arXiv:1601.00925v1 [cs.LG] 5 Jan 2016

2015 IEEE. Personal use of this material is permittednew collective works, for resale or redistribution to sesver
Permission from IEEE must be obtained for all other uses, idists, or reuse of any copyrighted component of this work in
any current or future media, including reprinting/repebling  other works.
this material for advertising or promotional purposesatirey


http://arxiv.org/abs/1601.00925v1

Complex Decomposition of the Negative Distance
Kernel

Tim vor der Briick Steffen Eger and Alexander Mehler
CC Distributed Secure Software Systems Text Technology Lab
Luzerne University of Goethe University Frankfurt am Main
Applied Sciences and Arts {steeger,amehl¢@em.uni-frankfurt.de

tim.vorderbrueck@hslu.ch

Abstract—A Support Vector Machine(SVM) has become a be converted into the correspondimyial form de(x) =
very popular machine learning method for text classificatia. One Sgn(Z;n:l yjo;(x,x;) + b) where a; and b are constants
reason for this relates to the range of existing kernels whit allow determined by the SV optimization and is the number of
for classifying data that is not linearly separable. The lirear,  gysx; (the input vector has to be compared only with these
polynomial and RBF (GaussianRadial Basis Function kernel are  qy/q) “The vectors that are located on the wrong side of the
commonly used and serve as a basis of comparison in our study. hyperplane, that is, the vectors which prevent a perfectffit o

We show how to derive the primal form of the quadratic Power L .
Kernel (PK) — also called theNegative Euclidean Distance Kernel SV optimization, are also considered as SVs. Thus, the numbe

(NDK) — by means of complex numbers. We exemplify the NDK in ~ Of SVs can be quite large. The scalar product, which is used to
the framework of text categorization using theDewey Document ~ €stimate the similarity of feature vectors, can be geregdlto
Classification(DDC) as the target scheme. Our evaluation shows a kernel function. A kernel functioi” is a similarity function
that the power kernel produces F-scores that are comparabléo  of two vectors such that the matrix of kernel values is symmet
the reference kernels, but is — except for the linear kernel faster ric and positive semidefinite. The kernel function only amse
to compute. Finally, we show how to extend the NDK-approach in the dual form. The decision function is given as follows:
by including the Mahalanobis distance. de(x) = Sgn(zgn:l yio,; K (x,x;) +b). Let ®: R” — R! be
Keywords—SVM, kernel function, text categorization a function that transforms a vector into another vector tpost
of higher dimensionality with € N U {co}. It is chosen in
such a way that the kernel function can be represented by:
K(x1,x2) = (®(x1), P(x2)). Thus, the decision function in
An SVM has become a very popular machine learningthe primal form is given by:
method for text classificatiori [5]. One reason for its popu-
larity relates to the availability[ (])f a wide range of ke?ngls de(x) := sgu({w, &(x)) +) 1)
including the linear, polynomial and RBF (Gaussian radial ] ) ) ]
basis function) kernel. This paper derives a decompositiohlote that® is not necessarily uniquely defined. Furthermore,
of the quadraticPower Kernel(PK) using complex numbers & might convert the data into a very high dimensional space. In
and applies it in the area of text classification. Our evadmat Such cases, the dual form should be used for the optimization
shows that the NDK produces F-scores which are comparabRfOCesS as well as_for the cIaSS|f|qat|on of pr_ewously unsee
to those produced by the latter reference kernels whilegoeindata. One may think that the primal form is not needed.
faster to compute — except for the linear kernel. This etalna However, it has one advantage: if the normal vector of the
refers to theDewey Document ClassificatiddDC [11] as the hyperplane is known, a previously unseen vector can be
target scheme and compares our NDK-based classifier wittl@ssified just by applying the Signum functiahand a scalar

two competitors described inl[6]. [10] and [18], respedyiy ~ Multiplication. This is often much faster than computing th
i i kernel function for previously unseen vectors and each SV as

