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THE MUMFORD-TATE CONJECTURE FOR THE PRODUCT OF AN
ABELIAN SURFACE AND A K3 SURFACE

by J.M. Commelin Wednesday, the 6** of January, 2016

1 INTRODUCTION

The main result of this paper is the following theorem. In the next paragraph we recall the
Mumford—Tate conjecture; and in §1.3 we give an outline of the proof. The ambitious reader

may skip to section 7 and dive head first into the proof.

1.1 THEOREM. — Let K be a finitely generated subfield of C. If A is an abelian surface over K
and X is a K3 surface over K, then the Mumford—Tate conjecture is true for H2(A x X)(1).

1.2 THE MUMFORD—TATE CONJECTURE. — Let K be a finitely generated field of characteristic 0;
and let K — C be an embedding of K into the complex numbers. Let K be the algebraic closure
of K in C. Let X/K be a smooth projective variety. One may attach several cohomology
groups to X. For the purpose of this article we are interested in two cohomology theories: Betti
cohomology and f-adic étale cohomology (for a prime number £). We will write H5(X) for the
Q-Hodge structure H}; (X (C), Q). Similarly, we write Hy(X) for the Gal(K /K )-representation
Hét(Xf(a Qo).

The Mumford-Tate conjecture is a precise way of saying that the cohomology groups Hj; (X))
and H}(X) contain the same information about X. To make this precise, let Gg(H4(X)) be
the Mumford-Tate group of the Hodge structure Hi(X), and let G9(H;(X)) be the connected
component of the Zariski closure of Gal(K /K) in GL(H}(X)). The comparison theorem by Artin,
comparing singular cohomology with étale cohomology, canonically identifies GL(H4 (X)) ® Qg
with GL(H}(X)). The Mumford-Tate conjecture (for the prime ¢, and the embedding K < C)
states that under this identification

Gp(Hp(X)) ® Q¢ = Gf (Hy(X)).

1.3 OUTLINE OF THE PROOF. — Let A/K be an abelian surface, and let X/K be a K3 surface.
Observe that, by Kiinneth’s theorem, H%(A x X) = H3(A) & HE(X). Similarly H7 (A x X) =
HZ(A) ®HZ(X). Recall that the Mumford-Tate conjecture for A is known in degree 1, and hence
in all degrees. (This is classical, but see corollary 4.4 of [14] for a reference.) By [24, 23, 1], the
Mumford-Tate conjecture for X (in degree 2) is true as well. Still, it is not a formal consequence
that the the Mumford—Tate conjecture for A x X is true in degree 2.

The proof of theorem 1.1 falls apart into four cases, that use very different techniques. All
cases build on the Hodge theory of K3 surfaces and abelian varieties, of which we provide an
overview in section 6.

Let V be the transcendental part of H3(X). The first case (lemma 7.4) inspects End(V),
and exploits Chebotaryov’s density theorem, which we recall in section 2. The second case
(lemma 7.6) looks at the Lie type of Gg(V'), and uses results about semisimple groups over

number fields, which we assemble in section 3.
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The third case (lemma 7.7) deals with Kummer varieties, and other K3 surfaces for which
dim(V') is small. We use the theory of Kuga—Satake varieties, and apply techniques of Lombardo,
developed in [14]. The preliminaries of this part of the proof are gathered in section 5.

The final case (lemma 7.9) is the only case where we use that H*(X) is a motive coming
from a K3 surface. We use information about the reduction of X modulo a place of K, and
combine this with a result about non-split groups and results about compatible systems of ¢-adic

representations.

1.4 NOTATION AND TERMINOLOGY. — Let K be a finitely generated field of characteristic 0;
and fix an embedding K — C. In this article we use the language of motives a la André, [2].
To be precise, our category of base pieces is the category of smooth projective varieties over K,
and our reference cohomology is Betti cohomology, Hg( ); which, we stress, depends on the
chosen embedding K — C. We write H!(X) for the motive of weight i associated with a smooth
projective variety X/K.

The Mumford-Tate conjecture naturally generalises to motives. Let M be a motive. We will
write Hg (M) for its Hodge realisation; Hy(M) for its ¢-adic realisation; Gg(M) for its Mumford—
Tate group (i.e., the Mumford-Tate group of Hg(M)); and GJ (M) for G§(Hy(M)). We will use
the notation MTC,(M) for the conjectural statement

Ge(M) ® Q= Gy (M),

and MTC(M) for the assertion MTCy(M) for all prime numbers £. In this paper, we never use
specific properties of the chosen embedding K < C, and all statements are valid for every such
embedding. In particular, we will speak about subfields of C, where the embedding is implicit.

In this paper, we will use compatible systems of ¢-adic representations. We refer to the letters
of Serre to Ribet (see [20]) or the work of Larsen and Pink [11, 12] for more information.

Throughout this paper, A is an abelian variety, over some base field. (Outside section 5, it
is even an abelian surface.) Assume A is absolutely simple; and choose a polarisation of A. Let
(D, 1) be its endomorphism ring EndO(A) together with the Rosati involution associated with
the polarisation. The simple algebra D together with the positive involution 1 has a certain type
in the Albert classification that does not depend on the chosen polarisation. We say that A is
of type X if (D, 7) is of type X, where X runs through {1,...,1v}. If E denotes the center of D,
with degree e = [E : Q], we also say that A is of type X(e).

Whenever we speak of (semi)simple groups or (semi)simple Lie algebras, we mean non-
commutative (semi)simple groups, and non-abelian (semi)simple Lie-algebras.

Let T be a type of Dynkin diagram (e.g., A,, Bn, C, or D,,). Let g be a semisimple Lie
algebra over K. We say that T' does not occur in the Lie type of g, if the Dynkin diagram of g e
does not have a component of type T. For a semisimple group G over K, we say that T does
not occur in the Lie type of G, if T does not occur in the Lie type of Lie(G).
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2 SOME REMARKS ON CHEBOTARYOV’S DENSITY THEOREM AND TRANSITIVE
GROUP ACTIONS

2.1 THEOREM (CHEBOTARYOV’S DENSITY THEOREM). — Let K C E be an extension of num-
ber fields. Let E C L be a Galois closure of E, and let G = Gal(L/K) be the Galois group of L
over K. Let ¥ = Homg (E, L) be the set of field embeddings over K of E in L.
» Let p be a prime of K that is unramified in L, and let Cy C G be the conjugacy class of
the Frobenius elements associated with p. The decomposition type of p in O is equal to
the cycle type of Cy acting on X.
» Let C' C G be a union of conjugacy classes of G. The set

{p € Spec(Og) | p is unramified, and C, C C'}

has density % as subset of Spec(Og).

