
ar
X

iv
:1

60
1.

00
92

5v
1

 [c
s.

LG
]

5
Ja

n
20

16

2015 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in
other works.

http://arxiv.org/abs/1601.00925v1

Complex Decomposition of the Negative Distance
Kernel

Tim vor der Brück
CC Distributed Secure Software Systems

Luzerne University of
Applied Sciences and Arts
tim.vorderbrueck@hslu.ch

Steffen Eger and Alexander Mehler
Text Technology Lab

Goethe University Frankfurt am Main
{steeger,amehler}@em.uni-frankfurt.de

Abstract—A Support Vector Machine(SVM) has become a
very popular machine learning method for text classification. One
reason for this relates to the range of existing kernels which allow
for classifying data that is not linearly separable. The linear,
polynomial and RBF (GaussianRadial Basis Function) kernel are
commonly used and serve as a basis of comparison in our study.
We show how to derive the primal form of the quadratic Power
Kernel (PK) – also called theNegative Euclidean Distance Kernel
(NDK) – by means of complex numbers. We exemplify the NDK in
the framework of text categorization using theDewey Document
Classification(DDC) as the target scheme. Our evaluation shows
that the power kernel produces F-scores that are comparableto
the reference kernels, but is – except for the linear kernel –faster
to compute. Finally, we show how to extend the NDK-approach
by including the Mahalanobis distance.

Keywords—SVM, kernel function, text categorization

INTRODUCTION

An SVM has become a very popular machine learning
method for text classification [5]. One reason for its popu-
larity relates to the availability of a wide range of kernels
including the linear, polynomial and RBF (Gaussian radial
basis function) kernel. This paper derives a decomposition
of the quadraticPower Kernel(PK) using complex numbers
and applies it in the area of text classification. Our evaluation
shows that the NDK produces F-scores which are comparable
to those produced by the latter reference kernels while being
faster to compute – except for the linear kernel. This evaluation
refers to theDewey Document ClassificationDDC [11] as the
target scheme and compares our NDK-based classifier with
two competitors described in [6], [10] and [18], respecstively.

An SVM is a method for supervised classification intro-
duced by [17]. It determines a hyperplane that allows for the
best possible separation of the input data. (Training) dataon
the same side of the hyperplane is required to be mapped to the
same class label. Furthermore, the margin of the hyperplane
that is defined by the vectors located closest to the hyperplane
is maximized. The vectors on the margin are calledSupport
Vectors (SV). The decision functiondc : Rn → {1, 0,−1},
which maps a vector to its predicted class, is given by:
dc(x) := sgn(〈w,x〉 + b) where sgn : R → {1, 0,−1} is
the Signum function; the vectorw and the constantb are
determined by means of SV optimization. Ifdc(x) = 0 then
the vector is located directly on the hyperplane and no decision
regarding both classes is possible.

The decision function is given in the primal form. It can

be converted into the correspondingdual form: dc(x) =
sgn(

∑m

j=1 yjαj〈x,xj〉 + b) where αj and b are constants
determined by the SV optimization andm is the number of
SVs xj (the input vector has to be compared only with these
SVs). The vectors that are located on the wrong side of the
hyperplane, that is, the vectors which prevent a perfect fit of
SV optimization, are also considered as SVs. Thus, the number
of SVs can be quite large. The scalar product, which is used to
estimate the similarity of feature vectors, can be generalized to
a kernel function. A kernel functionK is a similarity function
of two vectors such that the matrix of kernel values is symmet-
ric and positive semidefinite. The kernel function only appears
in the dual form. The decision function is given as follows:
dc(x) := sgn(

∑m

j=1 yjαjK(x,xj) + b). Let Φ : Rn → Rl be
a function that transforms a vector into another vector mostly
of higher dimensionality withl ∈ N ∪ {∞}. It is chosen in
such a way that the kernel function can be represented by:
K(x1,x2) = 〈Φ(x1),Φ(x2)〉. Thus, the decision function in
the primal form is given by:

dc(x) := sgn(〈w,Φ(x)〉 + b) (1)