An SVM is a method for supervised classification intro- required when using the dual form.
duced by[[17]. It determines a hyperplane that allows for the )
best possible separation of the input data. (Training) data The most popular kernel is the scalar product, also called
the same side of the hyperplane is required to be mapped to th@e linear kernel. In this case, the transformation fumctio
same class label. Furthermore, the margin of the hyperplari the identity function: Ky, (x1,x2) := (x1,x2). Another
that is defined by the vectors located closest to the hypeepla Popular kernel function is the RBF (Gaussian Radial Basis
is maximized. The vectors on the margin are calfbport ~Function), given by:K, (x1,xz) := eI wherey €
Vectors(SV). The decision functionic : R* — {1,0,—1}, R, v > 0 is a constant that has to be manually specified.
which maps a vector to its predicted class, is given by:This kernel function can be represented by a functierthat
de(x) := sgn((w,x) + b) wheresgn : R — {1,0,—1} is  transforms the vector into infinite dimensional space [Fay.
the Signum function; the vectow and the constant are reasons of simplicity, assume thatis a vector with only one
determined by means of SV optimization.d#(x) = 0 then ~ component. Then the transformation functidn is given by:

the vector is located directly on the hyperplane and no detis 5 52 51
regarding both classes is possible. O, (z) = 77 (1, 4 /1_717’ \/( 27') 22, \/( 7) 23,7 2

!
The decision function is given in the primal form. It can 3
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Another often used kernel is the polynomial kernel: With z = aY i yjeuXg, u = ay it Yj% (x;,%;) and
Kp(x1,%g) = (a(x1,%a) + ¢) @) ¢ =Xty formula (10) can be rewritten as:

Ford :=2,a =1, ¢ = 1, and two vector components, the =
function ®, is given by [9]: @, : R? — RS with de(x) = sgn(—a(x,x) Zyjaj +2(x,2) —u+d +b) (11)

=1
P, (x) = (1,27, V2 3. V2 2 4 : —
p() = (Lo}, V2mieg, 23, V201, V) @ The expressionsi, z, (Y7, y;a;), and ¢ are identical for
In general, a vector of dimensionis transformed byp, ~ €Very vectorx and can be precomputed. Note that there exists
into a vector of dimensio'@n;d). Thus, the polynomial kernel no primal form for the NDK based on real number vectors

leads to a large number of dimensions in the target spac:%‘,’h'Ch 'i.StatidLbi’ the foll?l\évmgtrﬁ)roposnbon. dnlc N
However, the number of dimensions is not infinite as in the_l_rOpOSI lon et ac © K Wih a > 9 andn,: € X

case of the RBE kernel hen there is no function®,, : R®» — R! (re
' indicates that ®,. operates on real numbers) with
THE POWER KERNEL Vx1, X2 € R™ : (P (x1), Pre(x2)) = —al|x1 — %2> + ¢ .

The PK is a conditionally positive definite kernel given by
Proof: If such a function existed, then, for all € R",
K(x1,%2) := —|[x1 — xa |’ (5)

2 _ _
for somep € R [16], [2], [12]. A kernel is called conditionally [@re()II” = (Pre(x), Pre(x)) = —a-0+c=c
positive—definite if it is symmetric and satisfies the coiudis which requires that > 0 since the square of a real number
[14] cannot be negative. Now, considery € R™ with

n m |x—yl|> > 2¢ > 0. On the one hand, we have, by the Cauchy-
Z cicG K (x,xx) > 0 Ve; € K with Zci =0 (6) Schwarz inequality,

j,k=1 i=1
i i H (I)re 7c1)re S cI)re . (I)re - . = C.
whereg; is the complex-conjugate ef;,. We consider here a [(@re(x) WD < 1@ lI®re Il = Ve Ve=c
generalized form of the PK fgy := 2 (also called NDK): On the other hand, it holds that
Kpouw(x1,%2) 1= —a||x1 — x2[* + ¢ (7) | —allx —y|> +¢ =lalx—y|]* —¢| >2c—c=c,

with a,c € R anda > 0. The expression-a||x; — x2||? + ¢
can also be written as: _ _
—a{(x1 — X2), (x1 — X2)) + ¢ = “Although no primal form and therefore no functia,.
—a((x1,x1) = 2(x1,X2) + (x2,%X2)) + ¢ (8)  exists for real number vectors, such a function can be given
’ ’ ’ if complex number vectors are used instead. In this case, the
For deciding which class a previously unseen vector belongfnction @.. is defined with a real domain and a complex co-

a contradiction. [ |

to we can use the decision function in the dual form: domain: ®, : R* — C4*+1 and
i P() =(valat 1), vai, V3, Vaiad,
de(x) : = sgn(z Y05 Kpow (%, %) + b) Va(a} — 1), Vai,V2ax,, Vair},,/e)
J}Tf 9) Note that no scalar product can be defined for com-
= sgn(z yja;(—allx — ij|2 +¢)+b) plex numbers that fulfills the usual conditions of bilindari

and positive-definiteness simultaneollslyhus, the bilinear-

ity condition is dropped for the official definition and only
The decision function shown in formulgl (9) has the draw-sesquilinearity is required. The standard scalar prodsct i

back that the previously unseen vector has to be comparatkfined as the sum of the products of the vector components

with each SV, which can be quite time consuming. This carwith the associated complex conjugated vector componénts o

