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The Mumford–Tate conjecture for the product of an

abelian surface and a K3 surface

by J.M. Commelin Wednesday, the 6th of January, 2016

1 Introduction

The main result of this paper is the following theorem. In the next paragraph we recall the

Mumford–Tate conjecture; and in §1.3 we give an outline of the proof. The ambitious reader

may skip to section 7 and dive head first into the proof.

1.1 Theorem. — Let K be a finitely generated subfield of C. If A is an abelian surface over K

and X is a K3 surface over K, then the Mumford–Tate conjecture is true for H2(A×X)(1).

1.2 The Mumford–Tate conjecture. — LetK be a finitely generated field of characteristic 0;

and let K →֒ C be an embedding of K into the complex numbers. Let K be the algebraic closure

of K in C. Let X/K be a smooth projective variety. One may attach several cohomology

groups to X . For the purpose of this article we are interested in two cohomology theories: Betti

cohomology and ℓ-adic étale cohomology (for a prime number ℓ). We will write Hi
B(X) for the

Q-Hodge structure Hi
sing(X(C),Q). Similarly, we write Hi

ℓ(X) for the Gal(K /K)-representation

Hi
ét(XK,Qℓ).

The Mumford–Tate conjecture is a precise way of saying that the cohomology groups Hi
B(X)

and Hi
ℓ(X) contain the same information about X . To make this precise, let GB(H

i
B(X)) be

the Mumford–Tate group of the Hodge structure Hi
B(X), and let G◦

ℓ (H
i
ℓ(X)) be the connected

component of the Zariski closure of Gal(K /K) in GL(Hi
ℓ(X)). The comparison theorem by Artin,

comparing singular cohomology with étale cohomology, canonically identifies GL(Hi
B(X)) ⊗ Qℓ

with GL(Hi
ℓ(X)). The Mumford–Tate conjecture (for the prime ℓ, and the embedding K →֒ C)

states that under this identification

GB(H
i
B(X))⊗Qℓ

∼= G◦
ℓ (H

i
ℓ(X)).

1.3 Outline of the proof. — Let A/K be an abelian surface, and let X/K be a K3 surface.

Observe that, by Künneth’s theorem, H2
B(A ×X) ∼= H2

B(A) ⊕ H2
B(X). Similarly H2

ℓ(A ×X) ∼=

H2
ℓ (A)⊕H2

ℓ (X). Recall that the Mumford–Tate conjecture for A is known in degree 1, and hence

in all degrees. (This is classical, but see corollary 4.4 of [14] for a reference.) By [24, 23, 1], the

Mumford–Tate conjecture for X (in degree 2) is true as well. Still, it is not a formal consequence

that the the Mumford–Tate conjecture for A×X is true in degree 2.

The proof of theorem 1.1 falls apart into four cases, that use very different techniques. All

cases build on the Hodge theory of K3 surfaces and abelian varieties, of which we provide an

overview in section 6.

Let V be the transcendental part of H2
B(X). The first case (lemma 7.4) inspects End(V ),

and exploits Chebotaryov’s density theorem, which we recall in section 2. The second case

(lemma 7.6) looks at the Lie type of GB(V ), and uses results about semisimple groups over

number fields, which we assemble in section 3.
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The third case (lemma 7.7) deals with Kummer varieties, and other K3 surfaces for which

dim(V ) is small. We use the theory of Kuga–Satake varieties, and apply techniques of Lombardo,

developed in [14]. The preliminaries of this part of the proof are gathered in section 5.

The final case (lemma 7.9) is the only case where we use that H2(X) is a motive coming

from a K3 surface. We use information about the reduction of X modulo a place of K, and

combine this with a result about non-split groups and results about compatible systems of ℓ-adic

representations.

1.4 Notation and terminology. — Let K be a finitely generated field of characteristic 0;

and fix an embedding K →֒ C. In this article we use the language of motives à la André, [2].

To be precise, our category of base pieces is the category of smooth projective varieties over K,

and our reference cohomology is Betti cohomology, HB(_); which, we stress, depends on the

chosen embedding K →֒ C. We write Hi(X) for the motive of weight i associated with a smooth

projective variety X/K.

The Mumford–Tate conjecture naturally generalises to motives. Let M be a motive. We will

write HB(M) for its Hodge realisation; Hℓ(M) for its ℓ-adic realisation; GB(M) for its Mumford–

Tate group (i.e., the Mumford–Tate group of HB(M)); and G◦
ℓ (M) for G◦

ℓ (Hℓ(M)). We will use

the notation MTCℓ(M) for the conjectural statement

GB(M)⊗Qℓ
∼= G◦

ℓ (M),

and MTC(M) for the assertion MTCℓ(M) for all prime numbers ℓ. In this paper, we never use

specific properties of the chosen embedding K →֒ C, and all statements are valid for every such

embedding. In particular, we will speak about subfields of C, where the embedding is implicit.

In this paper, we will use compatible systems of ℓ-adic representations. We refer to the letters

of Serre to Ribet (see [20]) or the work of Larsen and Pink [11, 12] for more information.

Throughout this paper, A is an abelian variety, over some base field. (Outside section 5, it

is even an abelian surface.) Assume A is absolutely simple; and choose a polarisation of A. Let

(D, †) be its endomorphism ring End0(A) together with the Rosati involution associated with

the polarisation. The simple algebra D together with the positive involution † has a certain type

in the Albert classification that does not depend on the chosen polarisation. We say that A is

of type x if (D, †) is of type x, where x runs through {i, . . . , iv}. If E denotes the center of D,

with degree e = [E : Q], we also say that A is of type x(e).

Whenever we speak of (semi)simple groups or (semi)simple Lie algebras, we mean non-

commutative (semi)simple groups, and non-abelian (semi)simple Lie-algebras.

Let T be a type of Dynkin diagram (e.g., An, Bn, Cn or Dn). Let g be a semisimple Lie

algebra over K. We say that T does not occur in the Lie type of g, if the Dynkin diagram of gK
does not have a component of type T . For a semisimple group G over K, we say that T does

not occur in the Lie type of G, if T does not occur in the Lie type of Lie(G).
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2 Some remarks on Chebotaryov’s density theorem and transitive

group actions

2.1 Theorem (Chebotaryov’s density theorem). — Let K ⊂ E be an extension of num-

ber fields. Let E ⊂ L be a Galois closure of E, and let G = Gal(L/K) be the Galois group of L

over K. Let Σ = HomK(E,L) be the set of field embeddings over K of E in L.

» Let p be a prime of K that is unramified in L, and let Cp ⊂ G be the conjugacy class of

the Frobenius elements associated with p. The decomposition type of p in OE is equal to

the cycle type of Cp acting on Σ.

» Let C ⊂ G be a union of conjugacy classes of G. The set

{p ∈ Spec(OE) | p is unramified, and Cp ⊂ C}

has density |C|
|G| as subset of Spec(OE).