Note thatΦ is not necessarily uniquely defined. Furthermore,
Φ might convert the data into a very high dimensional space. In
such cases, the dual form should be used for the optimization
process as well as for the classification of previously unseen
data. One may think that the primal form is not needed.
However, it has one advantage: if the normal vector of the
hyperplane is known, a previously unseen vector can be
classified just by applying the Signum function,Φ and a scalar
multiplication. This is often much faster than computing the
kernel function for previously unseen vectors and each SV as
required when using the dual form.

The most popular kernel is the scalar product, also called
the linear kernel. In this case, the transformation function Φ
is the identity function:Klin(x1,x2) := 〈x1,x2〉. Another
popular kernel function is the RBF (Gaussian Radial Basis
Function), given by:Kr(x1,x2) := e−γ||x1−x2||

2

whereγ ∈
R, γ > 0 is a constant that has to be manually specified.
This kernel function can be represented by a functionΦr that
transforms the vector into infinite dimensional space [19].For
reasons of simplicity, assume thatx is a vector with only one
component. Then the transformation functionΦr is given by:

Φr(x) :=e−γx2

[1,

√

2γ

1!
x,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, . . .]⊤ (2)

Another often used kernel is the polynomial kernel:

Kp(x1,x2) := (a〈x1,x2〉+ c)d (3)

For d := 2, a = 1, c = 1, and two vector components, the
functionΦp is given by [9]:Φp : R2 → R6 with

Φp(x) = (1, x2
1,
√
2x1x2, x

2
2,
√
2x1,

√
2x2) (4)

In general, a vector of dimensionn is transformed byΦp

into a vector of dimension
(

n+d

d

)

. Thus, the polynomial kernel
leads to a large number of dimensions in the target space.
However, the number of dimensions is not infinite as in the
case of the RBF kernel.

THE POWER KERNEL

The PK is a conditionally positive definite kernel given by

Ks(x1,x2) := −||x1 − x2||p (5)

for somep ∈ R [16], [2], [12]. A kernel is called conditionally
positive-definite if it is symmetric and satisfies the conditions
[14]

n
∑

j,k=1

cicjK(xj ,xk) ≥ 0 ∀ci ∈ K with

m
∑

i=1

ci = 0 (6)

wherecj is the complex-conjugate ofcj. We consider here a
generalized form of the PK forp := 2 (also called NDK):

Kpow(x1,x2) := −a||x1 − x2||2 + c (7)

with a, c ∈ R anda > 0. The expression−a||x1 − x2||2 + c
can also be written as:

− a〈(x1 − x2), (x1 − x2)〉+ c =

− a(〈x1,x1〉 − 2〈x1,x2〉+ 〈x2,x2〉) + c
(8)

For deciding which class a previously unseen vector belongs
to we can use the decision function in the dual form:

dc(x) : = sgn(
m
∑

j=1

yjαjKpow (x,xj) + b)

= sgn(

m
∑

j=1

yjαj(−a||x− xj ||2 + c) + b)

(9)

The decision function shown in formula (9) has the draw-
back that the previously unseen vector has to be compared
with each SV, which can be quite time consuming. This can
be avoided, if we reformulate formula (9) to:

dc(x) = sgn(
m
∑

j=1

yjαj(−a〈x,x〉+ 2a〈x,xj〉−

a〈xj ,xj〉+ c) + b)

= sgn(−a

m
∑

j=1

yjαj〈x,x〉 + 2a

m
∑

j=1

yjαj〈x,xj〉+

m
∑

j=1

yjαj(−a〈xj ,xj〉+ c) + b)

= sgn(−a〈x,x〉
m
∑

j=1

yjαj + 2〈x, a
m
∑

j=1

yjαjxj〉−

a

m
∑

j=1

yjαj〈xj ,xj〉+ c

m
∑

i=1

yjαj + b)