J=1

be avoided, if we reformulate formulgl (9) to: the other vector. Let;,x, € C", then the scalar product

m is given by [1]: (x1,x2) := Zzzlxlkm. In contrast, we

de(x) =sgn(>_ yjo;(—alx,x) + 2a(x,x;)— use a modified scalar product (marked by #)“where,
j=1 analogously to the real vector definition, the products &f th

n

a(x;,x;j) +¢) +b) vector components are summatétk;, xz) 1= Y, _; T1xT2k.

m m This product (not a scalar product in strict mathematicateg
:sgn(—aZyjozj<x,x> +2a2yjaj<X, X))+ is a bilinear form but no longer positive definite. For real

j=1 j=1

1This can be verified by a simple calculation: Consider someovex #
0 and x € C". Since(.) is positive definite:(x,x) > 0, by bilinearity:

S 10
> yie(—alxj,x;) +¢) +b) (10) (V=ix, vV =ix) = —i{x, %) ¥ 0).
j=1
=sgn(—a(x,x) Z yio; + 2(x,a Z Yo%) —
j=1 j=1

m m
a yias(x;, %) + ¢y +b)

j=1 i=1



number vectors this modified scalar product is identicahto t

usual definition. With this modified scalar product we get

("®e(x1), Pe(x2))
= —ax}, —ax3; +2ar11291 — -+ - — axt, — (13)

azl, + 2ax1,T0, + ¢ = —al|x; — x2|* + ¢

which is just the result of the NDK. The optimization
can be done with the dual form. Thus, no complex number

= sgn(z a;y; K(x5,%x) + b)
j=1

= sgn(z a;y; K (x,%x;) +b) (K is symmetric)
j=1
(16)
|

Normally, feature vectors for document classification rep-

optimization is necessary. For the decision on the class tasent the ‘weighted occurrences of lemma or word forms
which a data vector should be assigned we switch to the Prim3qs). Thus, such a vector contains a large number of zeros

form. The vectorw € C*"*! is calculated by:

w = 300 ajy;®c(x;) for all SVsx; € R™. The decision
function is then given bydc(x) := sgn((*w, ®.(x)) + b).
Note that the modified scalar produgtw, ®.(x)) must be a
real number. This is stated in the following proposition.
Proposition 2 Let w = 77" | ajy; ®c(x;) with x; € R",

a; € R, y; € {-1,1}, 5 = 1,...,m,®. as defined in

formula [12) andk € R™. Then(*w, ®.(x)) is a real number.

Proof: (*w, ®.(x)) is given by:

(. @ (x)) = <*f;ajyjq>c<xj>,q>c<x>>
_ i}&ajyjcbc(xj), ®.(x)) ((*.) is bilinear)
- ilajyx*@c(xmc(x»
_ f;am—anxj x| ) (see form. (T3)

(14)

which is clearly a real number.

and is therefore usually considered sparse. In this case, th
computational complexity of the scalar product can be reduc
from O(n) (wheren is the number of vector components) to
some constant runtime, which is the average number of non-
zero vector components. Lét be the set of indices of non-
zero entries of vector; (I = {k € {1,...,n} : x1, # 0})
and/, be analogously defined for vectes. The scalar product

of both vectors can then be computedme(hﬁb) T1k Tk

Let us now consider the case that both vectors are transtbrme
to complex numbers before the scalar multiplication. Irs thi
case, the modified scalar product

("@e(x1), Pe(x2)) = ((A(z11); - - -, P(T10)),
(p(x21), -, 0(x2m))) + €

is considered wher@(z,) denotes the transformation of a
single real vector component to a complex number vector and
is defined as:

¢ R — (C47 ¢(xk) = (\/E((Ei - 1)7 \/EZ, \/%(Ek, \/azxzc) )
18

(17)

