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FOURIER INTEGRALS OPERATORS ON LIE GROUPOIDS

JEAN-MARIE LESCURE, STÉPHANE VASSOUT (1)

Abstract. As announced in [12], we develop a calculus of Fourier integral G-operators on any

Lie groupoid G. For that purpose, we study convolability and invertibility of Lagrangian conic

submanifolds of the symplectic groupoid T
∗
G. We also identify those Lagrangian which correspond

to equivariant families parametrized by the unit space G
(0) of homogeneous canonical relations in

(T ∗
Gx \ 0) × (T ∗

G
x \ 0). This allows us to select a subclass of Lagrangian distributions on any

Lie groupoid G that deserve the name of Fourier integral G-operators (G-FIO). By construction,

the class of G-FIO contains the class of equivariant families of ordinary Fourier integral operators

on the manifolds Gx, x ∈ G
(0). We then develop for G-FIO the first stages of the calculus in the

spirit of Hormander’s work. Finally, we work out an example proving the efficiency of the present

approach for studying Fourier integral operators on singular manifolds.
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1. Introduction

Lagrangian distributions constitute an important and wide class of distributions, containing for

instance the classes of pseudodifferential operators and Fourier integrals operators on manifolds. To

formalize properly this type of distributions on a manifold and both to analyse their singularities

and develop a calculus, one is led to handle, in addition to Fourier analysis, tools from microlocal

analysis and from symplectic geometry. For arbitrary manifolds, all of this is fully achieved in the

series of L. Hörmander’s books [11].

Motivated by analysis on singular spaces, foliations and all other situations where a groupoid

encodes a suitable pseudodifferential calculus, the purpose of the present work is the study of

Lagrangian distributions as defined in [11] in the specific situation where the underlying manifold

is a Lie groupoid G, and then, to be able to propose a class of Fourier integral operators suitable

for singular spaces, foliations, etc...

Pseudodifferential operators on general Lie groupoids [17, 19] (G-PDO) provide a stimulating

example: they are exaclty the G-operators given by equivariant C∞ families of pseudodifferential

operators acting in the r or s-fibers of G. Importantly, the space of G-PDOs coincides with the

space of Lagrangian distributions on G subordinated to A∗G = N∗(G(0)) ⊂ T ∗G, that is, to the

dual of the normal bundle of the embedding G(0) →֒ G.

Another inspiration comes from the paper [12] in which distributions on Lie groupoids are studied.

On one hand, distributions on a Lie groupoid G that provide G-operators are charaterized and

natural sufficient conditions on their wave front sets are given. On the other hand, still in [12],

the convolution product of distributions on a Lie groupoid G is analyzed and sufficient conditions

for that product to be defined are again given in terms of wave front sets. For the understanding

of the present work, it is relevant to note that all the conditions mentionned above, as well as the

formula for the wave front set of a convolution product of distributions, have an algebraic nature

involving the symplectic groupoid T ∗G.

This background gives a general framework into which one should develop the theory of Fourier

integral operators on a groupoid, and brings in natural questions too.

The least we can require is that a Fourier integral operator should be an element of I(G,Λ)

[11, Section 25.1], that is a Lagrangian distribution on the manifold G subordinated to some

Lagrangian Λ ⊂ T ∗G \ 0, and should also be regular enough to produce an adjointable G-operator.

The article [12] already gives a way to fulfill this constraint: if the Lagrangian Λ ⊂ T ∗G \ 0 does

not intersect the kernel of source and target maps of T ∗G ⇒ A∗G, then the elements of I(G,Λ)

provide adjointable G-operators. Note that this is a purely algebraic condition, very simple to

check in practice, which boils down to the so-called ”no-zeros” condition [11, 14] in the case of

the pair groupoid G = X ×X. We call G-relations the conic Lagrangian submanifolds of T ∗G \ 0

fulfilling this condition, in reference to the classical term ”canonical relations”, and we abbreviate

the corresponding classes of Lagrangian distributions by G-FIO.

Then, a first natural question arises: given a G-relation Λ and a G-FIO u ∈ I(G,Λ), we have at

hand a (C∞, equivariant) family of distributions ux ∈ D′(Gx ×Gx), x ∈ G(0), and so, it is natural

to ask whether these distributions are Lagrangian, that is, are ordinary Fourier integral operators

on the manifold Gx ?

The answer is no in general. Actually, the distributions ux are still given by oscillatory integrals,

but we provide an example where some of them are not Lagrangian distributions. This unstable

behavior is fixed by imposing that the underlying G-relation Λ ⊂ T ∗G \ 0 has a projection in G



FIO ON LIE GROUPOIDS 3

transversal to the canonical (singular) foliation of G. Indeed, this transversality condition implies

that Λ gives a (C∞, equivariant) family of canonical relations Λx ∈ T ∗Gx×Gx, x ∈ G(0), and each

ux, being expressed as an appropriate pull-back distribution, is then an element of I(Gx×Gx,Λx).

We call family G-relations the G-relations enjoying this transversality condition and we abbreviate

by G-FFIO the corresponding Lagrangian distributions. Note that the transversality property

characterizing family G-relations among the general ones is geometric and still very simple to check

in practice.

Thus, by construction, G-FFIO provide C∞ equivariant families of Lagrangian distributions ux,

x ∈ G(0) and the next natural goal is to obtain the converse. This is achieved after proving that

C∞ equivariant family of canonical relations Λx ∈ T ∗Gx × Gx, x ∈ G(0), can be ”glued” into a

single family G-relation Λ ⊂ T ∗G. This requires a preliminary work on families of Lagrangian

submanifolds in the cotangent spaces of the fibers of an arbitrary submersion.

To summarize the previous discussion, G-FIO provide a class of distributions on G desserving

the name of Fourier integral operators on G and among them, we know how to characterize in a

simple geometric way those which correspond to C∞ equivariant families of ordinary FIO in the s

or r fibers of G.

The next natural point is to develop a calculus for G-FIO: adjointness, composition, module

structure over the algebra of pseudodifferential operators, Egorov theorem and C∗-continuity. We

could have restricted ourselves to the sub-class of G-FFIO in order to export all the results available

on manifolds to groupoids via the point of view of families. Actually, we have chosen to treat

G-FFIO as single distributions on G to develop the calculus: the statements are simpler, more

conceptual, and the central role of the symplectic groupoid T ∗G is enlighted. Moreover, most of

the results hold for G-FIO and not only for G-FFIO.

More precisely, we prove that adjoints of G-FIO are G-FIO, and adjunction replaces the La-

grangian by its image under the inverse map of the groupoid T ∗G ⇒ A∗G. Next, we work out

a natural convolability assumption on G-relations in order that their convolution in T ∗G is again

a G-relation. Then, when Λ1 and Λ2 are convolable, we prove that the convolution of any dis-

tributions uj ∈ I(G,Λj) (that is, the composition of the corresponding G-operators), is a G-FIO

subordinated to the G-relation Λ1.Λ2. We observe that the convolution of family G-relations is not

always a family G-relation and then, convolution of G-FFIO are not always G-FFIO: we explain

how to strengthen the convolability assumption to fix this problem.

The previous adjunction and composition theorems have direct applications. Firstly, the compo-

sition of G-FIO (resp. G-FFIO) with pseudodifferential operators are G-FIO (resp. G-FFIO), the

Lagrangian being unchanged. Secondly, for any convolable G-relations Λ1,Λ2 whose convolution

is contained in the unit space of T ∗G⇒ A∗G, that is, Λ1.Λ2 ⊂ A∗G, we get an obvious statement

generalizing Egorov Theorem.

The assumption made in our version of Egorov Theorem can be viewed as a weak invertibility

property for G-relations. Actually, for any G-relation Λ1, we prove that the existence of a convolable

G-relation Λ2 such that Λ1 ∗Λ2 = rΓ(Λ1) and Λ2 ∗Λ1 = sΓ(Λ1) (here sΓ, rΓ denote the source and

target maps of T ∗G ⇒ A∗G) is equivalent for Λ1 to be a Lagrangian bissection. This is what we

call invertible G-relations.

It then follows that for any invertible G-relation Λ, the G-relation Λ⋆ = iΓ(Λ) (where iΓ is

the inversion of T ∗G) is an inverse and by the composition result it also follows that uu∗ is a

pseudodifferential operator as soon as u ∈ I(G,Λ). Hence, using known C∗-continuity results for

pseudodifferential operators, which rely on the classical Hörmander’s trick to prove L2-continuity,
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we obtain C∗-continuity results for G-FIO subordinated to invertible G-relations. This also holds

for locally invertible G-relations, that is, for G-relations onto which the source and target maps of

T ∗G are only local diffeomophisms, also known as Lagrangian local bissections [1].

For the sake of clarity of this introduction, we have ignored a technical point about the regularity

of G-relations. More precisely, as sets, G-relations are true submanifolds, but all the statements

above are true for local G-relations, that is, those based on immersed submanifolds (ranges of

immersions). As in the classical case, we can not avoid the introduction of immersed submanifolds

since the convolution of two G-relations is the image of some submanifold by a C∞ map of constant

rank. Such images are not in general true submanifolds but are always images of some not nec-

essarily injective immersion: we call them local submanifolds, following the (implicit) suggestion

of [11, Prop. C.3.3]. Local submanifolds are countable union of true submanifolds of the same

dimension and it is very convenient for our purposes to handle them in this way.

To finish, we treat the example of the groupoids arising in the case of manifolds with boundary

and we compare the corresponding G-relations with the boundary canonical relations as defined

by R. Melrose [14]. Fourier integral operators on Lie groups are treated in [18]. The present work

recovers and significantly extends the results of [18, 14]. The present paper also uses the notations

and results about distributions on groupoids in [12], a subject which is also treated in [8].

The paper is organized as follows. In Section 2 we introduce useful vocabulary and we present

classical facts in differential geometry in a perhaps not completely classical way. Section 3 is de-

voted to families of Lagrangian (submanifolds, distributions). It contains in particular a new result

about the comparison of families of Lagrangian submanifolds in the cotangent spaces of the fibers

of a given submersion and Lagrangian submanifolds of the cotangent space of the total space of

that submersion. In section 4, we study operations on Lagrangian submanifolds of the symplectic

groupoid T ∗G. This includes the study of their convolution, transposition and invertibility prop-

erty. The notion of G-relation is also introduced and the relationship with equivariant families

of Lagrangian is clarified. The G-FIO are introduced in section 5. Similarly to G-relations, the

parallel with equivariant families of FIO is fully analysed. Furthmermore, we extend the basic cal-

culus of FIO to G-FIO, which includes a formula for the product of principal symbols. Section 6 is

devoted to the comparison between the calculus we get in the case of the groupoid of the b-calculus

and former constructions by R. Melrose [14].

Acknowledgments and credits. We are grateful to Daniel Bennequin for the extremely stimulat-

ing mathematical discussion he offered to them. Also, we would like to thank Dominique Manchon

for his constant encouragement. The first author thanks Claire Debord for the time and the help

she has given to him at each milestone of this project.

2. General definitions and preliminaries

2.1. Local submanifolds, families of submanifolds. We recall here some vocabulary of dif-

ferential geometry. All manifolds are C∞, σ-compact, with connected components of the same

dimension. All maps are C∞.

Definition 1. Let X be a manifold.

(1) A local submanifold of X of dimension p is any subset consisting of a countable union of

submanifolds of X of dimension p.



FIO ON LIE GROUPOIDS 5

(2) A submanifold of X contained in a local submanifold Z of the same dimension is called a

patch of Z.

(3) A parametrization of a local submanifold Z is a diffeomorphism of a manifold onto a patch

of Z.

A local submanifold is essentially the same thing as an immersed submanifold, the difference

being that for a local submanifold, the immersion is not a priori given.

Indeed, let Z be a local submanifold of X and let (Zj)j be a countable family of patches such that

Z = ∪jZj. Consider the manifold Y = ⊔jZj and observe that the obvious immersion f : Y → X

satisfies f(Y ) = Z. Conversely, if f : Y → X is an immersion then one can cover Y by a countable

family (Uj) of open subsets such that f : Uj → f(Uj) is a diffeomorphism. Thus the image

Z = f(Y ) = ∪f(Uj) is a local submanifold of dimension dimY .

Actually, images of maps f : Y → X of constant rank are also local submanifolds. Indeed, by

[11, Proposition C.3.3]) there exist countable families of local coordinate systems (Uj)j covering Y

and (Vj)j covering X such that f(Uj) ⊂ Vj and f is given in these coordinates by

(1) f(y1, . . . , ym) = (y1, . . . , yp, 0, . . . , 0) ∀(y1, . . . , ym) ∈ Uj.

Set Yj = {y ∈ Uj ; yp+1 = · · · = ym = 0} and consider the manifold Ỹ = ⊔jYj. The natural map

(2) Ỹ ∋ y 7−→ f(y)

is an immersion with range Z.

We recall that two submanifolds Z1, Z2 of X have a clean intersection if Z1∩Z2 is a submanifold

and at any point z ∈ Z1 ∩ Z2,

(3) Tz(Z1 ∩ Z2) = TzZ1 ∩ TzZ2.

The excess of the intersection is the number e = codim(TzZ1+TzZ2). The intersection is transversal

if e = 0 and the transversality of Z1, Z2 is denoted by Z1 ⋔ Z2.

Definition 2. Let Z1, Z2 be two local submanifolds of X. The intersection Z1 ∩ Z2 is clean (resp.

transversal) if there exist covers (Z1j) and (Z2k) of Z1 and Z2 by countably many patches such that

Z1j ∩ Z2k is clean with the same excess (resp. transversal) for all j, k .

In the following definitions, we consider a surjective submersion π : X −→ B between manifolds.

The fiber of π at the point b is noted Xb.

Definition 3.

(1) A submanifold Z of X is said transverse to π if π|Z : Z → B is a submersion.

(2) A local submanifold Z of X is said transverse to π if it can be covered by countably many

submanifolds transverse to π.

Definition 4. A family Z = (Zb)b∈U of subsets Zb ⊂ Xb, U open in B, is a C∞ family subordinated

to π of (resp. local) submanifolds if Z = ∪UZb is a (resp. local) submanifold of X transverse to π.

Definition 5. Let Z = (Zb)b∈B be a C∞ family of local submanifolds and set Z = ∪BZb.

(1) Patches and parametrizations of a family Z refer to the same objects for Z.

(2) A section of Z is a C∞ locally defined section of π : X → B with values in a patch of Z.
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2.2. Phases, clean and non-degenerate phases. A subset U of Rn × R
N is conic if (x, θ) ∈ U

implies (x, tθ) ∈ U for all t > 0. A map χ : U → V between conic subsets is homogeneous if

χ(x, tθ) = tχ(x, θ) for all t > 0.

Definition 6. [10, p.86][11, 21.1.8] A cone bundle consists of a surjective submersion p : C → X

and an action of R∗
+ on C which respects the fibers of p, such that:

For all v ∈ C, there exists a conic neighborhood U of v in C and a homogeneous diffeomorphism

χ : U → V ⊂ R
n × (RN \ {0}) onto a conic open subset such that the diagram

(4)

U V

U

χ

p

pr1

commutes. The triple (U ,V, χ) is then called a conic local trivialization of the cone bundle around

v. When X is a point, C is called a conic manifold.

Example 1. (1) If X is a manifold, T ∗X \ 0 is a conic manifold.

(2) Let π : Z → X be a submersion onto X and set C = Z ×R
k \ 0, p = π ◦ pr1. Then C, with

the obvious R+-action is a cone bundle over X. Indeed, Local trivializations κ : p−1(U)
≃
→

U × Y × R
k \ 0 provide conic local trivializations after composition by

(x, y, θ) 7−→ (x, |θ|.y, θ) ∈ U × (RnZ−nX+k \ 0).

Definition 7. [11, Def. 21.2.15],[9, p. 154]. Let X be a manifold and U ⊂ X an open subset.