Proof. See fact 2.1 and theorem 3.1 of [13]. See Theorem 13.4 of [18] for the case where E/K is
Galois. O

2.2 LEMMA. — Let G be a finite group acting transitively on a finite set X. Let n € Z>q be a
non-negative integer, and let C C G be the set of elements g € G that have at least n fixed points:

C={geG|>n}

If n-|C] > |G|, then |X| = n. If furthermore the action of G on X is faithful, then |G| = n,
and X is principal homogeneous under G.

Proof. Burnside’s lemma gives

1 -|C
1= le\s = = S jsey > 2GS
a1 2 ]
Hence n - |C] = |G| and all elements in C' have exactly n fixed points. In particular the identity
element has n fixed points, which implies || = n. If G acts faithfully on ¥, then |3| = n implies
C = {e}, and thus |G| = n = |X|. So ¥ is principal homogeneous under G. O

LA preliminary version of lemma, 2.3 arose from a question on MathOverflow titled “How simple does a Q-simple
group remain after base change to Q7 (http://mathoverflow.net/q/214603/78087). The answers also inspired

lemma 2.2.
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2.3 LEMMA. — Let Fy be a Galois extension of Q. Let F» be a number field. If for all prime
numbers £, the product of local fields F1 ® Qg is a factor of Fy @ Qq, then F} = F;.

Proof. Let L be a Galois closure of Fy, and let G be the Galois group Gal(L/Q), which acts
naturally on the set of field embeddings ¥ = Hom(Fs, L). Let n be the degree of F;, and let C
be the set {g e } [29] > n} of elements in G that have at least n fixed points in X.

By Chebotaryov’s density theorem (2.1), the set of primes that split completely in F7 has
density 1/n. Another application of theorem 2.1 shows that the set of primes ¢ for which F» ® Qy
has a semisimple factor isomorphic to (Q¢)™ must have density > 1/n. Our assumption therefore
implies that n - |C| > |G|. By lemma 2.2, this implies |X| = n, and since G acts faithfully on ¥,
we find that F5/Q is Galois of degree n. Because Galois extensions of number fields can be
recovered from their set of splitting primes (Satz VII.13.9 of [18]), we conclude that F» = F;. O

2.4 LEMMA. — Let Fy be a quadratic extension of Q. Let Fy be a number field of degree < 5
over Q. If for all prime numbers £, the products of local fields F1 ® Q; and Fy ® Qp have an
isomorphic factor, then Fy = Fy.
Proof. Let L be a Galois closure of Fy, and let G be the Galois group Gal(L/Q), which acts
naturally on the set of field embeddings ¥ = Hom(Fs, L). Observe that G acts transitively on ¥,
and we identify G with its image in &(X). Write n for the degree of Fy over Q, which also
equals |X|. The order of G is divisible by n. Hence, if n is prime, then G must contain an
n-cycle.

Suppose that G contains an n-cycle. By Chebotaryov’s density theorem (2.1) there must be
a prime number ¢ that is inert in F5. By our assumption F» ® Qy also contains a factor of at
most degree 2 over Q. This shows that n = 2.

If n = 4, then G does not contain an n-cycle if and only if it is isomorphic to Vy or A4. If
G = V4, only the identity element has fixed points, and by Chebotaryov’s density theorem this
means that the set of primes ¢ for which F» ® Qg has a factor Q, has density 1/4, whereas the set
of primes splitting in F} has density 1/2. On the other hand, if G 2 A4, only 3 of the 12 elements
have a 2-cycle in the cycle decomposition, and by Chebotaryov’s density theorem this means that
the set of primes ¢ for which F5 ® Q, has a factor isomorphic to a quadratic extension of @, has
density 1/4, whereas the set of primes inert in F; has density 1/2. This gives a contradiction.
We conclude that n must be 2; and therefore Fy = F5, by lemma 2.3. O

3 SEVERAL RESULTS ON SEMISIMPLE GROUPS OVER NUMBER FIELDS
Throughout this section K is a field of characteristic 0.

3.1 LEMMA. — Let G be a connected algebraic group over K, and let H C G be a subgroup. If
Lie(H) = Lie(G), then H = G.
Proof. This is immediate, since H is a subgroup of GG of the same dimension as G. 0

3.2 LEMMA (GOURSAT’S LEMMA FOR LIE ALGEBRAS). — Let g1 and g2 be Lie algebras over K,
and let h C g1 @ g2 be a sub-Lie algebra such that the projections m;: h — g; are surjective. Let

ny be the kernel of mo, and ng the kernel of m1. The projection m; identifies n; with an ideal of g;,
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and the image of the canonical map

b — (g1/m1(n1)) © (g2/m2(n2))

is the graph of an isomorphism g1/m1(n1) — ga/m2(n2).
Proof. Observe that m; is injective on n;. If = € m;(n;) and y € g;, then [z,y] € m;(n;), because
m; is surjective, and n; is an ideal of h. Let h be the image of the canonical map

b — (g1/m1(n1)) © (g2/m2(n2))

By construction, the projections h — g;/m;(n;) are injective; and they are surjective by assump-
tion. This proves the lemma. ]

3.3 REMARK. — Let hh C g1 & g2 be Lie algebras over K satisfying the conditions of lemma 3.2.
Assume that g; and go are finite-dimensional and semisimple. It follows from the proof of
lemma 3.2 that there exist semisimple Lie algebras s1, t, and s such that g1 = 51 B t, go = tD s,
and h = 51 DtD so.

3.4 COROLLARY. — Let K C L be a field extension. Let Gy and G2 be connected semisimple
groups over K. Let 1: G — Gy X G2 be a subgroup, with surjective projections onto both factors.

If Lie(G1) 1, and Lie(G2)r have no isomorphic factor over L, then i is an isomorphism.

3.5 LEMMA. — Let K C F be a finite field extension. Let G be an algebraic group over F. The
Lie algebra Lie(Resp, i G) is isomorphic to the Lie algebra Lie(G), viewed as Lie algebra over K.

Proof. This follows from the following diagram, the rows of which are exact.

0—— Lie(ResF/K G) E— (RGSF/K G)(K[E]) E— (RGSF/K G)(K) — 0

I |
0 —— Lie(G) ——————  G(K[g)) —————— G(K) ——— 0 0
3.6 LEMMA. — Let F1/K and Fy/K be finite field extensions. Let g;/F; (i = 1,2) be a finite
product of absolutely simple Lie algebras (cf. our conventions in §1.4). Write (g;)k for the Lie
algebra g; viewed as Lie algebra over K. If (g1)k and (g2)x have an isomorphic factor, then
Fy ZEx Fy.