Note that the partial modified scalar product
(*¢(x1r), ¢(x2x)) can be non-zero, if at least one of
the two vector components ; andxzsy is non-zero, which is
easy to see:

The NDK is related to the polynomial kernel since it . - 9
can also be represented by a polynomial. However, it has {"(ax), ¢(0) = Va(zj, = 1) - Va(=1) + (=1)a
the advantage over the polynomial kernel that it is faster to +v2azy, - 0 + Vaizi -0 = a — azi —a = —axs

compute, since the number of d|men_S|0ns n the target Spa(isnly if both vector components are zero, one can be sure that
grows only linearly and not exponentially with the number Ofthe result is also zero:

dimensions in the original spade [1€], [2]. It remains towsho
that the decision functions following the primal and duahfo  (*¢(0), ¢(0)) = (—v/a)(—v/a)+ai-i+0+0 = a—a = 0 (20)
are also equivalent for the modified form of the scalar proéduc
This is stated in the follow proposition:
Proposition 3 Let x,x1,...,%X, € R", a € R™, y €
{1,137, we= 370 a;y;Pe(x;) and (*@c(z1), Pe(22)) =
K(Zl,Zz) VZl,ZQ € R™. Then
sgn({*w, @c(x)) +b) = sgn(3_71 a;y; K (x, %) +b).

Proof:

sgn(("w, ®c(x)) +b)

= sgn(<*z Oéjyj(l)c(xj)v (I)c(x)> + b)

(19)

Thus, the sparse data handling of two transformed complex
vectors has to be modified in such a way that vector compo-
nents associated with the union and not the intersection of
non-zero indices are considered for multiplication:

ST o), dlww)) +c

kG([lLJIg)

(21)

("x1,%2) =

A further advantage of the NDK is that the Mahalanobis
distance [[8] can easily be integrated, which is shown in
the remainder of this section. Each symmetric matAx

m o can be represented by the produdt—'DV where D
=sgn() ("ojy;Pe(x;), Pe(x)) +b)  ((*.) is bilinear) is a diagonal matrix with the eigenvalues &€ on its
j=1 diagonals. The square root of a matex is then defined as

VA = VD5V whereD5 is the matrix with the square

ZSgH(Z ;Y (" Pe(x;), Pe(x)) +b) root of the eigenvalues oA on its diagonal. It is obvious
j=1

(15)



thatvA - VA = A. the cubic (polynomial kernel of degree 3), the RBF kernel and

Proposition 4: Let x, z € R",a:=1,¢:= 0, then the linear kernel (see Tablék | ahd Il). The free parameters
<*q>c(\/cov—1x)7@c(\/cov—lz» = —MH (x,2)? of the square, the cubic and the RBF kernel are determined

where MH(x,z) denotes the Mahalanobis distance by means of a grid search on an .independent data set. On

\/( — 2)TCov~(x — z) and Cov denotes the covariance the same held—ogt _dataset, we adjusted t_he SVM-threshold
x—z ov. Xz ov . . parameter to optimize the F-scores. The time (on an Intel

matrix between the feature values of the entire trainingdatcgre 7 required to obtain the classifications was deteethin

set. (see Tablé1ll for the real / complex NDK, the RBF, square,
Proof: We have tha{with C := vV Cov!): and linear kernel). The time needed for building the model
. was not measured because of being required only once and
("®:(Cx), @c(SZ» therefore being irrelevant for online text classification.
=~ [|Cx — Ce]| (see formula (13) The F-score for the NDK is higher than the F-scores of
=—(Cx—Cz)' (Cx — Cz) all other kernels and faster to compute except for the linear
=—(Cx—12)"(C(x—2)) (22)  kernel — obviously, the classification using the primal form
T of the linear kernel is faster than the one using the NDK.
=—(x— Z)T\/Cov—l \/Cov—l(x —z) Furthermore, the complex decomposition of the NDK leads

= (x—2)TCov!(x — 2) to a considerable acceleration of the classification psces
compared to its dual form and should therefore be preferred.

