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COHOMOLOGY OF FINITE MODULES

OVER SHORT GORENSTEIN RINGS

MELISSA C. MENNING AND LIANA M. ŞEGA

Abstract. Let R be a Gorenstein local ring with maximal ideal m satisfying m
3 =

0 6= m
2. Set k = R/m and e = rankk(m/m2). If e > 2 and M , N are finitely generated

R-modules, we show that the formal power series
∞
∑

i=0

rankk
(

ExtiR(M,N)⊗R k

)

ti and
∞
∑

i=0

rankk

(

TorRi (M,N) ⊗R k

)

ti

are rational, with denominator 1− et+ t2.

Introduction

Let (R,m, k) be a Noetherian commutative local ring; m denotes the maximal ideal
and k = R/m. If L is an R-module, we set ν(L) = rankk(L/mL). Let M and N be
finite (meaning finitely generated) R-modules.

We consider the formal power series

EM,N
R (t) =

∞
∑

i=0

ν
(

ExtiR(M,N)
)

ti and TRM,N (t) =
∞
∑

i=0

ν
(

TorRi (M,N)
)

ti .

Note that EM,k
R (t) = TRM,k(t) = TR

k,M (t); this series is usually called the Poincaré series

of M , denoted PRM (t). The series Ek,N
R (t) is called the Bass series of N .

Although rings with transcendental Poincaré series exist, significant classes of rings
R are known to satisfy the property that the Poincaré series of all finite R-modules are
rational, sharing a common denominator; see for example [9] for a recent development.
If this property holds, then the Bass series of all finite R-modules are also rational,
sharing a common denominator; see [10, Lemma 1.2].

Less is known about the series EM,N
R (t) and TRM,N (t) for arbitrary M , N . If m2 = 0,

then it is an easy exercise to show that (1− et) ·EM,N
R (t) ∈ Z[t], where e = ν(m). When

R is a complete intersection of codimension c, Avramov and Buchweitz [1, Proposition

1.3] showed that (1− t2)c · EM,N
R (t) ∈ Z[t] for all finite M , N .

We consider R to be Gorenstein, with m
3 = 0. In this case, Sjödin [11] shows that

Poincaré series of all finite R-modules are rational, sharing a common denominator.
We prove that Sjödin’s result can be extended as follows:

Theorem. Let (R,m, k) be a local Gorenstein ring with m
3 = 0 6= m

2 and set e = ν(m).
If e > 2 and M , N are finite R-modules, then

(1− et+ t2) · EM,N
R (t) ∈ Z[t] and (1− et+ t2) · TRM,N (t) ∈ Z[t] .
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2 M. C. MENNING AND L. M. ŞEGA

When l(M ⊗RN) <∞, with l(−) denoting length, one can define modified versions

of the series EM,N
R (t) and TRM,N(t) as follows:

EM,N
R (t) =

∞
∑

i=0

l
(

ExtiR(M,N)
)

ti and T R
M,N (t) =

∞
∑

i=0

l
(

TorRi (M,N)
)

ti .

Under the assumptions of the Theorem, our proof reveals that mExtiR(M,N) = 0

and mTorRi (M,N) = 0 for i≫ 0, hence we also have, cf. Corollary 3.2:

(1− et+ t2) · EM,N
R (t) ∈ Z[t] and (1− et+ t2) · T R

M,N(t) ∈ Z[t] .

When R is a complete intersection, rationality of EM,N
R (t) and T R

M,N(t) is known, due

to Gulliksen [4]. On the other hand, Roos [8] gives an example of a (non-Gorenstein)

ring R with m
3 = 0 and a module M such that EM,M

R (t) is rational, while T R
M,M(t) is

transcendental. We refer to [8] for the connections of such results with homology of
free loop spaces and cyclic homology.

The rings considered in this paper (i.e. Gorenstein rings with radical cube zero) are
homomorphic images of a hypersurface, via a Golod homomorphism (see [2, 1.4]). As

indicated by Roos, it is reasonable to expect that the series EM,N
R (t) and T R

M,N(t) are

rational for all M , N with l(M ⊗R N) < ∞ whenever R is a homomorphic image of
a complete intersection via a Golod homomorphism. Along the same lines, we may

also expect that the series EM,N
R (t) and TRM,N (t) are rational for such R, and any finite

R-modules M , N .
An important aspect of our arguments is the use of the notion of Koszul module.

