequence ni of N, there is for
each i ∈ N a map hi : Xni

→ Yi such that the following diagram commutes

Xn1

h1

��

Xn2

f
n2
n1

oo

h2

��

· · ·oo Xnk

hk

��

oo Xnk+1

f
nk+1
nk

oo

hk+1

��

· · ·oo

Y1 Y2g1
oo · · ·oo Yk

oo Yk+1gk
oo · · ·oo

and the resulting mapM→N given by (xi) 7→ (hi(xni
)) is equal to h.

In the above, for k < ℓ, f ℓ
k = fk ◦ · · · ◦ fℓ−1.

We record the key result of Rogers [37, Thm 4] on the approximation of maps between
inverse limits as maps between the factor spaces.

THEOREM 2.4. [37] Given two matchbox manifolds with simplicial presentations
M = lim

←−
{Xn, fn} and N = lim

←−
{Yn, gn} and given any ǫ > 0, any continuous map
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f :M→ N is homotopic to an induced map fǫ in which points are moved no more
than ǫ over the course of the homotopy from f to fǫ.

3. Orientation in matchbox manifolds

We now consider a matchbox manifoldM with simplicial presentationM = lim
←−
{Xn, fn}.

Recall that the leaf topology for a leaf L has a basis of open sets formed by intersect-
ing L with open sets of plaques of the foliation charts, which gives L the structure
of a connected manifold. A leaf can be orientable or not, and when L is orientable
it admits one of two orientations. (A convenient way of considering orientations and
orientability for a non–compact manifold admitting a simplicial structure such as L
is with the use of homology groups based on infinite chains, see, e.g., [34, p.33, 388].)
If L is orientable, each time it enters a subset of M of the form S ×K, where S is
a simplex of dimension d corresponding to a triangulation of some Xn, L induces an
orientation of S. It can happen that each time an oriented L enters S ×K it induces
the same orientation of S or it could induce different orientations. If L always in-
duces the same orientation on S, we shall say L induces a coherent orientation on S.
In a minimal matchbox manifoldM, whether a given simplex S of Xn is coherently
oriented is independent of the choice of orientable leaf L. (It should be borne in mind
that for general matchbox manifolds not all leaves of a matchbox manifold need be
homeomorphic and that it can even happen that some leaves are orientable while
others not.)

DEFINITION 3.1. A simplicial representation of a matchbox manifoldM = lim
←−
{Xn, fn}

is orientable if the following conditions hold

(i) M has an orientable dense leaf L and
(ii) L can be oriented coherently with all the simplices occurring in the triangula-

tions of the Xn.

An orientation of an orientable simplicial presentation of M is given by a choice of
orientation of a dense leaf L as above and the corresponding induced orientation of
each simplex occurring in the triangulations of the Xn.

From here we shall only consider orientable presentations. While this originally seems
quite restrictive, any matchbox manifold has a an orientable double “cover”, [15, p.
280]. Also, the leaves of a tiling space arising from an aperiodic tiling of Rd with finite
translational local complexity admit a natural orientation induced by the translation
action, and the various presentations that have been constructed using the structure
of the tiles are coherent with this orientation provided one takes the extra step of
introducing the simplicial structure on the complexes. Observe also that since we
are endowing each Xn with the orientation induced by L and the bonding maps are
simplicial, the bonding maps will preserve the orientation of each simplex.

DEFINITION 3.2. A homeomorphism h :M→N of matchbox manifolds with cor-
responding oriented simplicial presentationsM = lim

←−
{Xn, fn} and N = lim

←−
{Yn, gn}

with orientations induced by the leaf L ofM and h(L) of N is orientation preserving
if h preserves the orientation of L and otherwise h is orientation reversing.
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The invariants we construct will be preserved by orientation preserving maps and
are intimately related to how their homotopic induced maps act on the algebraic
invariants of the approximating spaces Xn.

DEFINITION 3.3. Given an oriented simplicial presentationM = lim
←−
{Xn, fn}, a

positive homology class of Xn is a homology class in the simplicial homology Hd(Xn)
that can be represented as the positive integer combination of elementary chains of
positively oriented d–simplices of some simplicial subdivision of Xn, and we denote
the set of all positive homology classes as H+

d (Xn). Similarly, we define H−d (Xn) as
all the homology classes in the simplicial homology Hd(Xn) that can be represented
as the negative integer combination of elementary chains of positively oriented d–
simplices of some simplicial subdivision of Xn. (The zero class is considered to be in
H+

d (Xn) ∩H−d (Xn).)

Observe that by our choices of orientation for the Xn and their common relation to a
chosen leaf L, each bonding map fn : Xn+1 → Xn satisfies fn(H

+
d (Xn+1)) ⊂ H+

d (Xn)
and similarly withH−d (Xn+1). The following result is key for the topological invariance
of the homology core.