(since the covariance matrix is symmetric and the

inverse and square root of a symmetric matrix is

also symmetric)

We conducted a second experiment where we compared
the linear kernel with the NDK now using text snippets (i.e.,
abstracts instead of full texts) taken once more from our OAI
corpus. This application scenario is more realistic foritdig

This proposition shows that the NDK is just the negativelibraries that mainly harvest documents by means of thetame
square of the Mahalanobis distance for some vectoand z data and, therefore, should also be addressed by textfidessi
if % is set toVCov 'x (analogously foi), a is set to 1 and The kernels were trained on a set of 19000 absftadtsis
¢ is set to 0. Furthermore, this proposition shows that we catime, the categories are not treated independently of each

easily extend our primal form to integrate the Mahalanobisther. Instead, the classifier selected all categories sigthed
distance. For that, we define a functien: R* — R" as distance values from the SVM hyperplane that are greater or

follows: 7(x) = VCov~'x. With ®,,,:=®.. o 7 we have: equal to zero. If all distance values are negative, the oayeg
. ) with the largest (smallest absolute) distance was chosehid
(" @ (x), P (2)) = (MH (x,2)) (23)  experiment, the linear kernel performed better than the NDK

which shows that we have indeed derived a primal form. ~ USIng three samples of 500 texts, the F-scores of the linear
kernel are (macro-averaged over all main 10 DDC categories)
We use the NDK for text classification where a text is0.753, 0.735, 0.743, and of the NDK: 0.730, 0.731, 0.737s Thi
automatically labeled regarding its main topics (i.e.,eeat result indicates that the heuristic of preferring the cat&g of
gories), employing the DDC as one of the leading classificati highest signed distance to the hyperplane is not optimahier
schemes in digital libraries [11]. Documents are classifiedNDK. We compared our classifier with two other systems, the
regarding the 10 top-level categories of the DDC. To thisDDC classifier of [[18] and of[[6].[[18] reaches an F-score
end, we use training sets of documents for which the DDGf 0.502, 0.457 and 0.450 on these three samples. The F-
categories have already been assigned. Lexical featuees ascores of the DDC-classifier of|[6] are 0.615, 0.604, and4.57
extracted from this training set and made input to an SVMObviously, our classifier outperforms these competitors.

library (i.e.,libsum [3]) in order to assign one or more DDC .
categories to previously unseen texts. Features of instanc Fmally, we evgluateq the NDK on the Reuters 21578
rpull (Lewis split). This test set is very challenging since

documents are computed by means of the geometric me £ all 93 cat ; g in thi it h 10 or |
of the tfidf values and the GSS coefficients of their lexical>> O &l 9o calegories occurring In this Spiit have LY or 1ess
training examples. Furthermore, several texts are irdaatly

constituents|[4], [13] assigned to none of the Reuters categories. We created an
artificial category for all texts that are not assigned irs thi
sense. The histogram of category assignments is displayed i
The evaluation and training was done using 4000 GerFigure[d. The F-scores for the Reuters corpus are given in
man documents, containing in total 114887606 words andable[lM. We modified the training data by filling up instances
9643022 sentences requiring a storage space of 823.51 MBr every category by randomly selecting positive instance
There are 400 documents of each top-level DDC category iguch that the ratio of positive examples to all instancestere
the corpus. 2 000 of the texts were used for training, 2 000 fosame for all categories. Hence, in most category samplee som
evaluation. The corpus consists of texts annotated acuptdi  training examples were used more than once. This approach
the OAI (Open Archive Initiativpand is presented in[7]. We prevents from preferring categories due to their multitofle
tested the correctness of category assignment for the 10 topraining examples. The F-score of the NDK is lower than the
level DDC categories. Each document is mapped at least to one; E— : . —
DDC category. Multiple assignments are possible. Pregjsio Note that in this evaluation we employed the tfidf score forighing
recall and E-scores were Computed for each DDC categorg/?ly’ since the use of the GSS coefficient didn't lead to angrovement in
score.

using the NDK, the square (polynomial kernel of degree 2), 3yRrL: http:iwww.daviddiewis.com/resources/testcdiiens/relters21578
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http://www.daviddlewis.com/resources/testcollections/reuters21578