The structure of Koszul modules in the case of Gorenstein rings R with m
3 = 0 is

well understood, and is used heavily in the proofs. The main ingredient in the proof
consists of showing that, under the hypotheses of the theorem, the homomorphism
TorRi (mM,N) → TorRi (M,N) induced by the inclusion mM →֒ M is zero for i ≫ 0
whenever the module M is Koszul. This is the statement of Proposition 2.8, proved in
Section 2. The proof of the main theorem is given in Section 3.

1. Preliminaries

In this section we introduce notation and discuss some background. We introduce
the notion of Koszul module, and we give equivalent characterizations in the case of
interest. Lemma 1.1 and Lemma 1.6 will become instrumental in Section 2 in setting up
an induction argument towards the proof of the main result, while Lemma 1.2 provides
one of the key ideas in constructing the proof.

Throughout, (R,m, k) denotes a local commutative ring with maximal ideal m and
k = R/m, and M , N are finite R-modules. We set

M =M/mM and ν(M) = rankk(M) .

Lemma 1.1. Assume k is algebraically closed and ν(m) ≥ 2. Let M be a finite R-
module with m

2M = 0 and such that ν(M) ≥ ν(mM). There exists then x ∈M rmM
such that ann(x) 6= m

2.

Proof. Assume that ann(x) = m
2 for every x ∈M rmM . If a ∈ R, we denote by a its

image in k = R/m. Set ν(mM) = n. Since m2M = 0, note that mM has a vector space
structure over k and rankk(mM) = n. The structure is given by ax = ax for x ∈ mM
and a ∈ R.
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By hypothesis, we have ν(M) ≥ n. Let x1, . . . , xn be part of a minimal generating
set of M .
Claim: If α ∈ mrm

2, then αx1, . . . , αxn is a basis of mM over k.
To prove this claim, assume

b1(αx1) + · · ·+ bn(αxn) = b1(αx1) + · · · + bn(αxn) = 0

for some bi ∈ R. Set x = b1x1 + · · · + bnxn. We have thus αx = 0, hence α ∈ ann(x).
If x /∈ mM , then ann(x) = m

2 by assumption, and thus α ∈ m
2, a contradiction.

Consequenly x ∈ mM , and hence bi ∈ m and thus bi = 0 for all i. This shows that
αx1, . . . , αxn is linearly independent over k. Since rankk(mM) = n, this set is a basis
of mM and the claim is proved.

Assume now that α, β is part of a minimal set of generators of m. By the above,
the sets αx1, . . . , αxn and βx1, . . . , βxn are both bases of mM over k. We have then
relations

(1.1.1) βxj =
n
∑

i=1

pijαxi for all j with 1 ≤ j ≤ n,

where pij ∈ R and the change of basis matrix P = (pij) is invertible. Recall that k is
algebraically closed, and let λ ∈ k be an eigenvalue of P . Since P is invertible we have
λ 6= 0. Choose then γ ∈ R so that γ = −λ−1. Since λ = −(γ)−1 is an eigenvalue, we
have det(P + (γ)−1I) = 0, where I is the n × n identity matrix, and it follows that
det(I + γP ) = 0 and hence the matrix equation

(I + γP )b = 0

has a nontrivial solution b ∈ k
n, where b = (b1, . . . , bn)

T with bi ∈ R. With this choice
of γ and bi, we have thus

(1.1.2) bi + γ

n
∑

j=1

pijbj ∈ m for all i with 1 ≤ i ≤ n .

The equations (1.1.2) and (1.1.1) yield:

(α+ βγ)(b1x1 + · · ·+ bnxn) =

n
∑

i=1

bi(αxi) + γ

n
∑

j=1

bj(βxj) =

=

n
∑

i=1

(bi + γ

n
∑

j=1

pijbj)(αxi) ∈ m
2M = 0 .

Set x = b1x1 + · · ·+ bnxn and note that x /∈ mM , since the vector b ∈ k
n is nontrivial,

and thus bi /∈ m for at least some i. We have thus α + βγ ∈ ann(x) and, since
ann(x) = m

2, it follows that α+ βγ ∈ m
2. This is a contradiction, since α, β is part of

a minimal set of generators for m. �

Let ϕ : M → N be a homomorphism. We denote by ϕ the induced map ϕ : M → N .
If A is a finite R-module, then for each i we let

TorRi (ϕ,A) : TorRi (M,A) → TorRi (N,A)

ExtiR(ϕ,M) : ExtiR(N,A) → ExtiR(M,A)

denote the induced maps. We let

ιM : mM →M and πM : M →M
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denote the inclusion, respectively the canonical projection.
For each i we set βRi (M) = rankkTor

R
i (M, k) ; this number is the ith Betti number

of M over R.
The main ingredient in proving rationality of the series defined in the introduction

consists in showing that the maps TorRi (ιM , N) become zero for large values of i, under
certain assumptions on the ring and on the modules. The next lemma is a first step in
this direction, and it will be further extended in Section 2.