(10)

With z := a
∑m

j=1 yjαjxj , u := a
∑m

j=1 yjαj〈xj ,xj〉 and
c′ = c

∑m

i=1 yjαj , formula (10) can be rewritten as:

dc(x) = sgn(−a〈x,x〉
m
∑

i=1

yjαj +2〈x, z〉 −u+ c′ + b) (11)

The expressionsu, z, (
∑m

i=1 yjαj), and c′ are identical for
every vectorx and can be precomputed. Note that there exists
no primal form for the NDK based on real number vectors
which is stated by the following proposition.
Proposition 1 Let a,c ∈ R with a > 0 and n, l ∈ N.
Then there is no functionΦre : Rn → Rl (re
indicates that Φre operates on real numbers) with
∀x1,x2 ∈ Rn : 〈Φre(x1),Φre(x2)〉 = −a||x1 − x2||2 + c .

Proof: If such a function existed, then, for allx ∈ Rn,

||Φre(x)||2 = 〈Φre(x),Φre(x)〉 = −a · 0 + c = c

which requires thatc ≥ 0 since the square of a real number
cannot be negative. Now, considerx,y ∈ Rn with
||x−y||2 > 2c

a
≥ 0. On the one hand, we have, by the Cauchy-

Schwarz inequality,

|〈Φre(x),Φre(y)〉| ≤ ||Φre(x)|| · ||Φre(y)|| =
√
c ·

√
c = c.

On the other hand, it holds that

| − a||x− y||2 + c| = |a||x− y||2 − c| > 2c− c = c,

a contradiction.

Although no primal form and therefore no functionΦre

exists for real number vectors, such a function can be given
if complex number vectors are used instead. In this case, the
functionΦc is defined with a real domain and a complex co-
domain:Φc : R

n → C4n+1 and

Φc(x) :=(
√
a(x2

1 − 1),
√
ai,

√
2ax1,

√
aix2

1, . . . ,√
a(x2

n − 1),
√
ai,

√
2axn,

√
aix2

n,
√
c)⊤

(12)

Note that no scalar product can be defined for com-
plex numbers that fulfills the usual conditions of bilinearity
and positive-definiteness simultaneously1. Thus, the bilinear-
ity condition is dropped for the official definition and only
sesquilinearity is required. The standard scalar product is
defined as the sum of the products of the vector components
with the associated complex conjugated vector components of
the other vector. Letx1,x2 ∈ Cn, then the scalar product
is given by [1]: 〈x1,x2〉 :=

∑n

k=1 x1kx2k. In contrast, we
use a modified scalar product (marked by a “∗”) where,
analogously to the real vector definition, the products of the
vector components are summated:〈∗x1,x2〉 :=

∑n

k=1 x1kx2k.
This product (not a scalar product in strict mathematical sense)
is a bilinear form but no longer positive definite. For real

1This can be verified by a simple calculation: Consider some vector x 6=
0 and x ∈ Cn. Since 〈.〉 is positive definite:〈x,x〉 > 0, by bilinearity:
〈
√
−ix,

√
−ix〉 = −i〈x,x〉 6> 0).

number vectors this modified scalar product is identical to the
usual definition. With this modified scalar product we get

〈∗Φc(x1),Φc(x2)〉
=− ax2

11 − ax2
21 + 2ax11x21 − · · · − ax2

1n−
ax2

2n + 2ax1nx2n + c = −a||x1 − x2||2 + c

(13)

which is just the result of the NDK. The optimization
can be done with the dual form. Thus, no complex number
optimization is necessary. For the decision on the class to
which a data vector should be assigned we switch to the primal
form. The vectorw ∈ C4n+1 is calculated by:
w :=

∑m

j=1 αjyjΦc(xj) for all SVs xj ∈ Rn. The decision
function is then given by:dc(x) := sgn(〈∗w,Φc(x)〉 + b).
Note that the modified scalar product〈∗w,Φc(x)〉 must be a
real number. This is stated in the following proposition.
Proposition 2 Let w =

∑m

j=1 αjyjΦc(xj) with xj ∈ R
n,

αj ∈ R, yj ∈ {−1, 1}, j = 1, . . . ,m,Φc as defined in
formula (12) andx ∈ Rn. Then〈∗w,Φc(x)〉 is a real number.