(1) A phase function over U consists of a cone bundle (p,C,U) and a C∞ homogeneous function

φ : C → R without critical points.

(2) Let φ : C → R be a phase function over U . Let us note φ′vert : C → (ker dp)∗ the restriction

of the differential of φ to the fibers of p : C → U . We say that φ is clean if the set

(5) Cφ = {v ∈ C; φ′vert(v) = 0} = (φ′)−1(ker dp⊥)

is a submanifold of C with tangent space given by the equation dφ′vert = 0. The excess of

the clean phase φ is the number e = dimCφ − dimX = dimker dp − rk(dφ′vert).

(3) The phase function φ is non degenerate if φ′vert is a submersion (that is, clean and e = 0).

Using tdp−1 : (ker dp)⊥ → T ∗X, the “horizontal” part of dφ is then well defined on Cφ by

φ′hor(v) =
t(dpv)

−1(φ′(v)) ∈ T ∗
p(v)X, that is

(6) φ′hor(v)(t) = φ′(v)(u), t ∈ p∗(TX)v , dp(u) = t.

We introduce the map

Tφ : Cφ −→ T ∗X(7)

v 7−→ (p(v), φ′hor(v)
)

and we set

(8) Λφ = Tφ(Cφ) = {(p(v), φ′hor(v)) ; φ
′
vert(v) = 0}.

If φ is clean, then for any v ∈ Cφ, there exists an open conic neighborhood V of v into C such that

Tφ(V ) is a C∞ conic Lagrangian submanifold of T ∗X \ 0 and Tφ : Cφ ∩ V −→ Tφ(V ) is a fibration

with fibers of dimension e and therefore Λφ is a conic Lagrangian local submanifold of T ∗X \ 0

([11, 9], see also Remark 4.1 below). If the fibers of Tφ are moreover connected and compact,
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then Λφ is a true submanifold and Tφ : Cφ −→ Λφ is a fibration. On the other hand, if φ is non

degenerate, we just gain that Tφ is an immersion: Λφ is still a local submanifold (usually called in

the litterature immersed submanifold, self-intersections being not excluded).

Conversely, any conic Lagrangian submanifold Λ of T ∗X \ 0 can be locally parametrized by non

denegerate phase functions [11, 9]. This means that for any (x, ξ) ∈ Λ there exist an open conic

neighborhood W of (x, ξ) into T ∗X, an open conic subset V ⊂ X × R
N \ 0 and a non-degenerate

phase function φ : V → R with Λφ = Λ ∩W .

2.3. Lagrangian distributions on a manifold. Unless otherwise stated, we use the definitions

and notations of [11] for all the notions involved in the theory of Lagrangian distributions.

LetX be a C∞ manifold of dimension n, E a complex vector bundle over E, Λ a conic Lagrangian

submanifold of T ∗X \ 0 and m ∈ R. The set Im(X,Λ;E) consists of distributions belonging to

D′(X,E) which, modulo C∞(X,E), are locally finite sum of oscillatory integrals ([11, Section 25.1]):

(9) u =
∑

j∈J

(2π)−(n+2Nj )/4

∫
eiφj(x,θj)aj(x, θj)dθj mod C∞(X,E)

where for all j,

• (x, θj) ∈ Vj ⊂ Uj ×R
Nj with Uj a local coordinate patch of X and Vj an open conic subset;

• φj : Vj → R is a non degenerate phase function providing a local parametrization of Λ;

• aj(x, θj) ∈ Sm+(nX−2Nj)/4(Uj ×R
Nj , E) has support in the interior of a cone with compact

base and included in Vj.

Such distributions are called Lagrangian distributions associated with Λ, with values in E. When

Λ is the conormal bundle of a submanifold, they are called conormal distributions.

In the definition above, one can allow conic Lagrangian local submanifolds of T ∗X \ 0 and thus,

the set Im(X,E) of all Lagrangian distributions with values in E is a vector space.

The principal symbol of an element in Im(X,Λ;E ⊗ Ω
1/2
X ) can be defined as an element of

Sm+n/4(Λ, IΛ ⊗ Ê) well defined modulo Sm+n/4−1. Here IΛ is the tensor product of the Maslov

bundle with half densities over Λ and Ê is the pull back of E onto Λ. The principal symbol map

gives an isomorphism [11, Theorem 25.1.9]

(10) σ : I [m](X,Λ;E ⊗ Ω
1/2
X ) −→ S[m+n/4](Λ, IΛ ⊗ Ê),

with the conventions I [∗] = I∗/I∗−1, S[∗] = S∗/S∗−1.

Let X,Y,Z be C∞ manifolds and Λ1 ⊂ T ∗X \ 0 × T ∗Y \ 0 and Λ2 ⊂ T ∗Y \ 0 × T ∗Z \ 0 be

conic Lagrangian submanifolds closed in T ∗X × T ∗Y \ 0 and T ∗Y × T ∗Z \ 0 respectively. It is

understood that the symplectic structures of T ∗X × T ∗Y and T ∗Y × T ∗Z are the product ones.

Assume that the intersection of Λ1 × Λ2 with T ∗X ×N∗(∆Y )× T ∗Z is clean with excess e, where

N∗(∆Y ) is the conormal space of the diagonal ∆Y in Y 2. If A1 ∈ Im1(X × Y,Λ1; Ω
1/2
X×Y ) and

A2 ∈ Im2(Y × Z,Λ2; Ω
1/2
Y×Z) are properly supported, then [11, Theorem 25.2.3]

(11) A = A1 ◦ A2 ∈ Im1+m2+e/2(X × Z,Λ,Ω
1/2
X×Z).

Here A1 ◦ A2 is defined through the Schwartz kernel theorem and Λ is the conic Lagrangian local

submanifold defined by the composition of Λ1 and Λ2:

(12) Λ = Λ1 ◦ Λ2 = {(x, ξ, z, ζ) ; ∃(y, η) ∈ T ∗Y, (x, ξ, y,−η, y, η, z, ζ) ∈ Λ1 × Λ2}.
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Under the same assumptions on Λi, i = 1, 2, there is thus a well defined product of principal

symbols:

(13) S[m1+(nX+nY )/4](Λ1, IΛ1)× S[m2+(nY +nZ)/4](Λ2, IΛ2)
◦

−→ S[m1+m2+e/2+(nX+nZ)/4](Λ, IΛ)

which is defined abstractly by

(14) a = a1 ◦ a2 = σ(σ−1(a1) ◦ σ
−1(a2))

and computed concretely through the integral

(15) a(γ) =

∫

Cγ

a1 × a2

where a1, a2, a are representants in S∗ of the given classes in S[∗], γ ∈ Λ1 ◦ Λ2, the manifold Cγ is

the fiber of the projection map

(16) p : Λ̃ := Λ1 × Λ2 ∩ T
∗X ×N∗(∆Y )× T ∗Z −→ Λ1 ◦ Λ2

and a1×a2 is the density on Cγ with values in IΛ resulting from the natural bundle homomorphism

(17)

IΛ1 ⊗ IΛ2 p∗(IΛ)⊗ Ω(ker dp)⊗ Ω−1/2(T ∗Y )

Λ̃

p

and from the trivialization of Ω−1/2(T ∗Y ) using the canonical density of T ∗Y (see [11, Theorems

21.6.6, 25.2.3])

2.4. Lie groupoids, cotangent groupoids, associated foliations. The following reminder

about Lie groupoids is already included in [12]. We hope that this repetition will help the reading

by improving the self-containness of the paper.

A Lie groupoid is a manifold G endowed with the additional following structures:

• two surjective submersions r, s : G⇒ G(0) onto a manifold G(0) called the space of units.

• An embedding u : G(0) −→ G, which allows to consider G(0) as a submanifold of G and

then such that

(18) r(x) = x , s(x) = x, for all x ∈ G(0).

• A C∞ map

(19) i : G −→ G, γ 7−→ γ−1

called inversion and satisfying s(γ−1) = r(γ) and r(γ−1) = s(γ) for any γ.

• a C∞ map

(20) m : G(2) = {(γ1, γ2) ∈ G2 ; s(γ1) = r(γ2)} −→ G, (γ1, γ2) 7−→ γ1γ2

called the multiplication, satisfying the relations, whenever they make sense

(γ1γ2)γ3 = γ1(γ2γ3) r(γ)γ = γ γs(γ) = γ(21)

γγ−1 = r(γ) γ−1γ = s(γ) r(γ1γ2) = r(γ1), s(γ1γ2) = s(γ2).(22)
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It follows from these axioms that i is a diffeomorphism equal to its inverse, m is a surjective

submersion and γ−1 is the unique inverse of γ, for any γ, that is the only element of G satisfying

γγ−1 = r(γ), γ−1γ = s(γ). These assertions need a proof, and the unfamiliar reader is invited to

consult for instance [13] and references therein.

It is customary to write

Gx = s−1(x), Gx = r−1(x), Gyx = Gx ∩G
y, mx = m|Gx×Gx : Gx ×Gx −→ G.

Gx, G
x are submanifolds and Gxx is a Lie group. The submersion d : (γ1, γ2) 7→ γ1γ

−1
2 defined on

G×
s
G is called the division map.

Obviously, Lie groups, C∞ vector bundles, principal bundles, are Lie groupoids. Also, for any

manifold X, the manifold X ×X inherits a canonical structure of Lie groupoid with unit space X

and multiplication given by (x, y).(y, z) = (x, z). The reader can find in [27, 21, 2, 19, 17, 5, 16, 7,

6, 23, 24, 4] further examples of groupoids as well as applications.

The Lie algebroid AG of a Lie groupoid G is the vector bundle over G(0) defined by

(23) AG = TG(0)G/TG(0) = NG(0).

Since TG(0)G = ker ds ⊕ TG(0) = ker dr ⊕ TG(0), the bundle AG can be replaced, up to canonical

isomorphisms, by ker ds|G(0) or ker dr|G(0) . We will often use the dual Lie algebroid A∗G, that is,

the conormal space of G(0) in G.

Differentiating a Lie groupoid G produces a Lie groupoid TG⇒ TG(0) with the obvious structure

maps dr, ds, du, di, dm and the submanifold of composable pairs coincides with the tangent space of

the submanifold G(2), that is (TG)(2) = T (G(2)) ⊂ TG2. Another associated groupoid of particular

interest in this work is the cotangent groupoid Γ = T ∗G ⇒ A∗G discovered in [3] and whose

structure maps will be denoted rΓ, sΓ, uΓ, iΓ,mΓ. All the structure maps of T ∗G and the choice of

A∗G as a unit space are dictated by the aim of defining the product in T ∗G by the natural formula:

(24) (γ1, ξ1).(γ2, ξ2) = (γ1.γ2, ξ1 ⊕ ξ2)

with

ξ1 ⊕ ξ2(dm(t1, t2)) = ξ1(t1) + ξ2(t2), ∀(t1, t2) ∈ T(γ1,γ2)G
(2).

This makes sense if and only if (ξ1, ξ2) ∈ T ∗
(γ1,γ2)

G2 vanishes on ker dm, that is, denoting by

(25) ρ : T ∗
G(2)G

2 −→ T ∗G(2)

the natural restriction map, if and only if

(26) ρ(ξ1, ξ2) ∈ ker(dm(γ1,γ2))
⊥.

In that case we can set

(27) ξ1 ⊕ ξ2 = (tdm(γ1,γ2))
−1(ρ(ξ1, ξ2)).

This leads to the following formulas (see [12, 3, 13, 22] for more details) for the remaining structure

maps:

• sΓ(γ, ξ) = (s(γ), s(ξ)) with s(ξ) = td(Lγ)s(γ)(ξ) ∈ A∗
s(γ)G = (Ts(γ)G/Ts(γ)G

(0))∗;

• rΓ(γ, ξ) = (r(γ), r(ξ)) with r(ξ) = td(Rγ)r(γ)(ξ) ∈ A∗
r(γ)G = (Tr(γ)G/Tr(γ)G

(0))∗ ;

• iΓ(γ, ξ) = (γ−1,−(tdiγ)
−1(ξ)).
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Here, Rγ : Gr(γ) → Gs(γ), γ1 7→ γ1γ and Lγ : Gs(γ) → Gr(γ), γ2 7→ γγ2 denotes the (partially

defined) right and left multiplication maps by γ in G.

Taking into account the vector bundle structures

(28) p : T ∗G −→ G ; p2 : T ∗G2 −→ G2 ; p(2) : T ∗G(2) −→ G(2) ; p(0) : A∗G −→ G(0),

we observe that all structure maps of T ∗G are vector bundles homomorphisms and we get the

following exact sequences:

(29) 0 // N∗G(2) //

p2

��

(T ∗G)(2)
mΓ //

p2

��

T ∗G //

p

��

0

G(2) = // G(2) m // G,

(30) 0 // (ker dr)⊥ //

p

��

T ∗G
sΓ //

p

��

A∗G //

p(0)

��

0

G
= // G

s // G(0),

and

(31) 0 // (ker ds)⊥ //

p

��

T ∗G
rΓ //

p

��

A∗G //

p(0)

��

0

G
= // G

r // G(0).

It is useful to summarize the construction of the product mΓ in the commutative diagram below,

in which the first two lines are exact.

(32) 0 // N∗G(2) // T ∗
G(2)G

2
ρ

// T ∗G(2) // 0

0 // kermΓ
//

=

OO

(m,0)

��

(T ∗G)(2)
ρ

//

→֒

OO

mΓ

��

(ker dm)⊥ //

→֒

OO

(m,(tdm)−1)

��

0

0 // G× {0}
→֒ // T ∗G

= // T ∗G // 0.

The map (m, (tdm)−1) : (ker dm)⊥ → T ∗G will be noted m̃Γ later on.

Let G be a Lie groupoid G and consider the equivalence relation on G(0)

(33) x ∼G(0) y if Gxy 6= ∅.

The equivalence class of x ∈ G(0), also called the orbit of x (under the action of G onto G(0)) is

denoted by Ox. We obviously have

(34) Ox = r(s−1(x)) = s(r−1(x)) ⊂ G(0).

It is true that the Ox are all immersed submanifolds [13, Theorem 1.5.11], see also [21], which

define a singular Stefan foliation (see [13, Section 1.8, p.51]). We call it the canonical foliation of

G(0) and denote it by FG(0) .

The leaves of FG(0) can be lifted to G using r and this gives rise to another Stefan foliation FG
that we call the canonical foliation of G. Using s instead of r gives the same foliation. The leaves of
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FG are immersed submanifolds and coincide with the equivalence classes of the equivalence relation

on G given by

(35) γ1 ∼G γ2 if G
s(γ1)
r(γ2)

6= ∅.

Finally, the projection maps G2 → G, G(2) → G are respectively denoted by prj , pr(j), j =

1, 2 and if E,F are vector bundles over G, we will use the shorthand notation E ⊠ F to denote

pr(1)
∗(E)⊗ pr(2)

∗(F ) → G(2).

3. Families of Lagrangian submanifolds and of Lagrangian distributions

3.1. Families of Lagrangian submanifolds and submersions. Let π : M → B be a submer-

sion onto B, with fibers of dimension n and base of dimension q. The inclusionMb →֒M is denoted

by ib. We consider the vector bundle V ∗M = (ker dπ)∗ = ∪b∈BT
∗Mb over M and we denote by p

both the projection maps T ∗M → M and V ∗M → M . Similarly the natural submersions maps

T ∗M → B and V ∗M → B are both denoted by σ, while the natural restriction map T ∗M → V ∗M

is denoted by ρ. The fibers of V ∗M → B are exactly the cotangent spaces T ∗Mb, b ∈ B. We have

a short exact sequence of vector bundles over M

(36) 0 −→ (ker dπ)⊥ −→ T ∗M
ρ

−→ V ∗M −→ 0.