Proof. The K-simple factors of (g;)x are all of the form (t;)x, where t; is an F;-simple factor
of g;. So if (g1)x and (g2)x have an isomorphic factor, there exist F;-simple factors t; of g;
for which there exists an isomorphism f: (t;)x — (t2)x. Let K be an algebraic closure of K.

Observe that
@ t’b ®Fi,a I_{5

ccHompg (Fi,I?)

1

(t)xk O K

and note that Gal(K /K) acts transitively on Homy (F;, K). By assumption, the t; are F;-simple,
and therefore the t;® Fi,gl? are precisely the simple ideals of (;) x ® kK. Thus the isomorphism f
gives a Gal(K /K )-equivariant bijection between the simple ideals of (t;)x ® x K and (t2) x @k K;
and therefore Homg (Fy, K) and Homg (F, K) are isomorphic as Gal(K /K )-sets. This proves
the result. O
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3.7 LEMMA. — Let Fy and F» be number fields. Let G;/F; (i = 1,2) be an almost direct
product of connected absolutely simple F;-groups. Let { be a prime number, and let 1p: G —
(Resr, /0 G1)g, % (Resp, 9 G2)g, be a subgroup over Qq, with surjective projections onto both
factors. If 1p is not an isomorphism, then F1 ® Qg and F> @ Qg have an isomorphic simple factor.
Proof. Observe that (Resr, jo Gi) © Q¢ = ], Resr, , yq,(Gi @F, Fx). If 1 is not an isomorphism,
then by corollary 3.4, there exist places \; of F; over £ such that Lie(Resr, , /q,(G1 ®F, Fix,))
and Lie(Resp, ,, /q,(G2 ®F, I2,)) have an isomorphic factor. By lemmas 3.5 and 3.6, this
implies that Fy x, =g, F5,x,, which proves the lemma. 0

4 SEVERAL RESULTS ON ABELIAN MOTIVES

4.1 LEMMA. — The Mumford-Tate conjecture on centres is true for abelian motives. In other
words, let M be an abelian motive. Let Zg(M) be the centre of the Mumford—Tate group Gg(M),
and let Zy(M) be the centre of GJ(M). Then Zy(M) = Zg(M) ® Q.
Proof. The result is true for abelian varieties (see theorem 1.3.1 of [26] or corollary 2.11 of [25]).
By definition of abelian motive, there is an abelian variety A such that M is contained in the
Tannakian subcategory of motives generated by H(A). This yields a surjection Gg(A) - Gg(M),
and therefore Zg(M) is the image of Zg(A) under this map. The same is true on the ¢-adic side.
Thus we obtain a commutative diagram with solid arrows

Zy(A) ————» Zy(M) ————— G2(M)

N J

Zp(A) @ Qe —» Zp(M) ® Q¢ —— Gp(M) ® Q¢
which shows that the dotted arrow exists and is an isomorphism. O

4.2 LEMMA. — Let W denote the trivial motive. If M is a motive, then the Mumford—Tate
conjecture for M is equivalent to the Mumford—Tate conjecture for M @ W¥.
Proof. Indeed, M and M @ ¥ generate the same Tannakian subcategory of motives. ]

4.3 LEMMA. — Let K C L be an extension of finitely generated subfields of C. If M is a motive
over K, then MTC(M) < MTC(My).
Proof. See proposition 1.3 of [15]. O

4.4 LEMMA. — Let M be an abelian motive. Assume that the £-adic realisations of M form a
compatible system of -adic representations. If the Mumford—Tate conjecture for M is true for
one prime {', then it is true for all primes £.

Proof. Since M is an abelian motive, we have GJ(M) C Gg(M) ® Q. By our assumption on
the f-adic realisations of M, the proofs of theorem 4.3 and lemma 4.4 of [12] apply verbatim to

our situation. O
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4.5 — Let K be a finitely generated subfield of C. A pair (A, X), consisting of an abelian

surface A and a K3 surface X over K, is said to satisfy condition 4.5 for ¢ if

der

Go (H2(A x X)(1))™ — Gg(H2(A)(1)) " x G§ (H?(X)(1))*

is an isomorphism.

4.6 LEMMA. — Let K be a finitely generated subfield of C, and let C/K be a smooth (not
necessarily proper) curve over K, with generic point 1. Let A/C be an abelian scheme, and
let X/C be a K3 surface. There exists a closed point ¢ € C and a prime number ¢ such
that G§(H?(A4,)(1)) = G(H?2(A:)(1)) and GJ(H*(X,)(1)) = G(H*(X.)(1)). Furthermore, if
(Ac, X.) satisfies condition 4.5 for £, then so does (Ay, Xy).

Proof. The existence of the point ¢ follows immediately from theorem 1.1 of [4]. The diagram

Gp(H2(Ae x Xo)(1))% G7(H?(Ay x X,)(1))%

J

G (H2(Ac)(1))% x GF (H2(X,) (1)) —=— G (H2(Ap)(1))" x G (H2(Xy) (1))

shows that (A,, X)) satisfies condition 4.5 for ¢ if (A., X.) satisfies it. O

4.7 — Let £ be a prime number. Let G; and G2 be connected reductive groups over Q. By a
(G1, G2)-tuple over K we shall mean a pair (A, X), where A is an abelian surface over K, and X
is a K3 surface over K such that GJ(H?(A)(1)) = G and G (H?*(X)(1)) & G3. We will show in
section 7 that there exist groups G; and G5 that satisfy the hypothesis of the following lemma,
namely that condition 4.5 for ¢ is satisfied for all (G1, G2)-tuples over number fields.

4.8 LEMMA. — Let ¢ be a prime number. Let G1 and G4 be connected reductive groups over Q.
If for all number fields K, all (G1,G2)-tuples (A, X) over K satisfy condition 4.5 for £, then
for all finitely generated subfields L of C, all (G1,G2)-tuples (A, X) over L satisfy condition 4.5
for £.
Proof. The proof goes by induction on the transcendence degree n of L. If n = 0, the result is
true by assumption. Suppose that n > 0, and assume as induction hypothesis that condition 4.5
for ¢ is satisfied for all (G1, G2)-tuples over all finitely generated subfields of C with transcendence
degree < n.