Proof. See fact 2.1 and theorem 3.1 of [13]. See Theorem 13.4 of [18] for the case where E/K is

Galois. �

2.2 Lemma. — Let G be a finite group acting transitively on a finite set Σ. Let n ∈ Z≥0 be a

non-negative integer, and let C ⊂ G be the set of elements g ∈ G that have at least n fixed points:

C =
{

g ∈ G
∣

∣ |Σg| ≥ n
}

If n · |C| ≥ |G|, then |Σ| = n. If furthermore the action of G on Σ is faithful, then |G| = n,

and Σ is principal homogeneous under G.

Proof. Burnside’s lemma gives

1 = |G\Σ| =
1

|G|

∑

g∈G

|Σg| ≥
n · |C|

|G|
≥ 1.

Hence n · |C| = |G| and all elements in C have exactly n fixed points. In particular the identity

element has n fixed points, which implies |Σ| = n. If G acts faithfully on Σ, then |Σ| = n implies

C = {e}, and thus |G| = n = |Σ|. So Σ is principal homogeneous under G. �

1A preliminary version of lemma 2.3 arose from a question on MathOverflow titled “How simple does a Q-simple

group remain after base change to Qℓ?” (http://mathoverflow.net/q/214603/78087). The answers also inspired

lemma 2.2.
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2.3 Lemma. — Let F1 be a Galois extension of Q. Let F2 be a number field. If for all prime

numbers ℓ, the product of local fields F1 ⊗Qℓ is a factor of F2 ⊗Qℓ, then F1
∼= F2.

Proof. Let L be a Galois closure of F2, and let G be the Galois group Gal(L/Q), which acts

naturally on the set of field embeddings Σ = Hom(F2, L). Let n be the degree of F1, and let C

be the set
{

g ∈ G
∣

∣ |Σg| ≥ n
}

of elements in G that have at least n fixed points in Σ.

By Chebotaryov’s density theorem (2.1), the set of primes that split completely in F1 has

density 1/n. Another application of theorem 2.1 shows that the set of primes ℓ for which F2⊗Qℓ

has a semisimple factor isomorphic to (Qℓ)
n must have density ≥ 1/n. Our assumption therefore

implies that n · |C| ≥ |G|. By lemma 2.2, this implies |Σ| = n, and since G acts faithfully on Σ,

we find that F2/Q is Galois of degree n. Because Galois extensions of number fields can be

recovered from their set of splitting primes (Satz VII.13.9 of [18]), we conclude that F2
∼= F1. �

2.4 Lemma. — Let F1 be a quadratic extension of Q. Let F2 be a number field of degree ≤ 5

over Q. If for all prime numbers ℓ, the products of local fields F1 ⊗ Qℓ and F2 ⊗ Qℓ have an

isomorphic factor, then F1
∼= F2.

Proof. Let L be a Galois closure of F2, and let G be the Galois group Gal(L/Q), which acts

naturally on the set of field embeddings Σ = Hom(F2, L). Observe that G acts transitively on Σ,

and we identify G with its image in S(Σ). Write n for the degree of F2 over Q, which also

equals |Σ|. The order of G is divisible by n. Hence, if n is prime, then G must contain an

n-cycle.

Suppose that G contains an n-cycle. By Chebotaryov’s density theorem (2.1) there must be

a prime number ℓ that is inert in F2. By our assumption F2 ⊗ Qℓ also contains a factor of at

most degree 2 over Qℓ. This shows that n = 2.

If n = 4, then G does not contain an n-cycle if and only if it is isomorphic to V4 or A4. If

G ∼= V4, only the identity element has fixed points, and by Chebotaryov’s density theorem this

means that the set of primes ℓ for which F2⊗Qℓ has a factor Qℓ has density 1/4, whereas the set

of primes splitting in F1 has density 1/2. On the other hand, if G ∼= A4, only 3 of the 12 elements

have a 2-cycle in the cycle decomposition, and by Chebotaryov’s density theorem this means that

the set of primes ℓ for which F2 ⊗Qℓ has a factor isomorphic to a quadratic extension of Qℓ has

density 1/4, whereas the set of primes inert in F1 has density 1/2. This gives a contradiction.

We conclude that n must be 2; and therefore F1
∼= F2, by lemma 2.3. �

3 Several results on semisimple groups over number fields

Throughout this section K is a field of characteristic 0.

3.1 Lemma. — Let G be a connected algebraic group over K, and let H ⊂ G be a subgroup. If

Lie(H) = Lie(G), then H = G.

Proof. This is immediate, since H is a subgroup of G of the same dimension as G. �

3.2 Lemma (Goursat’s lemma for Lie algebras). — Let g1 and g2 be Lie algebras over K,

and let h ⊂ g1 ⊕ g2 be a sub-Lie algebra such that the projections πi : h → gi are surjective. Let

n1 be the kernel of π2, and n2 the kernel of π1. The projection πi identifies ni with an ideal of gi,
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and the image of the canonical map

h −→ (g1/π1(n1))⊕ (g2/π2(n2))

is the graph of an isomorphism g1/π1(n1) → g2/π2(n2).

Proof. Observe that πi is injective on ni. If x ∈ πi(ni) and y ∈ gi, then [x, y] ∈ πi(ni), because

πi is surjective, and ni is an ideal of h. Let h be the image of the canonical map

h −→ (g1/π1(n1))⊕ (g2/π2(n2))

By construction, the projections h → gi/πi(ni) are injective; and they are surjective by assump-

tion. This proves the lemma. �

3.3 Remark. — Let h ⊂ g1 ⊕ g2 be Lie algebras over K satisfying the conditions of lemma 3.2.

Assume that g1 and g2 are finite-dimensional and semisimple. It follows from the proof of

lemma 3.2 that there exist semisimple Lie algebras s1, t, and s2 such that g1 ∼= s1⊕ t, g2 ∼= t⊕ s2,

and h ∼= s1 ⊕ t⊕ s2.

3.4 Corollary. — Let K ⊂ L be a field extension. Let G1 and G2 be connected semisimple

groups over K. Let ι : G →֒ G1 ×G2 be a subgroup, with surjective projections onto both factors.

If Lie(G1)L and Lie(G2)L have no isomorphic factor over L, then ι is an isomorphism.

3.5 Lemma. — Let K ⊂ F be a finite field extension. Let G be an algebraic group over F . The

Lie algebra Lie(ResF/K G) is isomorphic to the Lie algebra Lie(G), viewed as Lie algebra over K.

Proof. This follows from the following diagram, the rows of which are exact.

0 Lie(ResF/K G) (ResF/K G)(K[ε]) (ResF/K G)(K) 0

0 Lie(G) G(K[ε]) G(K) 0

≃ ≃

�

3.6 Lemma. — Let F1/K and F2/K be finite field extensions. Let gi/Fi (i = 1, 2) be a finite

product of absolutely simple Lie algebras (cf. our conventions in §1.4). Write (gi)K for the Lie

algebra gi viewed as Lie algebra over K. If (g1)K and (g2)K have an isomorphic factor, then

F1
∼=K F2.