We are interested in C∞ families (Λb)b∈B of (local, Lagrangian, conic) submanifolds subordinated

to σ in the sense of Definition 4. By a slight abuse of vocabulary, we will say that they are

subordinated to π. Similarly, we will say that Λ ⊂ T ∗M is transverse to π if it is transverse to

σ = π ◦ p : T ∗M → B in the sense of Definition 4, which is here obviously equivalent to the

condition

(37) TxMb + dp(Tx,ξΛ) = TxM ∀b ∈ B, ∀x ∈Mb;

that is, equivalent to the transversality of the maps ib :Mb →M and p|Λ : Λ →M for any b. The

next theorem is a straight adaptation of Theorem 21.2.16 in [11].

Theorem 1. Let L = (Λb)b∈B be a family subordinated to π of conic lagrangian submanifolds and

L = ∪b∈BΛb ⊂ V ∗M \ 0 the associated transversal submanifold.

(1) For any (m0, ξ0) ∈ Λb0 , there exists local trivializations of π around m0 such that in the

associated local coordinates (x, b, ξ) of V ∗M , the map

(38) L ∋ (x, b, ξ) 7−→ (b, ξ)

is a local diffeomorphism. Such a local trivialization is called adapted to L (or L).

(2) In local trivializations adapted to L, there exists conic neighborhoods W of (b0, ξ0) ∈ R
q ×

(Rn \ 0) and V of (m0, ξ0) ∈ V ∗M \ 0 and a unique C∞ function H : W → R homogeneous

of degree 1 such that

(39) L ∩ V = {(H ′
ξ(b, ξ), b, ξ) ; (b, ξ) ∈ W}.

In other words, the C∞ function φ(x, b, ξ) = 〈x, ξ〉 −H(b, ξ) provides a family labelled by b

of non-degenerate phase functions φ(·, b, ·) parametrizing Λb.

Using the notions of sections, transversality and parametrizations introduced in Section 2, we

see that the conclusions of the theorem hold for families of conic lagrangian local submanifolds as

well. We just need to change L in (38) by a patch L′.
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Thus, families of lagrangian local submanifolds are parametrized by families of non-degenerate

phases functions defined in open cones of M × R
n \ 0.

Proof. Let (y, z) be a local trivialisation around m0. Here, z = (z1, . . . , zq) gives local coordinates

of B at b0 and for fixed b, y = (y1, . . . , yn) gives local coordinates of Mb. Following the proof of

[11, Theorem 21.2.16], we can perform a change of variables x = x(y) so that, as submanifolds

of T ∗Mb, the space Λb0 is transversal to the horizontal subspace ξ = ξ0 at the point (m0, ξ0) and

then, so that the map Λb0 ∋ (x, b0, ξ) → ξ has a bijective differential at (x0, b0, ξ0). Moreover, by

assumption, the map L ∋ (x, b, ξ) 7→ b has a surjective differential at (x0, b0, ξ0). Therefore, the

differential of L ∋ (x, b, ξ) 7→ (b, ξ) is surjective at (x0, b0, ξ0), hence bijective for dimL = n+ q.

We now turn to the second assertion which consists of routine computations (see for instance the

end of the proof of [11, Theorem 21.2.16]). By 1., there exists a neighborhood U = (U ×W )× C

of (x0, b0, ξ0) ∈ R
n+q × (Rn \ 0) and a C∞ function x(b, ξ) defined on W × C such that

L ∩ U = {(x(b, ξ), b, ξ) ; b ∈W, ξ ∈ C}.

Since x is necessarily homogeneous of degree 0 in ξ, we can assume that C is a cone. Since the

canonical one form of T ∗Mb vanishes on Λb, we get

∑

j

ξjdξxj(b, ξ) = 0.

In other words, the linear form u 7→ 〈x′ξ(b, ξ).u, ξ〉 vanishes. It follows that

(40) x(b, ξ) = H ′
ξ(b, ξ), with H(b, ξ) = 〈x(b, ξ), ξ〉,

and that, by Euler formula, this function H is unique among C∞ functions K(b, ξ) homogeneous

of degree 1 in ξ and satisfying K ′
ξ = x. Finally, it is clear that for fixed b, the function φ(x, b, ξ) :=

〈x, ξ〉 −H(b, ξ) is a non-degenerate phase function parametrizing Λb.

�

Theorem 2. Let (Λb)b∈B be a family subordinated to π of conic lagrangian local submanifolds.

There exists a unique conic lagrangian local submanifold Λ ⊂ T ∗M transverse to π such that

(41) i∗bΛ = Λb, b ∈ B.

One says that Λ is the gluing of the family (Λb)b∈B.

Proof. We first assume that (Λb)b∈B is a family of submanifolds. Assume that Λ is a conic lagrangian

submanifold of T ∗M satisfying (41). Let κ : U → U × W , κ(m) = (x, b), be an adapted local

trivialisation and H the corresponding function constructed in Theorem 1. By assumption, we

have in these coordinates

(42) κ∗(Λ ∩ T ∗U) ⊂ {(H ′
ξ(b, ξ), b, ξ, τ); ξ ∈ C, (b, τ) ∈ T ∗W}.

The projection (x, b, ξ, τ) → (b, ξ) restricted to κ∗(Λ ∩ T ∗U) is still a local diffeomorphism since

dimΛ = n+ q, thus τ is a C∞ function of (b, ξ). Since Λ is conic and Lagrangian, the fundamental
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one form of T ∗M vanishes identically on Λ, which yields

0 =
∑

j

ξjd(H
′
ξj )(b, ξ) +

∑

l

τldbl

=
∑

i,j

ξjH
′′
ξiξj (b, ξ)dξi +

∑

l,j

ξjH
′′
blξj

(b, ξ)dbl +
∑

l

τldbl

=
∑

l,j

ξjH
′′
blξj

(b, ξ)dbl +
∑

l

τldbl, since H ′
ξi is homogeneous of degree 0 in ξ,

=
∑

l,j

H ′
bl
(b, ξ)dbl +

∑

l

τldbl, since H ′
bl
is homogeneous of degree 1 in ξ,

which proves that τ(b, ξ) = −H ′
b(b, ξ) and thus

(43) κ∗(Λ ∩ T ∗U) = {(H ′
ξ(b, ξ), b, ξ,−H

′
b(b, ξ)); ξ ∈ C, b ∈W} ⊂ (T ∗U × T ∗W ) \ 0.

This proves the unicity and the transversality of Λ with respect to π as well. It also proves the

existence in open subsets of the form T ∗U , U being the domain of an adapted local trivialisation.

Remark for future reference that given (m, ξ) ∈ Λb, there is a unique (m, ζ) ∈ Λ such that ρ(m, ζ) =

(m, ξ).

The existence follows from the local existence and the unicity. Indeed, let (κj ,Uj), j = 1, 2, be two

adapted local trivialisations such that U1 ∩ U2 6= ∅ and Λ1,Λ2 the submanifolds of T ∗U1 and T ∗U2

defined by (43). The previous argument of unicity proves that over T ∗U1 ∩ U2, we have Λ1 = Λ2.

This allows to define a solution Λ globally on T ∗M using a cover by adapted trivialisations.

Now, let us consider the general case. Choose a countable cover of L = (Λb)b by families

Lj = (Λbj)b∈Uj
, j ∈ J , of conic Lagrangian submanifolds. By the first part of the proof there

exists for any j a unique Λj ⊂ T ∗M gluing Lj. Then Λ = ∪JΛj is a gluing of L and this

proves the existence. If Λ′
1 is a patch contained in another solution Λ′, then ρ(Λ′

1) is contained in

ρ(Λ′) = L = ∪BΛb. For any j ∈ J , the set Lj = ∪bΛbj is a patch of L and by the remark made

just after the proof of the unicity in the submanifold case, we get that ρ−1(Lj)∩Λ′
1 is contained in

the unique conic Lagrangian submanifold Λj gluing Lj . Therefore, Λ
′
1 ⊂ ∪JΛj = Λ and the unicity

follows directly. �

Conversely, we have

Theorem 3. Let Λ ⊂ T ∗M \ 0 be a conic lagrangian submanifold transverse to π. Then

(1) Λ ∩ (ker dπ)⊥ = ∅.

(2) (i∗b(Λ))b∈B is a family of conic lagrangian local submanifolds of T ∗Mb \ 0. In other words,

ρ(Λ) is a local submanifold of V ∗M transverse to π and for any b, the fiber

(44) Λb = i∗b(Λ) = ρ(Λ) ∩ T ∗Mb

is a conic Lagrangian local submanifold of T ∗Mb \ 0.

Clearly, the statement generalizes to the local case.

Proof. (1) On one hand, by dualizing the transversality condition (37), we get

(45) (ker dπ)⊥ ∩ (dp(TΛ))⊥ =M × {0} ⊂ T ∗M.

On the other hand, the inclusion

(46) Λ ⊂ (dp(TΛ))⊥
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holds. Indeed, by conicity of Λ, any (x, ξ) in Λ corresponds canonically to a vertical vector

in T(x,ξ)Λ, denoted by v(ξ). Since Λ is Lagrangian, we have with these notations

ξ(dp(Z)) = ω(v(ξ), Z) = 0, ∀Z ∈ T(x,ξ)Λ,

where ω denotes the symplectic form of T ∗M . Therefore Λ ∩ (ker dπ)⊥ ⊂ {0} and since by

assumption Λ ⊂ T ∗M \ 0, the first assertion is proved.

(2) As observed in [9, Chap. 4, Par. 4], the transversality assumption (37) is actually equivalent

to the transversality of the intersection of the canonical relation

Λ(ib) = {(m,−ξ,m, ζ) ∈ T ∗Mb × T ∗M ; m ∈Mb, ζ|TmMb
= ξ}

with Λ, viewed as a canonical relation from T ∗M to a point. Therefore, The Hormander’s

product of canonical relations applies [11, Theorem 21.2.14], that is, the map

ρb : Λ ∩ T ∗
Mb
M −→ T ∗Mb \ 0 , (m, ζ) 7−→ (m, ζ|TmMb

)

is an immersion with range ρb(Λ) = Λb = i∗b(Λ) a conic Lagrangian local submanifold of

T ∗Mb \ 0, for any b. From now on, let (m0, ζ0) ∈ Λ, b0 = π(m0), (m0, ξ0) = ρ(m0, ζ0)

and choose a local trivialization κ(m) = (x, b) of π around m0. After applying if necessary

a diffeomorphism in the x variables independent of b, we can assume that κ is such that

in a neighborhood of (m0, ξ0) in T ∗Mb0 , the projection Λb0 ∋ (x, ξ) → ξ has a bijective

differential. Moreover, by assumption, the map (x, b, ζ) → b has a surjective differential

everywhere. It follows that the map

(47) Λ ∋ (x, b, ξ, τ) 7−→ (b, ξ) ∈ R
q ×R

n

has a surjective differential, therefore bijective for dimensional reason. In particular, this

proves that the map ρ : Λ → V ∗M is an immersion, thus ρ(Λ) is a local submanifold. It

is also obvious from the same argument that ρ(Λ) is transverse to π, which proves that

(i∗(Λb))b∈B is a C∞ family of conic Lagrangian local submanifolds.

�

3.2. Families of Lagrangian distributions and submersions.

Definition 8. Let π : M −→ B be a C∞ submersion of a manifold M of dimension nM onto a

manifold B of dimension nB. A C∞ family of Lagrangian distributions of order m relative to π

is a family ub ∈ Im(π−1(b),Λb,Ω
1/2
π ), b ∈ B, such that (Λb)b∈B is a C∞ family and in any local

trivialization κ : U → U ×W of π, we have

κ∗(u|U ) =

∫
eiφ(x,b,θ)a(x, b, θ)dθ,

with a ∈ Sm+(nM−nB−2N)/4(U ×W × R
N) and (x, b, θ) 7→ φ(x, b, θ) is C∞ and a non-degenerate

phase function in (x, θ) which parametrizes locally Λb, for all b.

Proposition 4. Let B ∋ b 7→ ub ∈ I
m(π−1(b),Λb,Ω

1/2
π ) be a C∞ family. The formula

(48) 〈ũ, f〉 =

∫

B
〈ub, f〉, f ∈ C∞

c (M,Ω1/2
π ⊗ π∗(ΩB))

defines a Lagrangian distribution

(49) ũ ∈ Im−nB/4(M,Λ)

where Λ is the gluing of the family (Λb)b. The map (ub)b∈B 7→ ũ is bijective.
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Proof. Let ub ∈ Im(π−1(b),Λb,Ω
1/2
π ) be a C∞ family. In sufficently small local trivializations, we

have

(50) ub(x) =

∫
eiφ(b,x,θ)a(b, x, θ)dθ

for some C∞ family of non-degenerate phases functions (φ(b, ·, ·))b parametrizing the family (Λb)b

and some symbol a ∈ Sm+(nM−nB−2N)/4(U ×W × R
N).

Since (x, θ) 7→ φ(b, x, θ) is non-degenerate phase function for any b, the function (b, x, θ) 7→

φ(b, x, θ) is actually a non-degenerate phase function. We have necessarily Λφ = Λ locally, because

on one hand i∗b(Λφ) = Λb for any b and on the other hand, Λ is the unique lagrangian satisfying

this condition. It follows that ũ is given locally by the oscillatory integral :

ũ(b, x) =

∫
eiφ(b,x,θ)a(b, x, θ)dθ,

which proves that ũ ∈ Im−nB/4(M,Λ). Conversely, if v ∈ Im−nB/4(M,Λ) then locally

(51) v(x) =

∫
eiφ(b,x,θ)a(b, x, θ)dθ

for some non-degenerate phase function φ parametrizing Λ and some symbol Sm−nB/4+(nM−2N)/4(U×

W ×R
N ). Since Λ is transverse to π, the restriction vb of v to Mb is allowed and given by the C∞

family b 7→ vb(x) =
∫
eiφ(b,x,θ)a(b, x, θ)dθ where φ is regarded as a non degenerate phase function

in (x, θ) for fixed b. This proves that u 7→ ũ is bijective. �

4. Lagrangian submanifolds of the cotangent groupoid

The cotangent groupoid T ∗G⇒ A∗G [3, 13, 22] plays a basic role in the convolution of distribu-

tions on G [12]. It is thus natural to investigate the behavior of Lagrangian submanifolds of T ∗G

under convolution.

4.1. Generalities. We begin by classical facts in symplectic geometry.

Proposition 5. Let (S, ωS), (T, ωT ) be symplectic manifolds, H a submanifold of S and µ : H → T

a surjective submersion such that

(52) µ∗(ωT ) = ωS|H .

(1) The following assertions are equivalent

(a) H is coisotropic;

(b) (ker dµ)⊥ωS = TH;

(c) the graph Grµ = {(x, µ(x)) ; x ∈ H} is a Lagrangian submanifold of S × (−T ).

(2) Assume that the previous assertions are true. If Λ̃ is a Lagrangian local submanifold of S

in clean intersection with H then

(53) Λ := µ(Λ̃ ∩H)

is a local Lagrangian submanifold of T . If moreover Λ̃ is a submanifold and the map

µ : Λ̃ ∩H → Λ has compact and connected fibers, then Λ is a submanifold.

Proof. (1) The condition (52) implies that for any x, ker dµx ⊂ (TxH)⊥ωS . Let us assume that

H is coisotropic, that is, that (TxH)⊥ωS ⊂ TxH for all x. Let u ∈ (TxH)⊥ωS . Then by

assumption

ωT (dµ(u), dµ(v)) = ωS(u, v) = 0 for all v ∈ TxH,
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which by surjectivity of dµ proves that u ∈ ker dµx. This gives (a)⇒(b) and the converse

implication is trivial.