There exists a field K C L, and a smooth curve C/K such that L is the function field of C.
Observe that trdeg(K) = n — 1. By the induction hypothesis and lemma 4.6, the claim of the
lemma is true for L. The result follows by induction. O

5 SOME REMARKS ON THE MUMFORD-TATE CONJECTURE FOR ABELIAN VA-
RIETIES
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5.1 — For the convenience of the reader, we copy some results from [14]. Before we do that, let
us recall the notion of the Hodge group, Hdgg(A), of an abelian variety. Let A be an abelian
variety over a finitely generated field K C C. By definition, the Mumford-Tate group of an
abelian variety is Gg(A4) = Gp(Hj(A)) C GL(HL(A)), and we put

Hdgp(A) = (Gp(A4) NSL(HE(A4)))° and  Hdg,(A4) = (Ge(4) NSL(H;(4)))°.
We leave it as an easy exercise to the reader to verify that

MTC,(A) <= Hdgg(4) ® Q= Hdg,(A).

5.2 DEFINITION (1.1 IN [14]). — Let A be an absolutely simple abelian variety of dimension g
over K. The endomorphism ring D = EndO(A) is a division algebra. Write F for the centre of D.
The ring F is a field, either TR (totally real) or cM. Write e for [E : Q]. The degree of D over E
is a perfect square d?.

The relative dimension of A is
g if Ais of type I, II, or III,

reldim(A4) = de’

%, if A is of type 1v.

Note that d =1 if A is of type I, and d = 2 if A is of type II or III.

In definition 2.22 of [14], Lombardo defines when an abelian variety is of general Lefschetz
type. This definition is a bit unwieldy, and its details do not matter too much for our purposes.
What matters are the following results, that prove that certain abelian varieties are of general

Lefschetz type, and that show why this notion is relevant for us.

5.3 LEMMA. — Let A be an absolutely simple abelian variety over a finitely generated subfield
of C. Assume that A is of type 1 or 1. If reldim(A) is odd, or equal to 2, then A is of general
Lefschetz type.

Proof. If reldim(A) is odd, then this follows from theorems 6.9 and 7.12 of [3]. Lombardo notes
(remark 2.25 in [14]) that the proof of [3] also works if reldim(A) = 2, and also refers to theo-
rem 8.5 of [6] for a proof of that fact. O

5.4 LEMMA. — Let K be a finitely generated subfield of C. Let A1 and As be two abelian varieties
over K that are isogenous to products of abelian varieties of general Lefschetz type. If D4 does
not occur in the Lie type of Hdg,(A1) and Hdg,(Asz), then either

HomK(Al, A2> 7& 0, or Hdgé(Al X AQ) = Hdgé(Al) X Hdge(AQ)

Proof. This is remark 4.3 of [14], where Lombardo observes that, under the assumption of the
lemma, theorem 4.1 of [14] can be applied to products of abelian varieties of general Lefschetz

type. O

5.5 LEMMA. — Let A be an abelian variety over a finitely generated field K C C. Let L C C be
a finite extension of K for which Ay, is isogenous over L to a product of absolutely simple abelian

varieties HA;”. Assume that for all i the following conditions are valid:
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(a) either A; is of general Lefschetz type or A; is of CM type;

(b) the Lie type of Hdg,(A;) does not contain Dy;

(c¢) the Mumford—Tate conjecture is true for A;.
Under these conditions the Mumford—Tate conjecture is true for A.
Proof. By lemma 4.3 we know that MTC(A) <= MTC(AL). Furthermore, note that MTC(Ay)
is equivalent to MTC(]] 4;). Observe that

Hdg,(A) C Hdgg(A4) @ Q¢ C [ [ Hdgp(A;) ® Q¢ = [ [ Hdg,(As),

where the first inclusion is Deligne’s “Hodge = absolute Hodge” theorem; the second inclusion is
a generality; and the last equality is condition (c).

If we ignore the factors that are ¢M, then an inductive application of the previous lemma
yields Hdg,(A) = [[ Hdg,(A;). If we do not ignore the factors that are ¢M, then we actually get
Hdg,(A)der = [T Hdg,(A;)°". Together with lemma 4.1, this proves Hdg,(A) = Hdgp(4) ® Q,.00
As an illustrative application of this result, Lombardo observes in corollary 4.5 of [14] that the

Mumford—Tate conjecture is true for arbitrary products of elliptic curves and abelian surfaces.

6 HODGE THEORY OF K3 SURFACES AND ABELIAN SURFACES

6.1 — In this section we recall some results of Zarhin that describe all possible Mumford—Tate
groups of Hodge structures of K3 type, i.e., Hodge structures of weight 0 with Hodge numbers
of the form (1,n,1).

The canonical example of a Hodge structure of K3 type is the cohomology in degree 2 of a
complex K3 surface X. Namely the Hodge structure H%(X)(1) has Hodge numbers (1,20, 1).
Another example is provided by abelian surfaces, which is the content of remark 6.6 below.

6.2 LEMMA. — Let V be an irreducible Hodge structure of K3 type, and let ¢ be a polarisation
on V.
1. The endomorphism algebra E of V is a field.
2. The field E is TR (totally real) or CM.
3. If E is TR, then dimg(V) > 3.
4. Let 1/; be the unique E-bilinear (resp. hermitian) form such that ¢ = trg)q o1/~) if E is TR
(resp. ¢M). Let Ey be the mazimal totally real subfield of E. The Mumford—Tate group
of V is

(V) = Resg,q SO(v), ) if £ is TR;
ReSEO/QUE/EO(w)a if £ is CM.
Proof. The first (resp. second) claim is theorem 1.6.a (resp. theorem 1.5) of [28]; the third claim is
observed by Van Geemen, in lemma 3.2 of [9]; and the final claim is a combination of theorems 2.2
and 2.3 of [28]. (We note that [28] deals with Hodge groups, but because our Hodge structure
has weight 0, the Mumford-Tate group and the Hodge group coincide.) O
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6.3 REMARK. — Let V, E and ¢ be as in lemma 6.2. If E is cM, then U()% = SU(1)) is

absolutely simple over E. If E is TR and dimg (V') # 4, then SO(v)) is absolutely simple over E.
Assume E is TR and dimpg (V) = 4. In this case SO(¢)) is not absolutely simple over F; it has
Lie type Dy = A1 @ A;. In this remark we will take a close look at this special case, because a
good understanding of it will play a crucial role in the proof of lemma 7.9.