Proof. The K-simple factors of (gi)K are all of the form (ti)K , where ti is an Fi-simple factor

of gi. So if (g1)K and (g2)K have an isomorphic factor, there exist Fi-simple factors ti of gi

for which there exists an isomorphism f : (t1)K → (t2)K . Let K be an algebraic closure of K.

Observe that

(ti)K ⊗K K ∼=
⊕

σ∈HomK(Fi,K)

ti ⊗Fi,σ K,

and note that Gal(K /K) acts transitively on HomK(Fi,K). By assumption, the ti are Fi-simple,

and therefore the ti⊗Fi,σK are precisely the simple ideals of (ti)K⊗KK. Thus the isomorphism f

gives a Gal(K /K)-equivariant bijection between the simple ideals of (t1)K⊗KK and (t2)K⊗KK;

and therefore HomK(F1,K) and HomK(F2,K) are isomorphic as Gal(K /K)-sets. This proves

the result. �
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3.7 Lemma. — Let F1 and F2 be number fields. Let Gi/Fi (i = 1, 2) be an almost direct

product of connected absolutely simple Fi-groups. Let ℓ be a prime number, and let ιℓ : G →֒

(ResF1/QG1)Qℓ
× (ResF2/QG2)Qℓ

be a subgroup over Qℓ, with surjective projections onto both

factors. If ιℓ is not an isomorphism, then F1⊗Qℓ and F2⊗Qℓ have an isomorphic simple factor.

Proof. Observe that (ResFi/QGi)⊗Qℓ
∼=

∏

λ|ℓ ResFi,λ/Qℓ
(Gi⊗Fi

Fλ). If ιℓ is not an isomorphism,

then by corollary 3.4, there exist places λi of Fi over ℓ such that Lie(ResF1,λ1
/Qℓ

(G1 ⊗F1
F1,λ1

))

and Lie(ResF2,λ2
/Qℓ

(G2 ⊗F2
F2,λ2

)) have an isomorphic factor. By lemmas 3.5 and 3.6, this

implies that F1,λ1

∼=Qℓ
F2,λ2

, which proves the lemma. �

4 Several results on abelian motives

4.1 Lemma. — The Mumford–Tate conjecture on centres is true for abelian motives. In other

words, let M be an abelian motive. Let ZB(M) be the centre of the Mumford–Tate group GB(M),

and let Zℓ(M) be the centre of G◦
ℓ (M). Then Zℓ(M) ∼= ZB(M)⊗Qℓ.

Proof. The result is true for abelian varieties (see theorem 1.3.1 of [26] or corollary 2.11 of [25]).

By definition of abelian motive, there is an abelian variety A such that M is contained in the

Tannakian subcategory of motives generated by H(A). This yields a surjection GB(A) ։ GB(M),

and therefore ZB(M) is the image of ZB(A) under this map. The same is true on the ℓ-adic side.

Thus we obtain a commutative diagram with solid arrows

Zℓ(A) Zℓ(M) G◦
ℓ (M)

ZB(A)⊗Qℓ ZB(M)⊗Qℓ GB(M)⊗Qℓ
≃ ≃

which shows that the dotted arrow exists and is an isomorphism. �

4.2 Lemma. — Let 1 denote the trivial motive. If M is a motive, then the Mumford–Tate

conjecture for M is equivalent to the Mumford–Tate conjecture for M ⊕ 1.

Proof. Indeed, M and M ⊕ 1 generate the same Tannakian subcategory of motives. �

4.3 Lemma. — Let K ⊂ L be an extension of finitely generated subfields of C. If M is a motive

over K, then MTC(M) ⇐⇒ MTC(ML).

Proof. See proposition 1.3 of [15]. �

4.4 Lemma. — Let M be an abelian motive. Assume that the ℓ-adic realisations of M form a

compatible system of ℓ-adic representations. If the Mumford–Tate conjecture for M is true for

one prime ℓ′, then it is true for all primes ℓ.

Proof. Since M is an abelian motive, we have G◦
ℓ (M) ⊂ GB(M) ⊗ Qℓ. By our assumption on

the ℓ-adic realisations of M , the proofs of theorem 4.3 and lemma 4.4 of [12] apply verbatim to

our situation. �
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4.5 — Let K be a finitely generated subfield of C. A pair (A,X), consisting of an abelian

surface A and a K3 surface X over K, is said to satisfy condition 4.5 for ℓ if

G◦
ℓ

(

H2(A×X)(1)
)der

−֒→ G◦
ℓ

(

H2(A)(1)
)der

×G◦
ℓ

(

H2(X)(1)
)der

is an isomorphism.

4.6 Lemma. — Let K be a finitely generated subfield of C, and let C/K be a smooth (not

necessarily proper) curve over K, with generic point η. Let A/C be an abelian scheme, and

let X/C be a K3 surface. There exists a closed point c ∈ C and a prime number ℓ such

that G◦
ℓ (H

2(Aη)(1)) ∼= G◦
ℓ (H

2(Ac)(1)) and G◦
ℓ (H

2(Xη)(1)) ∼= G◦
ℓ (H

2(Xc)(1)). Furthermore, if

(Ac, Xc) satisfies condition 4.5 for ℓ, then so does (Aη, Xη).

Proof. The existence of the point c follows immediately from theorem 1.1 of [4]. The diagram

G◦
ℓ (H

2(Ac ×Xc)(1))
der G◦

ℓ (H
2(Aη ×Xη)(1))

der

G◦
ℓ (H

2(Ac)(1))
der ×G◦

ℓ (H
2(Xc)(1))

der G◦
ℓ (H

2(Aη)(1))
der ×G◦

ℓ (H
2(Xη)(1))

der≃

shows that (Aη, Xη) satisfies condition 4.5 for ℓ if (Ac, Xc) satisfies it. �

4.7 — Let ℓ be a prime number. Let G1 and G2 be connected reductive groups over Qℓ. By a

(G1, G2)-tuple over K we shall mean a pair (A,X), where A is an abelian surface over K, and X

is a K3 surface over K such that G◦
ℓ (H

2(A)(1)) ∼= G1 and G◦
ℓ (H

2(X)(1)) ∼= G2. We will show in

section 7 that there exist groups G1 and G2 that satisfy the hypothesis of the following lemma,

namely that condition 4.5 for ℓ is satisfied for all (G1, G2)-tuples over number fields.

4.8 Lemma. — Let ℓ be a prime number. Let G1 and G2 be connected reductive groups over Qℓ.

If for all number fields K, all (G1, G2)-tuples (A,X) over K satisfy condition 4.5 for ℓ, then

for all finitely generated subfields L of C, all (G1, G2)-tuples (A,X) over L satisfy condition 4.5

for ℓ.

Proof. The proof goes by induction on the transcendence degree n of L. If n = 0, the result is

true by assumption. Suppose that n > 0, and assume as induction hypothesis that condition 4.5

for ℓ is satisfied for all (G1, G2)-tuples over all finitely generated subfields of C with transcendence

degree < n.