Proof: 〈∗w,Φc(x)〉 is given by:

〈∗w,Φc(x)〉 = 〈∗
m
∑

j=1

αjyjΦc(xj),Φc(x)〉

=

m
∑

j=1

〈∗αjyjΦc(xj),Φc(x)〉 (〈∗.〉 is bilinear)

=

m
∑

j=1

αjyj〈∗Φc(xj),Φc(x)〉

=

m
∑

j=1

αjyj(−a||xj − x||2 + c) (see form. (13))

(14)

which is clearly a real number.

The NDK is related to the polynomial kernel since it
can also be represented by a polynomial. However, it has
the advantage over the polynomial kernel that it is faster to
compute, since the number of dimensions in the target space
grows only linearly and not exponentially with the number of
dimensions in the original space [16], [2]. It remains to show
that the decision functions following the primal and dual form
are also equivalent for the modified form of the scalar product.
This is stated in the follow proposition:
Proposition 3 Let x,x1, . . . ,xm ∈ Rn, α ∈ Rm, y ∈
{−1, 1}m, w :=

∑m

j=1 αjyjΦc(xj) and 〈∗Φc(z1),Φc(z2)〉 =
K(z1, z2) ∀z1, z2 ∈ Rn. Then
sgn(〈∗w,Φc(x)〉 + b) = sgn(

∑m

j=1 αjyjK(x,xj) + b).

Proof:

sgn(〈∗w,Φc(x)〉 + b)

= sgn(〈∗
m
∑

j=1

αjyjΦc(xj),Φc(x)〉 + b)

= sgn(
m
∑

j=1

〈∗αjyjΦc(xj),Φc(x)〉 + b) (〈∗.〉 is bilinear)

= sgn(

m
∑

j=1

αjyj〈∗Φc(xj),Φc(x)〉 + b)

(15)

=sgn(

m
∑

j=1

αjyjK(xj ,x) + b)

= sgn(

m
∑

j=1

αjyjK(x,xj) + b) (K is symmetric)

(16)

Normally, feature vectors for document classification rep-
resent the weighted occurrences of lemma or word forms
[15]. Thus, such a vector contains a large number of zeros
and is therefore usually considered sparse. In this case, the
computational complexity of the scalar product can be reduced
from O(n) (wheren is the number of vector components) to
some constant runtime, which is the average number of non-
zero vector components. LetI1 be the set of indices of non-
zero entries of vectorx1 (I1 = {k ∈ {1, . . . , n} : x1k 6= 0})
andI2 be analogously defined for vectorx2. The scalar product
of both vectors can then be computed by

∑

k∈(I1∩I2)
x1k ·x2k.

Let us now consider the case that both vectors are transformed
to complex numbers before the scalar multiplication. In this
case, the modified scalar product

〈∗Φc(x1),Φc(x2)〉 = 〈(φ(x11), . . . , φ(x1n)),

(φ(x21), . . . , φ(x2n))〉+ c
(17)

is considered whereφ(xk) denotes the transformation of a
single real vector component to a complex number vector and
is defined as:

φ :R → C
4, φ(xk) := (

√
a(x2

k − 1),
√
ai,

√
2axk,

√
aix2

k)
(18)

Note that the partial modified scalar product
〈∗φ(x1k), φ(x2k)〉 can be non-zero, if at least one of
the two vector componentsx1k andx2k is non-zero, which is
easy to see:

〈∗φ(xk), φ(0)〉 =
√
a(x2

k − 1) ·
√
a(−1) + (−1)a

+
√
2axk · 0 +

√
aix2

k · 0 = a− ax2
k − a = −ax2

k

(19)

Only if both vector components are zero, one can be sure that
the result is also zero:

〈∗φ(0), φ(0)〉 = (−
√
a)(−

√
a)+ai·i+0+0 = a−a = 0 (20)

Thus, the sparse data handling of two transformed complex
vectors has to be modified in such a way that vector compo-
nents associated with the union and not the intersection of
non-zero indices are considered for multiplication:

〈∗x1,x2〉 =
∑

k∈(I1∪I2)

〈∗φ(x1k), φ(x2k)〉+ c (21)

A further advantage of the NDK is that the Mahalanobis
distance [8] can easily be integrated, which is shown in
the remainder of this section. Each symmetric matrixA
can be represented by the productV−1DV where D
is a diagonal matrix with the eigenvalues ofA on its
diagonals. The square root of a matrixA is then defined as√
A := V−1D0.5V whereD0.5 is the matrix with the square

root of the eigenvalues ofA on its diagonal. It is obvious

that
√
A ·

√
A = A.

Proposition 4: Let x, z ∈ Rn, a := 1, c := 0, then
〈∗Φc(

√
Cov−1x),Φc(

√
Cov−1z)〉 = −MH (x, z)2

where MH (x, z) denotes the Mahalanobis distance
√

(x− z)TCov−1(x− z) and Cov denotes the covariance
matrix between the feature values of the entire training data
set.

Proof: We have that(with C :=
√
Cov−1):

〈∗Φc(Cx),Φc(Cz)〉
=− ||Cx−Cz||2 (see formula (13))

=− (Cx−Cz)⊤(Cx−Cz)

=− (C(x − z))⊤(C(x− z))

=− (x− z)⊤
√

Cov−1
⊤√

Cov−1(x− z)

=− (x− z)⊤Cov−1(x− z)

(22)

(since the covariance matrix is symmetric and the
inverse and square root of a symmetric matrix is
also symmetric)

This proposition shows that the NDK is just the negative
square of the Mahalanobis distance for some vectorsx̂ and ẑ
if x̂ is set to

√
Cov−1x (analogously for̂z), a is set to 1 and

c is set to 0. Furthermore, this proposition shows that we can
easily extend our primal form to integrate the Mahalanobis
distance. For that, we define a functionτ : Rn → Rn as
follows: τ(x) =

√
Cov−1x. With Φm:=Φc ◦ τ we have:

〈∗Φm(x),Φm(z)〉 = (MH (x, z))2 (23)

which shows that we have indeed derived a primal form.

We use the NDK for text classification where a text is
automatically labeled regarding its main topics (i.e., cate-
gories), employing the DDC as one of the leading classification
schemes in digital libraries [11]. Documents are classified
regarding the 10 top-level categories of the DDC. To this
end, we use training sets of documents for which the DDC
categories have already been assigned. Lexical features are
extracted from this training set and made input to an SVM
library (i.e., libsvm [3]) in order to assign one or more DDC
categories to previously unseen texts. Features of instance
documents are computed by means of the geometric mean
of the tfidf values and the GSS coefficients of their lexical
constituents [4], [13].

EVALUATION

The evaluation and training was done using 4 000 Ger-
man documents, containing in total 114 887 606 words and
9 643 022 sentences requiring a storage space of 823.51 MB.
There are 400 documents of each top-level DDC category in
the corpus. 2 000 of the texts were used for training, 2 000 for
evaluation. The corpus consists of texts annotated according to
the OAI (Open Archive Initiative) and is presented in [7]. We
tested the correctness of category assignment for the 10 top-
level DDC categories. Each document is mapped at least to one
DDC category. Multiple assignments are possible. Precision,
recall and F-scores were computed for each DDC category
using the NDK, the square (polynomial kernel of degree 2),