Lemma 1.2. Let M , N be finite R-modules with ν(M) = 1. Assume there exists an

integer i ≥ 0 such that TorRi (ιM , k) = 0 and βRi (M) > βRi (N).

(1) If ϕ ∈ HomR(M,N), then ϕ(M) ⊆ mN .

(2) If m2N = 0 then HomR(ιM , N) = 0.

Proof. Assume ϕ(M) 6⊆ mN . Since M is cyclic, the induced map ϕ : M → N is
injective. Since it is a homomorphism of vector spaces, it has a splitting, hence the
induced maps TorRi (ϕ, k) : TorRi (M, k) → TorRi (N, k) are injective for i ≥ 0. The short
exact sequence

0 → mM →M →M → 0

induces the top exact row in the commutative diagram below:

(1.2.1)

TorRi (mM, k) TorRi (M, k) TorRi (M, k)

TorRi (N, k) TorRi (N, k)

TorRi (ιM , k) TorRi (πM , k)

TorRi (ϕ, k) TorRi (ϕ, k)

TorRi (πN , k)

If TorRi (ιM , k) = 0, then TorRi (πM , k) is injective. The commutative square gives then
that TorRi (ϕ, k) is injective. We conclude βRi (M) ≤ βRi (N), a contradiction.

We have thus ϕ(M) ⊆ mN , hence (1) is established. To prove (2), note that the
image of ϕ under the map HomR(ιM , N) is the composition ϕιM : mM → N . We have:

ϕιM (mM) ⊆ ϕ(mM) ⊆ mϕ(M) ⊆ m
2N .

When m
2N = 0 we conclude ϕιM = 0, and thus HomR(ιM , N) = 0. �

1.3. Hilbert and Poincaré series. The Hilbert series ofM (over R) is the formal power
series

HM (t) =
∞
∑

i=0

rankk

(

m
iM

m
i+1M

)

ti .

The Poincaré series of M is the formal power series

PRM (t) =

∞
∑

i=0

βRi (M)ti .

The next remark clarifies the attention we will give in Section 2 to the vanishing of
the maps TorRi (ιM , N): such vanishing allows for computations of the series of interest.

Remark 1.4. Assume that m2M = 0. The short exact sequence

0 → mM
ιM−−→M

πM−−→M → 0

induces for each i > 0 the following exact sequence:

0 → Li → TorRi (M,N)
TorRi (πM ,N)
−−−−−−−−→ TorRi (M,N)

∆i−→ TorRi−1(mM,N) → Li−1 → 0
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where Li is the image of the map TorRi (ιM , N). A length count gives:

l(TorRi (M,N)) = l(TorRi (M,N)) − l(TorRi−1(mM,N)) + l(Li) + l(Li−1)

Since both M and mM are k-vector spaces, we have

l(TorRi (M,N)) = rankk(Tor
R
i (k

ν(M), N)) = ν(M)βRi (N);

l(TorRi−1(mM,N)) = rankk(Tor
R
i−1(k

ν(mM), N)) = ν(mM)βRi−1(N) .

We have thus

(1.4.1) l(TorRi (M,N)) ≥ ν(M)βRi (N)− ν(mM)βRi−1(N) .

Equality holds in (1.4.1) if and only if Li = 0 = Li−1, and hence if and only if
TorRi (ιM , N) = 0 = TorRi−1(ιM , N). In particular, we obtain from here that the follow-
ing two statements are equivalent when m

2M = 0:

(1) TorRi (ιM , N) = 0 for all i ≥ 0;
(2)

∑∞
i=0 l(Tor

R
i (M,N))ti = HM (−t) PRN (t).

Also, note that Li = 0 implies that TorRi (M,N) is isomorphic to a submodule of
TorRi (M,N), and hence mTorRi (M,N) = 0. In particular, condition (1) also implies:

(3)
∑∞

i=0 ν(Tor
R
i (M,N))ti = HM(−t) PRN (t).

1.5. Koszul rings and modules. As defined in [5], an R-module M is said to be Koszul

if its linearity defect is 0; we refer to loc. cit. for the definition of linearity defect, and
we note that M is Koszul if and only if the associated graded module gr

m
(M) has a

linear resolution over gr
m
(R). As noted in [5, 1.8], if M is Koszul, then

(1.5.1) PRM (t) =
HM (−t)

HR(−t)

The ring R is said to be Koszul if k is a Koszul module.
If R is Koszul and m

2M = 0, then the following are equivalent:

(1) M is Koszul;
(2) TorRi (ιM , k) = 0 for all i ≥ 0;
(3) The formula (1.5.1) holds.