There exists a field K ⊂ L, and a smooth curve C/K such that L is the function field of C.

Observe that trdeg(K) = n − 1. By the induction hypothesis and lemma 4.6, the claim of the

lemma is true for L. The result follows by induction. �

5 Some remarks on the Mumford–Tate conjecture for abelian va-

rieties
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5.1 — For the convenience of the reader, we copy some results from [14]. Before we do that, let

us recall the notion of the Hodge group, HdgB(A), of an abelian variety. Let A be an abelian

variety over a finitely generated field K ⊂ C. By definition, the Mumford–Tate group of an

abelian variety is GB(A) = GB(H
1
B(A)) ⊂ GL(H1

B(A)), and we put

HdgB(A) = (GB(A) ∩ SL(H1
B(A)))

◦ and Hdgℓ(A) = (Gℓ(A) ∩ SL(H1
ℓ (A)))

◦.

We leave it as an easy exercise to the reader to verify that

MTCℓ(A) ⇐⇒ HdgB(A)⊗Qℓ
∼= Hdgℓ(A).

5.2 Definition (1.1 in [14]). — Let A be an absolutely simple abelian variety of dimension g

over K. The endomorphism ring D = End0(A) is a division algebra. Write E for the centre of D.

The ring E is a field, either tr (totally real) or cm. Write e for [E : Q]. The degree of D over E

is a perfect square d2.

The relative dimension of A is

reldim(A) =







g
de , if A is of type i, ii, or iii,

2g
de , if A is of type iv.

Note that d = 1 if A is of type i, and d = 2 if A is of type ii or iii.

In definition 2.22 of [14], Lombardo defines when an abelian variety is of general Lefschetz

type. This definition is a bit unwieldy, and its details do not matter too much for our purposes.

What matters are the following results, that prove that certain abelian varieties are of general

Lefschetz type, and that show why this notion is relevant for us.

5.3 Lemma. — Let A be an absolutely simple abelian variety over a finitely generated subfield

of C. Assume that A is of type i or ii. If reldim(A) is odd, or equal to 2, then A is of general

Lefschetz type.

Proof. If reldim(A) is odd, then this follows from theorems 6.9 and 7.12 of [3]. Lombardo notes

(remark 2.25 in [14]) that the proof of [3] also works if reldim(A) = 2, and also refers to theo-

rem 8.5 of [6] for a proof of that fact. �

5.4 Lemma. — Let K be a finitely generated subfield of C. Let A1 and A2 be two abelian varieties

over K that are isogenous to products of abelian varieties of general Lefschetz type. If D4 does

not occur in the Lie type of Hdgℓ(A1) and Hdgℓ(A2), then either

HomK(A1, A2) 6= 0, or Hdgℓ(A1 ×A2) ∼= Hdgℓ(A1)× Hdgℓ(A2).

Proof. This is remark 4.3 of [14], where Lombardo observes that, under the assumption of the

lemma, theorem 4.1 of [14] can be applied to products of abelian varieties of general Lefschetz

type. �

5.5 Lemma. — Let A be an abelian variety over a finitely generated field K ⊂ C. Let L ⊂ C be

a finite extension of K for which AL is isogenous over L to a product of absolutely simple abelian

varieties
∏

Aki

i . Assume that for all i the following conditions are valid:
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(a) either Ai is of general Lefschetz type or Ai is of cm type;

(b) the Lie type of Hdgℓ(Ai) does not contain D4;

(c) the Mumford–Tate conjecture is true for Ai.

Under these conditions the Mumford–Tate conjecture is true for A.

Proof. By lemma 4.3 we know that MTC(A) ⇐⇒ MTC(AL). Furthermore, note that MTC(AL)

is equivalent to MTC(
∏

Ai). Observe that

Hdgℓ(A) ⊂ HdgB(A)⊗Qℓ ⊂
∏

HdgB(Ai)⊗Qℓ =
∏

Hdgℓ(Ai),

where the first inclusion is Deligne’s “Hodge = absolute Hodge” theorem; the second inclusion is

a generality; and the last equality is condition (c).

If we ignore the factors that are cm, then an inductive application of the previous lemma

yields Hdgℓ(A) =
∏

Hdgℓ(Ai). If we do not ignore the factors that are cm, then we actually get

Hdgℓ(A)
der =

∏

Hdgℓ(Ai)
der. Together with lemma 4.1, this proves Hdgℓ(A) = HdgB(A)⊗Qℓ.�

As an illustrative application of this result, Lombardo observes in corollary 4.5 of [14] that the

Mumford–Tate conjecture is true for arbitrary products of elliptic curves and abelian surfaces.

6 Hodge theory of K3 surfaces and abelian surfaces

6.1 — In this section we recall some results of Zarhin that describe all possible Mumford–Tate

groups of Hodge structures of K3 type, i.e., Hodge structures of weight 0 with Hodge numbers

of the form (1, n, 1).

The canonical example of a Hodge structure of K3 type is the cohomology in degree 2 of a

complex K3 surface X . Namely the Hodge structure H2
B(X)(1) has Hodge numbers (1, 20, 1).

Another example is provided by abelian surfaces, which is the content of remark 6.6 below.

6.2 Lemma. — Let V be an irreducible Hodge structure of K3 type, and let ψ be a polarisation

on V .

1. The endomorphism algebra E of V is a field.

2. The field E is tr (totally real) or cm.

3. If E is tr, then dimE(V ) ≥ 3.

4. Let ψ̃ be the unique E-bilinear (resp. hermitian) form such that ψ = trE/Q ◦ψ̃ if E is tr

(resp. cm). Let E0 be the maximal totally real subfield of E. The Mumford–Tate group

of V is

GB(V ) ∼=







ResE/Q SO(ψ̃), if E is tr;

ResE0/Q UE/E0
(ψ̃), if E is cm.

Proof. The first (resp. second) claim is theorem 1.6.a (resp. theorem 1.5) of [28]; the third claim is

observed by Van Geemen, in lemma 3.2 of [9]; and the final claim is a combination of theorems 2.2

and 2.3 of [28]. (We note that [28] deals with Hodge groups, but because our Hodge structure

has weight 0, the Mumford–Tate group and the Hodge group coincide.) �
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6.3 Remark. — Let V , E and ψ̃ be as in lemma 6.2. If E is cm, then U(ψ̃)der = SU(ψ̃) is

absolutely simple over E. If E is tr and dimE(V ) 6= 4, then SO(ψ̃) is absolutely simple over E.

Assume E is tr and dimE(V ) = 4. In this case SO(ψ̃) is not absolutely simple over E; it has

Lie type D2 = A1 ⊕ A1. In this remark we will take a close look at this special case, because a

good understanding of it will play a crucial rôle in the proof of lemma 7.9.