the cubic (polynomial kernel of degree 3), the RBF kernel and
the linear kernel (see Tables I and II). The free parameters
of the square, the cubic and the RBF kernel are determined
by means of a grid search on an independent data set. On
the same held-out dataset, we adjusted the SVM-threshold
parameterb to optimize the F-scores. The time (on an Intel
Core i7) required to obtain the classifications was determined
(see Table III for the real / complex NDK, the RBF, square,
and linear kernel). The time needed for building the model
was not measured because of being required only once and
therefore being irrelevant for online text classification.

The F-score for the NDK is higher than the F-scores of
all other kernels and faster to compute except for the linear
kernel – obviously, the classification using the primal form
of the linear kernel is faster than the one using the NDK.
Furthermore, the complex decomposition of the NDK leads
to a considerable acceleration of the classification process
compared to its dual form and should therefore be preferred.

We conducted a second experiment where we compared
the linear kernel with the NDK now using text snippets (i.e.,
abstracts instead of full texts) taken once more from our OAI
corpus. This application scenario is more realistic for digital
libraries that mainly harvest documents by means of their meta
data and, therefore, should also be addressed by text classifiers.
The kernels were trained on a set of 19 000 abstracts2. This
time, the categories are not treated independently of each
other. Instead, the classifier selected all categories withsigned
distance values from the SVM hyperplane that are greater or
equal to zero. If all distance values are negative, the category
with the largest (smallest absolute) distance was chosen. In this
experiment, the linear kernel performed better than the NDK.
Using three samples of 500 texts, the F-scores of the linear
kernel are (macro-averaged over all main 10 DDC categories):
0.753, 0.735, 0.743, and of the NDK: 0.730, 0.731, 0.737. This
result indicates that the heuristic of preferring the categories of
highest signed distance to the hyperplane is not optimal forthe
NDK. We compared our classifier with two other systems, the
DDC classifier of [18] and of [6]. [18] reaches an F-score
of 0.502, 0.457 and 0.450 on these three samples. The F-
scores of the DDC-classifier of [6] are 0.615, 0.604, and 0.574.
Obviously, our classifier outperforms these competitors.

Finally, we evaluated the NDK on the Reuters 21578
corpus3 (Lewis split). This test set is very challenging since
35 of all 93 categories occurring in this split have 10 or less
training examples. Furthermore, several texts are intentionally
assigned to none of the Reuters categories. We created an
artificial category for all texts that are not assigned in this
sense. The histogram of category assignments is displayed in
Figure 1. The F-scores for the Reuters corpus are given in
Table IV. We modified the training data by filling up instances
for every category by randomly selecting positive instances
such that the ratio of positive examples to all instances arethe
same for all categories. Hence, in most category samples some
training examples were used more than once. This approach
prevents from preferring categories due to their multitudeof
training examples. The F-score of the NDK is lower than the

2Note that in this evaluation we employed the tfidf score for weighting
only, since the use of the GSS coefficient didn’t lead to any improvement in
F-score.

3URL: http://www.daviddlewis.com/resources/testcollections/reuters21578

http://www.daviddlewis.com/resources/testcollections/reuters21578

TABLE I. PRECISION/ RECALL OF DIFFERENT KERNELS.

NDK RBF Linear Square Cubic
Cat. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Recall

0 0.845 0.777 0.867 0.731 0.747 0.853 0.831 0.772 0.789 0.817
1 0.768 0.740 0.775 0.682 0.726 0.745 0.722 0.771 0.712 0.734
2 0.909 0.833 0.892 0.857 0.905 0.847 0.873 0.882 0.935 0.635
3 0.764 0.497 0.679 0.571 0.545 0.640 0.716 0.508 0.708 0.487
4 0.852 0.529 0.870 0.388 0.863 0.490 0.441 0.146 0.000 0.029
5 0.700 0.783 0.794 0.626 0.825 0.675 0.744 0.660 0.697 0.793
6 0.682 0.685 0.718 0.625 0.699 0.685 0.670 0.700 0.744 0.595
7 0.680 0.741 0.675 0.652 0.602 0.751 0.722 0.697 0.843 0.532
8 0.657 0.720 0.586 0.785 0.626 0.774 0.670 0.677 0.752 0.457
9 0.701 0.752 0.680 0.670 0.668 0.723 0.775 0.636 0.831 0.335