Geometrically we find SO(¢) 5 = (SLQ,E X SLZE)/<(71, —1)). We distinguish the following
two cases:

1. SO(y) is not simple over E. The fact that is most relevant to us is that there exists a
quaternion algebra D/E such that SO(¢) = (N x N°P)/((—1,—1)) where N is the group
over E of elements in D* that have norm 1, and N°P C (D°P)* is the group of units with
norm 1 in D°P. One can read more about the details of this claim in section 8.1 of [15].
This situation is also described in section 26.B of [10], where the quaternion algebra is
replaced by D x D viewed as quaternion algebra over E' x E. This might be slightly more
natural, but it requires bookkeeping of étale algebras which makes the proof in section 7
more difficult than necessary.

2. SO(¥) is simple over E. This means that the action of Gal(E /E) on SO(&)E interchanges
the two factors SL 2 E The stabilisers of these factors are subgroups of index 2 that coincide.
This subgroup fixes a quadratic extension F//E. From our description of the geometric

situation, together with the description of the stabilisers, we see that Spin(¢) = Resp/p 9
is a (2: 1)-cover of 80(1;), where ¢ is an absolutely simple, simply connected group of Lie
type A over F.
What we have gained is that in all cases we have a description (up to isogeny) of Gg(V)d" as
Weil restriction of a group that is an almost direct product of groups that are absolutely simple.

This allows us to apply lemma 3.6, which will play an important role in section 7.

6.4 NOTATION AND TERMINOLOGY. — Let V', E and 1/3 be as in lemma 6.2. To harmonise the
proof in section 7, we unify notation as follows:

Ey if Eis oM,
b JE i Eis TR and dimp(V) # 4,
E if Eis TR, dimg(V) = 4, and we are in case 6.3.1,
F if Eis TR, dimg(V) = 4, and we are in case 6.3.2.
Similarly
U(W) if Eis oM,
g SO(¢)) if E is TR and dimp(V) # 4,
SO(¢) if E is TR, dimpg(V) = 4, and we are in case 6.3.1,
% if £ is TR, dimg (V) = 4, and we are in case 6.3.2.

We stress that ¢9°" is an almost direct product of absolutely simple groups over F'. In section 7,

most of the time it is enough to know that Gg(V') is isogenous to Resg g %. When we need more
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detailed information, it is precisely the case that E is TR and dimg (V') = 4. For this case we

gave a description of ¢ in the previous remark.

6.5 — Let V, E and ¢ be as in lemma 6.2. Write n for dimg (V). If E is TR, then we say that the
group SO(@/;) over E is a group of type SO, g. We also say that Gg(V') is of type Resg g SOn,£.
Similarly, if £ is ¢M, with maximal totally real subfield Fy, then we say that the group Ug, g, (1/3)

over Ey is a group of type U, g,, and that Gg (V) is of type Resg, /g Un, &, -

6.6 REMARK. — Let A be an abelian surface over C. Recall that H3(A)(1) has dimension 6.
Let H be the transcendental part of H3(A)(1) and let p denote the Picard number of A, so that
dimg(H) + p = 6. If A is simple, then the Albert classification of endomorphism algebras of
abelian varieties states that End(A4) ® Q can be one of the following:

1. The field of rational numbers, Q. In this case p = 1 and Gg(H) is of type SO5 g.

2. A real quadratic extension F//Q. In this case p = 2 and Gg(H) is of type SOy g. By exem-
ple 3.2.2(a) of [7], we see that Nmpq(H'(4)) — A*H'(A) = H?(A), where Nm(_) is the
norm functor studied in [7]. This norm map identifies Nmp o (H' (A))(1) with the transcen-
dental part H. Observe that consequently the Hodge group Hdgg (H!(A)) = Resp/q SLa, r
is a (2 : 1)-cover of Gg(H).

3. An indefinite quaternion algebra D/Q. (This means that D ®g R = M3(R).) In this case
p =3 and Gg(H) is of type SO3 q.

4. A oM field E/Q of degree 4. In this case p = 2 and Gg(H) is of type Resg, /g U1, g, -
(Note that the endomorphism algebra of A cannot be an imaginary quadratic field, by theorem 5
of [22].) If A is isogenous to the product of two elliptic curves Y7 x Y2, then there are the following
options:

5. The elliptic curves are not isogenous, and neither of them is of CM type, in which case

p = 2 and Gg(H) is of type SO4q. Indeed, Hdgp (Y1) and Hdgg(Y2) are isomorphic
to SLa,g. Note that H = H(A)(1)™ is isomorphic to the exterior tensor product (Hj(Y7)X
Hi(Y2))(1), We find that Gg(H) is the image of the canonical map SLag x SLag —
GL(H). The kernel of this map is ((—1, —1)).

6. The elliptic curves are not isogenous, one has endomorphism algebra @Q, and the other
has cM by an imaginary quadratic extension F/Q. In this case p = 2 and Gg(H) is of
type Uz g.

7. The elliptic curves are not isogenous, and Y; (for ¢ = 1, 2) has ¢M by an imaginary quadratic
extension F;/Q. Observe that Eq % FEs, since Y7 and Y3 are not isogenous. Let F/Q be
the compositum of F; and FEs, which is a ¢M field of degree 4 over Q. In this case p = 2
and Gg(H) is of type Resg, /g U1, E, -

8. The elliptic curves are isogenous and have trivial endomorphism algebra. In this case p = 3
and Gg(H) is of type SO3 g.

9. The elliptic curves are isogenous and have ¢M by an imaginary quadratic extension E/Q.

In this case p = 4 and Gg(H) is of type Uy q.
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7 'THE MAIN THEOREM: THE MUMFORD—TATE CONJECTURE FOR THE PROD-
UCT OF AN ABELIAN SURFACE AND A K3 SURFACE

7.1 — Let K be a finitely generated subfield of C. Let A be an abelian surface over K, and
let M denote the transcendental part of the motive H2(A)(1). (The Hodge structure H in
remark 6.6 is the Betti realisation Hg(M,4) of My4.) Let X be a K3 surface over K, and let Mx
denote the transcendental part of the motive H?(X)(1).

Recall from §6.4 that we associated a field F' and a group ¢ with every Hodge structure V'
of K3 type. The important properties of F' and G are that

» 49" is an almost direct product of absolutely simple groups over F'; and

» Resp/q¥ is isogenous to Gg(V).
Let F4 and 94 be the field and group associated with Hp(M4) as in §6.4. Similarly, let Fx
and ¥x be the field and group associated with Hg(Mx). Concretely, for F4 this means that

End(A) ® Q in case 6.6.2 (so F4 is TR of degree 2)
Fa={FEap in cases 6.6.4 and 6.6.7 (so F4 is TR of degree 2)
Q otherwise.