Let (s, t) ∈ (T Grµ)
⊥ω and choose u ∈ TxH with dµ(u) = t. Then ωT (dµ(u), dµ(s

′)) =

ωS(s, s
′) for all (s′, dµ(s′)) ∈ T Grµ. Using (52), this gives u − s ∈ (TH)⊥ω and assuming

(b) this gives t = dµ(s), which proves that Grµ is coisotropic and thus (c) since (52) is

obviously equivalent to the isotropy of Grµ.

For (c)⇒(a) we apply the following elementary lemma

Lemma 6. Let λ be a coisotropic linear subspace in a product of symplectic vector spaces

S1 × S2. Then prj(λ) is a coisotropic subspace of Sj, j = 1, 2.

(2) Using a decomposition of Λ̃ into patches, it is sufficient to assume that Λ̃ is a submanifold.

Now, the result follows from a symplectic reduction procedure: see [11, Proposition 21.2.13,

Theorem 21.2.14] or [26, page 12]. We outline the proof.

By assumption Λ̃ ∩H is a C∞ submanifold and at any point x ∈ Λ̃ ∩H

(54) Tx(Λ̃ ∩H) = TxΛ̃ ∩ TxH.

Since ker dµx ⊂ (ker dµx)
⊥ω = TxH, the symplectic reduction ([11, proposition 21.2.13])

applied to λ = TxΛ̃ asserts that

λ′ =
(
TxΛ̃ ∩H

)
/
(
Tx(Λ̃) ∩ ker dµx

)

is a Lagrangian subspace of the symplectic vector space S′ = TxH/ ker dµx ≃ Tµ(x)(T ).

Therefore rank dµx = dimT/2 is independent of x and the image Λ = µ(Λ̃ ∩ H) is a

local submanifold of T of dimension dimT/2. Assumption (52) implies that dµx(TxΛ̃∩H)

is Lagrangian, therefore Λ is a Lagrangian local submanifold. If the fibers of µ|Λ̃∩H are

moreover compact and connected, it follows by standard arguments of differential geometry

that Λ is actually a submanifold of T .

�

We now give a generic example in which Proposition 5 applies. This example also shows how,

and when, clean phase functions arise in the task of parametrizing Lagrangian submanifolds.

Proposition 7. Let X,Y be manifolds, Z ⊂ X a submanifold and f : Z → Y a submersion. Set

H = (ker df)⊥ ⊂ T ∗X and

µ : H ∋ (x, ξ) 7−→ (f(x), tdf−1
x (ξ)) ∈ T ∗Y.

The following assertions hold.

(1) Grµ is a Lagrangian submanifold of T ∗X × (−T ∗Y ).

(2) Let Λ̃ be a conic Lagrangian local submanifold of T ∗X \0 intersecting cleanly H with excess

e and such that Λ̃ ∩N∗Z = ∅. Let (x, ξ) ∈ Λ̃ ∩H and

φ̃ : U × R
N −→ R ; U open subset of X,

be a non-degenerate phase function parametrizing Λ̃ around (x, ξ). Setting V = U ∩ Z, the

restriction φ of φ̃ to V × R
N is a phase function on the cone bundle

(55) f ◦ pr1 : C = V × (RN \ 0) −→ f(V ) ⊂ Y.

This phase function is clean with excess e and parametrizes Λ = µ(Λ̃∩H) around µ(x, ξ) =

(f(x), t(df−1(ξ))).
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Proof. (1) This is immediately checked using local coordinates (x′, x′′, x′′′) for X such that Z

is given by x′′′ = 0, x′ gives local coordinates for Y and f(x′, x′′) = x′. Then one has

H = {(x′, x′′, 0, ξ′, 0, ξ′′′)} so that H is coisotropic and one can apply the first part of

Proposition 5.

(2) All the assertions being local, we may assume that Λ̃ is C∞. It is obvious that φ is C∞ and

homogeneous in the fibers of the given conic manifold. Assume that dφ vanishes at a point

(x, θ) ∈ V × R
N . This means that φ̃ satisfies

φ̃′x(x, θ)(t) = 0 ∀t ∈ TxZ, φ̃′θ(x, θ) = 0

This implies that (x, φ̃′x(x, θ)) ∈ Λ̃ ∩N∗Z, which contradicts the assumptions. Thus φ is a

phase function.

To precise Cφ, we note y ∈ Y the space coordinate of φ and

ω = (z, θ), where z ∈ f−1(y) ⊂ Z

the parameters. Then

Cφ = {(x, θ) ; φ′ω(x, θ) = 0}(56)

Observe that φ′ω = (φ̃′z, φ̃
′
θ) = (φ′z, φ

′
θ) thus

Cφ = {(x, θ) ∈ C
φ̃
; φ̃′z(x, θ) = 0}.(57)

Observe that φ̃′z(x, θ) = 0 means exactly that φ̃′x(x, θ) ∈ (ker df)⊥, therefore

(58) (x, θ) ∈ Cφ ⇔ (x, φ̃′x(x, θ)) ∈ Λ̃ ∩H.

It follows the local diffeomorphism T
φ̃
: C

φ̃
→ Λ̃ maps Cφ onto Λ̃ ∩H:

(59) Cφ ∋ (x, θ)
T
φ̃

7−→ (x, φ̃′x(x, θ)) ∈ Λ̃ ∩H.

This proves that Cφ is a C∞ submanifold of C
φ̃

since by assumption Λ̃ ∩ H is a C∞

submanifold. Recall that Cφ is given by the equations

(60) (x, θ) ∈ V × R
N , φ̃′z(x, θ) = 0, φ̃′θ(x, θ) = 0.

The first one means that (x, φ̃′x(x, θ)) = T
φ̃
(x, θ) ∈ H and the second one that (x, φ̃′x(x, θ)) =

T
φ̃
(x, θ) ∈ Λ̃. Recall that H is given by the equation

(61) ρ(x, ξ) = (x, 0),

where ρ : T ∗
ZX → (ker df)∗, (x, ξ) 7→ (x, ξz) is the submersion given by the restriction of

linear forms to ker df . Since by assumption we have

(62) T (Λ̃ ∩H) = T Λ̃ ∩ TH

and since T Λ̃ and TH are given respectively by the equations dφ′θ = 0 and dρ = 0, it follows

that (t, ζ) ∈ TZ × R
N belongs to TCφ if and only if dT

φ̃
(t, ζ) ∈ T (Λ̃ ∩ H), that is if and

only if

(63) dφ′θ(t, ζ) = 0 and dρdT
φ̃
(t, ζ) = 0

which, taking into account the definition of ρ and its linearity in the fibers, is equivalent to

(64) dφ′θ(t, ζ) = 0 and dφ′z(t, ζ) = 0

that is to dφ′ω(t, ζ) = 0 and this proves that φ is a clean phase function.
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Remember that φ is a phase function on the cone bundle V × R
N f◦pr1→ Y , that is, the

space variable is y ∈ Y and the parameter variable is ω = (z, θ) with z ∈ f−1(y). The

differential φ′h(y, ω) ∈ T ∗
y Y of φ in the “horizontal direction y” is well defined if and only if

the vertical differential φ′ω vanishes and then

(65) φ′h(y, ω)(v) = dzφ(z, θ)(u) ∀u ∈ TzZ such that df(u) = v.

Since dφ(z,θ)(u) = dφ̃(z,θ)(u), it follows that, around µ(x, ξ)

Λφ = {(y, φ′h(y, ω)) ; (y, ω) = (z, θ) ∈ Cφ}

= {(f(z), tdf−1(φ′z(z, θ)) ; (z, θ) ∈ Cφ}(66)

= Λ.

We have dimH = nX + nY and dimCφ = dim Λ̃ ∩H. Then

e = (2nX − dim Λ̃) + (2nX − dimH)− (2nX − dim Λ̃ ∩H)

= nX + nX − nY − 2nX + dim Λ̃ ∩H = dim Λ̃ ∩H − dimΛ(67)

= dimCφ − dimΛ

and the latter is by definition the excess e of φ.

�

Remark: Let φ be phase function over Y , defined on the total space of a given cone bundle

p : C → Y . Then Λ̃ = Gr(φ′) is a Lagrangian submanifold of T ∗C and in the notations of the

previous proposition with Z = X = C, f = p, we get

Λ̃ ∩H is clean if and only if φ is a clean phase function

and since µ(v, ξ) = (p(v), ξhor) for all (v, ξ) ∈ H = (ker dp)⊥, we also have

µ(Λ̃ ∩H) = Λφ

where Λφ is defined in (8).

Proposition 8. We use the notations and assumptions of Proposition 7. Let Ω be any line bundle

such that Ω|Z = ΩZ . We note

i∗ : E ′
Λ̃
(X,Ω) −→ E ′

i∗Λ̃
(Z,ΩZ)

the restriction to Z of distributions on X and

f∗ : E
′
i∗Λ̃

(Z,ΩZ) −→ E ′
Λ(Y,ΩY ),

the push-forward along f . The map

f# : Imc (X, Λ̃; Ω) −→ Im+e/2+(nX−2nZ+nY )/4
c (Y,Λ)

u 7−→ f∗(i
∗u)

is well defined.

For non compactly supported distributions, we get the same result by taking care of supports

for the push-forward operation. For instance, giving any ϕ ∈ C∞(Z) such that f : supp(ϕ) → Y is

proper, the conclusion of the lemma holds true with

u 7−→ f∗(ϕi
∗u).
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Proposition 8 could be deduced from [11, Theorem 25.2.3], but the direct proof below is instruc-

tive.

Proof of the Lemma. Let

A(x) =

∫
eiφ̃(x,θ)a(x, θ)dθ ∈ Im(X, Λ̃).

Here φ̃ : U×R
N → R is a non degenerate phase function parametrizing Λ̃ and a ∈ Sm+(nX−2N)/4(U×

R
N ). Since WF(A) ⊂ Λ̃ and, by assumption, Λ̃ ∩N∗Z = ∅, the distribution i∗(A) is well defined

([9, Chp. 6, Section 1]) and given by the oscillatory integral

(68) i∗(A)(z) =

∫
eiφ(z,θ)a(z, θ)dθ ∈ Im+(nX−nZ)/4(Z, i∗Λ̃)

where we recall that i∗Λ̃ = p(Λ̃ ∩ T ∗X|Z) with p : T
∗X|Z → T ∗Z is the canonical projection, since

applying the previous proposition to the case when Y = Z gives exactly that φ = φ̃|(U∩Z)×RN is a

non degenerate phase function parametrizing i∗Λ̃ = p(Λ̃ ∩ T ∗X|Z).

The next step consists in pushing i∗(A) forward with f . This amounts to integrate in the fibers

of f the Lagrangian distribution i∗A, which gives:

(69) f#A(y) =

∫

f−1(y)×RN

eiφ(z,θ)a(z, θ)dzdθ

where the integral is understood in the distributional sense. We already know by the previous

proposition that φ is a clean phase function over W = f(U ∩ Z) subordinated to the cone bundle

(U ∩ Z)× R
N → W, (z, θ) 7→ f(z). To conclude, it just remains to pay attention to the fact that

the fiber part of the variable z is not homogeneous and thus, strictly speaking, a is not a symbol

on W . Working in local coordinates, we can write

(70) a(x, θ) = a(y, z′, θ) ∈ Sm+(nX−2N)/4(RnY ×R
nZ−nY ×R

N ).

Setting ω(z′, θ) = (|θ|.z′, θ); ψ(y, ω) = φ(y, z′, θ) and b(y, ω) = a(y, z′, θ)|det(ω−1)|, we get |det(ω−1)| =

|θ|nY −nZ and thus b ∈ Sm+(nX−2N)/4+nY −nZ (RnY × R
nZ−nY +N ). It follows that

(71) f#A(y) =

∫

f−1(y)×RN

eiψ(y,ω)b(y, ω)dω

belongs to Im
′

(Y,Λ) where

m′ − e/2 + (nY − 2(nZ − nY +N))/4 = m+ (nX − 2N)/4 + nY − nZ

that is m′ = m+ e/2 + (nX − nY )/4− (nZ − nY )/2 = m+ e/2 + (nX − 2nZ + nY )/4 . �

4.2. Elementary operations on Lagrangian submanifolds of T ∗G. Recall [3, 13, 22] that a

groupoid Γ endowed with a symplectic form is symplectic if

(72) Gr(mΓ) = {(γ1, γ2, γ) ∈ Γ3 ; γ = γ1γ2}

is a Lagrangian submanifold of Γ × Γ × (−Γ). This assumption on the graph allows us to apply

Proposition 5 with S = Γ2, T = Γ, H = Γ(2) and µ = mΓ.

Corollary 9. Let Γ be a symplectic groupoid with multiplication map mΓ. Let Λ̃ be a Lagrangian

local submanifold of Γ2. If Λ̃ ∩ Γ(2) is clean then

(73) Λ := mΓ(Λ̃ ∩ Γ(2))

is a Lagrangian local submanifold of Γ.
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Applying this with Λ̃ = Λ1 × Λ2 where Λ1,Λ2 are Lagrangian local submanifolds of Γ, we get

natural sufficient conditions to perform the convolution of Lagrangian submanifolds.

Definition 9. Let Λ1,Λ2 be two Lagrangian local submanifolds of Γ. We say that Λ1 and Λ2 are

cleanly convolable if Λ1 × Λ2 cleanly intersects Γ(2). In that case, we denote by

(74) Λ1.Λ2 = mΓ(Λ1 × Λ2 ∩ Γ(2))

the convolution product of Λ1 and Λ2.

Another (obvious) operation is the transposition of Lagrangian submanifolds. Let Λ be a local

Lagrangian submanifold of Γ. Then

Λ⋆ = iΓ(Λ)

is again a local Lagrangian submanifold of Γ.

When Γ = T ∗G, with G a Lie groupoid [3, 12], Proposition 7 applies with X = G2, Y = G,

Z = G(2), f = m and this gives us a practical way to parametrize the convolution product of two

conic Lagrangian submanifolds of T ∗G which are cleanly convolable by the help of clean phase

functions.

Corollary 10. Let Λ1,Λ2 be local conic Lagrangian submanifolds of T ∗G \ 0 which are cleanly

convolable with excess e and satisfy Λ1 × Λ2 ∩N
∗(G(2)) = ∅. Let (γ1, ξ1, γ2, ξ2) ∈ (Λ1 × Λ2) ∩ Γ(2)

and φj : Uj × R
Nj −→ R be non-degenerate phases functions parametrizing Λj around (γj , ξj),

j = 1, 2. Then

(75) (U1 × U2 ∩G
(2))× (RN1 \ 0)× (RN2 \ 0) −→ R, (γ1, γ2, θ1, θ2) 7−→ φ1(γ1, θ1) + φ2(γ2, θ2)

is a phase function over U = U1.U2 ⊂ G associated with the cone bundle

(76) (U1 × U2 ∩G
(2))× (RN1 \ 0)× (RN2 \ 0) −→ G, (γ1, γ2, θ1, θ2) 7−→ γ1γ2.

This phase function is clean with excess e and parametrizes Λ1.Λ2 around (γ1γ2, ξ1 ⊕ ξ2).

4.3. Invertibility of Lagrangian submanifolds of T ∗G.

Definition 10. Let Γ be a symplectic groupoid.

(1) A Lagrangian submanifold Λ ⊂ Γ is invertible if there exists a Lagrangian submanifold

Λ′ ⊂ Γ cleanly convolable with Λ and such that

(77) Λ.Λ′ = rΓ(Λ) and Λ′.Λ = sΓ(Λ).

Λ′ is then called an inverse of Λ.

(2) A Lagrangian local submanifold Λ is locally invertible if it can be covered by invertible

patches and any Lagrangian local submanifold made of inverses of the corresponding invert-

ible patches is called a local inverse of Λ.