See [2, 3.1] for the equivalence (1) ⇐⇒ (2) and Remark 1.4 for (2) ⇐⇒ (3).

Lemma 1.6. Assume there exists a short exact sequence

0 → A
ϕ
−→M

ψ
−→ B → 0

of finite R-modules such that ϕ : A→M is injective. Let N be a finite R-module.

(1) If TorRi (ιA, N) = 0 for some i, then TorRi (ϕ,N) is injective and TorRi+1(ψ,N) is

surjective.

(2) If TorRi (ιB , N) = TorRi−1(ιA, N) = TorRi (ιA, N) = 0 for some i, then we also have

TorRi (ιM , N) = 0.
(3) If R is a Koszul ring, m2M = 0 and M is Koszul, then B is Koszul.
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Proof. The hypothesis that ϕ is injective yields a commutative diagram with exact
rows and columns:

(1.6.1)

0 0 0

0 mA mM mB 0

0 A M B 0

0 A M B 0

0 0 0

ιA

ψ′

ιM ιB

πA

ϕ ψ

πM πB

ϕ ψ

Note that the bottom row in this diagram is an exact sequence of vector spaces, hence
it is split, and it remains exact when applying TorRi (−, N). In particular, TorRi (ϕ,N)
is injective and TorRi (ψ,N) is surjective. Diagram (1.6.1) induces then the following
commutative diagram with exact rows and columns:
(1.6.2)

TorRi (mA,N) TorRi (mM,N) TorRi (mB,N)

TorRi (A,N) TorRi (M,N) TorRi (B,N)

0 → TorRi (A,N) TorRi (M,N) TorRi (B,N) → 0

TorRi (ιA, N) TorRi (ιM , N)

TorRi (ψ′, N)

TorRi (ιB , N)

TorRi (πA, N)

TorRi (ϕ,N)

TorRi (πM , N)

TorRi (ψ, N)

TorRi (πB , N)

TorRi (ϕ,N) TorRi (ψ,N)

We have then:
(1) If TorRi (ιA, N) = 0, it follows that TorRi (πA, N) is injective. Since TorRi (ϕ,N)

is injective, the bottom left commutative square gives that TorRi (ϕ,N) is injective as
well. The fact that TorRi+1(ψ,N) is surjective follows from the long exact sequence
associated in homology with the exact sequence from the statement.

(2) In view of part (1), the hypothesis that TorRi−1(ιA, N) = TorRi (ιA, N) = 0 shows

that TorRi (ϕ,N) is injective and TorRi (ψ,N) is surjective. The hypothesis also implies
that TorRi (πA, N) and TorRi (πB , N) are injective. A snake lemma argument using
the bottom two rows of (1.6.2) gives that TorRi (πM , N) is injective as well, and thus
TorRi (ιM , N) = 0.

(3) The additional hypothesis that m2M = 0 gives that the top row in (1.6.1) is an
exact sequence of vector spaces. Consequently, it is split, and in particular TorRi (ψ

′, k)
is surjective for all i ≥ 0. Since M is Koszul, we have TorRi (ιM , k) = 0 for all i ≥ 0.
The upper right commutative square in (1.6.2) with N = k yields then TorRi (ιB , k) = 0
for all i ≥ 0, and hence B is Koszul, in view of 1.5. �
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2. Koszul modules over short Gorenstein rings

In this section we focus our attention on Gorenstein local rings with m
3 = 0. We

present first some needed background material. The bulk of the section is taken up
with the proof of Proposition 2.8 and its supporting lemmas.

Throughout this section, (R,m, k) denotes a Gorenstein local ring with m
3 = 0 and

m
2 6= 0. We set e = ν(m) and we assume that e ≥ 2.
Let M , N be finite R-modules. For any N set N∗ = HomR(N,R). If ϕ : M → N is

a homomorphism, then ϕ∗ : N∗ →M∗ denotes the induced map.

2.1. Syzygies. Let M be a finitely generated R-module and let

(2.1.1) · · · → Fi
∂i−→ Fi−1 → · · · → F1

∂1−→ F0 → 0

be a minimal free resolution of M over R. Note that the Betti numbers of M can be
read off this resolution, namely βRi (M) = rankR(Fi) for all i ≥ 0. We set M0 =M and
for each i > 0 we set

Mi = Im(∂i) .