Geometrically we find SO(ψ̃)E
∼= (SL

2,E × SL
2,E)/〈(−1,−1)〉. We distinguish the following

two cases:

1. SO(ψ̃) is not simple over E. The fact that is most relevant to us is that there exists a

quaternion algebra D/E such that SO(ψ̃) ∼= (N ×Nop)/〈(−1,−1)〉 where N is the group

over E of elements in D⋆ that have norm 1, and Nop ⊂ (Dop)⋆ is the group of units with

norm 1 in Dop. One can read more about the details of this claim in section 8.1 of [15].

This situation is also described in section 26.B of [10], where the quaternion algebra is

replaced by D×D viewed as quaternion algebra over E ×E. This might be slightly more

natural, but it requires bookkeeping of étale algebras which makes the proof in section 7

more difficult than necessary.

2. SO(ψ̃) is simple over E. This means that the action of Gal(E /E) on SO(ψ̃)E interchanges

the two factors SL
2,E . The stabilisers of these factors are subgroups of index 2 that coincide.

This subgroup fixes a quadratic extension F/E. From our description of the geometric

situation, together with the description of the stabilisers, we see that Spin(ψ̃) = ResF/E G

is a (2 : 1)-cover of SO(ψ̃), where G is an absolutely simple, simply connected group of Lie

type A1 over F .

What we have gained is that in all cases we have a description (up to isogeny) of GB(V )der as

Weil restriction of a group that is an almost direct product of groups that are absolutely simple.

This allows us to apply lemma 3.6, which will play an important rôle in section 7.

6.4 Notation and terminology. — Let V , E and ψ̃ be as in lemma 6.2. To harmonise the

proof in section 7, we unify notation as follows:

F =



























E0 if E is cm,

E if E is tr and dimE(V ) 6= 4,

E if E is tr, dimE(V ) = 4, and we are in case 6.3.1,

F if E is tr, dimE(V ) = 4, and we are in case 6.3.2.

Similarly

G =



























U(ψ̃) if E is cm,

SO(ψ̃) if E is tr and dimE(V ) 6= 4,

SO(ψ̃) if E is tr, dimE(V ) = 4, and we are in case 6.3.1,

G if E is tr, dimE(V ) = 4, and we are in case 6.3.2.

We stress that G der is an almost direct product of absolutely simple groups over F . In section 7,

most of the time it is enough to know that GB(V ) is isogenous to ResF/Q G . When we need more
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detailed information, it is precisely the case that E is tr and dimE(V ) = 4. For this case we

gave a description of G in the previous remark.

6.5 — Let V , E and ψ̃ be as in lemma 6.2. Write n for dimE(V ). If E is tr, then we say that the

group SO(ψ̃) over E is a group of type SOn,E. We also say that GB(V ) is of type ResE/Q SOn,E .

Similarly, if E is cm, with maximal totally real subfield E0, then we say that the group UE/E0
(ψ̃)

over E0 is a group of type Un,E0
, and that GB(V ) is of type ResE0/Q Un,E0

.

6.6 Remark. — Let A be an abelian surface over C. Recall that H2
B(A)(1) has dimension 6.

Let H be the transcendental part of H2
B(A)(1) and let ρ denote the Picard number of A, so that

dimQ(H) + ρ = 6. If A is simple, then the Albert classification of endomorphism algebras of

abelian varieties states that End(A)⊗Q can be one of the following:

1. The field of rational numbers, Q. In this case ρ = 1 and GB(H) is of type SO5,Q.

2. A real quadratic extension F/Q. In this case ρ = 2 and GB(H) is of type SO4,Q. By exem-

ple 3.2.2(a) of [7], we see that NmF/Q(H
1(A)) →֒

∧2
H1(A) ∼= H2(A), where Nm(_) is the

norm functor studied in [7]. This norm map identifies NmF/Q(H
1(A))(1) with the transcen-

dental part H . Observe that consequently the Hodge group HdgB(H
1(A)) = ResF/Q SL2,F

is a (2 : 1)-cover of GB(H).

3. An indefinite quaternion algebra D/Q. (This means that D ⊗Q R ∼= M2(R).) In this case

ρ = 3 and GB(H) is of type SO3,Q.

4. A cm field E/Q of degree 4. In this case ρ = 2 and GB(H) is of type ResE0/Q U1,E0
.

(Note that the endomorphism algebra of A cannot be an imaginary quadratic field, by theorem 5

of [22].) If A is isogenous to the product of two elliptic curves Y1×Y2, then there are the following

options:

5. The elliptic curves are not isogenous, and neither of them is of cm type, in which case

ρ = 2 and GB(H) is of type SO4,Q. Indeed, HdgB(Y1) and HdgB(Y2) are isomorphic

to SL2,Q. Note thatH = H2
B(A)(1)

tra is isomorphic to the exterior tensor product
(

H1
B(Y1)⊠

H1
B(Y2)

)

(1), We find that GB(H) is the image of the canonical map SL2,Q × SL2,Q →

GL(H). The kernel of this map is 〈(−1,−1)〉.

6. The elliptic curves are not isogenous, one has endomorphism algebra Q, and the other

has cm by an imaginary quadratic extension E/Q. In this case ρ = 2 and GB(H) is of

type U2,Q.

7. The elliptic curves are not isogenous, and Yi (for i = 1, 2) has cm by an imaginary quadratic

extension Ei/Q. Observe that E1 6∼= E2, since Y1 and Y2 are not isogenous. Let E/Q be

the compositum of E1 and E2, which is a cm field of degree 4 over Q. In this case ρ = 2

and GB(H) is of type ResE0/Q U1,E0
.

8. The elliptic curves are isogenous and have trivial endomorphism algebra. In this case ρ = 3

and GB(H) is of type SO3,Q.

9. The elliptic curves are isogenous and have cm by an imaginary quadratic extension E/Q.

In this case ρ = 4 and GB(H) is of type U1,Q.
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7 The main theorem: the Mumford–Tate conjecture for the prod-

uct of an abelian surface and a K3 surface

7.1 — Let K be a finitely generated subfield of C. Let A be an abelian surface over K, and

let MA denote the transcendental part of the motive H2(A)(1). (The Hodge structure H in

remark 6.6 is the Betti realisation HB(MA) of MA.) Let X be a K3 surface over K, and let MX

denote the transcendental part of the motive H2(X)(1).

Recall from §6.4 that we associated a field F and a group G with every Hodge structure V

of K3 type. The important properties of F and G are that

» G der is an almost direct product of absolutely simple groups over F ; and

» ResF/Q G is isogenous to GB(V ).

Let FA and GA be the field and group associated with HB(MA) as in §6.4. Similarly, let FX

and GX be the field and group associated with HB(MX). Concretely, for FA this means that

FA
∼=















End(A)⊗Q in case 6.6.2 (so FA is tr of degree 2)

EA,0 in cases 6.6.4 and 6.6.7 (so FA is tr of degree 2)

Q otherwise.