PROPOSITION 3.4. Given a homeomorphism h : M → N of d–dimensional
matchbox manifolds with corresponding oriented simplicial presentationsM = lim

←−
{Xn, fn}

and N = lim
←−
{Yn, gn} let h′ :M→ N be any induced homotopic map corresponding

to the following commutative diagram

Xn1

h1

��

Xn2

f
n2
n1

oo

h2

��

· · ·oo Xnk

hk

��

oo Xnk+1

f
nk+1
nk

oo

hk+1

��

· · ·oo

Y1 Y2g1
oo · · ·oo Yk

oo Yk+1gk
oo · · ·oo

Then for each i ∈ N, either

(i) (hi)∗(H
+
d (Xni

)) ⊂ H+
d (Yi) and (hi)∗(H

−
d (Xni

)) ⊂ H−d (Yi) or
(ii) (hi)∗(H

+
d (Xni

)) ⊂ H−d (Yi) and (hi)∗(H
−
d (Xni

)) ⊂ H+
d (Yi)

according as h is orientation (i) preserving or (ii) reversing.

Proof. Suppose then that we have an orientation preserving homeomorphism h :
M → N with homotopic induced map h′ : M → N as above, and let i ∈ N.
To calculate the map induced on homology (hi)∗ : H+

d (Xni
) → H+

d (Yi), one first
finds a simplicial approximation H : Xni

→ Yi to hi. Notice that this simplicial
approximation also induces a simplicial mapHL : L→ h′(L). As the path components
coincide with the leaves of these spaces and h′ is homotopic to h, we have h′(L) = h(L).
By hypothesis, h preserves the orientation and maps the positive generator of Hd(L),
which is the class formed by the sum of all the elementary chains of positively oriented
simplices of dimension d, to the positive generator of Hd(h(L)). The same is true
then for the homotopic map h′ (and the map it induces on leaves) and so also for the
simplicial approximation HL. But that means that HL must map positively oriented
simplices to positively oriented simplices or degenerate simplices. The other cases are
similar. �
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It is important to realise that even when the underlying map h is an induced home-
omorphism, the maps hn are often not homeomorphisms.

4. Homology core

In this section we shall introduce the homology core and show the subtle ways it is pre-
served by homeomorphism, depending on the precise nature of the space in question.
In what follows we consider an oriented simplicial presentationM = lim

←−
{Xn, fn} of a

matchbox manifold. We first observe that the groups Hd(Xn) are free abelian of some
finite rank. Now consider the subgroup Pn of Hd(Xn) generated by H+

d (Xn), which
will then also be a free group of rank say rn. Let now Vn := Pn

⊗
R, an R–vector

space of dimension rn. As previously observed, (fn)∗ maps H+
d (Xn+1) into H+

d (Xn),
and so (fn)∗

⊗
idR yields a linear map Ln : Vn+1 → Vn. (When needing to distinguish

these vector spaces or maps for different spaces we add a superscript, e.g. LMn .)

DEFINITION 4.1. The positive and negative cone in Vn is

Cn :=
{∑

xi

⊗
ri | ri ≥ 0, xi ∈ H+

d (Xn)
}
∪
{∑

xi

⊗
ri | ri ≤ 0, xi ∈ H+

d (Xn)
}

and the positive cone in Vn is

C+n :=
{∑

xi

⊗
ri | ri ≥ 0, xi ∈ H+

d (Xn)
}
.

Our previous observations can then be rephrased has Ln(Cn+1) ⊂ Cn. However, this
inclusion will often be strict. This leads us to the following.

DEFINITION 4.2. We define the homology core at place k of the oriented presen-
tationM = lim

←−
{Xn, fn} and linear maps Ln : Vn+1 → Vn as above by

CM(k) :=
⋂

n>k

Ln
k (Cn) ,

where Ln
k = Lk ◦ · · · ◦ Ln−2 ◦ Ln−1. Similarly, the positive homology core C+

M(n) is
given by

C+M(k) :=
⋂

n>k

Ln
k

(
C+n

)
.

The fact that we must consider the core at various “places” k is a reflection of the
fact that induced maps of towers homotopic to a given map do not have to respect
the places in the two corresponding towers.

THEOREM 4.3. Suppose we have a homeomorphism h :M→N of d–dimensional
matchbox manifolds with corresponding oriented simplicial presentationsM = lim

←−
{Xn, fn}

and N = lim
←−
{Yn, gn}.

(i) Then there are subsequences mi, ni and linear maps Ki with Ji that map the
cones in the following diagram surjectively.
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(1)

CM(n1)

K1

����

CM(n2)oooo

K2

����

CM(n3)oooo

K3

����

· · ·oooo CM(nk)

Kk
����

oooo CM(nk+1)
oooo

Kk+1

����

· · ·oooo

CN (m1) CN (m2)oooo

J1
eeee❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

CN (m3)oooo

J2
eeee❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

· · ·oooo CN (mk)oooo CN (mk+1)oooo

Jk
ffff▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

· · ·oooo

(ii) If the linear maps LNn are eventually injective, then there is an ℓ such that each
linear map Ji (i ≥ ℓ) as in the above Diagram 1 maps CN (mi+1) isomorphically
onto CM(ni).

(iii) Moreover, if there is a uniform (for all n) bound to dimV Nn , then there is
an ℓ such that each linear map Ji (i ≥ ℓ) as in the above Diagram 1 maps
CN (mi+1) isomorphically onto CM(ni).