The module Mi is called the ith syzygy of M . Since m
3 = 0, the minimality of the

resolution shows that m2Mi = 0 for all i > 0. Now let

(2.1.2) · · · → Gi
di−→ Gi−1 → · · · → G1

d1−→ G0 → 0

be a minimal free resolution of M∗. Since R is Gorenstein and Artinian, the dual of
this resolution is also exact and gives a minimal injective resolution of M∗∗:

(2.1.3) 0 → F−1
∂−1

−−→ F−2 → · · · → F−i
∂−i
−−→ F−i−1 → . . .

with F−i = G∗
i−1 and ∂−i = d∗i .

Since M ∼= M∗∗, note that the resolutions in (2.1.1) and (2.1.3) can be “glued”
together through a map ∂0, yielding a complete resolution of M :
(2.1.4)

· · · → Fi
∂i−→ Fi−1 → · · · → F1

∂1−→ F0
∂0−→ F−1

∂−1
−−→ F−2 → · · · → F−i

∂−i
−−→ F−i−1 → . . .

This complex is acylic, that is, its homology is zero in each degree. If i > 0 we set

M−i = Im(∂−i)

If m2M = 0, then ∂0(F0) ⊆ mF−1 and the complete resolution is minimal. Conse-
quently, if M and N are two R-modules with m

2M = 0 = m
2N , the minimal complete

resolution shows that

M−i
∼= N ⇐⇒ M ∼= Ni for all i.

In a similar manner, we define negative Betti numbers, when m
2M = 0, by setting

βR−i(M) = rankR(F−i) for all i > 0. In particular, we have:

βR−i(M) = rankR(F−i) = rankR(Gi−1) = βRi−1(M
∗)

M−i = Im(∂−i) = Im(d∗i )
∼= (Im di)

∗ = (M∗)i

Furthermore, since k
∗ ∼= k, we have βR−i(k) = βRi−1(k) and k−i

∼= ki.

2.2. Koszul modules over short Gorenstein rings. With R as above, the following
statements are equivalent (see [2, 4.6]):

(1) M is Koszul;
(2) The syzgygy Mi does not split off a copy of k for any i > 0 (equivalently M is

exceptional, using the terminology of Lescot [6]);
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(3) M has no direct summand isomorphic to k−i, for all i > 0.

In particular, it follows, as noted in [2, 4.6], that an indecomposable module M over
the short Gorenstein ring R is Koszul if and and only if M is not isomorphic to k−i for
any i > 0. Also, note that if M is Koszul, then Mi is Koszul for all i > 0.

Löfwall [7] shows that a Gorenstein ring with m
3 = 0 and e ≥ 2 satisfies

(2.2.1) PRk (t) =
1

1− et+ t2
.

This result is recovered and used by Sjödin [11] to show that for every finitely generated
R-module one has:

(2.2.2) (1− et+ t2) · PRM (t) ∈ Z[t] .

The results of [11] are recovered in [2], where it is also noted that any such R is Koszul.
Note that formula (2.2.1) shows that the Betti numbers bi = βRi (k) satisfy the

relations b0 = 1, b1 = e and bi+1 = ebi − bi−1 for all i ≥ 1. Since we assumed e ≥ 2, it
follows inductively that the sequence {βRi (k)}i≥0 is strictly increasing.

Remark 2.3. It is known that m2M = 0 when M is indecomposable and not free; see
for instance the proof of [2, 4.6].

Also, if m2M = 0 and M1 does not split off a copy of k, then the following formulas
hold, cf. [6, 3.3]:

ν(M1) = ν(M)e− ν(mM);(2.3.1)

ν(mM1) = ν(M) .(2.3.2)

Lemma 2.4. Let I be an ideal of R. Then R/I is not Koszul if and only if I = m
2.

Proof. Since R is Gorenstein with socle m2, note that m2 ∼= k. If I = m
2 it follows that

k ∼= (R/I)1, hence R/I is not Koszul.
Now assume R/I is not Koszul. Then R/I ∼= k−i for some i > 0, hence

βRi−1(k) = βR−i(k) = βR0 (R/I) = 1 .

Since the Betti numbers of k are strictly increasing, the equality βRi−1(k) = 1 implies

i = 1. We have thus R/I ∼= k−1. Since k−1
∼= R/m2, we conclude I = m

2. �

Lemma 2.5. If I is a proper ideal of R and e > 2, then the sequence {βRi (R/I)}i≥1 is

strictly increasing and βRi (R/I) ≥ i for all i ≥ 0.