TABLE I. PRECISION/ RECALL OF DIFFERENT KERNELS
NDK RBF Linear Square Cubic
Cat. Prec. Rec.| Prec. Rec.| Prec. Rec.| Prec. Rec.| Prec. Recall
0 0.845 0.777| 0.867 0.731| 0.747 0.853| 0.831 0.772| 0.789 0.817
1 0.768 0.740| 0.775 0.682| 0.726 0.745| 0.722 0.771| 0.712 0.734
2 0.909 0.833| 0.892 0.857| 0.905 0.847| 0.873 0.882| 0.935 0.635
3 0.764 0.497| 0.679 0.571| 0.545 0.640| 0.716 0.508| 0.708 0.487
4 0.852 0.529| 0.870 0.388| 0.863 0.490| 0.441 0.146| 0.000 0.029
5 0.700 0.783| 0.794 0.626 | 0.825 0.675| 0.744 0.660| 0.697 0.793
6 0.682 0.685| 0.718 0.625| 0.699 0.685| 0.670 0.700| 0.744 0.595
7 0.680 0.741| 0.675 0.652| 0.602 0.751| 0.722 0.697| 0.843 0.532
8 0.657 0.720| 0.586 0.785| 0.626 0.774| 0.670 0.677| 0.752 0.457
9 0.701 0.752| 0.680 0.670| 0.668 0.723| 0.775 0.636| 0.831 0.335
All 0.756 0.706 | 0.754 O.659| 0.721 0.718 | 0.716 O.645| 0.801 0.542
TABLE II. F-SCORES OF DIFFERENT KERNELS EVALUATED BY MEANS

OF THE OAl CORPUS OH7].

Cat. NDK  Square  Cubic RBF  Linear

0 0.810 0.800 0.803 0.793 0.796

1 0.753 0.746 0.723 0.726 0.735

2 0.869 0.877 0.757 0.874 0.875

3 0.603 0.594 0.577 0.621 0.589

4 0.653 0.219 0.057 0.537 0.625

5 0.740 0.700 0.742 0.700 0.743

6 0.683 0.685 0.661 0.668 0.692

7 0.710 0.709 0.652 0.663 0.668

8 0.687 0.674 0.569 0.671 0.692

9 0.726 0.699 0.478 0.675 0.695

All 0.723 0.670 0.602 0.693 0.711

TABLE III. T IME (IN MILLISECONDS) REQUIRED FOR THE
COMPUTATION OF THE KERNELS ON THEOAI CORPUS
C. NDK NDK Squ. Cubic RBF Lin.
prim. dual dual dual dual dual
0 6426 46 200 50256 50979 47246 44322
1 9339 98289 115992 132844 122751 93550
2 5822 48359 57603 67200 65508 46786
3 23774 134636 165604 177211 159897 111516
4 10103 118322 77634 93613 111153 103548
5 32501 104865 72772 135820 138107 96 637
6 24375 105614 116892 120919 126498 95423
7 19206 113971 122128 143562 120371 100640
8 11236 99288 106 215 118378 105942 84381
9 20822 125358 139004 168837 138395 111245
all 16361 99490 102410 120936 113587 88805
TABLE IV. M EAN F-SCORE PRECISION AND RECALL

(MACRO-AVERAGING) OF DIFFERENT KERNELS EVALUATED BY MEANS OF
THE REUTERS CORPUS

Kernel F-score Precision Recall
NDK 0.394 0.414 0.419
Square  0.324 0.392 0.304
Cubic 0.348 0.319 0.567
RBF 0.403 0.420 0.441
Linear  0.408 0.428 0.436
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Fig. 1. Histogram of the distribution of categories for theufers corpus.

highest macro-averaging F-score obtained by the lineareker
but outperforms the square and the cubic kernel. Again, the
parameters of the NDK, the square, the cubic and the RBF
kernels were determined by means of a grid search.

CONCLUSION AND FUTURE WORK

We derived a primal form of the NDK by means of
complex numbers. In this way, we obtained a much simpler
representation compared to the modified dual form. We showed
that the primal form (and in principle also the modified dual
form) can speed up text classification considerably. Theaea
is that it does not require to compare input vectors with all
support vectors. Our evaluation showed that the F-scores of
the NDK are competitive regarding all other kernels tested
here while the NDK consumes less time than the polynomial
and the RBF kernel. We have also shown that the NDK
performs better than the linear kernel when using full texts
rather than text snippets. Whether this is due to problems of
feature selection/expansion or a general characteriétibi®
kernel (in the sense of being negatively affected by ulparse
features spaces), will be examined in future work. Addgibn
we plan to examine the PK with exponents larger than two,
to investigate under which prerequisites the PK performi$ we
and to evaluate the extension of the NDK that includes the
Mahalanobis distance.
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