All 0.756 0.706 0.754 0.659 0.721 0.718 0.716 0.645 0.801 0.542

TABLE II. F- SCORES OF DIFFERENT KERNELS EVALUATED BY MEANS
OF THE OAI CORPUS OF[7].

Cat. NDK Square Cubic RBF Linear

0 0.810 0.800 0.803 0.793 0.796
1 0.753 0.746 0.723 0.726 0.735
2 0.869 0.877 0.757 0.874 0.875
3 0.603 0.594 0.577 0.621 0.589
4 0.653 0.219 0.057 0.537 0.625
5 0.740 0.700 0.742 0.700 0.743
6 0.683 0.685 0.661 0.668 0.692
7 0.710 0.709 0.652 0.663 0.668
8 0.687 0.674 0.569 0.671 0.692
9 0.726 0.699 0.478 0.675 0.695

All 0.723 0.670 0.602 0.693 0.711

TABLE III. T IME (IN MILLISECONDS) REQUIRED FOR THE

COMPUTATION OF THE KERNELS ON THEOAI CORPUS.

C. NDK NDK Squ. Cubic RBF Lin.
prim. dual dual dual dual dual

0 6 426 46 200 50 256 50 979 47 246 44 322
1 9 339 98 289 115 992 132 844 122 751 93 550
2 5 822 48 359 57 603 67 200 65 508 46 786
3 23 774 134 636 165 604 177 211 159 897 111 516
4 10 103 118 322 77 634 93 613 111 153 103 548
5 32 501 104 865 72 772 135 820 138 107 96 637
6 24 375 105 614 116 892 120 919 126 498 95 423
7 19 206 113 971 122 128 143 562 120 371 100 640
8 11 236 99 288 106 215 118 378 105 942 84 381
9 20 822 125 358 139 004 168 837 138 395 111 245

all 16 361 99 490 102 410 120 936 113 587 88 805

TABLE IV. M EAN F-SCORE, PRECISION, AND RECALL

(MACRO-AVERAGING) OF DIFFERENT KERNELS EVALUATED BY MEANS OF

THE REUTERS CORPUS.

Kernel F-score Precision Recall

NDK 0.394 0.414 0.419
Square 0.324 0.392 0.304
Cubic 0.348 0.319 0.567
RBF 0.403 0.420 0.441
Linear 0.408 0.428 0.436

0

500

1000

1500

2000

2500

3000

-10 0 10 20 30 40 50 60 70 80 90 100

Number of categories

Fig. 1. Histogram of the distribution of categories for the Reuters corpus.

highest macro-averaging F-score obtained by the linear kernel,
but outperforms the square and the cubic kernel. Again, the
parameters of the NDK, the square, the cubic and the RBF
kernels were determined by means of a grid search.

CONCLUSION AND FUTURE WORK

We derived a primal form of the NDK by means of
complex numbers. In this way, we obtained a much simpler
representation compared to the modified dual form. We showed
that the primal form (and in principle also the modified dual
form) can speed up text classification considerably. The reason
is that it does not require to compare input vectors with all
support vectors. Our evaluation showed that the F-scores of
the NDK are competitive regarding all other kernels tested
here while the NDK consumes less time than the polynomial
and the RBF kernel. We have also shown that the NDK
performs better than the linear kernel when using full texts
rather than text snippets. Whether this is due to problems of
feature selection/expansion or a general characteristic of this
kernel (in the sense of being negatively affected by ultra-sparse
features spaces), will be examined in future work. Additionally,
we plan to examine the PK with exponents larger than two,
to investigate under which prerequisites the PK performs well
and to evaluate the extension of the NDK that includes the
Mahalanobis distance.