Proof. If I = m
2, then βRi (R/m

2) = βRi−1(m
2) = βRi−1(k) for all i ≥ 1, and the conclusion

follows from the fact that the sequence {βRi (k)}i≥0 is strictly increasing.
Assume now that I 6= m

2. Since I ⊆ m, we have mI ⊆ m
2. Since I 6= 0 and R

is Gorenstein with socle m
2, it follows that mI = m

2 and hence m
2(R/I) = 0. Set

a = rankk(m/I). The assumption that I 6= m
2 gives a < e. The Hilbert series of R/I

is HR/I(t) = 1 + at. Since R/I is Koszul by Lemma 2.4, we have:

(2.5.1) PRR/I(t) =
1− at

1− et+ t2
.

Set bi = βRi (R/I) for i ≥ 0. We have then:

(2.5.2) 1− at =
(

b0 + b1t+ b2t
2 + b3t

3 + . . .
) (

1− et+ t2
)

.
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From this equation we derive the following information: b0 = 1, b1 = e − a, and
bi+2 = ebi+1 − bi for i ≥ 0. Note that b1 − b0 ≥ 0 because a < e. Let n ≥ 1 and assume
bn − bn−1 ≥ n− 1. Since e > 2 we have

bn+1 − bn = (ebn − bn−1)− bn = bn(e− 1)− bn−1 > bn − bn−1 ≥ n− 1

hence bn+1 − bn ≥ n. This inductive argument gives that bi+1 − bi ≥ i for all i ≥ 0. In
particular, bi ≥ i for all i ≥ 0 and the sequence {bi}i≥1 is strictly increasing. �

Lemma 2.6. Assume e > 2. If M is Koszul with ν(M) = 1, then ExtiR(ιM , N) = 0

for all i with i > ν(N). Equivalently, TorRi (ιM , N) = 0 for all i with i > ν(N∗).

Proof. We may assumeM , N are indecomposable and not free. In particular, it follows
that m

2M = 0 = m
2N . Let i be such that i > ν(N) and set L = N−i. Note that

m
2L = 0 and

ν(N) = β0(N) = βi(N−i) = βi(L) .

Since M is cyclic, we have M ∼= R/I for a proper ideal I. Lemma 2.5 gives that
βRi (M) ≥ i, and hence βRi (M) > βRi (L), since i > ν(N). Since M is Koszul, we have

TorRi (ιM , k) = 0 for all i, and Lemma 1.2 gives that HomR(ιM , L) = 0.
For each n ≥ 0 extract from a minimal complete resolution of N the short exact

sequence

(2.6.1) 0 −→ N−i+n+1 −→ Rc −→ N−i+n −→ 0

with c = β−i+n(N), and consider the induced commutative diagram with exact rows:

(2.6.2)

ExtnR(M,N−i+n) Extn+1
R (M,N−i+n+1) Extn+1

R (M,Rc)

ExtnR(mM,N−i+n) Extn+1
R (mM,N−i+n+1) Extn+1

R (mM,Rc)

ExtnR(ιM , N−i+n)

∆n+1

Extn+1

R
(ιM , N−i+n+1)

We prove by induction on n that ExtnR(ιM , N−i+n) = 0 for all n ≥ 0. This holds for
n = 0, because we know HomR(ιM , L) = 0.

Assume now that n ≥ 0 and ExtnR(ιM , N−i+n) = 0. The connecting homomorphism
∆n+1 in (2.6.2) is surjective because we have Extn+1

R (M,Rc) = 0, since R is Gorenstein
artinian. (It is an isomorphism when n ≥ 1.) The commutative square on the left gives
that Extn+1

R (ιM , N−i+n+1) = 0.
We have thus ExtnR(ιM , N−i+n) = 0 for all n ≥ 0. Taking n = i and noting that

N0 = N , we obtain the desired conclusion that ExtiR(ιM , N) = 0 for all i > ν(N).
In particular, we have ExtiR(ιM , N

∗) = 0 for all i > ν(N∗). Finally, note that
ExtiR(ιM , N

∗) = 0 if and only if TorRi (ιM , N) = 0, in view of the canonical isomor-
phisms given by duality. �

Lemma 2.7. Assume m2M = 0. IfM1 does not split off a copy of k, then TorRi (ιM , N) =
0 for i≫ 0 iff TorRi (ιM1

, N) = 0 for i≫ 0.