Let EX be the endomorphism algebra of MX . We summarise the notation for easy review during

later parts of this section:

K finitely generated subfield of C

A abelian surface over K

MA transcendental part of the motive H2(A)(1)

FA field associated with the Hodge structure HB(MA), as in §6.4

GA group over FA such that ResFA/Q GA is isogenous to GB(MA), as in §6.4

X K3 surface over K

MX transcendental part of the motive H2(X)(1)

FX field associated with the Hodge structure HB(MX), as in §6.4

GX group over FX such that ResFX/Q GX is isogenous to GB(MX), as in §6.4

EX the endomorphism algebra of MX

The proof of the main theorem (1.1) will take the remainder of this article. There are four

main parts going into the proof, which are lemmas 7.4, 7.6, 7.7 and 7.9. The lemmas 7.2, 7.3

and 7.8 and corollary 7.10 are small reductions and intermediate results. Together lemmas 7.4,

7.6 and 7.7 deal with almost all combinations of abelian surfaces and K3 surfaces. Lemma 7.9

is rather technical, and is the only place in the proof where we use that MX really is a motive

coming from a K3 surface.

7.2 Lemma. — » The Mumford–Tate conjecture for H2(A×X)(1) is equivalent to MTC(MA⊕

MX).

» The ℓ-adic realisations of MA ⊕MX form a compatible system of ℓ-adic representations.

Proof. The first claim follows from lemma 4.2. The H2
ℓ(A × X)(1) form a compatible system

of ℓ-adic representations and we only remove Tate classes to obtain Hℓ(MA ⊕MX); hence the

ℓ-adic realisations of MA ⊕MX also form a compatible system of ℓ-adic representation. �
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7.3 Lemma. — If for some prime ℓ, the natural morphism

ιℓ : G
◦
ℓ (MA ⊕MX)der −֒→ G◦

ℓ (MA)
der ×G◦

ℓ (MX)der

is an isomorphism, then the Mumford–Tate conjecture for MA ⊕MX is true.

Proof. By lemma 4.1, we know that the Mumford–Tate conjecture for MA ⊕MX is true on the

centres of GB(MA ⊕MX) ⊗ Qℓ and G◦
ℓ (MA ⊕MX). By Deligne’s theorem on absolute Hodge

cycles, we know that G◦
ℓ (MA ⊕MX) ⊂ GB(MA ⊕MX)⊗Qℓ. Hence if ιℓ : G

◦
ℓ (MA ⊕MX)der →֒

G◦
ℓ (MA)

der ×G◦
ℓ (MX)der is an isomorphism, then MTCℓ(MA ⊕MX) is true, and by lemma 4.4,

so is MTC(MA ⊕MX). �

7.4 Lemma. — The Mumford–Tate conjecture for MA ⊕MX is true if FA 6∼= FX .

Proof. By lemma 7.3 we are done if ιℓ : G
◦
ℓ (MA ⊕MX)der →֒ G◦

ℓ (MA)
der × G◦

ℓ (MX)der is an

isomorphism for some prime ℓ. We proceed by assuming that for all ℓ, the morphism ιℓ is not

an isomorphism. This will imply that FA
∼= FX .

By lemma 3.7, we see that FA,ℓ = FA ⊗ Qℓ and FX,ℓ = FX ⊗ Qℓ have an isomorphic factor,

since we assume that ιℓ is not an isomorphism. If FA is isomorphic to Q, then FX,ℓ has a factor Qℓ

for each ℓ, and we win by lemma 2.3.

Next suppose that FA 6∼= Q, in which case it is a real quadratic extension of Q. In particular

FA is Galois over Q and G der
A is an absolutely simple group over FA of Lie type A1. Using

remark 3.3 we find, for each prime ℓ, semisimple Lie algebras sA,ℓ, tℓ and sX,ℓ such that

Lie(G der
A ) ∼= Lie(G◦

ℓ (MA)
der) ∼= sA,ℓ ⊕ tℓ

Lie(G der
X ) ∼= Lie(G◦

ℓ (MX)der) ∼= tℓ ⊕ sX,ℓ

Lie(G◦
ℓ (MA ⊕MX)der) ∼= sA,ℓ ⊕ tℓ ⊕ sX,ℓ.

The absolute ranks of these Lie algebras do not depend on ℓ, by lemma 4.1 and remark 6.13

of [11] (or the letters of Serre to Ribet in [20]).

If ℓ is a prime that is inert in FA, then G der
A ⊗FA

FA,ℓ is an absolutely simple group. Since

tℓ 6= 0, we conclude that sA,ℓ = 0. By the independence of the absolute ranks, sA,ℓ = 0 for all

primes ℓ. Consequently, if ℓ is a prime that splits in FA, then tℓ has two simple factors that are

absolutely simple Lie algebras over Qℓ of Lie type A1.

If G der
X is an absolutely simple group over FX , then FX,ℓ contains two copies of Qℓ, for each ℓ

that splits in FA. Recall that by lemma 3.7, for all primes ℓ, we know that FA,ℓ and FX,ℓ have

an isomorphic factor. In particular, for inert primes ℓ, FA,ℓ is a factor of FX,ℓ. Hence FA,ℓ is a

factor of FX,ℓ for all primes ℓ, and we are done, by lemma 2.3.

If G der
X is not an absolutely simple group, then it is of type SO4,EX

. In particular dimEX
(MX) =

4 and FX
∼= EX . It follows from lemma 6.2 and the fact that dimQ(MX) ≤ 22 that [FX : Q] ≤ 5.

By lemma 2.4 we conclude that FA
∼= FX . �

7.5 — From now on, we assume that FA
∼= FX , which we will simply denote with F . We single

out the following cases, and prove the Mumford–Tate conjecture for MA⊕MX for all other cases

in the next lemma.
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1. GB(MA) and GB(MX) are both of type SO5,Q;

2. GB(MA) is of type SO3,Q, or SO4,Q, or U2,Q, and the type of GB(MX) is also one of these

types;

3. F is a real quadratic extension of Q, A is an absolutely simple abelian surface with endo-

morphisms by F (so GA
∼= SL2,F ), and

1. GX is of type SO3,F or U2,F ; or

2. GX is non-simple of type SO4,F as in case 6.3.1 of remark 6.3.

We point out that in the first two cases dim(MX) ≤ 5, which can be deduced from lemma 6.2.

7.6 Lemma. — If we are not in one of cases listed in §7.5, then the Mumford–Tate conjecture

for MA ⊕MX is true.

Proof. By lemma 7.3 we are done if ιℓ : G
◦
ℓ (MA ⊕ MX)der →֒ G◦

ℓ (MA)
der × G◦

ℓ (MX)der is an

isomorphism for some prime ℓ.

The crucial ingredient in this lemma is corollary 3.4. Recall that C ∼= Qℓ , as fields. If the

Dynkin diagram of Lie(G◦
ℓ (MA)

der)C has no components in common with the Dynkin diagram

of Lie(G◦
ℓ (MX)der)C, by corollary 3.4, we see that ιℓ is an isomorphism, and we win. Recall that

MTC(MA) and MTC(MX) are known. Thus ιℓ is an isomorphism when the Dynkin diagram of

Lie(GB(MA)
der)C has no components in common with the Dynkin diagram of Lie(GB(MX)der)C.