Proof. (i) Suppose then that h′, h′′ are induced maps as in Theorem 2.4 corresponding
to h and h−1. This then leads to the following diagram between subtowers after
reindexing:

Xn1

h1

��

Xn2

f
n2
n1

oo

h2

��

Xn3

f
n3
n2

oo

h2

��

· · ·oo Xnk

hk

��

oo Xnk+1

f
nk+1
nk

oo

hk+1

��

· · ·oo

Ym1
Ym2

g
m2
m1

oo

ℓ1
aa❉
❉

❉

❉

❉

❉

❉

❉

Ym3
g
m3
m2

oo

ℓ2
aa❉
❉

❉

❉

❉

❉

❉

❉

· · ·oo Ymk
oo Ymk+1

g
mk+1
mk

oo

ℓk
cc❋
❋

❋

❋

❋

❋

❋

❋

❋

· · ·oo

In general this diagram will not be commutative, but the maps induced on homology
are commutative since the compositions of h′ and h′′ are homotopic to the respective
identities. By Proposition 3.4 we are then led to the following commutative diagram
of (restrictions of) linear maps.

(2)

CM(n1)

��

CM(n2)oo

��

CM(n3)oo

��

· · ·oo CM(nk)

��

oo CM(nk+1)
oo

��

· · ·oo

CN (m1) CN (m2)oo

ee❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

CN (m3)oo

ee❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

· · ·oo CN (mk)oo CN (mk+1)oo

ff▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

· · ·oo

By construction, each horizontal map in the diagram is surjective. Each of the maps
Ki is part of a commutative triangle:

(3) CM(ni)

Ki

��

CN (mi) CN (mi+1)oooo

Ji
ff▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

.

As the horizontal map is surjective, Ki is surjective as required in Diagram 1. Similar
arguments apply to the Ji.
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(ii) Assume then that the horizontal maps are additionally injective from some point
in the tower associated to N . Then for sufficiently large i in the triangle 3, we see Ji

must also be injective on C(mi+1).

(iii) Assume then that there is a uniform (for all n) bound to dimV Nn . This then
implies a uniform bound for the topological dimension of CN (m). As the maps (Lm

n )
N

are linear, they cannot raise (topological) dimension. Hence, for sufficiently large
values (say, m ≥ N) the topological dimension of CN (m) must have the same value
D. Thus, for all k > N the restriction of the maps (Lk

N )
N to CN (k) must be injective

and we have the hypothesis for (ii). �

The spaces which are best understood are those for which there is a uniform bound on
rankHd(Xn) for a presentation. In such cases, by telescoping the given presentation,
one can obtain a presentation for which rankHd(Xn) is constant. We can already see
from the above the homology core yields a good deal of information for such spaces.
However, depending on the exact conditions we can say much more in special cases.

DEFINITION 4.4. An oriented simplicial presentationM = lim
←−
{Xn, fn} is said to

be homologically Z–stable if for each n (fn)∗ : Hd(Xn+1)→ Hd(Xn) and Ln : Vn+1 →
Vn are isomorphisms, and we say the presentation is homologically Q–stable if for
each n (fn)∗ : Hd(Xn+1,Q)→ Hd(Xn,Q) and Ln : Vn+1 → Vn are isomorphisms.

REMARK 4.5. Observe that in the case of a Q–stable presentation, each core
CM(k) can be identified with the limit of the inverse sequence of the cones Cn (n ≥ k)
with bonding maps the restrictions of the Ln. The core CM(k), however, retains
some of the geometric information lost in the limit as it includes an embedding in Vk.
However, this identification with the inverse limit will be significant when relating
the cores to their dual counterparts in the following section.

THEOREM 4.6. For X ∈ {Z,Q }, suppose we have homologically X–stable sim-
plicial presentations M = lim

←−
{Xn, fn} and N = lim

←−
{Yn, gn} and a homeomor-

phism h : M → N . Choose a basis for each VMn , V Nn consisting of elements of
H+

d (Xn), H
+
d (Yn) so that the corresponding linear maps LMn , LNn are represented by

elements of GL(D,X), where D is the common dimension of the VMn , V Nn . Then,
with respect to these bases, all the homology cores CN (m) and CN (n) are in the same
GL(D,X)–orbit.

Proof. Consider now diagram 1 as before and the associated diagram on homology
groups with X coefficients. Under our new hypotheses, all the horizontal maps are
isomorphisms and hence all the vertical and diagonal maps are also isomorphisms as
well. With the bases we have chosen, the result follows directly. �

Observe that if there is a uniform bound on rankHd(Xn), then we can find an inverse
sequence of groups which is Q–stable and which is pro–equivalent to the inverse
sequence of the the Vn and Ln, and this is sufficient to draw the same conclusions as
in the above theorem.
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5. Homology core and invariant measures

In this section we consider matchbox manifolds that are given as suspensions M :=

M̃×ΓZ over a closed PL manifold M with fundamental group Γ = π1(M). We denote
the associated bundle projection by π :M → M. In this setting, in many cases we
can directly relate the homology core to the space of Γ–invariant, Borel measures fora
a topologically transitive Γ–actions on the zero dimensional space Z.