Theorem 11. Let Λ be a Lagrangian submanifold of Γ. Then Λ is locally invertible (resp. invert-

ible) if and only if the maps

(78) rΓ : Λ −→ Γ(0) and sΓ : Λ −→ Γ(0)

are local diffeomorphisms (resp. diffeomorphisms onto their ranges). In that case, Λ is transversally

convolable with Λ⋆ which provides a local inverse (resp. an inverse) of Λ.
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Proof. Let assume that Λ is locally inversible. By restricting our attention to a sufficiently small

patch, we can assume that Λ is invertible. Let Λ′ be an inverse. Firstly, note that Λ.Λ′ is a local

submanifold of T ∗G contained in Γ0. Since Λ.Λ′ and Γ(0) are Lagrangian we have dimA∗G =

dimΛ.Λ′ and thus each patch of Λ.Λ′ is an open subset of Γ(0). It follows that Λ.Λ′ itself is an open

subset of Γ(0) and therefore a true submanifold. Now, by assumption,

(79) mΓ : (Λ× Λ′)(2) −→ Λ.Λ′ = rΓ(Λ)

is a surjective submersion. Since the map rΓ is equal to the identity map in restriction to Γ(0), we

have the equality of maps

(80) rΓ ◦ pr1 = rΓ ◦mΓ = mΓ : (Λ× Λ′)(2) −→ Λ.Λ′ ⊂ Γ(0).

It follows that

(81) rΓ ◦ pr1 : (Λ× Λ′)(2) −→ Λ.Λ′ = rΓ(Λ)

is a submersion. Observe also that

(82) pr1 : (Λ× Λ′)(2) → Λ

is surjective. Indeed, for any γ ∈ Λ, there exists by surjectivity of the map (79) an element

(γ1, γ2) ∈ (Λ× Λ′)(2) such that γ1γ2 = rΓ(γ). In particular r(γ1) = r(γ) and γ−1
1 = γ2 ∈ Λ′. Thus

(γ−1
1 , γ) ∈ (Λ′ × Λ)(2) and the assumption Λ′.Λ ⊂ Γ(0) implies γ = γ1 = pr1(γ1, γ2).

Since the map (82) is surjective, we deduce from the surjectivity of the differential of (81) at any

point the surjectivity of the differential of rΓ : Λ → Γ(0) everywhere too. By equality of dimension,

rΓ is then a local diffeomorphism. The same holds for sΓ.

Conversely, let us assume that rΓ, sΓ : Λ → Γ(0) are local diffeomorphisms. Then the map

sΓ × rΓ|Λ×Λ⋆ : Λ× Λ⋆ −→ Γ(0) × Γ(0)

is also a local diffeomorphism. It follows that

(83) (Λ× Λ⋆)(2) = (sΓ × rΓ)
−1
|Λ×Λ⋆(∆Γ(0)) = (sΓ × rΓ)

−1(∆Γ(0)) ∩ Λ× Λ⋆

is a submanifold of dimension n of Γ2 with tangent space given by

T (Λ× Λ⋆)(2) = TΓ(2) ∩ T (Λ× Λ⋆).

Therefore the intersection Λ× Λ⋆ ∩ Γ(2) is clean with excess satisfying

e = codim(Λ× Λ⋆) + codim(Γ(2))− codim((Λ× Λ⋆)(2)) = 2n+ n− 3n = 0,

in other words, we get (Λ × Λ⋆) ⋔ Γ(2). Moreover, for any δ ∈ Λ, there exists an open conic

neighborhood U of δ in Γ such that

rΓ, sΓ : ΛU = Λ ∩ U −→ Γ(0)

are diffeomorphisms onto their respective images. By the previous arguments, (ΛU × iΓ(ΛU ) ⋔ Γ(2)

and if η ∈ iΓ(ΛU ) is such that (δ, η) ∈ (ΛU × iΓ(ΛU ))
(2) then by injectivity of sΓ we get η = δ−1.

It follows that ΛU .iΓ(ΛU ) = rΓ(ΛU ). This proves that Λ is locally invertible and since iΓ(ΛU ) =

(Λ⋆)U−1 , we conclude that Λ⋆ is a local inverse.

Now, assume that rΓ, sΓ are diffeomorphisms onto their ranges, that is, are injective local dif-

feomorphisms. If there exists δ ∈ Λ and η ∈ Λ⋆ such that δη 6∈ Γ(0) then δ, η−1 ∈ Λ, δ 6= η−1 but

sΓ(δ) = sΓ(η
−1) which contradicts the injectivity of sΓ. This gives the inclusion Λ.Λ⋆ ⊂ Γ(0) and
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then the equality Λ.Λ⋆ = rΓ(Λ) follows from the definition of Λ⋆. We get the equality Λ⋆.Λ = sΓ(Λ)

using the injectivity of rΓ.

Conversely, assume that Λ′ is an inverse of Λ. Let u ∈ rΓ(Λ). Since Λ.Λ′ = rΓ(Λ), there exists

(δ1, δ
′
1) ∈ (Λ×Λ′)(2) such that δ1.δ

′
1 = u. Let δ ∈ Λ be such that r(δ) = u. Then (δ′1, δ) ∈ (Λ′×Λ)(2)

and thus δ′1.δ ∈ Γ(0). This gives

δ1 = δ′1
−1 = δ.

In other words, rΓ|Λ : Λ −→ Γ(0) is injective. The same holds for sΓ. �

Remark 12.

(1) We have proved that the (local) invertible Lagrangian submanifolds of Γ are precisely the

Lagrangian (local) bissections of Γ. Here we follow the terminology of [1] for bissections,

while in [3, see Paragraphs I.3 and II.1] bissections are required to project onto Γ(0): this is

a minor and technical distinction implying that the set Gr(Γ) is no more here a group but

a groupoid with unit space given by the collection of open subspaces of Γ(0).

(2) In particular we recover results from [11] in the case where G =M ×M is the pair groupoid

on a manifold M . Then a conic Lagrangian submanifold of Γ = T ∗G is (locally) invert-

ible if and only if it coincides (locally) with the graph of a partially defined homogeneous

canonical transformation [11, Sections 25.3 and 21.2], that is, the graph of a homogeneous

symplectomorphism from an open conic subset of T ∗M to another one.

4.4. G-relations. From now on, Γ = T ∗G for a given Lie groupoid G. By construction of T ∗G,

we know that N∗(G(2)) = kermΓ where mΓ : (T ∗G)(2) → T ∗G is regarded as a vector bundles

homomorphism. Since rΓ ◦mΓ = rΓ ◦ pr1, we obtain that a sufficient condition to get the technical

asusmption Λ1 ×Λ2 ∩N
∗(G(2)) = ∅ in Corollary 10 is for instance Λ1 ∩ ker rΓ = ∅. We also proved

in [12] that if u ∈ D′(G,Ω1/2) and WF(u)∩ ker σΓ = ∅ for σ = s, r then u gives by convolution an

adjointable G-operator. For these reasons, we set

Definition 11. A set Λ ⊂ T ∗G \ 0 is called admissible if

(84) Λ ∩ ker sΓ = Λ ∩ ker rΓ = ∅.

A G-relation is an admissible conic Lagrangian submanifold of T ∗G. Local G-relations are defined

accordingly.

Example 2. Any conic Lagrangian submanifold Λ ⊂ T ∗G \ 0 which is invertible is a G-relation.

Otherwise, we will deduce from the conicity assumption that the differential of either sΓ : Λ → A∗G

or rΓ : Λ → A∗G at some point is not injective.

Let us comment further the definition. Firstly, for any G-relation Λ , the set

(85) m∗(Λ) = {(γ1, γ2, ζ) ∈ T ∗(G(2)) ; ∃(γ, ξ) ∈ Λ , γ1γ2 = γ, t(dm)γ1,γ2(ξ) = ζ} ⊂ T ∗(G(2)) \ 0,

is still a conic Lagrangian submanifold of T ∗(G(2))\0, sincem : G(2) → G is a surjective submersion

[9, Chp. 4, Proposition 4.1]. Moreover, remembering the map m̃Γ defined after Diagram (32)) we

get:

(86) m∗(Λ) = m̃Γ
−1(Λ).

This implies the inclusion, which will be reused later:

(87) ker dm̃Γ ⊂ Tm∗(Λ).
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Next, we relate Condition (84) with the “no-zero” condition [11, 14] required for homogeneous

canonical relations. For that purpose, we introduce the family of sets i∗x(m
∗(Λ)) = m∗

x(Λ), x ∈ G(0),

that is:

(88) m∗
xΛ = {(γ1, ξ1, γ2, ξ2) ∈ T

∗Gx × T ∗Gx ; ∃(γ, ξ) ∈ Λ, γ1γ2 = γ, t(dmx)γ1,γ2(ξ) = (ξ1, ξ2)},

and we prove

Proposition 13. Let W ⊂ T ∗G \ 0. Then W is admissible if and only if

(89) m∗
xW ⊂ (T ∗Gx \ 0)× (T ∗Gx \ 0), ∀x ∈ G(0).

Proof. Differentiating mx, we get d(mx)(γ1,γ2)(t1, t2) = dRγ2(t1)+ dLγ1(t2), t1 ∈ Tγ1Gx, t2 ∈ Tγ2G
x

thus

td(mx)(γ1,γ2)(ξ) = (tdRγ2(ξ),
tdLγ1(ξ)) = (tdRγ−1

1
(r(ξ)), tdLγ−1

2
(s(ξ))) ∈ T ∗

γ1Gx × T ∗
γ2G

x.

It follows that

m∗
x(W ) =

{(
γ1,

tdRγ−1
1

(r(ξ)), γ2,
tdLγ−1

2
(s(ξ))

)
; (γ1, γ2) ∈ Gx ×Gx, (γ1γ2, ξ) ∈W

}
.

Since tdRγ−1
i

and tdLγ−1
2

are bijective, the result follows. �

Observe that if Λ is a G-relation, then the subsets m∗
x(Λ) are not necessarily Lagrangian sub-

manifolds of T ∗(Gx × Gx). An example will be given below (Example 4): for the G-relation Λ

considered in (122), we get that m∗
(0,0)Λ, given in (128), is isotropic but not Lagrangian. This bad

behavior leads us to

Definition 12. A family G-relation Λ is a G-relation such that the pull-back m∗(Λ) ⊂ T ∗(G(2))

is a Lagrangian submanifold transverse to π : G(2) → G(0). Local family G-relations are defined

accordingly.

If Λ is a G-relation, we obtain from Theorems 2 and 3 that Λ is a family G-relation if and only

if (m∗
xΛ)x∈G(0) is a C∞ family of conic Lagrangian submanifolds subordinated to π : G(2) → G(0),

which gives a first justification for the terminology.

Next, if Λ is a family G-relation, then the family given by Λx = m∗
x(Λ), x ∈ G(0), is equivariant

in the following sense:

(90) ∀x, y ∈ G(0), ∀(γ1, γ2, ξ1, ξ2) ∈ Λx, ∀γ ∈ Gxy , (γ1γ, γ
−1γ2,

t(dRγ−1)(ξ1),
t(dLγ)(ξ2)) ∈ Λy.

Indeed, if cγ : Gx ×Gx −→ Gy ×Gy, γ ∈ Gxy , is the map defined by cγ(γ1, γ2) = (γ1γ, γ
−1γ2), then

the commutative diagram

(91) Gx ×Gx

cγ

��

mx // G

Gy ×Gy
my

77
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

yields the equality (cγ)
∗(Λy) = Λx and then the property (90). All the previous remarks are

unchanged if submanifolds are replaced by local submanifolds and we now prove that all local

family G-relations come from equivariant families, which ends the justification of the terminology.

Theorem 14. Let (Λx)x be a C∞ equivariant family of conic local canonical relations in (T ∗Gx \

0)× (T ∗Gx \ 0). Then there exists a unique local family G-relation Λ such that

m∗
x(Λ) = Λx, for all x ∈ G(0).
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Proof. To prove the existence, we can decompose the family into patches and then, we can assume

that (Λx)x is a family of submanifolds. Let Λ̃ ⊂ T ∗(G(2))\0 denotes its gluing (Theorem 2). Recall

that it is the unique Lagrangian submanifold such that i∗xΛ̃ = Λx for all x. In an appropriate local

trivialization of π : G(2) → G(0), we have

(92) Λ̃ = {(γ1, γ2, ξ1, ξ2, τ) ∈ T ∗(G(2)) ; (γ1, γ2, ξ1, ξ2) ∈ Λx}

where τ is a C∞ function of ξ1, ξ2 and x = s(γ1) = r(γ2). It is understood that (ξ1, ξ2, τ) ∈

T ∗
(γ1,γ2)

G(2) ≃ T ∗
γ1Gx×T

∗
γ2G

x×T ∗
xG

(0) where the decomposition comes from the local trivialisation

of π : G(2) → G(0).

Let λ̃ = (δ, ξ) ∈ Λ̃ with δ = (γ1, γ2) and ξ = (ξ1, ξ2, τ). Let u = (u1, u2) ∈ ker dmγ1,γ2 and choose

a C∞ path t 7→ γ(t) in G such that γ(0) = x, d
dtγ1γ(t)|t=0 = u1,

d
dtγ(t)

−1γ2|t=0 = u2. It gives rise

to a C∞ path in (ker dπ)∗ defined by

(93) λt = (γ1γ(t), γ(t)
−1γ2,

t(dRγ(t)−1)(ξ1),
t(dLγ(t))(ξ2))

Thanks to the equivariance, we have

(94) λt ∈ Λs(γ(t)) for all t.

Thus, we get a C∞ path in Λ̃ as well:

(95) λ̃(t) = (γ1γ(t), γ(t)
−1γ2,

t(dRγ(t)−1)(ξ1),
t(dLγ(t))(ξ2), τ(t)) = (δ(t), ξ(t))

Since Λ̃ is conic and Lagrangian, the canonical one form α = ξdδ vanishes identically on it and in

particular we get for all t

(96) (λ̃)∗α(t) = 〈ξ(t), δ′(t)〉 = 0.

For t = 0, this gives 〈ξ, u〉 = 0, and therefore

(97) Λ̃ ⊂ (ker dm)⊥ = ρ(T ∗G)(2) ⊂ ρ(T ∗G2)

where ρ : T ∗G2 → T ∗(G(2)) is the natural restriction of linear forms seen in the diagram (32). Note

that for every Lagrangian submanifold Λ̃ in T ∗(G(2)), then Λ = ρ−1(Λ̃) is a Lagrangian submanifold

in T ∗G2 (it is the push-forward of Λ̃ by the natural immersion G(2) → G2- see [9, Prop 4.2]).

We can then apply Corollary 9 to the Lagrangian ρ−1(Λ̃). Indeed, by construction, ρ−1(Λ̃) ⊂

(T ∗G)(2) and thus the clean intersection assumption of Corollary 9 is trivially satisfied. It follows

that Λ = mΓ(ρ
−1(Λ̃)) is a local G-relation such that m∗(Λ) = Λ̃. Hence it is a local family

G-relation such that m∗
xΛ = Λx for any x by Theorem 2.

Let Λ,Λ′ be two local family G-relations answering the question. Set Λ̃ = m∗(Λ) = m̃Γ
−1(Λ)

and Λ̃′ = m∗(Λ′) = m̃Γ
−1(Λ′). Since

(98) m∗
x(Λ) = i∗xΛ̃ = Λx = m∗

x(Λ
′) = i∗xΛ̃

′, ∀x,

Theorem 2 implies Λ̃ = Λ̃′. Since m̃Γ is surjective, we conclude

(99) Λ = m̃Γ(m̃Γ
−1(Λ)) = m̃Γ(m̃Γ

−1(Λ′)) = Λ′.

�

We give a another characterization of family G-relations.
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Proposition 15. Let Λ be a G-relation and p : T ∗G → G the natural projection map. Then Λ is

a family G-relation if and only if

(100) ∀x ∈ G(0), mx ⋔ p|Λ,

that is, dmx(Tγ1Gx × Tγ2G
x) + dp(T(γ,ξ)Λ) = TγG, for all x, (γ, ξ) ∈ Λ and (γ1, γ2) ∈ m−1

x (γ).