Let E'x be the endomorphism algebra of Mx. We summarise the notation for easy review during
later parts of this section:
K finitely generated subfield of C
A abelian surface over K
M 4 transcendental part of the motive H?(A)(1)
F, field associated with the Hodge structure Hg(My), as in §6.4
@4 group over F4 such that Resr, /0 @4 is isogenous to Gp(Ma), as in §6.4
X K3 surface over K
My transcendental part of the motive H?(X)(1)
Fx field associated with the Hodge structure Hg(Mx), as in §6.4
¥x group over Fx such that Resry /0 @x is isogenous to Gp(Mx), as in §6.4
Ex the endomorphism algebra of Mx
The proof of the main theorem (1.1) will take the remainder of this article. There are four
main parts going into the proof, which are lemmas 7.4, 7.6, 7.7 and 7.9. The lemmas 7.2, 7.3
and 7.8 and corollary 7.10 are small reductions and intermediate results. Together lemmas 7.4,
7.6 and 7.7 deal with almost all combinations of abelian surfaces and K3 surfaces. Lemma 7.9
is rather technical, and is the only place in the proof where we use that Mx really is a motive

coming from a K3 surface.

7.2 LEMMA. — » The Mumford-Tate conjecture for H(Ax X)(1) is equivalent to MTC(M o®
Mx) .
» The {-adic realisations of M4 & Mx form a compatible system of £-adic representations.
Proof. The first claim follows from lemma 4.2. The HZ(A x X)(1) form a compatible system
of ¢-adic representations and we only remove Tate classes to obtain Hy(Ma @ Mx); hence the

l-adic realisations of M4 ® Mx also form a compatible system of /-adic representation. O
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7.3 LEMMA. — If for some prime ¢, the natural morphism
vt GP(Ma & Mx) — Gg(Ma)® x Gg(Mx )"

is an isomorphism, then the Mumford—Tate conjecture for Ma ® Mx is true.

Proof. By lemma 4.1, we know that the Mumford—Tate conjecture for M4 & Mx is true on the
centres of Gg(M4 & Mx) ® Q¢ and G)(M4 ® Mx). By Deligne’s theorem on absolute Hodge
cycles, we know that Gj(Ma & Mx) C Ge(Ma & Mx) ® Q. Hence if t4: Gf (M4 @ My )der
Go(Ma)der x G (Mx)de" is an isomorphism, then MTCy(M 4 & My) is true, and by lemma 4.4,
so is MTC(Ma @ Mx). O

7.4 LEMMA. — The Mumford-Tate conjecture for Mo ® Mx is true if Fy % Fx.

Proof. By lemma 7.3 we are done if to: G§(Ma @& Mx) < G§(M4)% x Gf(Mx)de" is an
isomorphism for some prime ¢. We proceed by assuming that for all ¢, the morphism ¢, is not
an isomorphism. This will imply that F4 = Fx.

By lemma 3.7, we see that Fiu ¢y = Fa ® Q¢ and Fx ¢ = Fx ® Q¢ have an isomorphic factor,
since we assume that ¢¢ is not an isomorphism. If F4 is isomorphic to Q, then F'x ¢ has a factor Q,
for each ¢, and we win by lemma 2.3.

Next suppose that Fy 22 Q, in which case it is a real quadratic extension of Q. In particular
F, is Galois over Q and 44 is an absolutely simple group over Fj4 of Lie type A;. Using

remark 3.3 we find, for each prime ¢, semisimple Lie algebras s4 ¢, t, and sx ¢ such that

Lie(49°) = Lie(G(Ma)9) =2 54, D &
Lie(45°) 2 Lie(Go (Mx )d°r) = te D sxe
Lie(G)(Ma @ Mx)%") 254, Dty D 5x 0.

The absolute ranks of these Lie algebras do not depend on ¢, by lemma 4.1 and remark 6.13
of [11] (or the letters of Serre to Ribet in [20]).

If ¢ is a prime that is inert in F4, then gger ®F, Fa,¢ is an absolutely simple group. Since
t, # 0, we conclude that s4 ¢ = 0. By the independence of the absolute ranks, s4 , = 0 for all
primes ¢. Consequently, if ¢ is a prime that splits in F)4, then t, has two simple factors that are
absolutely simple Lie algebras over QQ of Lie type A;.

If g)%er is an absolutely simple group over Fx, then Fx , contains two copies of Qg, for each ¢
that splits in 4. Recall that by lemma 3.7, for all primes ¢, we know that F4 , and F'x ¢ have
an isomorphic factor. In particular, for inert primes ¢, F4 ¢ is a factor of Fx ,. Hence Fa 4 is a
factor of F'x ¢ for all primes ¢, and we are done, by lemma 2.3.

If g)%er is not an absolutely simple group, then it is of type SO4, g . In particular dimpg, (Mx) =
4 and Fx = Ex. It follows from lemma 6.2 and the fact that dimg(Mx) < 22 that [Fx : Q] <5.
By lemma 2.4 we conclude that Fq = Fx. O

7.5 — From now on, we assume that Fq4 = Fx, which we will simply denote with F'. We single
out the following cases, and prove the Mumford—Tate conjecture for M4 ® Mx for all other cases

in the next lemma.
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1. Gp(M4) and Gp(Mx) are both of type SOs g;
2. Gg(Ma) is of type SOg g, or SO4,g, or Us g, and the type of Gg(Mx) is also one of these
types;
3. F is a real quadratic extension of Q, A is an absolutely simple abelian surface with endo-
morphisms by F' (so ¥4 = SLy r), and
1. ¥x is of type SO3 p or Uy p; or
2. ¥x is non-simple of type SOy r as in case 6.3.1 of remark 6.3.

We point out that in the first two cases dim(Myx) < 5, which can be deduced from lemma 6.2.

7.6 LEMMA. — If we are not in one of cases listed in §7.5, then the Mumford-Tate conjecture
for My ® Mx is true.

Proof. By lemma 7.3 we are done if tp: G§(Ma & Mx) — G§(Ma)% x Gf(Mx)de" is an
isomorphism for some prime /.