DEFINITION 5.1. Let us say that the matchbox manifold M = M̃ ×Γ Z has a
consistent presentation if it has an oriented simplicial presentationM = lim

←−
{Xn, fn}

for which the fibers of the projectionM→ X1 are subsets of the fibers of the bundle
map π :M→ M.

The class of matchbox manifolds obtained by such a suspension construction is quite
large and includes all translational tiling spaces of finite local complexity [40]. How-
ever, it does not include all two-dimensional orientable examples, [22].

DEFINITION 5.2. Denote by M(Z) the set of all Borel measures on the space Z.
For a ring R = Z or R, denote by C(Z;R) the R-module of continuous R-valued
functions on Z. A positive element of C(Z;R) is a function that takes only non-
negative values. A positive homomorphism C(Z;R) → R is an R-linear map which
takes positive elements to non-negative numbers. We write PhomR(C(Z;R);R) for
the set of positive homomorphisms C(Z;R)→ R.

LEMMA 5.3.

M(Z) = PhomZ(C(Z;Z);R) .

Proof. The Riesz Representation theorem tells us that the set of measures M(Z) can
be identified with PhomR(C(Z;R);R), where µ ∈ M(Z) corresponds to the positive
homomorphism f 7→

∫
Z
fdµ. Any functional

∫
Z
− dµ is however determined by its

values on R-valued step functions taking finitely many values; this set of functions
can be equated with C(Z;Z)⊗ R. The lemma follows by noting the equivalence

PhomR(C(Z;Z)⊗ R;R) ≡ PhomZ(C(Z;Z);R) .

�

PROPOSITION 5.4. Suppose the d-dimensional matchbox manifoldM = M̃ ×ΓZ
has a consistent presentation. Then the top dimension Cech cohomology, Hd(M) can
be identified with C(Z;Z)Γ, the Γ-coinvariants of C(Z;Z).

Proof. A Serre spectral sequence for the cohomology ofM using the bundle structure

Z −→ M̃ ×Γ Z =M π−→M

yields an E2 page

Ep,q
2 =

{
Hp(M ;H0(Z)) = Hp(M ;C(Z;Z)) if q = 0
0 if q 6= 0 .

This follows from the fact that the Cech cohomology of a totally disconnected space Z
is C(Z;Z) in dimension 0 and is trivial in all higher dimensions. The spectral sequence
thus collapses, with no extension problems, giving Hp(M) = Hp(M ;C(Z;Z)). To
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conclude the proof, we show that in general, a group cohomology Hd(M ;A) for a
closed, orientable triangulated d-manifold with fundamental group Γ and coefficients
A with (potentially non-trivial) Γ-action can be identified with the coinvariants AΓ.

Lift the triangulation of M to a triangulation on the universal cover M̃ , and consider

Cd
Γ(M̃ ;A), the Γ-equivariant d-cochains on M̃ with values in A. As M is compact

these form a free, finite dimensional A-module. As we can find a path from the
interior of one d-simplex to that of any other, passing only through d − 1 simplices,
the cohomology

(4) Hd(M ;A) =
Cd

Γ(M̃ ;A)

Im
(
δd : Cd−1

Γ (M̃ ;A)→ Cd
Γ(M̃ ;A)

)

is generated by a single copy of A. However, for each γ ∈ Γ and each d-simplex σ,
there is a path from the interior of σ to itself which represents γ, and crosses only
codimension one simplices. The sum of the coboundaries of these d − 1 simplices,
taken over all γ ∈ Γ, show that the quotient (4) is the full coinvariants AΓ. �

REMARK 5.5. In the situation where the manifold M is also aspherical, we can
prove more. This case includes any d-torus, as is the case when M is a tiling space
for a d-dimensional tiling of finite local complexity, and also the case when M is any
Riemannian manifold of non-positive curvature. If M is aspherical (so, πn(M) = 0
for all n > 1), then M is a model for the classifying space BΓ. The cohomology
Hp(M ;C(Z;Z)) can thus be identified with the group homology Hp(Γ;C(Z;Z)).
Moreover, the Poincaré duality of the manifold M tells us that Γ is a Poincaré duality
group, and this latter property implies that, for any Γ-module A, the group homology
and cohomology of Γ with coefficients in A are related by the isomorphism

(5) Hn(Γ;A) ∼= Hd−n(Γ;A) .

The conclusion of Proposition 5.4 now follows since

Hd(M) = Hd(M ;C(Z;Z)) = H0(Γ;C(Z;Z)) = C(Z;Z)Γ

where the last equivalence can be taken as the definition of group homology (i.e., that
for a given group Γ, the group homologies H∗(Γ;−) are the left derived functors of
the coinvariant functor A 7→ AΓ; see, for example, [14] section II.3). Clearly though,
for such manifolds M more is true and the intermediate dimensional cohomology can
be described in a fashion similar to that used in [28] section 3.

COROLLARY 5.6. Suppose M is an oriented matchbox manifold of dimension d
with a consistent presentation. Then M

Γ(Z), the Γ-invariant measures on Z, can be
identified

M
Γ(Z) = PhomZ(C(Z;Z)Γ;R) = PhomZ(H

d(M);R) .