Proof. By (1.4.1), we have inequalities

l(TorRi+1(M,N)) ≥ ν(M)βi+1(N)− ν(mM)βi(N) ;(2.7.1)

l(TorRi (M1, N)) ≥ ν(M1)βi(N)− ν(mM1)βi−1(N) .(2.7.2)

We have TorRi (ιM , N) = 0 for i≫ 0 if and only if (2.7.1) is an equality for i≫ 0, and
TorRi (ιM1

, N) = 0 for all i ≫ 0 if and only if (2.7.2) is an equality for i ≫ 0. Since
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TorRi (M1, N) ∼= TorRi+1(M,N), it suffices to show that

(2.7.3) ν(M)βi+1(N)− ν(mM)βi(N) = ν(M1)βi(N)− ν(mM1)βi−1(N)

for i ≫ 0. Since the Poincaré series of N is rational with denominator 1− et+ t2, we
have

(2.7.4) βi+1(N) = eβi(N)− βi−1(N) for i≫ 0 .

Let i be large enough so that (2.7.4) holds. Using first (2.7.4) and then (2.3.1) and
(2.3.2), we establish (2.7.3) as follows:

ν(M)βi+1(N)− ν(mM)βi(N) = ν(M)(eβi(N)− βi−1(N))− ν(mM)βi(N) =

= (ν(M)e− ν(mM))βi(N)− ν(M)βi−1(N)

= ν(M1)βi(N)− ν(mM1)βi−1(N) .

As noted above, this finishes the proof. �

We are now ready to eliminate the assumption that ν(M) = 1 in Lemma 2.6.

Proposition 2.8. If e > 2 and M is Koszul, then TorRi (ιM , N) = 0 for i≫ 0.

Remark 2.9. If e = 2, then the conclusion of the proposition may not hold. Indeed,
if R = k[x, y]/(x2, y2) and N = R/(x), then a minimal free resolution of N over R is

· · · → R
x
−→ R→ · · · → R

x
−→ R

x
−→ R

hence TorRi (M,N) ∼=M for any M with xM = 0. When M = R/(x) as well, the map
TorRi (ιM , N) can thus be indentified with the inclusion mM →֒M .

Proof of Proposition 2.8. Let (R′,m′, k′) be a local ring with k
′ algebraically closed,

where R→ R′ is an inflation in the sense of [3, App., Théorème 1, Corollaire], that is:
R′ is flat over R and m

′ = R′
m. For each finite R-module we set M ′ = M ⊗R R

′. As
noted in [2, 1.8], M is Koszul if and only ifM ′ is Koszul over R′. Also, note that we can
make the identifications (M)′ =M ′/m′M ′ and (mM)′ = m

′M ′. The maps TorRi (πM , N)

and TorR
′

i (πM ′ , N ′) are simultaneously injective, since R → R′ is faithfully flat, hence

TorRi (ιM , N) = 0 if and only if TorR
′

i (ιM ′ , N ′) = 0. We may assume thus that k is
algebraically closed.

We may also assume thatM is indecomposable and non-free, and this implies m2M =
0 as in Remark 2.3.

We prove by induction on n the following statement:

If M is a Koszul R-module such that m
2M = 0 and ν(mM) = n, then

TorRi (ιM , N) = 0 for i≫ 0.

The statement is trivially true when n = 0, since mM = 0 in this case. Let n ≥ 1 and
assume that TorRi (ιM , N) = 0 for i≫ 0 for all Koszul modules M with m

2M = 0 and
ν(mM) ≤ n− 1.

Let M be a Koszul R-module with m
2M = 0 and ν(mM) = n. We will show

that TorRi (ιM , N) = 0 for i ≫ 0. It suffices to establish the conclusion when M is
indecomposable, so we will assume this.

Case 1. Assume ν(M) ≤ n − 1. In this case we have ν(mM1) = ν(M) ≤ n − 1 by
Remark 2.3. Since M is Koszul, note that M1 is Koszul and M1 does not split off a
copy of k. The induction hypothesis, applied to M1, shows that Tor

R
i (ιM1

, N) = 0 for
i≫ 0 and then Lemma 2.7 gives TorRi (ιM , N) = 0 for i≫ 0.
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Case 2. Assume ν(M) ≥ n. By Lemma 1.1, there exists x ∈ M r mM such that
ann(x) 6= m

2. Set A = Rx and B = M/A. Notice the map A → M induced by
the inclusion A →֒ M is injective, because x /∈ mM . If ann(x) = m then A ∼= k

and this implies that M splits off a copy of k, hence M ∼= k, since M is assumed
indecomposable. In this case, the statement holds trivially, since mM = 0. We may
assume thus ann(x) 6= m as well.