Proof. Let Λ be a G-relation. The inclusion (87) and the equality dp(2)(ker dm̃Γ) = ker dm yields

the inclusion

(101) ker dm ⊂ dp(Tm∗Λ).

Therefore, for all x ∈ G(0) and omitting other base points, we have

dm(TGx ×Gx) + dp(TΛ) = TG

⇔ dm(TGx ×Gx) + dp(Tm̃Γ(m̃Γ
−1(Λ))) = TG

⇔ dm(TGx ×Gx) + dm.dp(2)(Tm̃Γ
−1(Λ)) = TG

⇔ TGx ×Gx + dp(2)(Tm̃Γ
−1(Λ)) = TG(2) by (101)

⇔ dπ.dp(2)(Tm̃Γ
−1(Λ)) = TxG

(0).

The last line means that m̃Γ
−1(Λ) is transversal to π so the proof is ended. �

The condition introduced in Proposition 15 has a strong geometrical meaning. We have

(102) (dmx)(γ1,γ2)(Tγ1Gx × Tγ2G
x) = TγGs(γ) + TγG

r(γ) = TγFG;

for any (γ1, γ2) ∈ Gx ×Gx such that γ1γ2 = γ. Here TγFG denotes the tangent space at γ of the

leaf of FG passing through γ. It follows that the condition introduced in Proposition 15 means

(103) p|Λ : Λ → G and FG are transversal,

that is,

(104) TγFG + dp(Tγ,ξΛ) = TγG, for all (γ, ξ) ∈ Λ.

Furthermore, we may get rid of the projection p. Indeed, (104) is clearly equivalent to

(105) T(γ,ξ)(T
∗
LG) + T(γ,ξ)Λ = T(γ,ξ)T

∗G, for all (γ, ξ) ∈ Λ,

where L is the leaf of F containing γ. That is,

(106) T ∗
LG ⋔ Λ for all L ∈ FG.

We deduce from (104):

Proposition 16. Let Λ be a G-relation. Then Λ is a family G-relation if and only if

∀(γ, ξ) ∈ Λ, dr(TγGs(γ)) + dr(dπTγ,ξΛ) = Tr(γ)G
(0) or ds(TγG

r(γ)) + ds(dπTγ,ξΛ) = Ts(γ)G
(0).

Therefore, if Λ is a G-relation and r ◦ π : Λ → G(0) or s ◦ π : Λ → G(0) are submersions then Λ

is a family G-relation. The converse is false: consider G = X ×X × Y with its natural structure

of groupoid (fibered pair groupoid) and Λ = N∗V \ 0 where V = {(x0, x0)} × Y .

Definition 13. A G-relation onto which the maps s◦π and r ◦π are submersions is called a strong

G-relation.

Next, we analyse the behavior of family G-relations under convolution. Unfortunately, it is not

true that the convolution of family G-relations is a family G-relation.
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Example 3. Set X = Z = R
n, n = k+ (n− k), G = X ×X ×Z ⇒ X ×Z, decompose z ∈ Z into

(z′, z′′) with z′ ∈ R
k, z′′ ∈ R

n−k and consider C∞ maps xj , yj : Z → X, j = 1, 2 defined by

x1(z) = y1(z) = y2(z) = z and x2(z) = (z′,−z′′).

Introduce the submanifolds of G

Vj = Graph(xj, yj) = {(xj(z), yj(z), z) ; z ∈ Z}, j = 1, 2

and the conic Lagrangian submanifolds of T ∗G \ 0

Λj = {(xj(z), ξj , yj(z), ηj , z,−
tdxj(ξj)−

tdyj(ηj)) ; z ∈ Z, ξj , ηj ∈ R
n \ 0} ⊂ N∗Vj.

Thanks to the subsets that we have removed from the conormal spaces, Λ1 and Λ2 are admissible.

Since TF = TX × TX × 0, the transversality condition (104) is satisfied for a given Λ if and only

if dπ(TΛ) projects onto TZ . This is clearly the case for Λ1,Λ2 which are then family G-relations.

With the choices made, the intersection

Λ1 × Λ2 ∩ (T ∗G)(2)

= {(x1(z
′), ξ1, y1(z

′), η1, z
′,−td(x1, y1)(ξ1, η1), y1(z

′),−η1, y2(z
′), η2, z

′,−td(x2, y2)(−η1, η2) ;

z′ ∈ R
k, ξ1, η1, η2 ∈ R

n \ 0}

is clean. We obtain

Λ1.Λ2 = {(x1(z
′), ξ1, y2(z

′), η2, z
′,−td(x1, y1)(ξ1, η1)−

td(x2, y2)(−η1, η2) ;

z′ ∈ R
k, ξ1, η1, η2 ∈ R

n \ 0}.

Here, Λ = Λ1.Λ2 is a G-relation but not a family G-relation since the projection on TZ of dπ(TΛ)

is TRk × 0.

There are also contre-examples for strong G-relations. Actually, to obtain that Λ1∗Λ2 is a family

G-relation, what matters is the position of the cartesian product Λ1 ×Λ2 with respect to Γ(2) and

not the position of each Λj in T
∗G.

Theorem 17. Let Λ1,Λ2 be convolable G-relations.

(1) Λ1.Λ2 is a local G-relation and

(107) Λ1.Λ2 = (Λ1 ∪ 0) ∗ (Λ2 ∪ 0) \ 0.

(2) Λ1.Λ2 is a local family G-relation if and only if Λ1 and Λ2 satisfy

(108) (Tγ1FG × Tγ2FG)
(2) + dp2(T(γ1,ξ1,γ2,ξ2)(Λ1 × Λ2)

(2)) = T(γ1,γ2)G
(2)

for all (γ1, ξ1, γ2, ξ2) ∈ (Λ1 × Λ2)
(2).

Remark 18.

(1) The right hand side in (107) is the natural set containing the wave front set of the convo-

lution product u1 ∗ u2 of distributions on G such that WF(uj) ⊂ Λj [12].

(2) The conclusions of the theorem are identical if we start with local submanifolds.

Clean convolability assumption together Condition (108) will be called complete convolability.

The proof of the theorem uses an elementary fact about Lie groupoids.

Lemma 19. For any (γ1, γ2) ∈ G(2), we have

(109) (Tγ1FG × Tγ2FG)
(2) = (dm(γ1,γ2))

−1(Tγ1γ2FG).
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Proof of the lemma. Let T be a Lie groupoid and FT its canonical foliation. If (δ1, δ2) ∈ T (2) then

δ1, δ2 and δ = δ1δ2 are in the same leaf L. From the very definition of the leaves of FT , we get

(110) (L× L)(2) = m−1
T (L).

If G is a Lie groupoid and T = TG, we have FTG = {TL ; L ∈ FG}. The lemma follows. �

Proof of the theorem.

(1) If Λj , j = 1, 2 is admissible, then (Λj ×G × {0})(2) = (G × {0} × Λj)
(2) = ∅, which yields

(107), and rΓ(Λ1.Λ2) ⊂ rΓ(Λ1) and sΓ(Λ1.Λ2) ⊂ sΓ(Λ2), which yields the admissibility of

Λ1.Λ2. We then know that Λ = Λ1.Λ2 is a local Lagrangian submanifold of T ∗G \ 0 by

Corollary 9. The homogeneity of Λ in the fibers is obvious.

(2) Using the equalities

(111) dm.dp2(T ((Λ1 × Λ2)
(2))) = dp.dmΓ(T ((Λ1 × Λ2)

(2))) = dp(TΛ)

Lemma 19 and the fact that ker(dm) ⊂ (TFG × TFG)
(2), we get the equivalence

TFG + dp(TΛ) = TG⇔ (TFG × TFG)
(2) + dp2(T (Λ1 × Λ2)

(2)) = TG(2).

where the suitable base points are understood.

�

Remark 20. Geometrically, Condition (108) means that the composable part of Λ1 × Λ2 has a

projection into G(0) transversal to the canonical foliation of FG(0) . More precisely, it is easy to

check that (108) is equivalent to

(112) dσ2(T(γ1,ξ1,γ2,ξ2)(Λ1 × Λ2)
(2)) + TOx = TxG

(0), ∀(γ1, ξ1, γ2, ξ2) ∈ (Λ1 × Λ2)
(2)).

Here x = s(γ1) = r(γ2) and σ
2 : (T ∗G)(2) → G(0) is defined by σ2(γ1, ξ1, γ2, ξ2) = s(γ1).

Proposition 21. Let Λ be a G-relation and Y ⊂ G(0) be a saturated submanifold. We note H = GYY
the induced Lie subgroupoid, i : H →֒ G the inclusion and ρ : T ∗

HG −→ T ∗H the restriction map.

(1) If i and p : Λ → G are transversal, then Λ ∩N∗H = ∅ and i∗Λ is a local H-relation.

(2) If Λ is a family, then the assumption in (1) is satisfied and ρ∗Λ is a local family H-relation.

Proof. (1) By transversality of H and p : Λ → G, the set i∗Λ = ρ(Λ) is a local Lagrangian

submanifold. Since Y is saturated, we have Gx = Hx and Gx = Hx for all x ∈ Y . This

yields the equality A∗
YG = A∗H and the commutative diagram

T ∗
HG T ∗H

A∗
YG A∗H

ρ

sT∗GrT∗G
sT∗HrT∗H

In particular ker σT ∗H = ρ(ker σT ∗G), σ = s, r and the admissibility of Λ implies

ρ(Λ) ∩ kerσT ∗H = ρ(Λ ∩ ker σT ∗G) = ∅,

where the first equality holds for ker ρ ⊂ kerσT ∗G.

(2) By assumption we have

(113) TγFG + dpG(T(γ,ξ)Λ) = TγG, ∀(γ, ξ) ∈ Λ ∩ T ∗
HG.
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By saturation of Y again, we have FH = {L ∈ FG ; L ∩H 6= ∅}. Thus TγFG = TγFH ⊂

TγH, for all γ ∈ H and (113) gives

(114) TγH + dp(T(γ,ξ)Λ) = TγG, ∀(γ, ξ) ∈ Λ ∩ T ∗
HG.

which is the assumption made in (1) and observe that is also equivalent to the property:

(115) T ∗
HG ⋔ Λ.

We also get from (113)

(116) TγH = (TγFG + dpG(T(γ,ξ)Λ)) ∩ TγH = TγFH + dpG(T(γ,ξ)Λ) ∩ TγH, ∀(γ, ξ) ∈ Λ ∩ T ∗
HG.

Furthermore,

dpG(T(γ,ξ)Λ) ∩ TγH = dpG(T(γ,ξ)Λ) ∩ T(γ,ξ)T
∗
HG) since ker d(pG)|H ⊂ T ∗

HG

= dpG(T(γ,ξ)(Λ ∩ T ∗
HG)) using (115)

= dpH ◦ dρ(T(γ,ξ)(Λ ∩ T ∗
HG)) since (pG)|H = pH ◦ ρ

= dpH(Tρ(Λ)) by definition of ρ(Λ).(117)

Using the result of this computation in (116) proves that ρ(Λ) is a family H-relation.

�

5. Fourier integral operators on groupoids

5.1. Definitions. Following [11], we are lead to

Definition 14. Let G be a Lie groupoid. Distributions belonging to I(G,Λ;Ω1/2) where Λ is any

(family) local G-relation are called (family) Fourier integral G-operators.

We abbreviate Fourier integral G-operators into G-FIO and family Fourier integral G-operators

into G-FFIO. If Λ is a G-relation then it is by definition admissible and we get from [12]

(118) I(G,Λ;Ω1/2) ⊂ D′
r,s(G,Ω

1/2).

In particular, any G-FIO u produces an equivariant C∞ family of operators ux : C∞
c (Gx) →

C∞(Gx), x ∈ G(0), but each ux is not necessarily a Fourier integral operator on Gx. It is worth to

give an example.

Example 4. Consider the fibred pair groupoid G = X × X × Z ⇒ X × Z with X = Z = R.

Consider the open cone

(119) C = {(γ, θ) ∈ G× R
2 \ 0 ; θ ∈ Cx1}

where γ = (x1, x2, x3) and θ ∈ Cx1 means

(120) 2x1θ2 + θ1 6= 0, θ1 6= 0.

The function

(121) φ : (γ, θ) 7−→ (x1 − x2).θ1 + (x21 − z).θ2

is a non degenerated phase function with associated Lagrangian given by

(122) Λ = {(x, x, x2, θ1 + 2xθ2,−θ1,−θ2) ; x ∈ R, θ ∈ Cx} ⊂ T ∗G \ 0.
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Λ is a G-relation, but fails to be a family G-relation at the points where x = 0. Consider the closed

cone

(123) F = {(γ, θ) ∈ G×R
2 ; |γ| ≤ 1, 2|θ2| ≤ |θ1|} ⊂ C ∪G× {0}

and choose even functions χ ∈ C∞
c (R) and b ∈ C∞

c (R3) such that χ(0) = χ′′(0) = 1, χ(t) = 0 if

|t| ≥ 1
2 , supp(b) ⊂ {γ, |γ| ≤ 1} and b(0) = 1. Let choose a symbol a ∈ S1(G×R

2), with support in

F , such that a(γ, θ) = b(γ)χ(θ2/θ1)θ1 when |θ| ≥ 1. Then

(124) u(γ) =

∫
eiφ(γ,θ)a(γ, θ)dθ ∈ I∗(G,Λ)

and we look at the distribution u0 = m∗
(0,0)u on G(0,0) ×G(0,0) ≃ R

2. It is given by

(125) u0(x1, x2) =

∫
ei((x1−x2).θ1+x

2
1.θ2)a0(x1, x2, θ1, θ2)dθ1dθ2 ∈ D′(R2)

understood as a distribution where a0(x1, x2, θ1, θ2) = a(x1, x2, 0, θ1, θ2). Indeed, observe that

(126) φ0 : (x, θ) 7−→ (x1 − x2).θ1 + x21.θ2

is a phase function on C0 = {(x, θ) ∈ R
2 ×R

2 ; θ ∈ Cx1} and that a0 ∈ S∗(R2 ×R
2) is supported in

(127) F0 = {(x, θ) ; |x| ≤ 1, 2|θ2| ≤ |θ1|} ⊂ C0 ×R
2 × {0}.

It follows that (125) is an oscillatory integral [11, Paragraph 7.8] and thus, by [11, Theorem 8.1.9]

(128) WF(u0) ⊂ Λ0 = {(0, 0, θ1,−θ1) ; θ1 6= 0}.

As expected, Λ0 fails to be a Lagrangian submanifold of T ∗
R
2 \ 0 (actually, it is a one dimensional

isotropic conic submanifold) and even more, there is no Lagrangian submanifold Λ′ of T ∗
R
2\0 such

that u0 ∈ I∗(R2,Λ′). Before proving this assertion, observe that (128) implies u0 ∈ C∞(R2 \0) and

that for any x with x1 6= 0

u0(x) = b0(x)

∫
ei((x1−x2).θ1+x

2
1.θ2)χ(θ2/θ1)θ1dθ1dθ2 modulo C∞(R2)

= b0(x)

∫
ei((x1−x2).θ1+x

2
1.θ1θ2)θ21χ(θ2)dθ1dθ2 = b0(x)

∫
ei(x1−x2).θ1 χ̂(−x21θ1)θ

2
1dθ1

= b0(x)x
−6
1

∫
e
i
x2−x1

x2
1

.θ1
χ̂(θ1)θ

2
1dθ1 = x−6

1 b0(x)χ
′′(
x2 − x1
x21

).