Proof. As the Γ action on Z induces an action on C(Z;Z) which takes positive ele-
ments to positive elements, a simple adjunction yields the identification

M
Γ(Z) = Positive Γ-invariant Z-linear homomorphisms C(Z;Z)→ R, by Lemma 5.3

= PhomZ(C(Z;Z)Γ;R)
= PhomZ(H

d(M);R), by Lemma 5.4 .

�
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The set of positive homomorphisms PhomZ(H
d(M);R), being dual to a cohomological

gadget, has a natural homological interpretation, the homology core of Section 4.

THEOREM 5.7. Let M be an oriented matchbox manifold of dimension d with
a consistent presentation, and assume also that the presentation is homologically Q-
stable and the H+

d (Xn) generate the whole of Hd(Xn) for all sufficiently large n. Then
for any n, the space of Γ–invariant, Borel measures on Z can be identified with the
positive homology core

M
Γ(Z) = C+

M(n) .

Proof. We make identifications

M
Γ(Z) = PhomZ (C(Z,Z)Γ;R) (1)

= PhomZ

(
lim
→

Hd(Xn);R
)

(2)

= lim
←

PhomR (hom (Hd(Xn);R) ;R) (3)

= lim
←

H+
d (Xn;R) (4)

= C+
M(n) . (5)

Here, (1) is a restatement of Corollary 5.6, and (2) uses the property of Cech coho-
mology, that Hd(M) = Hd(lim

←
Xn) = lim

→
Hd(Xn). The identification (3) uses the

observation that as we are looking at linear maps to R we might as well consider
homology and cohomology with coefficients in R, and in that case the homology and
cohomology are dual vector spaces. The lines (2) and (3) also require an under-
standing of positivity in the cohomology groups Hd(Xn), that the maps in the direct
system lim

→
Hd(Xn) preserve positivity, and that the notion of positivity in the limit

lim
→

Hd(Xn) agrees with that in C(Z;Z)Γ.

By the universal coefficient theorem, the free part of the cohomology Hd(Xn) is
given by the dual group hom(Hd(Xn);Z) (we need not worry about any torsion part
as eventually all passes to R coefficients). This gives a notion of positivity in this
part of the cohomology, where we say [α] ∈ Hd(Xn) is positive if, as an element of
hom(Hd(Xn);Z) it takes non-negative values on positive homology elements, i.e.,

[α] ∈ Hd(Xn) is positive if α(x) ≥ 0 for all x ∈ H+
d (Xn) .

As (fn)∗ : Hd(Xn+1) → Hd(Xn) takes positive elements to positive elements, so too
does (fn)

∗ : Hd(Xn) → Hd(Xn+1) preserve positivity and we can define the positive
part of Hd(M) as the direct limit of the positive parts of the Hd(Xn). We must show
that this coincides with the notion of positivity in C(Z;Z)Γ under the isomorphism
of Proposition 5.4.

Let σ be a d-simplex in M , and pick an interior point z. Regard Z as the fibre in
M over z, and let Zn be the finite, discrete space, the image of Z in Xn. Let α
be a continuous function Z → Z, representing the class [α] ∈ C(Z;Z)Γ = Hd(M).
The perspective of Proposition 5.4 shows that α can be interpreted as a cocycle on
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M by first mapping Z × σ → Z using α on Z (and constant on the σ component),
extended trivially to the rest of M. Any such cocycle is the pull back of a cocycle
on Xn, for some sufficiently large n, defined similarly using some function αn : Zn →
Z. Then α is a positive function if and only if αn is. Clearly if αn is a positive
function, the cohomology class [α] ∈ Hd(Xn) is positive in the sense above, that as
a homomorphism on Hd(Xn) it takes non-negative values on H+

d (Xn). This shows
that the positives in C(Z;Z)Γ map to the positives in Hd(M), moreover they map
injectively since this is just the restriction of the isomorphism C(Z;Z)Γ)→ Hd(M).
However, as we assume H+

d (Xn) generates the whole of Hd(Xn), it is of full rank and
so the positive elements in Hd(Xn) will be the dual cone, of the same rank. Thus
every positive will be of the form [αn], as above, and this is enough to identify the
positives in C(Z;Z)Γ with those in Hd(M).

As the Xn are compact simplicial complexes, their homology is finitely generated and
so the ‘upside down’ universal coefficient theorem applies. Thus we identify Hd(Xn)
with its double dual

Hd(Xn) = hom(Hd(Xn);Z) = hom (hom(Hd(Xn);Z);Z) .

Then defining positivity in hom(Hd(Xn);Z) by saying F ∈ hom(Hd(Xn);Z) is pos-
itive if F (α) ≥ 0 for all positive α ∈ Hd(Xn), agrees with the original notion of
positivity in Hd(Xn). Working now with homomorphisms to R this gives equation
(4).

Finally, equation (5) follows from the fact that when the presentation is Q-stable, the
maps Ln are isomorphisms. �

Recall that the set of Γ-invariant probability measures on Z can be identified with
the convex set in PhomZ(C(Z;Z)Γ;R) of functionals satisfying

∫
Z
1Zdµ = 1, and the

ergodic ones can be identified with the extreme points of this set. Thus, when the
conditions of the theorem are met this allows us to identify the set of invariant ergodic
probability measures directly.