ACKNOWLEDGEMENT

We thank Vincent Esche and Tom Kollmar for valuable
comments and suggestions for improving our paper.

REFERENCES

[1] Albrecht Beutelsbacher. Lineare Algebra. Vieweg, Braunschweig,
Germany, 2010.

[2] Shri D. Boolchandani and Vineet Sahula. Exploring efficient kernel
functions for support vector machine based feasability models for
analog circuits. International Journal of Design Analysis and Tools
for Circuits and Systems, 1(1):1–8, 2011.

[3] Chih-Chung Chang and Chih-Jen Lin.LIBSVM: a library for support
vector machines, 2001.

[4] Thorsten Joachims.The Maximum Margin Approach to Learning Text
Classifiers: Methods, Theory, and Algorithms. PhD thesis, Universität
Dortmund, Informatik, LS VIII, 2000.

[5] Thorsten Joachims. Learning to classify text using support vector
machines. Kluwer, Boston, 2002.

[6] Mathias Lösch. Talk: Automatische Sacherschließung elektronischer
Dokumente nach DDC, 2011.

[7] Mathias Lösch, Ulli Waltinger, Wolfram Horstmann, andAlexander
Mehler. Building a DDC-annotated corpus from OAI metadata.Journal
of Digital Information, 12(2), 2011.

[8] Prasanta Chandra Mahalanobis. On the generalised distance in statistics.
In Proceedings of the National Institute of Sciences of India, pages 49–
55, 1936.

[9] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to Information Retrieval. Cambridge University Press,
Cambridge, UK, 2008.

[10] Alexander Mehler and Ulli Waltinger. Enhancing document modeling
by means of open topic models: Crossing the frontier of classification
schemes in digital libraries by example of the DDC.Library Hi Tech,
27(4):520–539, 2009.

[11] OCLC. Dewey decimal classification summaries. a brief in-
troduction to the dewey decimal classification, 2012. URL:
http://www.oclc.org/dewey/resources/summaries/default.htm, last ac-
cess: 8/17/2012.

[12] Hichem Sahbi and Francois Fleuret. Scale-invariance of support vector
machines based on the triangular kernel. Technical Report 4601, Institut
National de Recherche en Informatique et an Automatique, 2002.

[13] Gerard Salton and Christopher Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing & Management,
25(5):513–523, 1998.

[14] Bernhard Schölkopf and Alexander J. Smola.Learning with Kernels
- Support Vector Machines, Regularization, Optimization and Beyond.
MIT Press, Cambridge, Massachusetts, 2002.

[15] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Comput. Surv., 34:1–47, March 2002.

[16] César Souza. Kernel functions for machine learning applications, 2010.
url:http://crsouza.blogspot.de/2010/03/kernel-functions-for-machine-learning.html.

[17] Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons,
New York, New York, 1998.

[18] Ulli Waltinger, Alexander Mehler, Mathias Lösch, andWolfram
Horstmann. Hierarchical classification of oai metadata using the DDC
taxonomy. InAdvanced Language Technologies for Digital Libraries,
Lecture Notes in Computer Science, pages 29–40. Springer, Heidelberg,
Germany, 2011.

[19] Shih-Hung Wu. Support vector machine tutorial, 2012.
URL=www.csie.cyut.edu.tw/∼shwu/PRslide/SVM.pdf.

http://www.oclc.org/dewey/resources/summaries/default.htm
http://crsouza.blogspot.de/2010/03/kernel-functions-for-machine-learning.html
www.csie.cyut.edu.tw/~shwu/PR_slide/SVM.pdf

	Introduction
	The power kernel
	Evaluation
	Conclusion and future work
	References