By inspection of lemma 6.2 and remark 6.6, we see that this holds, except for the cases listed

in §7.5. �

7.7 Lemma. — The Mumford–Tate conjecture for MA ⊕MX is true if dim(MX) ≤ 5. In par-

ticular, the Mumford–Tate conjecture is true for the first two cases listed in §7.5.

Proof. Let B be the Kuga–Satake variety associated with HB(MX). This is a complex abelian

variety of dimension 2dim(MX)−2. Up to a finitely generated extension of K, we may assume that

B is defined over K. (In fact, B is defined over K, by work of Rizov, [19].) By lemma 4.3, we

may and do allow ourselves a finite extension of K, to assure that B is isogenous to a product of

absolutely simple abelian varieties over K. By proposition 6.3.3 of [8], we know that HB(MX) is

a sub-Q-Hodge structure of End(H1
B(B)). Since MX is an abelian motive, we deduce that MX

is a submotive of End(H1(B)), by André’s “Hodge = motivated” theorem (see théorième 0.6.2

of [2]). Consequently, MTC(A×B) implies MTC(MA ⊕MX).

Recall that the even Clifford algebra C+(MX) = C+(HB(MX)) acts on B. Theorem 7.7 of [8]

gives a description of C+(MX); thus describing a subalgebra of End0(B).

» If dim(MX) = 3, then dim(B) = 2 and C+(MX) is a quaternion algebra over Q.

» If dim(MX) = 4, then dim(B) = 4 and C+(MX) is either a product D ×D, where D is a

quaternion algebra over Q; or C+(MX) is a quaternion algebra over a totally real quadratic

extension of Q.

» If dim(MX) = 5, then dim(B) = 8 and C+(MX) is a matrix algebra M2(D), where D is a

quaternion algebra over Q.

We claim that A ×B satisfies the conditions of lemma 5.5. First of all, observe that A satisfies

those conditions, which can easily be seen by reviewing remark 6.6. We are done if we check that

B satisfies the conditions as well.
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» If dim(MX) = 3, then B is either a simple abelian surface, or isogenous to the square of

an elliptic curve. In both cases, B satisfies the conditions of lemma 5.5.

» If dim(MX) = 4, and C+(MX) isD×D for some quaternion algebraD over Q, then B splits

(up to isogeny) as B1×B2. In particular dim(Bi) = 2, sinceD cannot be the endomorphism

algebra of an elliptic curve. Hence both Bi satisfy the conditions of lemma 5.5.

On the other hand, if dim(MX) = 4 and C+(MX) is a quaternion algebra over a totally

real quadratic extension of Q, then there are two options.

» If B is not absolutely simple, then all simple factors have dimension ≤ 2; since End0(B)

is non-commutative. Indeed, the product of an elliptic curve and a simple abelian

threefold has commutative endomorphism ring (see, e.g., section 2 of [17]).

» If B is absolutely simple, then it has relative dimension 1. This abelian fourfold must

be of type ii(2), since type iii(2) does not occur (see proposition 15 of [22], or table 1

of [16] which also proves MTC(B)).

In both of these cases, B satisfies the conditions of lemma 5.5.

» If dim(MX) = 5, then B is the square of an abelian fourfold C with endomorphism algebra

containing a quaternion algebra over Q.

» If C is not absolutely simple, then all simple factors have dimension ≤ 2; since End0(C)

is non-commutative.

» If C is simple, then we claim that C must be of type ii. Indeed, since HB(MX) is a

sub-Q-Hodge structure of End(H1
B(B)), the Mumford–Tate group of B must surject

onto GB(MX). In this case, dim(MX) = 5, hence GB(MX) is of type SO5,Q, with

Lie type B2. But §6.1 of [16] shows that if C is of type iii, then GB(C) has Lie

type D2
∼= A1 ⊕ A1. This proves our claim. Since End0(C) is a quaternion algebra

and C is an abelian fourfold, table 1 of [16] shows that MTC(C) is true and D4 does

not occur in the Lie type of GB(C).

We conclude that MTC(A×B) is true, and therefore MTC(MA ⊕MX) is true as well. �

The only cases left are those listed in case 7.5.3 of §7.5. Therefore, we may and do assume

that F is a real quadratic field extension of Q; and that A is an absolutely simple abelian surface

with endomorphisms by F (i.e., case 6.6.2). In particular GA = SL2,F .

7.8 Lemma. — If X falls in one of the subcases listed in case 7.5.3, then there exists a place λ

of F such that G der
X ⊗F Fλ does not contain a split factor.

Proof. In case 7.5.3.1, G der
X is of Lie type A1. In case 7.5.3.2, GX ∼ N ×Nop, where N is a form

of SL2,F , as explained in remark 6.3. By theorem 26.9 of [10], there is an equivalence between

forms of SL2 over a field, and quaternion algebras over the same field. We find a quaternion

algebra D over F corresponding to G der
X , respectively N , in case 7.5.3.1, respectively case 7.5.3.2.

In particular G der
X contains a split factor if and only if the quaternion algebra is split.

Let {σ, τ} be the set of embeddings Hom(F,R). Since F acts on HB(MX), we see that

F ⊗Q R ∼= R(σ) ⊕ R(τ) acts on

HB(MX)⊗Q R ∼=W (σ) ⊕W (τ).

Here W (σ) and W (τ) are R-Hodge structure of dimension dimF (MX). Observe that the polar-
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isation form is definite on one of the terms, while it is non-definite on the other. Without loss

of generality we may assume that the polarisation form is definite on W (σ), and non-definite on

W (τ).

Thus, the group GB(MX)⊗Q R is the product of a compact group and a non-compact group;

and therefore, ResF/Q GX ⊗Q R is the product of a compact group and a non-compact group.

Indeed GX ⊗F R(σ) is compact, while GX ⊗F R(τ) is non-compact. By the first paragraph of the

proof, this means that D ⊗F R(σ) is non-split, while D ⊗F R(τ) is split.

Since the Brauer invariants of D at the infinite places do not add up to 0, there must be

a finite place λ of F such that Dλ is non-split. Therefore G der
X ⊗F Fλ does not contain a split

factor. �

7.9 Lemma. — Assume that K is a number field. If X falls in one of the subcases listed

in case 7.5.3, then there is a prime number ℓ for which the natural map

ιℓ : G
◦
ℓ (MA ⊕MX)der −֒→ G◦

ℓ (MA)
der ×G◦

ℓ (MX)der

is an isomorphism.

Proof. The absolute rank of G◦
ℓ (MA ⊕MX)der does not depend on ℓ, by lemmas 4.1 and 7.2

and remark 6.13 of [11] (or the letters of Serre to Ribet in [20]). Let ℓ be a prime that is inert

in F . Observe that all simple factors of Lie(G◦
ℓ (MA)

der ×G◦
ℓ (MX)der) are Qℓ-Lie algebras with

even absolute rank (since [F : Q] = 2). By remark 3.3, the Lie algebra of G◦
ℓ (MA ⊕MX)der is a

summand of Lie(G◦
ℓ (MA)

der ×G◦
ℓ (MX)der), and therefore the absolute rank of G◦

ℓ (MA⊕MX)der

must be even.