6. Applications and Examples

We begin by considering an example that exploits the connection between the homol-
ogy core and the structure of the invariant measures of the underlying action. This
first example has some overlap with the results of Cortez and Petite [20].

EXAMPLE 6.1. Solenoids and Γ odometers

Let M be a PL orientable d–dimensional manifold with fundamental group Γ =
π1(M,m0). Consider then a chain of (not necessarily normal) subgroups of finite
index greater than 1:

Γ = Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ · · · ⊃ Γi ⊃ · · ·
and the associated Cantor set

C = lim
←
{Γ/Γ1 ← Γ/Γ2 ← · · · ← Γ/Γi ← · · · }.



14 ALEX CLARK AND JOHN HUNTON

There is a natural minimal action of Γ on C given by translation in each factor.
The suspension of this action over M then yields a minimal matchbox manifoldM =

M̃×ΓC which has a consistent presentation in which X1 = M and Xn = M̃/Γn. This
presentation can be made simplicial by taking a simplicial structure for M (which is

guaranteed by its smoothness) that is then lifted to M̃ , which in turn pushes down
to a simplicial structure for the leaves and the quotients Xn.

THEOREM 6.2. The action of Γ on C as above is uniquely ergodic.

Proof. In this case Hd(Xn) is isomorphic to Z for each n. The induced homology maps
are multiplication by the degrees of the corresponding covering maps, which in turn
are given by the indices of the subgroups. Thus, this presentation is Q–stable and
each cone CM(n) and each vector space Vn can be identified with R. By Theorem 5.7
the action of Γ is uniquely ergodic. �

We now begin an investigation of how to calculate the homology core for Q and
Z–stable presentations.

DEFINITION 6.3. A sequence of matrices of constant rank d with non–negative
entries (Mn)n∈N, is recurrent if there are indices k1 < ℓ1 ≤ k2 < ℓ2 ≤ · · · and a
matrix B with positive entries satisfying for all n

B = M ℓn−1
kn

It is known, see e.g. [25, pp. 91–95], that if (Mn)n∈N, is recurrent then there is a
v ∈ Rd with positive entries satisfying

span v =
⋂

n∈N

Mn
0

(
Cd
)
,

where Cd denotes the positive and negative cone in Rd. Recurrent sequences have been
important in the study of S–adic systems, see e.g. [12].

It then follows that if the sequence of matrices (Mn)n∈N representing the linear maps
as described in Theorem 4.6 is recurrent, then CM(n) will be a single line for each n.
We shall see below in Example 6.5 that this condition is however not necessary for
the cone to be a single line in each place. In the special case (Mn)n∈N is a sequence
each term of which is the same positive matrix, CM(n) is a single line formed by the
span of the Perron–Frobenius right eigenvector.

EXAMPLE 6.4. Substitution tiling spaces

We now provide two substitution tiling spaces of dimension one which can be easily
distinguished topologically by their homology cores.

σ1 : {a, b} → {a, b}∗ is given by

{
a 7→ a10b7

b 7→ a3b2
and

σ2 : {a, b} → {a, b}∗ is given by

{
a 7→ a11b4

b 7→ a3b
.
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Each substitution σi is primitive, aperiodic and is proper (see [7] for the role proper-
ness plays in expansions as inverse limits). Thus, the corresponding tiling spaces Ti
(formed by suspending the associated substitution subshift on {a, b}Z over the circle)
admit the following presentations [7]

(6) Ti ≈ lim←−{X
fi←− X

fi←− X
fi←− · · · }

where X is the wedge of two circles in both cases and the map fi is the natural one
induced by the corresponding substitution σi. This can be easily adjusted to yield
an oriented simplicial presentation by introducing vertices in X (progressively more
as one passes down the sequence). For each copy of X in the two towers we take
as a basis for H1(X) ≈ Z

⊕
Z the cycle corresponding to the a–circle ≈ (1, 0) and

the cycle corresponding to the b–circle ≈ (0, 1). Then each Vn in the two sequences
is isomorphic to R2 with the corresponding bases. We then have the corresponding
towers of the Vn and Ln.

(7) R2 Mi←− R2 Mi←− R2 Mi←− · · ·

where M1 =

(
10 7
3 2

)
and M2 =

(
11 4
3 1

)
represent the corresponding linear

transformations with respect to the chosen bases. Observe then that both presenta-
tions are Z–stable, and so by Theorem 4.6 the two tiling spaces are homeomorphic
only if their homology cores are in the same GL(2,Z) orbit. As the matrices are
positive, by our above remarks the cores at all places are given by the span of the
Perron-Frobenius right eigenvector of the corresponding matrix. Such eigenvectors

are given by v1 :=

(
1
7
(4 +

√
37)

1

)
for M1 and v2 :=

(
1
4
(5 +

√
37)

1

)
for M2. As

the continued fraction expansions of 1
7
(4 +

√
37) and 1

4
(5 +

√
37) are not tail equiv-

alent, the vectors v1 and v2 cannot be in the same GL(2,Z) orbit [27, Thm. 174].
Observe, that despite this the eigenvalue for both matrices is 6 +

√
37, and so the

distinction between these two spaces is not picked up by the invariants related to
matrix equivalence or ordered cohomology [6],[36],[40].