The crucial ingredient in this lemma is corollary 3.4. Recall that C = Qg, as fields. If the
Dynkin diagram of Lie(G§(M4)%")c has no components in common with the Dynkin diagram
of Lie(G9(Mx )%T)¢, by corollary 3.4, we see that ¢, is an isomorphism, and we win. Recall that
MTC(M4) and MTC(Mx) are known. Thus ¢, is an isomorphism when the Dynkin diagram of

Lie(Ggp(Ma)4®")¢ has no components in common with the Dynkin diagram of Lie(Gp(Mx )9°r)

C-
By inspection of lemma 6.2 and remark 6.6, we see that this holds, except for the cases listed

in §7.5. O

7.7 LEMMA. — The Mumford-Tate conjecture for Ma ® Mx is true if dim(Mx) < 5. In par-
ticular, the Mumford—Tate conjecture is true for the first two cases listed in §7.5.

Proof. Let B be the Kuga—Satake variety associated with Hp(Mx). This is a complex abelian
variety of dimension 24™(Mx)=2_Up to a finitely generated extension of K, we may assume that
B is defined over K. (In fact, B is defined over K, by work of Rizov, [19].) By lemma 4.3, we
may and do allow ourselves a finite extension of K, to assure that B is isogenous to a product of
absolutely simple abelian varieties over K. By proposition 6.3.3 of [8], we know that Hg(Mx) is
a sub-Q-Hodge structure of End(H}(B)). Since My is an abelian motive, we deduce that Mx
is a submotive of End(H!(B)), by André’s “Hodge = motivated” theorem (see théoriéme 0.6.2
of [2]). Consequently, MTC(A x B) implies MTC(M4 & Mx).

Recall that the even Clifford algebra C*(Mx) = C*(Hp(Mx)) acts on B. Theorem 7.7 of [§]

gives a description of Ct(Mx); thus describing a subalgebra of End"(B).

» If dim(Mx) = 3, then dim(B) = 2 and C*(Mx) is a quaternion algebra over Q.

» If dim(Mx) = 4, then dim(B) = 4 and C*(Myx) is either a product D x D, where D is a
quaternion algebra over Q; or C*(Mx) is a quaternion algebra over a totally real quadratic
extension of Q.

» If dim(Mx) = 5, then dim(B) = 8 and C*(Mx) is a matrix algebra My(D), where D is a
quaternion algebra over Q.

We claim that A x B satisfies the conditions of lemma 5.5. First of all, observe that A satisfies
those conditions, which can easily be seen by reviewing remark 6.6. We are done if we check that

B satisfies the conditions as well.
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» If dim(Mx) = 3, then B is either a simple abelian surface, or isogenous to the square of
an elliptic curve. In both cases, B satisfies the conditions of lemma 5.5.

» Ifdim(Mx) = 4, and C*(Mx) is D x D for some quaternion algebra D over Q, then B splits
(up to isogeny) as By x B. In particular dim(B;) = 2, since D cannot be the endomorphism
algebra of an elliptic curve. Hence both B; satisfy the conditions of lemma 5.5.

On the other hand, if dim(Mx) = 4 and C*(Mx) is a quaternion algebra over a totally
real quadratic extension of Q, then there are two options.

» If B is not absolutely simple, then all simple factors have dimension < 2; since End"(B)
is non-commutative. Indeed, the product of an elliptic curve and a simple abelian
threefold has commutative endomorphism ring (see, e.g., section 2 of [17]).

» If B is absolutely simple, then it has relative dimension 1. This abelian fourfold must
be of type 11(2), since type 111(2) does not occur (see proposition 15 of [22], or table 1
of [16] which also proves MTC(B)).

In both of these cases, B satisfies the conditions of lemma 5.5.

» If dim(Mx) = 5, then B is the square of an abelian fourfold C' with endomorphism algebra
containing a quaternion algebra over Q.

» If C is not absolutely simple, then all simple factors have dimension < 2; since End’ (C)
is non-commutative.

» If C is simple, then we claim that C' must be of type 11. Indeed, since Hg(Mx) is a
sub-Q-Hodge structure of End(Hj(B)), the Mumford-Tate group of B must surject
onto Gg(Mx). In this case, dim(Mx) = 5, hence Gg(Mx) is of type SOs g, with
Lie type By. But §6.1 of [16] shows that if C' is of type 111, then Gg(C) has Lie
type Dy = Ay @ A;. This proves our claim. Since End’(C) is a quaternion algebra
and C is an abelian fourfold, table 1 of [16] shows that MTC(C) is true and D4 does
not occur in the Lie type of Gg(C).

We conclude that MTC(A x B) is true, and therefore MTC(M 4 & Mx) is true as well. O

The only cases left are those listed in case 7.5.3 of §7.5. Therefore, we may and do assume

that F' is a real quadratic field extension of Q; and that A is an absolutely simple abelian surface

with endomorphisms by F' (i.e., case 6.6.2). In particular ¥4 = SLs p.

7.8 LEMMA. — If X falls in one of the subcases listed in case 7.5.3, then there ezists a place A
of F such that 9 @ F\ does not contain a split factor.
Proof. In case 7.5.3.1, 43" is of Lie type A;. In case 7.5.3.2, ¥x ~ N x N°P, where N is a form
of SLy p, as explained in remark 6.3. By theorem 26.9 of [10], there is an equivalence between
forms of SLy over a field, and quaternion algebras over the same field. We find a quaternion
algebra D over F corresponding to 9", respectively N, in case 7.5.3.1, respectively case 7.5.3.2.
In particular 44" contains a split factor if and only if the quaternion algebra is split.

Let {o,7} be the set of embeddings Hom(F,R). Since F' acts on Hp(Mx), we see that
F @oR =R @R acts on

Hp(Mx)®@gR =W g W),

Here W () and W (™) are R-Hodge structure of dimension dimp(Mx). Observe that the polar-
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isation form is definite on one of the terms, while it is non-definite on the other. Without loss
of generality we may assume that the polarisation form is definite on W (), and non-definite on
W),

Thus, the group Gg(Mx) ®gR is the product of a compact group and a non-compact group;
and therefore, Resyp/g¥x ®q R is the product of a compact group and a non-compact group.
Indeed ¥x @ R(?) is compact, while ¥x @ R(") is non-compact. By the first paragraph of the
proof, this means that D @z R(?) is non-split, while D @z R(7) is split.

Since the Brauer invariants of D at the infinite places do not add up to 0, there must be
a finite place A of F such that Dy is non-split. Therefore 43" @ F) does not contain a split
factor. 0

7.9 LEMMA. — Assume that K is a number field. If X falls in one of the subcases listed

in case 7.5.3, then there is a prime number £ for which the natural map
vt GY(Ma @ Mx)* — G§(Ma)* x G (Mx )

is an isomorphism.