Since ann(x) 6= m
2, Lemma 2.4 shows that A is Koszul. It follows that TorRi (ιA, N) =

0 for i≫ 0 by Lemma 2.6. Since m
2M = 0, we also have m

2A = 0 = m
2B and the top

exact row in the commutative diagram (1.6.1) is an exact sequence of vector spaces

0 → mA→ mM → mB → 0,

which gives

n = ν(mM) = ν(mA) + ν(mB).

Since ann(x) 6= m, we have ν(mA) 6= 0, and hence ν(mB) ≤ n − 1. Note that B is
Koszul by Lemma 1.6(c) and the induction hypothesis gives TorRi (ιB , N) = 0 for i≫ 0.
Lemma 1.6(b) gives then TorRi (ιM , N) = 0 for i≫ 0.

The induction argument is finished, establishing thus the conclusion. �

3. Proof of the main theorem

In this section we prove the main theorem stated in the Introduction.

Theorem 3.1. Let (R,m, k) be a local Gorenstein ring with m
3 = 0 6= m

2 and set

e = ν(m). If e > 2 and M , N are finitely generated R-modules, then the following

hold:

(1) mTorRi (M,N) = 0 for i≫ 0;
(2) mExtiR(M,N) = 0 for i≫ 0;
(3) (1− et+ t2) · TRM,N(t) ∈ Z[t];

(4) (1− et+ t2) · EM,N
R (t) ∈ Z[t].

Proof. The statements (2) and (4) follow from the statements (1), respectively (3) by
duality. We prove below (1) and (3).

We may assume that both M and N are indecomposable and not free. In particular
m

2M = 0 = m
2N . Let j ≥ 0. Since TorRi+j(M,N) ∼= TorRi (Mj , N) for all i ≥ 1, the

statement (1) holds if and only if mTorRi (Mj , N) = 0 for i≫ 0 and the statement (3)

holds if and only if (1− et+ t2) · TRMj ,N
(t) ∈ Z[t].

Assume first that M is not Koszul, hence k ∼= Mj for some j ≥ 1 (see Section 2.2).
In view of the above observation, it suffices to prove the statement for M = k and in
this case (1) is clear, and (3) follows from the fact that TR

k,N (t) = PRN (t) is rational

with denominator 1− et+ t2, as proved by Sjödin [11].
Assume now that M is a Koszul module. Proposition 2.8 gives that there exists

an integer s such that TorRi (ιM , N) = 0 for i ≥ s. By Remark 1.4, we have that
mTorRi (M,N) = 0 for all i ≥ s, proving (1), and

ν(TorRi (M,N)) = l(TorRi (M,N)) = ν(M)βRi (N)− ν(mM)βRi−1(N) for all i > s .

We have thus

TRM,N(t) =
s

∑

i=0

ν(TorRi (M,N))ti + ν(M)
∑

i≥s+1

βRi (N)ti − ν(mM)t
∑

i≥s+1

βRi−1(N)ti−1
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It follows from here that TRM,N (t)−HM (−t) PRN (t) ∈ Z[t]. The conclusion of (3) follows,

using again the fact that PRN (t) is rational with denominator 1− et+ t2. �

When l(M ⊗R N) < ∞, we define a modified version of the series EM,N
R (t) and

TRM,N(t) as follows:

EM,N
R (t) =

∞
∑

i=0

l
(

ExtiR(M,N)
)

ti ∈ Z[[t]]

T R
M,N(t) =

∞
∑

i=0

l
(

TorRi (M,N)
)

ti ∈ Z[[t]] .

Under the assumptions of Theorem 3.1, parts (1) and (2) of its statement give that

ν(ExtiR(M,N)) = l(ExtiR(M,N)) and ν(TorRi (M,N)) = l(TorRi (M,N))

for i≫ 0, hence we have the following Corollary.

Corollary 3.2. Under the hypotheses of Theorem 3.1, the following hold:

(1) (1− et+ t2) · EM,N
R (t) ∈ Z[t];

(2) (1− et+ t2) · T R
M,N(t) ∈ Z[t]. �

Remark 3.3. Several classes of local rings, including the one discussed in this paper,
are known to satisfy the property that the Poincaré series of all finite modules are
rational, sharing a common denominator; see [9] for a large class of Gorenstein artinian
rings. In all known cases, such rings are homomorphic images of a complete intersection
via a Golod homomorphism. As mentioned also in [8], it seems reasonable to expect

that similar rationality results for the series T R
M,N (t), E

M,N
R (t), TRM,N (t) and ERM,N(t)

hold for other such classes.
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