We supplement this pair with a third example that demonstrates a limitation of the
homology core for the purposes of topological classification.

σ3 : {a, b} → {a, b}∗ is given by

{
a 7→ ababaababaababaab

b 7→ ababa

This substitution is not proper, but its square (σ3)
2 is proper. The tiling space T3

corresponding to σ3 is the same as the tiling space corresponding to (σ3)
2 in the sense

that the subshifts of {a, b}Z determined by these substitutions are the same. Thus,
again T3 admits an oriented simplicial presentation as in Equation 6, where X is
again the wedge of two circles, but the map f3 is induced by the substitution (σ3)

2.
With respect to the bases as before, the homology tower for T3 is as in Equation 7
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a

c

b

Figure 1. The complex K

with Mi replaced by (M1)
2. Thus, the homology core of at all places is identical to

that of T1. Observe that the bonding map f3 yields an automorphism of π1(K) (with
base point the point common to both cirles) whose inverse can be represented by
the automorphism of the free group generated by {a, b} given by the square of the
following:

a 7→ a−1b3a−1b4

b 7→ b−4ab−3ab−3a

It follows that the L1 invariant (see [16]) vanishes for T3. However, the L1 invari-
ant does not vanish for T1, as can be seen by an application of the folding lemma
of Stallings. (See [16] for similar examples.) Thus, although these spaces are not
homeomorphic or even shape equivalent, the homology core does not detect this.

In general, once an appropriate presentation has been found as indicated in [5], one
can calculate the homology core of a substitution tiling space of higher dimension in
a similar way using a single matrix.

We now see how one can apply Theorem 4.6 to great advantage to topologically
classify some natural classes of spaces that are not substitution tiling spaces but
matchbox manifolds of dimension one.

For convenience to make indices match their usual interpretations, in the following
two examples we will index inverse sequences starting with index 0.

EXAMPLE 6.5. Continued fractions

For simplicity (as it does not affect the homology calculations) we represent K as the
CW complex depicted in Figure 1 with three one cells with the indicated orientations
and two vertices.
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For each positive integer n let fn : K → K be the map defined by

a // c

b // ca

n− 1 copies︷ ︸︸ ︷
cb · · · cb c

c // b

where fn maps each cell onto cells in the indicated order from left to right, preserving
orientation. For each sequence of positive integers N = (n0, n1, ...), we define the
orientable matchbox manifold

(8) XN := lim←− {K
fn0←−− K

fn1←−− K
fn2←−− K

fn3←−− · · · }.

For homology calculations, we use the classes [z1] and [z2] of the cycles z1 ∼ cb and
z2 ∼ ca as generators of H1(K,Z) ≈ Z

⊕
Z. With respect to these generators, we

have the induced homomorphism on H1(K,Z) given by

(fn)∗ ∼
(

n 1
1 0

)
.

Notice that (fn)∗ is an isomorphism for each n, and so each presentation as given in
Equation 8 is Z–stable, and so we may apply Theorem 4.6 to the family of spaces

X := {XN |N is a sequence of positive integers }.
Observe that (

n0 1
1 0

)(
n1 1
1 0

)
· · ·

(
nk 1
1 0

)
=

(
pk pk−1
qk qk−1

)

where pk
qk

= [n0, n1, n2, . . . , nk] in continued fraction notation. Observe that with

αN := [n0, n1, n2, . . . ], we have that limk→∞
pk
qk

= αN . Now

(
pk pk−1
qk qk−1

)
maps the

positive and negative cones in Vk to the sectors in V0 bounded by the lines spanned

by

(
pk
qk

)
and

(
pk−1
qk−1

)
. Hence, we have that the homology core of XN at place

zero is given by

span

(
αN

1

)
=

⋂

n∈N

Mn
0 (Cn) .

Hence, the corresponding Z action on the Cantor set is uniquely ergodic by Theorem
5.7, and by Theorem 4.6 the spaces XN and XM are homeomorphic only if there is a

matrix in GL(2,Z) that maps

(
αN

1

)
into span

(
αM

1

)
. By the classical theorem

on the classification of numbers by their continued fraction expansions, [27, Thm.
174], this happens precisely when the continued fraction expansions for αN and αM

share a common tail: there exist k and l such that for all positive integers i we have
mk+i = nℓ+i. When this happens, the inverse sequences defining XN and XM have
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equal cofinal subsequences and so are clearly homeomorphic. Thus we obtain the
following classification of the spaces in X, c.f. [11],[23].

THEOREM 6.6. XM and XN are homeomorphic if and only if the sequences M
and N share a common tail.

Observe that all the spaces in X are shape equivalent to K and hence to a wedge
of two circles. Hence, while the Examples 6.4 illustrate that there are examples for
which shape invariants (such as the L1 invariant) can distinguish spaces that are not
distinguished by their homology cores, there are also large classes of shape equivalent
spaces that the homology core can distinguish.