Thus, u0 is not C∞ at (0, 0) and WF(u0) contains at least a half line in T ∗
(0,0)R

2. Since u0 is

even, WF(u0) also contains the opposite half line. This proves the equality in (128). Now assume

that u0 ∈ Im(R2,Λ′) for some Lagrangian Λ′. If the principal symbol σ(u0) does not vanish at

some point (x0, ξ0) ∈ Λ′, then (x0, ξ0) ∈ WF(u0). Thus σ(u0) must vanish on Λ′ \ Λ0. Since Λ0 is

one dimensional, it has empty interior in Λ′ and it follows that σ(u0) vanishes identically. Thus

u0 ∈ I
m−1(R2,Λ′) and repeating the argument proves that u0 is C∞, which is a contradiction.

The phenomenon enlighted in this example precisely disappears for Fourier integral G-operators

associated with family G-relations. Indeed,

Theorem 22. Let Λ be a family G-relation and u ∈ D′(G,Ω1/2). Then u ∈ I(G,Λ;Ω1/2) if and

only if u is a G-operator and ux = m∗
x(u) ∈ I(Gx ×Gx,m∗

xΛ;Ω
1/2
Gx×Gx) for all x ∈ G(0).
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Proof. Let us assume u ∈ I(G,Λ;Ω1/2). Then, as recalled before the theorem, u is a G-operator

and the pull-back distribution by the submersion m gives

m∗(u) ∈ I(G(2),m∗Λ;m∗Ω1/2)

Since m∗Λ is transversal to π : G(2) → G(0), Proposition 4 gives the result for all the m∗
x(u),

x ∈ G(0).

Conversely, Proposition 4 gives rise to distribution ũ ∈ I(G(2),m∗Λ;m∗Ω1/2) such that ũ|Gx×Gx =

ux and the result follows from the proposition 8 applied to X = Z = G(2), Y = G and f = m,

which yields u = m∗ũ ∈ I(G,Λ;Ω1/2). �

5.2. Adjoint and composition. Now, we can consider G-FFIO equivalently as family of usual

Fourier integral operators or as single Lagrangian distributions on G, whose underlying Lagrangian

submanifold Λ has suitable properties. The second choice leads to simpler and more conceptual

statements and also reveals the role played by the cotangent groupoid T ∗G. Moreover, most of the

statements hold true for the more general class of G-FIO. The next two theorems argue for this

point of view.

Theorem 23. Let Λ be a G-relation and set Λ⋆ = iΓΛ. If A ∈ Im(G,Λ) then A⋆ ∈ Im(G,Λ⋆).

Proof. It is sufficient to consider the case A(γ) =
∫
eiφ(γ,θ)a(γ, θ)dθ with φ a non degenerate phase

function parametrizing locally Λ. Then

(129) A⋆(γ) =

∫
e−iφ(γ

−1,θ)a(γ−1, θ)dθ.

The function b(γ, ξ) = a(γ−1, θ) is a symbol of the same order as a. The function ψ(γ, θ) =

−φ(γ−1, θ) is also a non degenerate phase function and

(130) Λψ = {(γ, ξ) ∈ T ∗G ; (γ−1,−t(diγ)(ξ)) ∈ Λφ}.

Since iΓ(γ, ξ) = (γ−1,−t(diγ)(ξ)), we get the result. �

Note that if Λ is moreover a family, then Λ⋆ too, and the adjoint of a G-FFIO u ∈ I(G,Λ) is

given by the family of adjoints of each Fourier integral operator ux on Gx.

Theorem 24. Let Λ1,Λ2 be closed G-relations which are cleanly convolable with excess e. If

A1 ∈ Im1
c (G,Λ1) and A2 ∈ Im2

c (G,Λ2) then

(131) A1.A2 ∈ Im1+m2+e/2+n(0)/2−n/4(G,Λ1.Λ2).

Here n is the dimension of G and n(0) is the dimension of G(0).

If moreover, Λ1,Λ2 are families and completely convolable (i.e. condition (108) is fulfilled), then

A1.A2 is a family Fourier integral G-operator.

Proof of theorem 24. We wish to apply Lemma 8 to the following data: X = G2, Y = G, Z = G(2),

f = mG Λ̃ = Λ1 × Λ2 and φ̃ = φ1 + φ2 where φj : Uj × (RNj \ 0) → R are non degenerated

phase functions parametrizing Λj in a conic neighborhood of points (γj , ξj) ∈ Λj , the latter points

satisfying (γ1, ξ1, γ2, ξ2) ∈ Λ1 × Λ2 ∩ (T ∗G)(2). We may assume that

(132) Aj(γj) =

∫
eiφj(γj ,θj)aj(γj , θj)dθj ,

where aj ∈ S
mj+(n−2Nj)/4(Uj × (RNj ).
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The only technical (and usual) obstruction is that

(133) a(γ1, γ2, θ1, θ2) = a1(γ1, θ1)a2(γ2, θ2)

is not a symbol in general. The conditions of admissibility on Λj allows to remove the regions in

(θ1, θ2) where the symbolic estimates for a fail.

Indeed, thanks to the admissibility assumptions on Λ1 and Λ2, we can reduce the problem to

the case where a1, a2 have support in compactly generated cones C1, C2 on which s̃(φ′1γ) and r̃(φ
′
2γ)

never vanish. Argumenting on the degree one homogeneity of s̃(φ′1γ), r̃(φ
′
2γ) with respect to θ1, θ2,

we can find constants C1, C2 such that

(134) if (γj , θj) ∈ Cj and s̃(φ
′
1γ(γ1, θ1)) = r̃(φ′2γ(γ2, θ2)) then C1|θ2| < |θ1| < C2|θ2|.

We choose a homogeneous function χ(θ1, θ2) of degree 0 equal to 1 when C1|θ2|/2 < |θ1| < 2C2|θ2|

and supported in C1|θ2|/3 < |θ1| < 3C2|θ2|. We set

(135) b(γ1, γ2, θ1, θ2) = χ(θ1, θ2)a(γ1, γ2, θ1, θ2)

and

(136) r(γ1, γ2, θ1, θ2) = (1− χ(θ1, θ2))a(γ1, γ2, θ1, θ2).

We have by construction of χ,

(137) C1|θ2|/3 < |θ1| < 3C2|θ2| in supp(b).

which allows to check that b ∈ Sm1+m2+(n−N1−N2)/2. Therfore we can apply the lemma to

B̃ =

∫
eiφ̃(γ1,γ2,θ1,θ2)b(γ1, γ2, θ1, θ2)dθ1dθ2,

and we get

(138)

B(γ) =

∫

m−1(γ)×RN1+N2

eiφ(γ,η,θ1,θ2)b(γ, η, θ1, θ2)dηdθ1dθ2 ∈ Im1+m2+e/2+n(0)/2−n/4(G,Λ1 ∗ Λ2).

Moreover, arguing again on the degree one homogeneity of φ̃ with respect to (θ1, θ2) and using the

expression of φ′ω given in the proof of Proposition 7, we also get

(139) |θ1|+ |θ2| < C|φ′η(γ, η, θ1, θ2)| in supp(r),

where we have set γ = γ1γ2, η = (γ1, γ2) ∈ m−1(γ) and φ(γ, η, θ1, θ2) = φ̃(γ1, γ2, θ1, θ2). The

previous estimates shows that

(140) R(γ) =

∫

m−1(γ)×RN1+N2

eiφ(γ,η,θ1,θ2)r(γ, η, θ1, θ2)dηdθ1dθ2

belongs to C∞(G) and we conclude that

(141) A1 ∗ A2(γ) = B(γ) mod C∞(G),

which proves the theorem.

�
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5.3. Principal symbol. By [11, Section 25.1], the principal symbol of A ∈ Im(G,Λ;Ω1/2) belongs

to S[m+n/4](Λ, IΛ ⊗ Ω̂1/2 ⊗ Ω̂
−1/2
G ) and the principal symbol map gives rise to an isomorphism

(142) σ : I [m](G,Λ;Ω1/2) −→ S[m+n/4](Λ, IΛ ⊗ Ω̂1/2 ⊗ Ω̂
−1/2
G ).

Here we have set Ê = (p|Λ)
∗(E|Λ) for any bundle E → G. To understand the product formula of

symbols of G-FIO, we analyse the auxiliary bundle

(143) Σα = Ω−α
G ⊗ Ωα

involved in the right hand side of (142) with α = 1
2 . As we shall see, Σ̂ is strongly related to the

groupoid structure of T ∗G.

We need a simple statement about vector bundles epimorphisms.

Lemma 25. Let f : X → Y be a submersion, p : E → X, q : F → Y be C∞ vector bundles and

g : E → F an C∞ epimorphism:

(144) 0 // ker g //

p

��

E
g

//

p

��

F //

q

��

0

X
= // X

f
// Y

Then the sequence

(145) 0 −→ p∗(ker g)
v

−→ ker dg
dp
−→ p∗ ker df −→ 0.

is exact. The map v is defined by

p∗(ker g)(x,e) ∋ λ 7−→ v(λ) =
d

dt
(x, e+ tλ)|t=0 ∈ ker dg(x,e) ∩ ker dp(x,e).

Proof. Thanks to the diagram (144), we have dp(ker g) ⊂ ker df and the map

(146) ker dg ∋ (e, u)
dp
7−→ (e, dpe(u)) ∈ p∗ ker df

is well defined. To prove its surjectivity, we work in local coordinates on TE associated with local

coordinates on X and local trivializations of E, so that the map (146) corresponds to

(147) (x, e, t, u) 7−→ (x, e, t).

Writing g(x, e) = (f(x), g̃(x, e)), we compute

(dg)(x,e)(t, u) = (dfx(t), (dxg̃)(x,e)(t) + (deg̃)(x,e)(u))(148)

= (dfx(t), (dxg̃)(x,e)(t) + g̃(x, u)).(149)

Since g̃ is fiberwise linear and surjective, the linear equation (dxg̃)(x,e)(t) + g̃(x, u) = 0 for fixed

x, e and t has solutions in u. Let ux,e,t be such a solution. Then, for any t ∈ ker dfx, the element

(t, ux,e,t) belongs to ker dg(x,e).

Next, it follows from (146) and (148) that (x, e, t, u) ∈ ker dp ∩ ker dg if and only if t = 0 and

u ∈ ker g̃. Since in these coordinates

(150) v : p∗(ker g) ∋ (x, e, u) 7−→ (x, e, 0, u) ∈ ker dp ∩ ker dg

we get that v(p∗(ker g)) is the kernel of the vector bundle epimorphism ker dg
dp
−→ p∗ ker df . �

As announced, we can interpret Σ in terms of densities bundles associated with the groupoid

structure of T ∗G.
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Proposition 26. We have canonically

Σ̂1/2 ≃ Ω1/2(ker dsΓ) ≃ Ω1/2(ker drΓ)(151)

Ω(ker dmΓ) ≃ pr(1)
∗ Σ̂1/2 ⊗ pr(2)

∗ Σ̂1/2 ≃ m∗
ΓΣ̂(152)

Ω(ker dmΓ) ≃ (p2)∗(Ω(kermΓ)⊗ Ω(ker dm)).(153)

Proof. Applying the lemma to (30), (31) and (29), one gets the exact sequence

(154) 0 −→ p∗((ker dr)⊥) −→ ker dsΓ
dp
−→ p∗ ker ds −→ 0,

(155) 0 −→ p∗((ker ds)⊥) −→ ker drΓ
dp
−→ p∗ ker dr −→ 0.

and

(156) 0 −→ (p2)∗ kermΓ −→ ker dmΓ
dp2
−→ (p2)∗ ker dm −→ 0.

To prove (151), observe that (154) gives

Ω1/2(ker dsΓ) ≃ p∗Ω1/2(ker ds)⊗ p∗Ω1/2((ker dr)⊥)

and that Ω1/2((ker dr)⊥) = Ω−1/2(TG/ ker dr) = Ω
−1/2
G ⊗ Ω1/2(ker dr). Next, observe that for any

Lie groupoid G, the maps

ker dm ∋ (γ1, γ2,X1,X2) 7−→ (γ1, γ2,X2) ∈ pr(2)
∗(ker ds)

and

pr(1)
∗(ker ds) ∋ (γ1, γ2,X1) 7−→ (γ1, γ2, (dRγ2)γ1(X1)) ∈ m∗(ker ds)

are isomorphisms of vector bundles over G(2). Similarly, ker dm ≃ pr(1)
∗(ker dr) and pr(2)

∗(ker dr) ≃

m∗(ker dr). These information used for the groupoid T ∗G give

Ω(ker dmΓ) ≃ Ω1/2(ker dmΓ)⊗ Ω1/2(ker dmΓ)(157)

≃ pr(1)
∗ Ω1/2(ker drΓ)⊗ pr(2)

∗Ω1/2(ker dsΓ)(158)

≃ m∗
Γ(Ω(ker dsΓ)) ≃ m∗

Γ(Ω(ker drΓ))(159)

where we have used (151) to pass from the second to the third line. This proves (152) and then

(153) follows directly from (156). �

Proposition 27. Let Λ1,Λ2 be closed G-relations which are cleanly convolable. Let Λ = Λ1.Λ2.

We have a natural homomorphism of vector bundles over Λ1 × Λ2 ∩ Γ(2):

(160) (Σ̂1/2 ⊗ IΛ1)⊠ (Σ̂1/2 ⊗ IΛ2) −→ m∗
Γ(IΛ ⊗ Σ̂1/2)⊗ Ω(ker dmΓ ∩ T (Λ1 × Λ2)).

Proof. Applying [11, Theorem 21.6.6], we get

(161) IΛ1 ⊠ IΛ2 −→ m∗
ΓIΛ ⊗ Ω−1/2(ker dmΓ)⊗ Ω(ker dmΓ ∩ T (Λ1 × Λ2))

Contrary to what happens in the proof of of [11, Theorem 21.6.7], the bundle ∆ = ker dmΓ is not

necessarily symplectic (actually, it may even be odd dimensional since the fibers are of dimension

n = dimG) and we cannot expect any natural trivialization of the corresponding density bundle.

This is where the bundle Σ is useful.

Using (152) in Corollary 26 we get

(162) (Σ̂1/2 ⊗ IΛ1)⊠ (Σ̂1/2 ⊗ IΛ2) ≃ Ω(ker dmΓ)⊗ (IΛ1 ⊠ IΛ2) ≃ m∗
Γ(Σ̂)⊗ (IΛ1 ⊠ IΛ2).
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Using (152) again to get Ω(ker dmΓ)
1/2 ≃ m∗

Γ(Σ̂
1/2) and combining (162) and (161), we obtain

(160).

�

These identifications of Maslov and densities related bundles allow to apply the formula for the

product of principal symbols given in [11, Theorem 25.2.3]. In the present situation, it gives

Corollary 28. Let Λ1,Λ2 be closed G-relations which are cleanly convolable with excess e and set

Λ = Λ1.Λ2. Let Aj ∈ Imj (G,Λj ; Ω
1/2) be compactly supported G-FIO and aj ∈ Smj+n/4(Λj , Σ̂

1/2 ⊗

IΛj
) be representants of the principal symbol of Aj . Let (a1 ⊠ a2)γ,ξ be the density on the compact

manifold m−1
Γ (γ, ξ) ∩ Λ1 × Λ2 with values in Σ̂1/2 ⊗ IΛ as given by (160). Then a1 ∗ a2 defined by

(163) (γ, ξ) ∈ Λ, a1 ∗ a2(γ, ξ) =

∫

m−1
Γ (γ,ξ)∩Λ1×Λ2

a1 ⊠ a2

belongs Sm1+m2+e/2+n(0)/2(Λ, Σ̂1/2 ⊗ IΛ) and represents the principal symbol of A = A1 ∗A2.

We end with some direct consequences of the previous statements.

5.4. Composition with pseudodifferential operators.

Theorem 29. Any closed G-relation Λ is transversally convolable with the unit G-relation A∗G

and the convolution product of distributions turns I(G,Λ;Ω1/2) into a Ψc(G,Ω
1/2)-bimodule :

Ψc(G; Ω
1/2) ∗ I(G,Λ;Ω1/2) ⊂ I(G,Λ;Ω1/2) ; I(G,Λ;Ω1/2) ∗Ψc(G; Ω

1/2) ⊂ I(G,Λ;Ω1/2).