Proof. The absolute rank of G3(Ma ® Mx)%°" does not depend on ¢, by lemmas 4.1 and 7.2
and remark 6.13 of [11] (or the letters of Serre to Ribet in [20]). Let £ be a prime that is inert
in F. Observe that all simple factors of Lie(G§(M4)4°" x G§(Mx)9") are Q-Lie algebras with
even absolute rank (since [F' : Q] = 2). By remark 3.3, the Lie algebra of G§ (M4 @ Mx )% is a
summand of Lie(G§ (M )" x G9(Mx)9°r), and therefore the absolute rank of G§ (M @& My )der
must be even.

Let A be one of the places of F' found in lemma 7.8, and let ¢ be the place of Q lying below A.
Since Lie(G§(Ma & Mx)4°T) must surject to Lie(GJ(M,)) (which is split, and has absolute
rank 2), and Lie(G9(M4 & Mx)9°") must also surject onto Lie(G(Mx)%"), which has no split
factor, by lemma 7.8, we conclude that the absolute rank of Lie(G$ (M4 @ Mx)9") must be at
least 3. By the previous paragraph, we find that the absolute rank must be at least 4.

If dimp, (Mx) # 4 (case 7.5.3.1) then 4" is a group of Lie type A;, and therefore the
product G§(Ma)9°" x G§(Mx )" has absolute rank 4. Hence G§(M4 @ Mx)%" must have
absolute rank 4, which means that ¢y is an isomorphism, by remark 3.3 and lemma 3.1.

If dimg, (Mx) = 4 (case 7.5.3.2), then ¥x is a group of Lie type Dy = A; @ A;. (Note
that in this final case Gg(M4) and Gp(Myx) are semisimple, and therefore we may drop all the
superscripts (_ )9 from the notation.) Since in this case G9(M4) x G§(Mx ) has absolute rank 6,
and the absolute rank of GJ(M4 @ Mx) is > 4, it must be 4 or 6 (since it is even).

Suppose G{ (M4 @ Mx) has absolute rank 4. We apply remark 3.3 to the current situation,
and find Lie algebras t and sp over Q, such that Lie(G§(M4)) = t and Lie(G)(Ma & Mx)) =
Lie(G§(Mx)) = t®so. In particular, Lie(G§ (Mx)) which is isomorphic to Lie(¢x ) ®Q; has a split
simple factor. By lemma 7.8 this means that £ splits in F' as A-X. Observe that F\ = Q, = F).

Note that in this case Gp(Mx) = Resp, 0%x, and since MTC(Mx) is known we find
Go(Mx) =2 9x \x9x » and a decomposition Hy(Mx) = H)(Mx)®Hy (Mx). The group Gal(K /K)
acts on H,\(Mx) via gX,/\; and on H)\/ (Mx) via gX,)\“
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To summarise, our situation is now as follows. The prime number ¢ splits in F as A - \'. The
group ¥4 is isomorphic to SLsy r, and is split and simply connected, The group ¥x » is split, of
type SO4,g,, with Lie algebra t. The group ¥x » is non-split, of type SO4 q,, with Lie algebra

s2. Recall the natural diagram:

Gy (Ma @ Mx)

Jw

G7(Ma) x G (Mx)

S

(SLQ,QZ X SLQ,QZ)/<(_17 _1)> = GE(MA) GE(M)() = gX,,\/ X gx,,\

We are now set for the attack. We claim that the Galois representations Hy(M 4) and Hy/ (Mx)
are isomorphic. Indeed, from the previous paragraph we conclude that G (Ma®Mx) =T xYx »,
where I' is a subgroup of G§ (M) x¥x » with surjective projections. Thus He(M4) and Hy (Mx)
are both orthogonal representations of Gal(K /K), and the action of Galois factors via I'(Qy).

The Lie algebra of I" is isomorphic to t, and Lie(I") is the graph of an isomorphism Lie(G§(Ma) —
Lie(9x,x). Since G§(M4) and %x x have (2 : 1)-covers by Resp g SLa, r = Hdg,(A) with ker-
nels {£1}, and T" is a subgroup of G§(M4) x ¥x », we find that I' also has a (2 : 1)-cover
by Resp/q SLa 7. Hence I' is the graph of an isomorphism Gj(Ma) — ¥x x. Because Hy(Ma)
and Hy (My) are 4-dimensional faithful orthogonal representations of I', they must be isomor-
phic; for up to isomorphism, there is a unique such representation.

As a consequence, for any place v of K, the characteristic polynomial of Frob, acting
on Hy(M4) coincides with its characteristic polynomial when acting on Hy (Mx). We con-
clude that charpoly, , (Frob,|Hy (Mx)) has coefficients in Q. But then the same is true for
charpolp, (Frob,|H)(Mx)) since their product is charpolg, (Frob,|H¢(Mx)), which has coeffi-
cients in Q.

Since we assumed that K is a number field, we may apply the following results:

» Theorem 1 (item 1) of [5], which tells us that (up to a finite extension of K, which does not
matter, by lemma 4.3) there exists a set ¥ of places of K with density 1 such that X has
good reduction at places v € ¥, and the Picard number of the reduction X, is the same
as that of X (which, in our case is 22 — 8 = 14).

» Proposition 3.2 of [27], which says that if X has good and ordinary reduction at v, then
the characteristic polynomial charpolg, (Frob, |HZ(X,)™) is a power of an irreducible poly-
nomial with coeflicients in Q.

We find that charpolp,, (Frob,|Hy (Mx)) = charpolp, (Frob,|H\(Mx)), for all places v € 7.
Since Gal(K /K) is compact, we may apply the argument given on the first pages of [21], and
find that Hy (Mx) = Hy(Mx) as Galois representations. This contradicts the fact that ¥x x
is split, while ¢¥x ) is not. We conclude that the rank must be 6, which implies, by remark 3.3

and lemma 3.1, that ¢y is an isomorphism. ]
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7.10 COROLLARY. — If X falls in one of the subcases listed in case 7.5.3, then the Mumford—
Tate conjecture is true for Ma ® Mx.
Proof. By lemma 7.3 we are done if tp: G§(Ma & Mx) — G§(Ma)% x G§(Mx)de" is an

isomorphism for some prime ¢. This result follows from lemmas 4.8 and 7.9. ([

7.11 PROOF OF THEOREM 1.1. — We know have all tools in place to prove the main theorem.
By lemma 7.2 we reduce to the Mumford-Tate conjecture for M4 & Mx. The theorem follows
from lemmas 7.4, 7.6 and 7.7 and corollary 7.10. 0
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