Consider the following three periodic sequences N1 = (12), N2 = (1, 2, 3) and N3 =
(2, 1, 3). Letting g1 = f12, g2 = f1 ◦ f2 ◦ f3 and g2 = f2 ◦ f1 ◦ f3, the spaces XNi

are homeomorphic to the spaces lim←− {K
gi←− K

gi←− K
gi←− · · · }. The map induced

on homology by the gi is given by the three matrices M1 :=

(
12 1
1 0

)
,M2 :=

(
1 1
1 0

)(
2 1
1 0

)(
3 1
1 0

)
and M3 :=

(
2 1
1 0

)(
1 1
1 0

)(
3 1
1 0

)
. Now, each

Mi has the same characteristic equation and therefore the same eigenvalues 6±
√
37.

The larger eigenvalue represents the expansion factor for these matrices. However,
the eigenvectors for these three matrices that correspond to 6 +

√
37 are given by(

αNi

1

)
, which are pairwise inequivalent since the continued fractions of the αNi

do

not share common tails. (It also follows that no pair of the matrices Mi is conjugate
in GL(2,Z), for otherwise the corresponding pair of eigenvectors would be in the same
in GL(2,Z) orbit.) Thus, we see again that the homology core is capturing more than
just the information given by the expansion factor [36].

Similar examples of families with matrices of larger size can be obtained using the
matrices corresponding to higher dimensional versions of continued fractions, see, e.g.,
[26].

EXAMPLE 6.7. Generalised continued fractions

With K as before, for each pair of positive integers m,n let fm,n : K → K be the
map defined by

a→ c

b→
m copies︷ ︸︸ ︷
ca · · · ca

n− 1 copies︷ ︸︸ ︷
cb · · · cb c

c→ b

With respect to the same generators as before, we have the induced isomorphism on
H1(K,Q) given by

(fm,n)∗ ∼
(

n 1
m 0

)
.
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Thus while our presentation of X(α, β) is not generally Z–stable, it is Q–stable. For
given sequences of positive integers α = (a1, a2, . . . ), β = (b0, b1, . . . ) we will then
have the orientable matchbox manifold given by

X(α, β) := lim←− {K
f1,b0←−− K

fa1,b1←−−− K
fa2,b2←−−− K

fa3,b3←−−− · · · }.
For given sequences α and β we then have

(
b0 1
1 0

)(
b1 1
a1 0

)
· · ·

(
bk 1
ak 0

)
=

(
Ak Ak−1

Bk Bk−1

)

where Ak

Bk
is the k–th convergent of the generalised continued fraction

b0 +K
∞
n=1

an
bn

,

see, e.g., [29].

We can rewrite our general continued fraction with an equivalent one (one with the
same convergents) as follows [29, 2.3.24]

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·

≈ b0 +
1

b1/a1 +
1

a1b2/a2 +
1

b3a2/a1a3 +
1

a1a2b4/a2a4 + · · ·
where now we have positive rational entries. By the theorem of Van Vleck [29, Thm.
4.29], for a continued fraction with positive entries of the form

b0 +K
∞
n=1

1

bn
,

we have that if
∑∞

i=1 bi converges, then the even and odd convergents converge
monotonically to different values (the larger/smaller terms decrease/increase), and
if
∑∞

i=1 bi diverges, then the convergents converge to a single value.

This leads to the following conclusions. In what follows, we use the notation k1 =
b1/a1 and recursively kn = bnbn−1

ankn−1
for n > 1.

PROPOSITION 6.8. For X(α, β)

(1) If
∑∞

n kn diverges, then with ℓ = lim An

Bn
, we have the homology core at place

zero given by

span

(
ℓ
1

)
=

⋂

n∈N

Mn
0 (Cn) .

(2) If
∑∞

n kn converges, then with ℓE = lim A2n

B2n
and ℓO = lim A2n−1

B2n−1
we have the

homology core at place zero
⋂

n∈N Mn
0 (Cn) is the union of the two sectors in

V0 bounded by span

(
ℓE
1

)
and span

(
ℓO
1

)
.
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Observe that two spaces X(α, β) and X(α′, β ′) are homeomorphic only if they both
correspond to the same case (1) or (2) as above. If both spaces satisfy the conditions

for (1), the spaces are homeomorphic only if the vectors

(
ℓ
1

)
and

(
ℓ′

1

)
are in

the same GL(2,Q) orbit and the corresponding Z actions are uniquely ergodic as
follows from Theorem 5.7. However, if both spaces satisfy the conditions for (2), the

spaces are homeomorphic only if the vectors

(
ℓE
1

)
and

(
ℓO
1

)
are (as a pair) in

the same GL(2,Q) orbit as

(
ℓ′E
1

)
and

(
ℓ′O
1

)
. We see then that in this case the

corresponding Z actions have two invariant ergodic probability measures by Theorem
5.7.

Besides recurrence, a simple criterion that guarantees that we are in case (1) is given
by bn > an for sufficiently large n, and a simple example of case (2) is given by
α = (22n−1)n∈Z+ , β = (1, 1, 1, . . . ).
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