When Λ = A∗G, we recover the fact that Ψc(G) is an algebra.

Proof. Λ0 = A∗G and Λ transversally convolable means that T (Λ0×Λ)+TΓ(2) = TΓ2 at any point

(δ1, δ2) ∈ Λ0 × Λ ∩ Γ(2). Passing to the symplectic othogonal, this is equivalent to

(164) T(δ1,δ2)(Λ0 × Λ) ∩ ker(dmΓ)(δ1,δ2) = 0

and the latter follow from general properties of Lie groupoids. Indeed, Let Γ be any Lie groupoid

and consider γ ∈ Γ, r(γ) = x, s(γ) = y ∈ Γ(0), (t1, t2) ∈ Tx,γΓ
(0) × Γ ∩ ker(dmΓ)(x,γ).

Since rΓ|Γ(0) = sΓ|Γ(0) = Id, we get dsΓ(t1) = drΓ(t1) = t1 and since rΓ ◦ mΓ = rΓ ◦ pr1,

sΓ ◦mΓ = sΓ ◦ pr2 we get from the assumption on (t1, t2) that

t1 = drΓ(t1) = drΓ ◦ dmΓ(t1, t2) = 0 and dsΓ(t2) = dsΓ ◦ dmΓ(t1, t2) = 0.

Also, we get 0 = dsΓ(t1) = drΓ(t2), therefore

(0, t2) ∈ ker(dmΓ)(x,γ), t2 ∈ TγΓ
x
y .

Then

(0, d(Rγ−1)γ(t2)) ∈ ker(dmΓ)(x,x), d(Rγ−1)γ(t2) ∈ TxΓ
x
x.

Since (dmΓ)(x,x)(u1, u2) = u1 + u2 if uj ∈ TxΓ
x
x we also conclude t2 = 0 and this proves that Λ0

and Λ transversally convolable. This is obviously the same with Λ0 on the right. In both cases

the fibers of the convolution Λ0.Λ = Λ.Λ0 = Λ are just points, hence the convolution is proper and

connected. Now Theorem 24 gives the conclusion. �

Combining Theorems 29 and 24, we obtain
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Theorem 30. (Egorov theorem for groupoids). Let Λ,Λ′ ⊂ T ∗G\0 be convolable closed G-relations

such that

(165) Λ.Λ′ ⊂ A∗G \ 0 and Λ′.Λ ⊂ A∗G \ 0.

Then

(166) Ic(G,Λ;Ω
1/2) ∗Ψ(G; Ω1/2) ∗ Ic(G,Λ

′; Ω1/2) ⊂ Ψ(G; Ω1/2).

We recall that the usual conventions for the order of conormal and Lagrangian distributions and

for the order of pseudodifferential operators on groupoids yield

(167) Ψm(G) = Im+(n−2n(0))/4(G,A∗G; Ω1/2).

Let us also recall that in [25] were introduced a class of generalized smoothing operators and of

Sobolev spaces. Recall that C∗(G) denotes the C∗-algebra associated with the groupoid G. The set

of generalized smoothing operators Ψ−∞(G) (Definition 24 p77 in [25]) is defined as the subset of

C∗(G) of those elements R such that the closure of P1RP2 is again in C∗(G) for any two compactly

supported pseudodifferential G operators P1 and P2. For s > 0 the Sobolev module Hs of rank s is

defined as the C ∗ (G)-module dom(P ) endowed with scalar product 〈x , y〉s = 〈Px , Py〉+ 〈x , y〉

where P is any elliptic operator of order s. The corresponding Sobolev module H−s is defined by

duality.

Next we can give, using techniques coming from [17] and [25], a result on the continuity in the

spirit of Theorem 25.3.1 in [11]

Theorem 31. Let Λ be an locally invertible local G-relation and A ∈ Imc (G,Λ;Ω1/2).

(1) If m = (n − 2n(0))/4, then the associated Fourier integral G-operator still denoted by A

extends into an operator which is a bounded multiplier of C∗(G) :

(168) A ∈ M(C∗(G)).

(2) If m < (n− 2n(0))/4 then A extends into an element of C∗(G).

(3) In the general case, A can be extended to a morphism from Hs to Hs−m′

with

m′ = m− (n− 2n(0))/4.

Proof. By definition of G-FIO and the assumptions of the theorem, A can be decomposed into

a finite sum A =
∑
Ai where for all i, Ai ∈ Imc (G,Λi; Ω

1/2) and Λi is an invertible patch of Λ.

Therefore, we can directly assume that Λ is an invertible G-relation.

From [12], we know that A is an adjointable G-operator and Theorem 23 gives A∗ ∈ Imc (G,Λ⋆; Ω1/2).

Remember that, 〈 , 〉 denoting the Hilbertian product of C∗(G) seen as a C∗(G)-Hilbert module,

the adjoint A∗ is characterized by

(169) 〈Au , v〉 = 〈u , A∗v〉 ∀u, v ∈ C∞
c (G,Ω1/2).

Observe that, by the Cauchy-Schwarz inequality for Hilbert modules, we have

(170) ‖Au‖2 = ‖〈Au , Au〉‖ = ‖〈A∗Au , u〉‖ ≤ ‖A∗Au‖‖u‖ ∀u ∈ C∞
c (G,Ω1/2),

and similarly for A∗. Since Λ is invertible, Theorems 24 and 11 give

A∗A ∈ Ψ
2m−n−2n(0)

2
c (G).

Now a fundamental result [17, Theorem 18], [25, Proposition 39] is

(171) Ψ0
c(G) ⊂ M(C∗(G)) and Ψm′

c (G) ⊂ C∗(G) for any m′ < 0
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and then we can proceed as in [17],[25]:

(1) Let assume m = (n− 2n(0))/4. Then A∗A ∈ Ψ0
c(G) and there exists C ≥ 0 such that, using

(170):

‖Au‖2 ≤ C‖u‖2 ∀u ∈ C∞
c (G,Ω1/2),

and similarly for A∗. This allows to extend by continuity the relation (169) to all u, v ∈

C∗(G), which then proves that A ∈ L(C∗(G)) ≃ M(C∗(G)).

(2) Let assume m < (n−2n(0))/4. Then A ∈ M(C∗(G)) as before and by (171), A∗A ∈ C∗(G),

which implies that A ∈ C∗(G) too since C∗(G) is an ideal of M(C∗(G)) (see [20, Chapter

1] for instance).

(3) In the general case, we know from [25] that for all s there exists an invertible elliptic

pseudodifferential G-operator P (s) of order exactly s , of inverse P (−s), and that this

operator P (s) is an isomorphism of Hilbert modules between Hs and C∗(G).

Then P (s−m)AP (−s) is an element of I
(n−2n(0))/4
c (G,Λ;Ω1/2) hence by the first result, a

bounded morphism of Hilbert modules between C∗(G) and itself, and the result follow by

multiplying on the left by P (m− s) an on the right by P (s).

�

6. An example: b-FIO

Applying the previous constructions to the groupoid defined in [4] to describe the pseudodifferen-

tial S-calculus on manifolds with iterated fibred corners, we have at hands tools to determine what

Lagrangian submanifolds of T ∗X2
π are suitable to define a decent class of Fourier integral operators

on manifolds with iterated fibred corners, and then equivalently on stratified spaces. Since this

will be treated in details elsewhere, we content ourselves here with the elementary example of a

manifold X with boundary ∂X = Y equipped with the trivial fibration π : Y → S = {·}. This

example has also the advantage to allow a comparison of our constructions with existing ones [14].

Let X2
b denote the stretched product of X2 with respect to Y 2, β : X2

b → X2 the blow-down map

[15, Sections 4.1,4.2]. This a manifold with corners whose boundary consists in three boundary

hypersurfaces

(172) bf = β−1(Y 2), lb = β−1(Y ×
◦
X), rb = β−1(

◦
X × Y ).

The open submanifold

(173) Gb = X2
b \ (lb ∪ rb)

has a Lie groupoid structure [17, 19] with unit space

(174) ∆b = β−1(∆ ◦

X
)

where ∆ ◦

X
is the diagonal of

◦
X ×

◦
X . The map β induces a diffeomorphism between ∆b and ∆X .

The Lie algebroid is given by the stretched tangent bundle bTX and the anchor map is the natural

map

(175) ι : bTX −→ TX.

The groupoid structure of Gb is the unique C∞ extension of the pair groupoid structure of
◦
X ×

◦
X

and it coincides with the natural one on

(176) Gb =
◦
X ×

◦
X ∪ Y 2 × R

∗
+ ⇒ X,
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through the diffeomorphism:

Gb ≃ {(p, q, λ) ∈ X2 × R
∗
+ ; x(q) = λx(p)} −→ Gb ⊂ X2

b(177)

(p, q, λ) 7−→




(p, q) if p 6∈ ∂X

[(t, λt, p′, q′)t∈[0,ǫ]] if p ∈ ∂X
(178)

Above, x is a defining function for the boundary of X and points in a neighborhood U of ∂X are

written using the convention p = (x(p), p′) with p′ ∈ Y after using the collar neighborhood theorem.

Assuming that U ≃ [0,∞)× Y , we have a C∞ groupoid isomorphism

(179) R+ ⋊R
∗
+ × Y 2 ≃ (Gb)

U
U

given by

R+ ⋊R
∗
+ × Y 2 −→ Gb ≃ Gb(180)

(x, λ, y, z) 7−→




(x, λx, y, z) if x > 0

(λ, y, z) if x = 0.
(181)

We assume in the sequel that a defining function is fixed, and we identify Gb with the left hand

side of (180). In particular, we note bf the subgroupoid Y 2 × R
∗
+. For more details, see [17, 19].

It is natural to focus on lagrangian conic submanifolds of T ∗X2
b \ 0 which are contained in

T ∗Gb. Indeed, since a diffeomorphism of X onto itself maps necessarily the boundary to the

boundary, the inclusion Λ ⊂ T ∗Gb hold for canonical relations Λ given by graphs of co-differential of

diffeomophisms ofX. For the same reason, one could moreover ask that the lagrangian submanifolds

Λ ⊂ T ∗Gb \ 0 under consideration have compact projections in Gb, but there is no immediate need

for requiring this property.

Proposition 32. Let Λ ⊂ T ∗Gb \ 0 be a family Gb-relation and i : bf →֒ Gb. Then

(1) Λ ∩ T ∗(
◦
X ×

◦
X) is a canonical relation contained in (T ∗

◦
X \ 0)× (T ∗

◦
X \ 0).

(2) The projection i∗Λ ⊂ T ∗bf \ 0 is a family bf-relation.

Proof. The follows from Proposition 21 since
◦
X ×

◦
X and bf are saturated subgroupoids (actually,

they are the only two leaves of FGb
). �

In particular, given a family Gb-relation Λ, the Gb-FFIO associated with Λ give by restriction

to
◦
X ×

◦
X and bf, respectively, an ordinary Fourier integral operator acting on

◦
X and a Fourier

integral operator acting on R
∗
+ × Y which is invariant with respect to the homotethies in R

∗
+.

We end this section by comparing Gb-relations and boundary canonical relations as defined by

R. Melrose [14, chap III, Definition 2.19]. R. Melrose used the later to develop the analog of

Hormander’s theory of Lagrangian distributions in the framework of manifolds with boundary and

totally characteristic operators.

Let Λ be a boundary canonical relation with N = M = X in [14, chap III, Definition 2.19].

Condition (2.10) of [14, chap III, Definition 2.19] is the requirement that Λ is a conic Lagrangian

submanifold of T ∗X2
b contained in T ∗Gb and Condition (2.15) there coincides with the admissibility

condition (“no zeros condition”). Thus Λ is Gb-relation.

Now Condition (2.9) of [14, chap III, Definition 2.19] reads

(182) TΛ+ TT ∗
bfGb = TT ∗Gb.
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This is equivalent to Tbf + dp(TΛ) = TbfGb, which gives Condition (100) of Proposition 15 at any

point (γ, ξ) ∈ Λ with γ ∈ bf. Since Condition (100) is here empty at any point (γ, ξ) ∈ Λ with

γ ∈
◦
X ×

◦
X, it follows that Λ is a family Gb-relation.

It follows that boundary canonical relations as defined in [14, chap III, Definition 2.19] are Gb-

relations. We now analyse (2.13) of [14, chap III]. We know that Λ1 = i∗(Λ) ⊂ T ∗bf is a bf-relation.

The fiber bundle considered in [14, chap III, (2.13)] is here

(183) T ∗bf ⊃ F = {(λ, y, z, ν, ξ, η) ; ν = 0} −→ T ∗Y 2.

Thus the first part of Condition (2.13) consists in requiring that

(184) TF + TΛ1 = TT ∗bf

and we can find Gb-relations that do not fulfill this equality. Indeed, let us fix (p0) ∈ Y 2 and set

(185) V = {(t, λ, p0) ; t ∈ R+, λ ∈ R
∗
+} ⊂ Gb.

Let C be the cone in T ∗Gb \ 0 defined by

(186) C = {(x, λ, y1, y2, τ, ν, ξ1, ξ2) ; ǫ|ξ1| < |ξ2| < ǫ−1|ξ1|}

for some ǫ > 0. Then set

(187) Λ = N∗V ∩ C = {(t, λ, p0, 0, 0, ξ1, ξ2) ; t ∈ R+, λ ∈ R
∗
+, ǫ|ξ1| < |ξ2| < ǫ−1|ξ1|}.

We are going to check that Λ is a Gb-relation which does not satisfy (184). Firstly, Λ is obviously

a conic Lagrangian submanifold. A straight computation shows that A∗Gb is the subset of T ∗

G
(0)
b

Gb

consisting in elements of the form

(188) (x, 1, y, y, 0, ν,−ξ, ξ) ∈ T ∗

G
(0)
b

Gb.

and that

(189) sΓ : (x, λ, y, z, τ, ν, ξ, η) 7−→ (xλ, 1, z, z, 0, λν,−η, η)

(190) rΓ : (x, λ, y, z, τ, ν, ξ, η) 7−→ (x, 1, y, y, 0, λν − xτ, ξ,−ξ)

Applying these formulae to points in (187) shows that Λ is a Gb-relation. Next, let us check

Condition (100) of Proposition 15, that is, the transversality between p : Λ → Gb and the foliation

FGb
. The condition is empty at any interior point so we focus on boundary points, that is on points

in Λ ∩ p−1(bf). We have

(191) γ = (0, λ, y) ∈ bf = {0}×R
∗
+×Y

2, TγFGb
= TγGb s(γ)+TγG

r(γ)
b = {0}×TR∗

+×Y
2 ⊂ TbfGb.

Using the expression (187) we obtain immediately

(192) dp(Tγ,ξΛ) + TγFGb
= TγGb, ∀(γ, ξ) ∈ Λ ∩ p−1(bf),

therefore Λ is a family Gb-relation. Now consider

(193) Λ1 = i∗Λ = {(λ, p0, 0, ξ1, ξ2) ; λ ∈ R
∗
+, ǫ|ξ1| < |ξ2| < ǫ−1|ξ1|} ⊂ T ∗bf \ 0.

Thus

(194) TΛ1 = {(λ, p0, 0, ξ;u, 0, 0, ζ) ; λ ∈ R
∗
+, ǫ|ξ1| < |ξ2| < ǫ−1|ξ1|, ζ ∈ T ∗

p0Y
2.}

Since

(195) TF = {(λ, p, 0, ξ;u, v, 0, ζ) ; (λ, u) ∈ TR∗
+, (p, v) ∈ TY 2, ξ, ζ ∈ T ∗

p Y
2}.
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We now see that TΛ1 + TF 6= T (T ∗bf), therefore Λ is not a boundary canonical relation in the

sense of [14, chap III, Definition 2.19].
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