Let λ be one of the places of F found in lemma 7.8, and let ℓ be the place of Q lying below λ.

Since Lie(G◦
ℓ (MA ⊕ MX)der) must surject to Lie(G◦

ℓ (MA)) (which is split, and has absolute

rank 2), and Lie(G◦
ℓ (MA ⊕MX)der) must also surject onto Lie(G◦

ℓ (MX)der), which has no split

factor, by lemma 7.8, we conclude that the absolute rank of Lie(G◦
ℓ (MA ⊕MX)der) must be at

least 3. By the previous paragraph, we find that the absolute rank must be at least 4.

If dimEX
(MX) 6= 4 (case 7.5.3.1) then G der

X is a group of Lie type A1, and therefore the

product G◦
ℓ (MA)

der × G◦
ℓ (MX)der has absolute rank 4. Hence G◦

ℓ (MA ⊕ MX)der must have

absolute rank 4, which means that ιℓ is an isomorphism, by remark 3.3 and lemma 3.1.

If dimEX
(MX) = 4 (case 7.5.3.2), then GX is a group of Lie type D2 = A1 ⊕ A1. (Note

that in this final case GB(MA) and GB(MX) are semisimple, and therefore we may drop all the

superscripts (_)der from the notation.) Since in this case G◦
ℓ (MA)×G◦

ℓ (MX) has absolute rank 6,

and the absolute rank of G◦
ℓ (MA ⊕MX) is ≥ 4, it must be 4 or 6 (since it is even).

Suppose G◦
ℓ (MA ⊕MX) has absolute rank 4. We apply remark 3.3 to the current situation,

and find Lie algebras t and s2 over Qℓ such that Lie(G◦
ℓ (MA)) ∼= t and Lie(G◦

ℓ (MA ⊕MX)) ∼=

Lie(G◦
ℓ (MX)) ∼= t⊕s2. In particular, Lie(G◦

ℓ (MX)) which is isomorphic to Lie(GX)⊗Qℓ has a split

simple factor. By lemma 7.8 this means that ℓ splits in F as λ · λ′. Observe that Fλ
∼= Qℓ

∼= Fλ′ .

Note that in this case GB(MX) ∼= ResFX/Q GX , and since MTC(MX) is known we find

G◦
ℓ (MX) ∼= GX,λ×GX,λ′ and a decomposition Hℓ(MX) ∼= Hλ(MX)⊕Hλ′(MX). The group Gal(K /K)

acts on Hλ(MX) via GX,λ, and on Hλ′(MX) via GX,λ′ .
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To summarise, our situation is now as follows. The prime number ℓ splits in F as λ · λ′. The

group GA is isomorphic to SL2,F , and is split and simply connected, The group GX,λ′ is split, of

type SO4,Qℓ
, with Lie algebra t. The group GX,λ is non-split, of type SO4,Qℓ

, with Lie algebra

s2. Recall the natural diagram:

G◦
ℓ (MA ⊕MX)

G◦
ℓ (MA)×G◦

ℓ (MX)

(SL2,Qℓ
× SL2,Qℓ

)/〈(−1,−1)〉 ∼= G◦
ℓ (MA) G◦

ℓ (MX) ∼= GX,λ′ × GX,λ

ιℓ

We are now set for the attack. We claim that the Galois representationsHℓ(MA) and Hλ′(MX)

are isomorphic. Indeed, from the previous paragraph we conclude that G◦
ℓ (MA⊕MX) ∼= Γ×GX,λ,

where Γ is a subgroup of G◦
ℓ (MA)×GX,λ′ with surjective projections. Thus Hℓ(MA) and Hλ′(MX)

are both orthogonal representations of Gal(K /K), and the action of Galois factors via Γ(Qℓ).

The Lie algebra of Γ is isomorphic to t, and Lie(Γ) is the graph of an isomorphism Lie(G◦
ℓ (MA) →

Lie(GX,λ′). Since G◦
ℓ (MA) and GX,λ′ have (2 : 1)-covers by ResF/Q SL2,F

∼= Hdgℓ(A) with ker-

nels {±1}, and Γ is a subgroup of G◦
ℓ (MA) × GX,λ′ , we find that Γ also has a (2 : 1)-cover

by ResF/Q SL2,F . Hence Γ is the graph of an isomorphism G◦
ℓ (MA) → GX,λ′ . Because Hℓ(MA)

and Hλ′ (MX) are 4-dimensional faithful orthogonal representations of Γ, they must be isomor-

phic; for up to isomorphism, there is a unique such representation.

As a consequence, for any place v of K, the characteristic polynomial of Frobv acting

on Hℓ(MA) coincides with its characteristic polynomial when acting on Hλ′(MX). We con-

clude that charpolFλ′
(Frobv|Hλ′(MX)) has coefficients in Q. But then the same is true for

charpolFλ
(Frobv|Hλ(MX)) since their product is charpolQℓ

(Frobv|Hℓ(MX)), which has coeffi-

cients in Q.

Since we assumed that K is a number field, we may apply the following results:

» Theorem 1 (item 1) of [5], which tells us that (up to a finite extension of K, which does not

matter, by lemma 4.3) there exists a set V of places of K with density 1 such that X has

good reduction at places v ∈ V , and the Picard number of the reduction Xv is the same

as that of X (which, in our case is 22− 8 = 14).

» Proposition 3.2 of [27], which says that if X has good and ordinary reduction at v, then

the characteristic polynomial charpolQℓ
(Frobv|H

2
ℓ (Xv)

tra) is a power of an irreducible poly-

nomial with coefficients in Q.

We find that charpolFλ′
(Frobv|Hλ′(MX)) = charpolFλ

(Frobv|Hλ(MX)), for all places v ∈ V .

Since Gal(K /K) is compact, we may apply the argument given on the first pages of [21], and

find that Hλ′(MX) ∼= Hλ(MX) as Galois representations. This contradicts the fact that GX,λ′

is split, while GX,λ is not. We conclude that the rank must be 6, which implies, by remark 3.3

and lemma 3.1, that ιℓ is an isomorphism. �
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7.10 Corollary. — If X falls in one of the subcases listed in case 7.5.3, then the Mumford–

Tate conjecture is true for MA ⊕MX .

Proof. By lemma 7.3 we are done if ιℓ : G
◦
ℓ (MA ⊕ MX)der →֒ G◦

ℓ (MA)
der × G◦

ℓ (MX)der is an

isomorphism for some prime ℓ. This result follows from lemmas 4.8 and 7.9. �

7.11 Proof of theorem 1.1. — We know have all tools in place to prove the main theorem.

By lemma 7.2 we reduce to the Mumford–Tate conjecture for MA ⊕MX . The theorem follows

from lemmas 7.4, 7.6 and 7.7 and corollary 7.10. �
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